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ABSTRACT
We use Shen et al.’s (2009) measurements of luminosity-dependent clustering in the Sloan
Digital Sky Survey Data Release 5 quasar catalogue, at redshifts 0.4 ≤ z ≤ 2.5, to constrain
the relation between quasar luminosity and host halo mass and to infer the duty cycle f opt, the
fraction of black holes that shine as optically luminous quasars at a given time. We assume
a monotonic mean relation between quasar luminosity and host halo mass, with lognormal
scatter �. For specified f opt and �, matching the observed quasar space density determines
the normalization of the luminosity–halo mass relation, from which we predict the clustering
bias. The data show no change of bias between the faint and bright halves of the quasar sample
but a modest increase in bias for the brightest 10 per cent. At the mean redshift z = 1.45 of
the sample, the data can be well described either by models with small intrinsic scatter (� =
0.1 dex) and a duty cycle f opt = 6 × 10−4 or by models with much larger duty cycles and larger
values of the scatter. ‘Continuity equation’ models of the black hole mass population imply
f opt ≥ 2 × 10−3 in this range of masses and redshifts, and the combination of this constraint
with the clustering measurements implies scatter � ≥ 0.4 dex. These findings contrast with
those inferred from the much stronger clustering of high-luminosity quasars at z ≈ 4, which
require minimal scatter between luminosity and halo mass and duty cycles close to one.
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1 IN T RO D U C T I O N

The strong correlations between the masses of central black holes
(BHs) and the luminosities, dynamical masses and velocity disper-
sions σ of their host galaxies imply that the growth processes of BHs
and their hosts are intimately linked (e.g. Magorrian et al. 1998;
Ferrarese & Merritt 2000; Gebhardt et al. 2000; Ferrarese 2002;
Ferrarese & Ford 2005; Graham 2007; Tundo et al. 2007; Shankar,
Bernardi & Haiman 2009b). However, constraining the cosmolog-
ical evolution of BHs remains a challenge. Although a variety of
theoretical models may roughly match observations, the underlying
physical assumptions on BH growth can vary drastically from one
model to another (e.g. Sołtan 1982; Silk & Rees 1998; Salucci et al.
1999; Cavaliere & Vittorini 2000; Kauffmann & Haehnelt 2000; Yu
& Tremaine 2002; Steed & Weinberg 2003; Wyithe & Loeb 2003;
Granato et al. 2004, 2006; Marconi et al. 2004; Merloni, Rudnick
& Di Matteo 2004; Yu & Lu 2004; Miralda-Escudé & Kollmeier
2005; Murray, Quataert & Thompson 2005; Cattaneo et al. 2006;
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Croton et al. 2006; Hopkins et al. 2006; Lapi et al. 2006; Shankar
et al. 2004, 2006; Malbon et al. 2007; Monaco, Fontanot & Taffoni
2007; Croton 2009; Cook, Lapi & Granato 2009; Shankar, Weinberg
& Miralda-Escudé 2009a). Quasar clustering provides additional,
independent constraints on the BH population, helping to discrim-
inate among otherwise viable models. As outlined by Martini &
Weinberg (2001) and Haiman & Hui (2001; see also Wyithe &
Loeb 2005; Lidz et al. 2006; Hopkins et al. 2007; Shankar & Mathur
2007; White, Martini & Cohn 2008; Shen et al. 2009a,b; Shankar
et al. 2009c; Wyithe & Loeb 2009; Bonoli et al. 2010), the clustering
is an indirect measure of the masses, and therefore number densi-
ties, of the haloes hosting the quasars. In turn, the ratio between
the quasar luminosity function and the halo mass function provides
information on the duty cycle, i.e. the fraction of haloes that host
active quasars at a given time. In general terms, stronger clustering
implies that quasars reside in rarer, more massive hosts, and match-
ing the observed quasar space density then requires a higher duty
cycle.

In this paper, we model Shen et al.’s (2009a, hereafter S09) recent
measurements of luminosity-dependent quasar clustering derived
from the quasar redshift survey (Schneider et al. 2007) of the Sloan
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1960 F. Shankar, D. H. Weinberg and Y. Shen

Figure 1. Bias as a function of bolometric luminosity. In all panels, the solid circles are the mean bias measured by S09 from the quasar autocorrelation
function for the faint, bright and brightest subsamples in their analysis. The open circle with dashed error bars is the bias measured for the brightest subsample
including in the fits the bins with negative correlation function. The open square is the bias computed from the cross-correlation of the most luminous sources
with the rest of the sample. The data are compared with predictions of several models for the mean bias at z = 1.45, the average redshift of the S09 sample.
Left-hand panel: comparison among models with the same value for the duty cycle f opt = 6 × 10−4 and different values of the intrinsic Gaussian scatter �

(in dex) in the quasar luminosity–host halo relation, as labelled. Central panel: comparison among models with the same scatter � = 0.1 dex but different
values of the duty cycle f opt, as labelled. Right-hand panel: comparison among three different models: one with constant f opt = 6 × 10−4 at all luminosities
and scatter � = 0.1 (solid line); another with equal scatter but with a decreasing duty cycle f opt = 6 × 10−4 at log (L/erg s−1) = 46.31, and f opt/2 and f opt/4
at log (L/erg s−1) = 46.56 and 46.84, respectively (dotted line) and finally a model with f opt = 2 × 10−3 and � = 0.5 (long-dashed line).

Digital Sky Survey (SDSS; York et al. 2000) Data Release 5 (DR5;
Adelman-McCarthy et al. 2007). Ross et al. (2009) also analyse the
clustering of this quasar survey, concentrating on redshift evolu-
tion, but here we focus on the S09 results because they isolate the
luminosity dependence of clustering. Our aim is to answer basic
questions about the evolution of the active galactic nucleus (AGN)
and supermassive BH population at z ≤ 2.5. Does the duty cycle
depend on quasar luminosity and/or redshift? What is the under-
lying relation between quasar luminosity and halo mass? Does it
have scatter? More generally, what combinations of duty cycle and
scatter are allowed by the measurements?

Throughout the paper, we adopt �m = 0.26, �� = 0.74, h ≡
H0/100 km s−1 Mpc−1 = 0.7, �b = 0.0435, ns = 0.95, σ 8 = 0.78 and
the transfer function of Eisenstein & Hu (1999; with zero neutrino
contribution), which matches the cosmology used by S09.

2 DATA

The sample used by S09 is a homogeneous subset of a catalogue
of 77 429 spectroscopically identified quasars brighter than Mi =
−22, in the redshift range 0.1 � z � 5.0. Shen et al. (2007) com-
puted the correlation function of the high-redshift quasars at z ≥
2.9, modelled subsequently by White et al. (2008) and Shankar
et al. (2009c). Here, instead we focus on the correlation function of
lower redshift quasars in the range 0.4 ≤ z ≤ 2.5. To probe the lu-
minosity dependence of the bias, S09 divided the low-z sample into
subsamples containing the fainter half of the quasars, the brighter
half of the quasars and the brightest 10 per cent of the quasars (see
their Fig. 2). In each luminosity bin, they computed the quasar cor-
relation function. In particular, S09 estimated for the full sample
a mean clustering bias of b = 2.16 ± 0.24, 2.26 ± 0.33, 4.05 ±
0.73 for the faint, bright and brightest subsamples, with median lu-
minosity log Lmed/erg s−1 = 46.31, 46.56, 46.84, respectively.1 We
will first compare with their data on the bias by computing models
at the average redshift z = 1.45 of their sample (Fig. 1). We will

1 We here use the S09 conversion to bolometric luminosities L =
10[Mi (z=2)−90]/(−2.5), with Mi(z = 2) = Mi(z = 0) − 0.596, the i band,
z = 2 K-corrected magnitude system introduced by Richards et al. (2006).

then compute the full correlation functions for the faint, bright and
brightest subsamples averaged over the full redshift distribution of
the sample, and compare them with the S09 measurements (Fig. 2).

3 ME T H O D

By imposing a cumulative match between the space densities of
quasars and their host haloes, and assuming that only a fraction f opt

of haloes of a given mass shine as optical quasars at a given time, we
can estimate the mean host halo mass given the observed number
density of quasars. Formally, this concept reads as (e.g. White et al.
2008)∫ ∞

xmin

n(x, z)dx =
∫ ∞

−∞
dyfopt�(y, z)

× 1

2
erfc

[
ln

(
10ymin(xmin)

10y

)
1√

2 ln(10)�

]
, (1)

with x = Mi(z = 2) and y = log M. Here �(y, z) is the comov-
ing number density of haloes, in units of Mpc−3 dex−1 for H0 =
70 km s−1 Mpc−1, which we take from Sheth & Tormen (1999),
while n(x, z) is the comoving number density of quasars (in Mpc−3)
with absolute magnitude in the range x → x + dx. We take the
observed luminosity function n(x, z) from Richards et al. (2006),
corrected to our cosmology. The quantity f opt in equation (1) is the
duty cycle, i.e. the fraction of haloes that host quasars shining above
a minimum luminosity xmin = Mi,min at redshift z. Equation (1) also
takes into account a lognormal scatter with dispersion � (in dex)
around the mean quasar luminosity–halo mass relation.2 This scat-
ter includes both the scatter between BH mass and halo mass and
the scatter between luminosity and BH mass (i.e. in the Eddington
ratio), and our analysis does not distinguish the two contributions.

2 Note that when comparing with the S09 measurements, equation (1) should
have an upper limit on the left-hand side corresponding to the maximum
luminosity Mi,max considered in the clustering measurement of a given
subsample. However, we have checked that, as long as the right-hand side
also has a similar cut-off in halo masses above the halo mass corresponding
to Mi,max, our results do not change.
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Figure 2. The projected correlation functions from S09 (solid points with error bars) are compared with the predictions of the low-scatter model from Fig. 1.
The left-hand, middle and right-hand panels refer to the faint, bright and brightest subsamples (with the cross-correlation shown for the brightest sample). The
solid lines refer to a model with constant duty cycle f opt = 6 × 10−4 at all luminosities and redshifts, while the long-dashed lines refer to a model with a
redshift-dependent duty cycle f opt = 6 × 10−4 × (1 + z/2.45)8. The predictions of the constant duty cycle model for the faint sample are also shown as dotted
lines in the last two panels for comparison.

At each redshift, equation (1) defines the minimum halo mass ymin

corresponding to the minimum luminosity in the sample xmin (the
latter taken from S09). We then compute the mean bias b̄ associated
to a given subsample at redshift z with median luminosity 〈x〉 =
Mi,med and minimum luminosity xmin as

b̄〈x〉(z) =
∫ ∞

0 dy�(y, z)W [ymin(xmin), y]b(y, z)∫ ∞
0 dy�(y, z)W [ymin(xmin), y]

, (2)

with

W [ymin(xmin), y] = erfc

[
ln

(
10ymin(xmin)

10y

)
1√

2 ln(10)�

]
(3)

and b(y, z) the halo bias given by Sheth, Mo & Tormen (2001). We
stress here that an upper luminosity limit to the bin, corresponding
to an upper cut in halo mass (see footnote 2), does not significantly
alter the expected bias given by equation (2).

To perform a detailed comparison with the S09 data, for at least
some of the models discussed below, we also compute the quasar
auto- and cross-correlation functions for each of S09’s redshift and
luminosity bins. The quasar autocorrelation function is given by

ξ (R, z) = D2(z)b̄2
〈x〉(z)ξm(R) , (4)

where D(z) is the linear growth factor of perturbations and ξm(R)
is the linear matter correlation function at z = 0 derived from the
power spectrum. To compute the cross-correlation function and to
compare with the S09 10 per cent most luminous quasars, we instead
use the relation

ξcross(R, z) = D2(z)b̄brightestb̄faintξm(R) , (5)

where b̄brightest is the bias associated to the most luminous quasars,
while b̄faint is the average bias associated to the faintest luminosity
in the sample at the same redshift.

We then convert the autocorrelation function into a projected
correlation function via the relation

wP(RP, z) = 2
∫ ∞

0
dRz ξ

(
R =

√
R2

P + R2
z , z

)
. (6)

Finally, we compute the average projected correlation function by
weighting with the quasar number redshift distribution N(z) and
volumes probed in each bin considered as

wP(RP) =
∫

dz (dV /dz) N 2(z)wP(RP, z)∫
dz (dV /dz) N 2(z)

. (7)

By comparing the bias and the average projected correlation func-
tion with the data, we can extract useful information on the under-
lying duty cycle f opt and scatter �. We have checked that including
subhaloes as quasar hosts, with the methods of Giocoli et al. (2007),
does not noticeably alter our predicted quasar bias or correlation
function, because the abundance of massive subhaloes is very small
compared to the abundance of haloes above the minimum halo
masses probed here.

4 R ESULTS

4.1 Clustering constraints on duty cycle and scatter

Fig. 1 compares the bias factor predicted by several illustrative
models to the values inferred by S09 from the quasar correlation
function for the faint, bright and brightest subsamples, shown by the
solid circles. At each redshift, these subsamples contain the fainter
half, brighter half and brightest 10 per cent of the quasars above the
SDSS magnitude threshold. The open square shows the bias factor
inferred from the cross-correlation of the brightest sample with the
remaining quasars. The open circle with dashed error bars shows the
bias measured for the brightest subsample (derived by S09 directly
from the cross-correlation function using their equation 3) when
negative correlation function points are included in the bias fit.
As discussed by S09, it is unclear whether the negative points are
purely statistical fluctuations or artefacts of the redshift variation
of quasar selection efficiency, so there is some ambiguity about
whether it is more accurate to retain or omit these data points. This
question should be resolved by the larger data sample from the final
SDSS data release, which will have smaller statistical fluctuations.
Nevertheless, we will show below that our main conclusions hold
irrespective of the exact data set considered.

Lines in Fig. 1 show model predictions for a variety of assump-
tions. By applying equations (1) and (2) we compute the mean
bias as a function of bolometric luminosity at the single redshift
z = 1.45, the mean redshift of the S09 sample, for different in-
put duty cycle f opt and scatter �. The solid line in the left-hand
panel shows a reference model consistent with the data on the bias,
defined by a small scatter � = 0.1 dex and a constant duty cycle
f opt = 6 × 10−4. As expected, increasing the scatter to e.g. � = 0.5,
0.8, lowers the predicted bias and flattens the relation between bias
and luminosity (long-dashed and dotted lines), as it increases the
contamination by the much more numerous, less massive and less
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biased haloes. The corresponding effective halo masses Meff for the
faint, bright and brightest subsamples are computed by solving the
equation b(Meff , z) = 〈b〉(z), which yields Meff ∼ 2 × 1012 h−1 M,
∼3 × 1012 h−1 M and ∼1013 h−1 M, respectively, for the refer-
ence model 〈b〉 values. The central panel of Fig. 1 compares models
with the same scatter � = 0.1 dex but different values of the duty
cycle f opt, as labelled. Increasing f opt implies mapping the same
number of quasars to less numerous haloes (cf. equation 1), which
are more massive and more biased, thus inducing an overall increase
in the average predicted bias. Just the opposite is true if the duty
cycle is decreased.

The S09 bias measurements are consistent with a constant duty
cycle f opt = 6 × 10−4 and small scatter � = 0.1 dex, though this
model is 0.5–1σ high in the faint and bright bins and 1σ low
(compared to the solid circle) in the brightest bin. Allowing an
increase in f opt with increasing luminosity would slightly improve
the match to the data. On the other hand, the right-hand panel of
Fig. 1 shows that a model with a significantly decreasing duty cycle
(dotted line), equal to f opt = 6 × 10−4 at log (L/erg s−1) = 46.31 and
to f opt/2 and f opt/4 at log (L/erg s−1) = 46.56 and log (L/erg s−1) =
46.84, respectively, is inconsistent with the autocorrelation bias for
the highest luminosity bin at the ∼2σ level. However, if we take
the S09 bias measurement that includes negative data points, or the
cross-correlation measurement, then the discrepancy is only ∼1σ .
A model characterized by a high duty cycle and a larger scatter in
the luminosity–halo relation (long-dashed line) is also consistent
with the data at the ∼1σ level.

To make use of the full data sets available, we compute the cor-
relation function for a subset of representative models. The solid
circles with error bars in the left-hand, central and right-hand panels
of Fig. 2 are the projected correlation functions WP(RP) estimated by
S09 for the faint, bright and brightest quasar samples, respectively
(the cross-correlation function is shown for the brightest sample).
The solid lines in each panel refer to the prediction of the refer-
ence model discussed in Fig. 1 defined by a constant f opt = 6 ×
10−4 with the correlation function computed via equation (7) by
integrating over the redshift distribution of the clustering sample.
We have verified that simply computing the correlation function

at the mean redshift of z = 1.45 produces essentially the same
result (the correlation function in the latter case is systematically
lower by only ∼3–4 per cent, at fixed f opt). The reference model
agrees well with the WP(RP) data at RP ≤ 40 h−1 Mpc. While the
increases in the predicted WP(RP) for the bright and brightest sam-
ples are modest, they clearly improve the fit to the data relative to a
luminosity-independent WP(RP) (dotted lines).

For the bright and brightest samples, the data at larger scales
do not follow the theoretically predicted shape. Since this shape is
generic to � cold dark matter models with scale-independent large-
scale bias, and thus to models that accurately describe observed
galaxy clustering at lower redshifts (e.g. Reid et al. 2010), we at-
tribute little significance to this discrepancy at present; error bars in
wP(RP) are correlated, and the jackknife method may underestimate
them at large scales.

Other methods (see Section 4.2 below) favour duty cycles that
evolve in time. The study by Shankar et al. (2009a) yields a rapidly
evolving duty cycle that can be approximated as f = f (z = 1.45) ×
[(1 + z)/2.45]8 in the range 0.5 � z � 2 (see their fig. 7c). Applying
the latter model to equations (7) yields the long-dashed lines in
Fig. 2, which is very similar to the reference model computed at
z = 1.45.

Fig. 1 demonstrates a tradeoff between f opt and �: the bias de-
creases with either decreasing duty cycle or increasing scatter. The
contours in Fig. 3 present this tradeoff systematically, showing re-
gions in the (f opt, �) parameter space that are consistent with the
b(L) data at the 1, 2 and 3σ confidence levels. For these contours, we
assume that f opt is independent of L and compute the predicted bias
at z = 1.45. The two parameters are not completely degenerate, as
raising � flattens the b(L) relation in addition to lowering its ampli-
tude. If we adopt the autocorrelation estimate of b(L) for the highest
luminosity bin (rightmost solid circle in Fig. 1, left-hand panel of
Fig. 3), then values of � > 0.65 are inconsistent at the 1σ level be-
cause they predict a b(L) relation that is too flat. However, the lower
b(L) estimated from cross-correlation (open square in Fig. 1, right-
hand panel of Fig. 3) allows higher � values, and the 2σ constraints
are weak in either case. Future bias measurements with smaller
uncertainties could help to break the f opt–� degeneracy, but only

Figure 3. Constraints on the optical duty cycle f opt and luminosity–halo mass scatter � derived from the b(L) data points shown in Fig. 1. Contours mark
the regions of parameter space with χ2 = 1.0 4.0, and 9.0, corresponding to 68, 95 and 99.7 per cent confidence levels for one degree of freedom (three data
points minus two parameters). Results in the left-hand panel adopt the autocorrelation b(L) estimate for the highest luminosity bin (rightmost solid circle in
Fig. 1), while results in the right-hand panel adopt the cross-correlation estimate (open square in Fig. 1), which has a lower central value and smaller error bar.
In both panels, shaded regions indicate the duty cycles f opt < 2 × 10−3 that are inconsistent with the expectations from continuity-equation models of the BH
population (see Section 4.2).
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to the extent that they clearly demonstrate a luminosity-dependent
clustering trend. For now, we turn to independent constraints on op-
tical duty cycles derived from the observed space density of quasars
and models of the underlying BH population.

4.2 Additional constraints from the BH continuity equation

A widely used method to model the accretion history of the BH
population employs a continuity equation (Cavaliere, Morrison &
Wood 1971; Small & Blandford 1992) to track the growth of the
BH mass function that is implied by the observed quasar luminosity
function. This approach is reviewed extensively by Shankar et al.
(2009a; hereafter SWM), who apply it to a compilation of recent
data sets, and whose results and methodology we adopt here. The
parameters of a model are the radiative efficiency ε, which converts
an observed luminosity to a corresponding mass accretion rate and
the Eddington ratio λ = L/LEdd, which determines the mass of the
BHs to be associated with a given observed luminosity. The method
can be generalized to allow a distribution of λ values (Shankar
2009). For a single λ value, the duty cycle is simply

f (MBH, z) = �(L, z)

�BH(MBH, z)
, (8)

where �(L, z) is the quasar luminosity function and �(MBH, z) is
the BH mass function at the mass that corresponds to luminosity L,
MBH = 108 λ−1 (L/1046.1 erg s−1) M. For a distribution of λ, one
must take some care in defining the meaning of the term ‘active’.
At redshifts z > 1, BH mergers are expected to play a minor role
in shaping �(MBH, z) relative to accretion (SWM), and we neglect
them here.

The left-hand panel of Fig. 4, analogous to fig. 7c of SWM, shows
the optical duty cycle as a function of BH mass at z = 1.45 predicted
by several different continuity equation models. The model shown
by the solid curve has λ = 0.6 and ε = 0.065, independent of mass
and redshift, which SWM show yields a good match to observa-
tional estimates of the local BH mass function. We convert the total
duty cycle to the optical duty cycle using f opt = f /3, based on the
ratio of the optical luminosity function for the SDSS quasar sam-
ple to the bolometric luminosity function in SWM. Above MBH =

108.8 M, the predicted duty cycle is f opt = 3.6 × 10−3, while the
differing shapes of the quasar luminosity function and the evolved
BH mass function imply higher duty cycles at lower masses. The
thick vertical lines mark the masses that correspond to the lower
luminosity limit of the S09 sample at z = 1.45, log MBH = 8.2 −
log λ. As discussed by SWM, including BH mergers in the mass
function evolution or varying the bolometric luminosity functions
or bolometric corrections within observationally acceptable bounds
has minimal impact on the inferred duty cycles at these redshifts;
the largest systematic uncertainties are associated with the choices
of λ and ε. The dotted curve shows a model with λ = 0.3, which has
similar shape but higher normalization. The normalization trend is
easily understood: the integrated quasar emissivity determines the
total mass density of the BH population (Sołtan 1982), and assuming
lower λ shifts this density to more massive, hence rarer, BHs, which
must have a higher duty cycle to reproduce the luminosity function.
The dashed curve shows a model with a spread in Eddington ratios,
Gaussian in log λ with 0.6-dex dispersion and peak at λmed = 0.3,
evolved with the techniques described in Shankar (2009). Results
are intermediate between the two constant-λ models. However, in
this case the S09 luminosity threshold does not correspond to a
sharp mass cut, so the dot–dashed curve shows f opt with the addi-
tional criterion that log λ > 8.2 − log MBH, which eliminates those
lower mass BHs whose Eddington ratio would be too low to enter
the S09 sample at z = 1.45. This curve is slightly jagged because
the calculation uses a discrete representation of the Gaussian log λ

distribution rather than a smooth function (see Shankar 2009).
The right-hand panel of Fig. 4 shows the optical duty cycle at

MBH = 109 M and z = 1.45 for models with a range of Eddington
ratios and radiative efficiencies. For lower ε, the observed quasar
emissivity implies a higher BH mass density, hence a higher space
density of BHs at a given mass and thus a lower duty cycle. How-
ever, observational estimates of the local BH mass density imply ε �
0.06 (see SWM for extensive discussion), and arguments from ac-
cretion disc theory favour ε ≈ 0.08–0.2 depending on assumptions
about typical BH spins (e.g. Berti & Volonteri 2008, and references
therein). Together with observational estimates favouring Edding-
ton ratios λ ≈ 0.25 (Kollmeier et al. 2006) or even lower (e.g. Netzer
& Trakhtenbrot 2007) at this luminosity and redshift, we conclude

Figure 4. Optical duty cycles predicted by continuity-equation models of the BH population, as discussed in Section 4.2, including a factor of three correction
for obscuration, f opt = f /3. Left: optical duty cycle versus BH mass at z = 1.45 for models with Eddington ratio λ = 0.6 (solid line), λ = 0.3 (dotted line)
and a 0.6-dex Gaussian spread of log λ centred at λmed = 0.3 (dashed line), all assuming radiative efficiency ε = 0.065. Thick vertical-dotted lines show the
masses corresponding to the S09 sample luminosity threshold at z = 1.45 for λ = 1.0, 0.5, 0.1 (left to right). The dot–dashed curve shows the duty cycle in the
Gaussian case with the additional requirement that the Eddington ratio is high enough to pass this luminosity threshold. Right: optical duty cycle at MBH =
109 M and z = 1.45 for models with different choices of λ = L/LEdd and ε, as indicated. Within a given model, the values of λ and ε have no scatter and are
held fixed during evolution.
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that continuity-equation models imply optical duty cycles f opt(z =
1.45) > 2 × 10−3 in the S09 luminosity range. The robustness of this
lower limit depends on how pessimistically one views the system-
atic uncertainties in the local BH mass density (hence ε), direct BH
mass estimates (hence λ) and obscuration fractions (hence f opt/f ),
but it is much easier to find ways to push f opt higher than to push it
lower.

Returning to Fig. 3, the shaded bands show the values of f opt <

2 × 10−3 excluded by the continuity equation arguments. Models
consistent with this constraint and the 95 per cent constraint from
the b(L) data have high scatter, � > 0.4 dex. This conclusion holds
regardless of whether we use the autocorrelation or cross-correlation
estimates of the bias in the highest luminosity bins (left-hand and
right-hand panels, respectively). In the right-hand panel of Fig. 1,
the long-dashed line shows an explicit example of b(L) for a model
with f opt = 2 × 10−3 and � = 0.5. The prediction is very similar
to that of the low-scatter model with f opt = 6 × 10−4, though the
larger scatter does produce slightly flatter b(L).

5 SU M M A RY A N D I M P L I C AT I O N S

Studies of quasar clustering have generally failed to find any sig-
nificant dependence of clustering strength on quasar luminosity, at
least at z ≤ 2.5. The S09 study is one of the first to separate luminos-
ity dependence from redshift evolution, and it mostly confirms this
basic finding, except for the ∼2σ increase in bias for the brightest
10 per cent of the quasars at z ≤ 2.5. At first glance, the absence
of luminosity dependence appears to contradict models like those
of Martini & Weinberg (2001) or Haiman & Hui (2001), which
assume a monotonic relation between quasar luminosity and host
halo mass and therefore predict a stronger bias for more luminous
quasars. However, Figs 1 and 2 show that the S09 results can be
reproduced by a model with constant duty cycle for optical quasar
activity, f opt ≈ 6 × 10−4, and minimal scatter between luminosity
and halo mass. The weakness of the predicted luminosity depen-
dence arises because, even with the large size of the SDSS quasar
survey, the dynamic range of luminosity at fixed redshift is not very
large (≈0.5 dex), and the host haloes at these luminosities and red-
shifts are not on the extreme, steeply rising tail of the b(M) relation.
Croton (2009) reaches a similar conclusion (comparing to other data
sets), with a model that is different in technical implementation from
ours but similar in practice.

However, the S09 bias measurements can also be fit by models
with a higher duty cycle and substantial scatter between luminosity
and halo mass. The increase in bias for S09’s highest luminosity bin
implies an upper limit on scatter, but this increase is only marginally
detected depending on which method is used to estimate the bias.
Fig. 1 shows an explicit example of an acceptable model with f opt =
2 × 10−3 and lognormal scatter � = 0.5 dex, and Fig. 3 shows the
regions of the f opt–� parameter space that yield acceptable agree-
ment with the S09 bias measurements. As discussed in Section 4.2,
models of the quasar population that infer the duty cycle by evolv-
ing the BH mass function and comparing to the quasar luminosity
function imply f opt � 2 × 10−3. Taken together, the clustering con-
straints and the continuity equation models imply substantial scatter
in the luminosity–halo mass relation, with � ≥ 0.4 dex.

Applying linewidth estimators of BH mass in the AGN and
Galaxy Evolution Survey (AGES), Kollmeier et al. (2006) infer
a scatter in quasar Eddington ratios of σλ ≤ 0.3 dex, though Netzer
et al. (2007) and Shen et al. (2008) argue for somewhat larger scat-
ter based on other data sets. The total scatter between luminosity
and halo mass is a combination (in quadrature) of the scatter in

Eddington ratios and the scatter between halo mass and BH mass.
Physically, many models of quasar activity predict broad Eddington
ratio distributions as a consequence of ‘post-peak’ accretion on to
a central BH, after a rapid growth phase in which the BH mass
grows exponentially at a near-Eddington accretion rate (e.g. Yu &
Lu 2008; Hopkins & Hernquist 2009; Shen 2009). Various authors
have argued that such prolonged post-peak activity is the key to
reconciling the faint end of the AGN luminosity function with mea-
surements of quasar bias at low redshift (e.g. the above papers and
Lidz et al. 2006; Marulli et al. 2008; Bonoli et al. 2010; Shankar
et al., in preparation). We conclude that scatter of 0.4–0.6 dex in
the luminosity–halo mass relation at these redshifts is plausible on
both theoretical and observational grounds.

Several groups have recently tried to measure, or limit, redshift
evolution of the scaling between BH mass and host galaxy prop-
erties. As several recent papers have pointed out (e.g. Lauer et al.
2007; Shankar et al. 2009b; Shen & Kelly 2009; Merloni et al.
2010), a large scatter between quasar luminosity and the galaxy
scaling property (such as stellar mass or velocity dispersion σ )
can bias such measurements. These biases arise from a combina-
tion of flux-limit effects, rapidly falling stellar mass (or velocity
dispersion) functions of galaxies and intrinsic scatter in the scaling
relations themselves, which conspire to cause an apparent rise in the
mean BH mass at fixed galaxy properties with increasing redshift.
Merloni et al. (2010) note that an increasing scatter with increasing
z could be enough to explain the trend of evolving BH mass over
galaxy mass ratio measured in their data. Decarli et al. (2010; see
also Bennert et al. 2010 for similar conclusions at lower redshifts)
argue that strong evolution in the BH mass–galaxy mass relation
is still present even after carefully accounting for flux-limit effects,
although they did not allow the possibility of redshift-dependent
scatter in the relations (see also discussion in Shen & Kelly 2009).
The substantial scatter inferred from our analysis shows that biases
associated with this scatter must be carefully assessed in studies of
the evolution of scaling relations.

A large dispersion between quasar luminosity and host halo mass
cannot be the general rule at all redshifts and luminosities. In partic-
ular, explaining the high clustering amplitude measured for SDSS
quasars at z ≈ 4 by Shen et al. (2007) requires both minimal scat-
ter and duty cycles close to one (White et al. 2008; Bonoli et al.
2010; Shankar et al. 2009c). The quasars in this z ≈ 4 sample are
considerably more luminous than the lower redshift quasars whose
clustering is modelled here, so in principle the difference in scatter
could reflect either redshift dependence or luminosity dependence.
Fine et al. (2008) claim direct empirical evidence for a decrease of
� with increasing quasar luminosity, based on linewidth estimates
of BH mass, and a decrease of this sort is also found in numeri-
cal simulations of merger-driven quasar activity (e.g. Hopkins &
Hernquist 2009, and references therein). Assuming that λ ≈ 1 sets
an upper limit on BH luminosity, decreasing scatter at high lumi-
nosity is plausible because the BH mass function declines rapidly at
high masses, so that the most luminous quasars will almost always
be powered by BHs radiating near the maximum allowed Edding-
ton ratio. (These arguments address only the scatter in λ, not the
scatter in BH mass at fixed halo mass.) We have checked that we
can fit the b(L) data in Fig. 1 using models with f opt ≈ 10−3 and
decreasing scatter at high luminosity, e.g. �(L) = 0.6, 0.3, 0.1 dex
for the three bins of increasing luminosity, or even �(L) = 0.4, 0.2,
0.1 dex. However, the bias in the highest luminosity bin, which is
rather uncertain at present, can significantly constrain such models.

The duty cycles inferred from our analysis at z ≈ 1.45 are sub-
stantially lower than the values f ≈ 0.2 and f ≈ 1 inferred from the
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Shen et al. (2007) measurements of the clustering of quasars at z ≈
3 and z ≈ 4 (see Shen et al. 2007; White et al. 2008; Shankar et al.
2009c). This decline in duty cycle at low redshifts is expected from
continuity equation models: the BH mass function grows in time,
but the observed quasar luminosity function declines at z < 2, so
a lower duty cycle is required to reconcile them (see, e.g. fig. 7 of
SWM). Our current analysis does not constrain duty cycle evolution
at z < 2, but strong evolution over this interval is predicted by the
SWM model and is consistent with the S09 correlation function
data (see Fig. 2).

The measurements in S09 provide significant constraints on the
relation between quasar luminosity and halo mass, though leav-
ing substantial degeneracy between the duty cycle and the scatter
in this relation. Reducing statistical errors and remaining system-
atic uncertainties, especially for the brightest luminosities, would
tighten these constraints; in particular, an unambiguous and pre-
cise measurement of luminosity-dependent bias would place much
tighter restrictions on scatter. The quasar catalogue from SDSS
DR7 (Adelman-McCarthy et al. 2008) should yield noticeable im-
provements, with roughly 50 per cent smaller error bars and fewer
issues with internal boundaries in the survey region. Since the SDSS
quasar sample has high completeness and (with DR7) covers most
of the high-latitude northern sky, it will be difficult to go much fur-
ther with autocorrelation measurements in the S09 luminosity and
redshift range. Cross-correlation against denser samples of objects
– fainter AGN or bright galaxies – could yield higher precision
clustering measurements, perhaps with photometric samples from
surveys such as Pan-STARRS and LSST, but perhaps requiring
spectroscopic samples like those envisioned for ambitious baryon
acoustic oscillation experiments. The constraints on host halo popu-
lations can also be improved by extending clustering measurements
to smaller scales, where quasar pairs from the same halo contribute,
and to fainter luminosities, such as those probed by the 2dF Quasar
Redshift Survey, the SDSS photometric quasar catalogue and X-ray
surveys (e.g. Hennawi et al. 2006; Myers et al. 2007; Plionis et al.
2008; Hennawi et al. 2009); for example, Shen et al. (2009b) use
small-scale measurements to put constraints on the duty cycle of
BHs in satellite galaxies. Quasar clustering as a cosmological tool
has moved from a prospect (Osmer 1981) to reality, and the growing
precision and dynamic range of these measurements – in luminos-
ity, redshift and length-scale – will teach us about the growth of
supermassive BHs and the mechanisms that transform them from
dormant monsters to brilliant beacons and back.
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