
Vol.:(0123456789)1 3

Computing and Software for Big Science (2022) 6:13
https://doi.org/10.1007/s41781-022-00086-2

ORIGINAL ARTICLE

Constraints on Future Analysis Metadata Systems in High Energy
Physics

T. J. Khoo5 · A. Reinsvold Hall10 · N. Skidmore16 · S. Alderweireldt15 · J. Anders13 · C. Burr3 · W. Buttinger9 ·
P. David11 · L. Gouskos3 · L. Gray4 · S. Hageböck3 · A. Krasznahorkay3 · P. Laycock1 · A. Lister14 · Z. Marshall6 ·
A. B. Meyer2 · T. Novak2 · S. Rappoccio12 · M. Ritter7 · E. Rodrigues8 · J. Rumsevicius3 · L. Sexton‑Kennedy4 · N. Smith4 ·
G. A. Stewart3 · S. Wertz11

Received: 15 December 2021 / Accepted: 14 June 2022 / Published online: 27 July 2022
© The Author(s) 2022

Abstract
In high energy physics (HEP), analysis metadata comes in many forms—from theoretical cross-sections, to calibration correc-
tions, to details about file processing. Correctly applying metadata is a crucial and often time-consuming step in an analysis,
but designing analysis metadata systems has historically received little direct attention. Among other considerations, an ideal
metadata tool should be easy to use by new analysers, should scale to large data volumes and diverse processing paradigms,
and should enable future analysis reinterpretation. This document, which is the product of community discussions organised
by the HEP Software Foundation, categorises types of metadata by scope and format and gives examples of current metadata
solutions. Important design considerations for metadata systems, including sociological factors, analysis preservation efforts,
and technical factors, are discussed. A list of best practices and technical requirements for future analysis metadata systems is
presented. These best practices could guide the development of a future cross-experimental effort for analysis metadata tools.

Keywords High energy physics · Data analysis · Metadata · Scientific computing · Databases

 * S. Hageböck
 stephan.hageboeck@cern.ch

 A. Reinsvold Hall
 achall@usna.edu

1 Physics Department, Brookhaven National Laboratory,
Upton, NY, USA

2 Deutsches Elektronen-Synchrotron DESY, Hamburg,
Germany

3 European Organization for Nuclear Research (CERN),
Geneva, Switzerland

4 Fermi National Accelerator Laboratory, Batavia, IL, USA
5 Humboldt-Universität zu Berlin, Institut für Physik,

12489 Berlin, Germany
6 Physics Division, Lawrence Berkeley National Laboratory,

Berkeley, CA, USA
7 Ludwig-Maximilians-Universität, Munich, Germany

8 Oliver Lodge Laboratory, University of Liverpool, Liverpool,
UK

9 Rutherford Appleton Laboratory, Didcot OX11 0DE, UK
10 United States Naval Academy, Annapolis, MD, USA
11 Centre for Cosmology, Particle Physics and Phenomenology

(CP3), Université Catholique de Louvain, Louvain-la-Neuve,
Belgium

12 University at Buffalo, State University of New York,
Amherst, NY, USA

13 Laboratory for High Energy Physics, University of Bern,
Bern, Switzerland

14 University of British Columbia, Vancouver, BC, Canada
15 The University of Edinburgh, Edinburgh, UK
16 University of Manchester, Schuster Building,

Manchester M13 9PL, UK

http://orcid.org/0000-0003-1653-8553
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-022-00086-2&domain=pdf

 Computing and Software for Big Science (2022) 6:13

1 3

13 Page 2 of 9

Introduction

This document attempts to motivate and codify a set of
requirements on systems for storing, organising and access-
ing analysis metadata (henceforth “metadata systems”) for
future experiments in high energy physics (HEP). It arises
from a series of meetings held by the Data Analysis Working
Group (DAWG) of the HEP Software Foundation (HSF)1 in
early 2021 and the subsequent cross-experiment discussions.

High energy physics is a big data endeavour, and sig-
nificant research efforts have been dedicated to the manage-
ment of and access to physics data, which is usually inter-
preted as the combination of detector readout and simulated
events. While metadata (i.e. data about data) has long been
an important part of detector simulation and reconstruction,
in the context of analysis it has received less direct attention.
Metadata is a crucial element of data analysis and analysis
preservation, but in the software for current experiments,
such as those at the Large Hadron Collider (LHC), tools for
handling it have less frequently been designed with analy-
sis applications in mind. Instead, analysis metadata systems
were either adapted from systems designed for central data-
set production or emerged ad-hoc from within the analysis
community. In future HEP endeavours, such as the LHC’s
High Luminosity upgrade (HL-LHC) [1], the lack of a coor-
dinated approach to storing and retrieving analysis metadata
may become a limiting factor in the efficiency of analysis.
The longer lifetimes of future HEP experiments mean that
ever larger datasets, spanning many data-taking periods with
changing conditions, have to be analysed. Consequently,
analyses are bigger, more collaborative enterprises that will
require more coherent, persistent metadata solutions.

In this document, we will first give examples of different
types of metadata and their various scopes. Then we will
discuss motivations for the design choices of metadata sys-
tems, including current examples. Finally, we will outline
technical specifications that should be considered during
the design of any future metadata system and identify how
these fulfill the “FAIR Guiding Principles for scientific data
management and stewardship” [2]. As the issues motivating
these are common to many HEP experiments, these could
become the foundation of a common cross-experimental
software project, or could help define the specifications of
systems developed within the experimental collaborations.

Types of Metadata

For the purposes of this discussion, metadata is taken to refer
to any information other than the event data of a simulated

or recorded dataset. For example, in the context of an LHC
experiment, a recorded bunch crossing is described by event
data in the form of tracker hits, calorimeter cell energies and
other detector readout, while the corresponding metadata
may include the instantaneous luminosity, magnetic field
conditions, data quality assessments and so on. These need
not be stored in the same location. Frequently, the event data
is streamed to ROOT [3] files containing tree data structures,
with some metadata retained in the file, but other details
being relegated to a relational database (henceforth “data-
base”), using identifiers to associate database information
to specific files or datasets. Still more relevant information
needed to correctly analyse the events may be stored in other
formats.

An extensive, but by no means exhaustive, list of meta-
data examples is given below, together with some mecha-
nisms by which the metadata is stored and accessed. All
of these are found to be necessary for carrying out LHC
data analysis. In this document, we focus on the information
needed to carry out the analysis, rather than on information
about analysis team members or other collaboration details.
Important as this is for collaboration organisation, it does
not impact computing requirements as strongly and does not
impact the reproducibility of the results.

1. Dataset provenance—software versions used to generate
or process the data, input and affiliated event samples.
The full information is typically stored in databases, but
some information is available in files or encoded in data-
set names.

2. Book-keeping information—cut flow records from filter-
ing samples during processing, as well as initial (pos-
sibly weighted) numbers of events generated, which are
important for normalising MC generated samples. These
values are typically stored in files, potentially as a dedi-
cated data structure or, e.g., as ROOT histograms filled
during processing.

3. Data quality assessments—flags or lists indicating
whether blocks of data are suitable for analyses, at
varying levels of granularity, which may also be used
for luminosity calculations. Event-level information
may be recorded as flags in the data files, while other
data formats, e.g. databases or XML files, may be used
to describe data quality assessments over longer time-
scales.

4. Calibration data—incredibly diverse, from detailed
detector information including alignment constants and
magnetic field conditions to calibration corrections for
physics object selection efficiencies or four-momenta.
Consequently, this type of metadata tends to be stored
in a myriad of forms such as databases, text files or code
in version-control repositories, ROOT files in common

1 https://hepsoftwarefoundation.org/.

Computing and Software for Big Science (2022) 6:13

1 3

Page 3 of 9 13

EOS [4] or CVMFS [5] directories, and text or attach-
ments on webpages.

5. A special case of calibration data is that of reweighting
information, used to correct distributions across the full
dataset, and potentially requiring recalculation for dif-
ferent samples. Common applications include correct-
ing the distribution of the generated pileup multiplicity
or adjustments of event kinematics based on control
regions or published measurements.

6. Information pertaining to Monte Carlo (MC) datasets—
notably event generator input parameters, which are
often not published in full detail, and production cross-
sections, which in complex signal samples may need
to be correlated with the subprocess generated in every
event. This information may be stored in a database, but
commonly needs to be looked up from tables on Twiki
pages2 or other common filesystem storage.

7. An emerging feature is the ability to add user tags to
datasets for dataset discovery, organisation of production
campaigns, or other purposes. This is currently being
done in MC production databases, for example in the
ATLAS Metadata Interface (AMI) system [6].

Metadata Scopes

The examples above may be loosely classified by the scope
of the data to which they pertain:

• Analysis metadata (including examples 4 and 7 above)—
describes features of an analysis, such as lists of required
datasets and how they are used, versions of calibration
metadata used to produce final results, and so on. “Data-
sets” here refer to samples of events as they are organised
in persistent storage, usually according to some useful
common criteria, e.g., data recorded during the same run
with the same triggers or data simulated with common
parameters

• Dataset metadata (includes examples 1, 6, and 7, argu-
ably 4 and 5)—describes either features of datasets, or
information about how to analyse datasets.

• Time-dependent metadata (includes examples 3, 4, and
5)— describes information that varies over the course of
data collection, typically by being tied to timestamps on
the detector data, defining “intervals of validity” (IOVs).
In the case of calibration data derived through analysis of
simulated or recorded data, IOVs may be as wide as “one

specified year” or “one multi-year run” , and handled
similarly to dataset metadata.

• File-dependent metadata (includes examples 1, 2, and
3)—information about a single file, therefore typically
related to the mechanics of file processing. Note that this
is not the same as metadata stored in the file, which may
in fact be dataset metadata or time-dependent metadata.

Motivations

Sociological Factors

One of the major challenges when designing any metadata
system is encouraging widespread use of the tool(s). There
are many examples of useful, well-intentioned tools that
failed to be adopted by the community and were eventually
replaced. A key aspect that was discussed during the analy-
sis metadata workshops is a good user interface. Analys-
ers prefer a POSIX-like command-line/scriptable interface
over web access to a database, with the overhead of repeated
authentication (e.g. via the X.509 protocol3) being consid-
ered one of the disadvantages of the latter. Reading informa-
tion off CVMFS is one popular POSIX-like approach that
can accommodate unobtrusive authentication procedures.
Any new metadata system needs to give careful considera-
tion to how to incentivise analysers to use the system as
intended.

Another challenge here is coordinating who is allowed
to update the information stored in the metadata system
and ensuring that there is sufficient person-power to keep
any metadata system up-to-date with the latest recommen-
dations. In some cases, such as information extracted after
dataset production (e.g. N(N)LO cross-sections or k-factors),
it makes sense to allow for vetted user submissions. In other
cases, such as centrally derived corrections to the final phys-
ics four-momenta, it makes sense to restrict write-access
to specific people or groups. The metadata tools should be
flexible enough to handle both situations. If users do not
feel they can trust the results in a given system, then that
encourages more ad-hoc solutions such as looking up cor-
rections on various Twiki pages. Overcoming the concept
that “busywork equals validation” may require effective and
convenient validation tools and simple APIs to update the
metadata as needed. Training is important, especially for
new analysers who do not know who to ask.

2 For example, the webpage of the LHC Higgs Working Group
(https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWG) or the
LHC SUSY Cross-Section Working Group (https://twiki.cern.ch/
twiki/bin/view/LHCPhysics/SUSYCrossSections). 3 https://www.itu.int/rec/T-REC-X.509.

 Computing and Software for Big Science (2022) 6:13

1 3

13 Page 4 of 9

Analysis Preservation

Metadata systems should be designed to satisfy the require-
ments of analysis preservation, i.e. the capability to repeat an
analysis workflow for reproduction or reinterpretation after
the analysis has been finalised, a la RECAST4 or REANA5
and other similar projects. Different requirements may apply
depending on whether the reproduction is meant to be col-
laboration-internal, with access to the full software stack, or
publicly executable. In either case, the analysis description
needs to be recorded in sufficient detail so that it can be
reimplemented. In the case that this is addressed via analysis
code preservation, then event data and metadata dependen-
cies must be preserved as well, together with access APIs.

For many current analyses, the key metadata sources—
e.g., which corrections were applied or even what datasets
were used—are only documented in internal notes or Twiki
pages. This makes it difficult or impossible for future analyz-
ers or theorists to accurately reproduce the results. Captur-
ing all of the analysis metadata associated with a published
result is therefore an important goal when designing an
analysis system. For analysis preservation, clear version-
ing is also crucial. But there can be significant complexity
involved, as analysis groups often wish to use different ver-
sions for individual corrections. To validate corrections and
calibrations and compare between different sets of condi-
tions, good tools to customise and inspect metadata payloads
are a necessity.

There are several promising solutions in existing metadata
systems. For example, Belle II has a well-tested infrastruc-
ture for analysis-conditions handling that relies on metadata
“global tags”, in other words single identifiers encapsulat-
ing the full metadata configuration [7]. This simplifies the
documentation of metadata used by an analysis, because the
relevant information is encoded in the global tags. Multiple
global tags can be passed to the software framework con-
figuration, and a framework service takes care of presenting
this as though it were one global tag. Each analysis group in
Belle II can use this to define their own lightweight “analysis
global tags” that only need to capture conditions that are not
included in the centrally managed reconstruction and simu-
lation global tags. Thus while analysis preservation requires
recording the complete set of global tags that were used for
an analysis (usually a handful), the analysis global tags are
only as complicated as they need to be.

LHCb offline data processing steps up to creation of
analyst level datasets are centrally preserved in the LHCb-
DIRAC 6 book-keeping. LHCbDIRAC is an extension of the

DIRAC Grid solution [8] that implements the LHCb data
processing workflows, now including the creation of analysis
specific datasets containing custom high-level physics vari-
ables through the use of Analysis Productions.7Analysis Pro-
ductions are submitted by individual analysts declaratively
via YAML files by providing the job configuration and input
data. To provide assurance that user-prepared configurations
are correct, extensive tests are run on the GitLab8 Continu-
ous Integration platform prior to approval. The LHCbDIRAC
bookkeeping system preserves metadata such as detector and
data-taking conditions used to process the data, versions of
applications used and the corresponding options files, ena-
bling high-quality analysis preservation.

Another important consideration is the stability and
longevity of the metadata formats throughout and beyond
the lives of the experiments. That is, starting with a sound
design should permit stability, but the strategy also needs to
be adaptable enough to support changes in behaviour and
available resources. For example, CMS is currently improv-
ing their approach by pushing for a unified JSON format
for metadata, with files stored in a central Git repository.9
These choices ensure longevity of the payload and flexibil-
ity to accommodate diverse needs and take advantage of a
widely used versioning system.

Book‑keeping

As recorded datasets grow, so does the lead time for inves-
tigative operations on these and associated simulated event
samples. A recurring challenge in distributed analysis is
handling small fractions of job failures due to intermittent
technical failures at computing sites. Fully processing the
last few percent of events may take several times longer than
the bulk, leading to significant lost productivity. For final
results, processing 100% of the recorded events is necessary,
whereas this criterion can be relaxed for intermediate stud-
ies, provided the capability exists to correctly scale results
to the full target integrated luminosity.

In analysis of simulated datasets, the main requirement is
that the generated number of events (sum of weights in the
case of weighted datasets) for the processed files is acces-
sible at the stage when analysis yields are determined. Addi-
tional attention may be needed in certain cases, e.g. where
procedures involving reweighting by ratios of data and simu-
lated distributions require knowing the full simulated distri-
bution. When sample sizes are limited, variations or biases
in the available samples may lead to undesirable effects.

6 https://lhcb-dirac.readthedocs.io/.

7 LHCb DPA project, https://indico.desy.de/event/28202/contribu-
tions/105606/.
8 https://about.gitlab.com/.
9 https://git-scm.com/.

4 https://github.com/recast-hep.
5 https://reanahub.io/.

Computing and Software for Big Science (2022) 6:13

1 3

Page 5 of 9 13

Technological Considerations

A future analysis metadata system must meet a number
of technological criteria to function. The sociological and
analysis preservation factors already discussed must be
accommodated in its design, as there is a strong precedent
of workarounds being established to achieve perceived goals
of simplicity, even at the cost of robustness.

Metadata Formats

It is likely impossible to use a single format for all analysis
metadata, but the identification of a few specific formats that
effectively and flexibly accommodate the chief use cases is
an important consideration in metadata system design. If
specifications are absent or insufficiently versatile to meet
the needs of metadata providers, formats may proliferate,
complicating the infrastructure needed to serve the metadata,
and increasing the burden on users. This situation emerged
in the experience of ATLAS and CMS in the first two LHC
runs, where analysis calibrations derived under time pres-
sure were encoded in a wide variety of formats, with unified
repositories invented only after the fact. Specific formats
addressing the aforementioned metadata scopes (dataset,
file, and time-dependent) are discussed below.

In-file metadata is natural for information that may be
needed at the point of job configuration, avoiding the over-
head and connectivity requirements of database lookup. It
has been pointed out that the boundary between in-file meta-
data and event data is essentially arbitrary, particularly in
systems that have more fluid hierarchical levels than ROOT’s
TTree, permitting better optimisation of metadata content
that may span a few files vs. a few events vs. a full dataset.

Similarly, book-keeping of filter fractions and cut
flow information from selections applied over multiple
data processing steps is probably natural to keep local to
the processed data. There may be advantages to allowing
easy extension of cut flows by user code, at least if light-
weight common libraries are available. Information must be
recorded in some format to permit processing of fractional
datasets, when the data volumes become large enough to
preclude regularly analysing the full datasets prior to the
final publication.

Databases are a natural repository for centrally defined
dataset-scope information such as dataset provenance and
production configurations, as well as user-added informa-
tion including cross-sections and other contextual labels.
Detector calibration metadata tends to be in databases as
a standard, and could also accommodate object calibration
information, particularly those calibrations that are derived
frequently and applied or updated at analysis time. For high-
throughput analysis jobs, access overheads need to be kept

down, perhaps via network speed or processing improve-
ments such as a query mechanism with robust caching. This
could encourage the use of unified object calibration file
formats, and a good user submission and validation interface
would keep submission efficient.

There are several potential barriers to widespread data-
base usage. One such barrier may be the need for authenti-
cation and the primacy of web-based tools for browsing the
database, where analysers prefer POSIX-like access with
minimal (e.g. Kerberos10) authentication. This could be
overcome by providing simple APIs for payload retrieval,
possibly including export of a version of relevant metadata
to a local or distributed disk location e.g. CVMFS. Effective
web interfaces are also needed to support browsing and com-
parison operations on versions of interest. Git hosting sites
are one concrete example permitting version diffs, which are
widely used.

Another barrier, particularly for smaller collaborations, is
the expertise, person power, and resources needed to operate
a database at scale. One tested solution (described in more
detail below) to this problem is to factorise the database
that captures the metadata versions and dependencies from
the actual metadata payloads, which can be offloaded to a
file system or Git or elsewhere. All payloads may not need
to be stored in the same system, and in fact, the wide vari-
ety of metadata types that need to be accommodated may
encourage heterogeneous systems rather than a monolith. A
consistent payload location system, however, is desirable.
Finally, any metadata database needs to be able to swiftly
integrate with the actual scripts, notebooks, and other tools
used by analysers. These last two points are discussed in
more detail below.

Repository Structure

Some form of versioning is strictly necessary. First and fore-
most, analysers need to be able to specify which version of
the metadata is to be used, whether for validation of changes
that have been made, or to ensure reproducibility once analy-
sis design has been “frozen” (e.g., post-unblinding). Exam-
ples of versioning methods include:

• As mentioned previously, Belle II uses the “global tag”
formalism, adopted from conditions databases, adding
the capability to merge tags to override configurations
for specific subsets of the metadata.

• ATLAS and lately CMS uses a set of write-once direc-
tories provided on CVMFS, holding analysis calibration
data. Write protection and timestamps or version num-

10 https://web.mit.edu/kerberos/

 Computing and Software for Big Science (2022) 6:13

1 3

13 Page 6 of 9

bers as directory paths constitute a free-form versioning
solution that minimises constraints on developers.

• ATLAS analysis recommendations are tightly tied to
analysis software release tags of the collaboration’s com-
mon “Athena” software repository on Gitlab, wherein
the C++ or Python code includes default or hard-coded
paths to the calibration data held on CVMFS. Overrides
of these defaults in analysis configurations may them-
selves be committed to Git together with the analysis
frameworks.

• The new JSON format for CMS calibration metadata
will be self-documenting and include the version number
directly in the file.

• For detector and data-taking conditions, LHCb uses
GitCondDB [9], an experiment-independent conditions
database system that leverages Git to manage versions
and tags. The conditions database uses a 3-dimensional
structure dependent on the condition IDs in question
(e.g., an XML file), the version (a tag or branch name)
and the IOV. A bare clone of the conditions reposito-
ries is distributed on CVMFS making the conditions data
available to all jobs, both local and distributed.

Transparency and analysis preservation are likely served
well by the capability to define the full metadata versioning
information in a single identifier. The metadata identifier
should encapsulate the complete description of metadata
used for an analysis, but as mentioned previously, the iden-
tifier could still point to Git commits in a repository, spe-
cific files on CVMFS, or other locations where the metadata
payloads are stored. In-file metadata, in particular metadata
related to the details of file processing, are a likely exception
to this goal. For flexibility, a scheme by which such identi-
fiers can be customised and combined—overriding parts of
a generic “tag”with more specific requirements—would be
required.

There is a balance to be struck between convenience, e.g.
allowing the latest version of any/all metadata to be used if
not explicitly overridden during R &D periods, and stabil-
ity, i.e. avoiding silent changes under the feet of analysers.
Choosing or even defining new tags for analysis milestones
or publication addresses the latter requirement. The point
arose that explicit instructions to update settings are con-
sidered a way to prevent such unexpected changes, but this
effectively equates to busywork that could be avoided with
a more robust validation system. Rather, schemes for trans-
parently associating metadata settings and versions with
the resulting analysis datasets should be investigated. These
would improve reproducibility and facilitate debugging of
unexpected issues as needed.

The metadata content should be able to be served from
multiple locations. For efficient use of resources, a sub-
set of the metadata should be extractable based on user

configuration. This is needed for distributed analysis at sites
that may have limited connectivity, such as High Perfor-
mance Computing and cloud computing nodes, as well as
for local analysis on user laptops while in transit or other-
wise away from a fast internet connection. Enabling analysis
for people who may not have a fast connection to the main
processing sites is also an important goal in the interest of
equity, diversity, and inclusion. Some existing solutions for
relocatability include:

• Runtime download of required files to a local cache via
http, implemented as an option in the ATLAS “Path-
Resolver” code, which serves as a file search interface
with awareness of a variety of sources including Git and
the CVMFS calibration area.

• On Belle II, the payload data are referenced in the rela-
tional database as a URL, which allows the payload server
information to be prepended to the filepath. Much like
the ATLAS PathResolver, the client can then specify
alternative sources (CVMFS is the most common) and
a failover strategy (local, CVMFS, central server). The
central server is the main repository and payloads are
copied to CVMFS after a short delay, meaning that the
majority of read cases are supported by CVMFS. It is
also possible to specify a local (squid) cache by setting a
proxy at a computing site, which then takes care of pull-
ing the information only once from the central server,
which is only usually necessary if files are not available
on CVMFS for some reason (e.g. prompt calibration).

User submissions can enrich metadata and avoid duplication
of the work involved in extracting commonly used infor-
mation such as higher order cross-sections or k-factors. On
ATLAS, this information has been migrated into the ATLAS
Metadata Interface, where a restricted group of shifters
reporting to the ATLAS Physics Modelling Group is permit-
ted to upload new values requested via issue tickets, tagged
with a timestamp. Validation of such submissions is crucial.
Consequently, the submission procedure should incorporate
steps for checking correctness of the submitted information.
The specifics of such checks are inextricable from domain
expertise, but at bare minimum, the capability to perform
value comparisons and syntax or format checking upon sub-
mission would reduce the risk of the most basic errors.

Another special case of user-added information is label-
ling of datasets with context beyond the mechanics of their
production. This includes association of datasets with spe-
cific analyses or applications (background, signal, systematic
variation, etc.). For example, LHCb has recently developed
such functionality whereby datasets are automatically tagged
by properties such as data-taking year and magnet polarity
but additionally can be given custom tags to identify them
for use in a particular analysis or shared among several. This

Computing and Software for Big Science (2022) 6:13

1 3

Page 7 of 9 13

aids analysis preservation, provides a straightforward and
safe way to share analysis datasets, and prevents the need
for hard-coded file paths.

While there is a mild risk that such labels could prolifer-
ate almost infinitely, there is significant potential to improve
analysis workflows by simplifying dataset discovery and
identification. These labels could also help to improve data
curation operations: automating the obsolescence and dele-
tion of unused data, or notifying analysers automatically
when a problem is identified with a dataset. This applica-
tion motivates interfacing dataset metadata tools with dataset
management infrastructure and job management systems.
This functionality is now supported in the Rucio [10] dataset
management system.

Access Interface

As the diversity of analysis metadata storage systems would
suggest, there is no uniform approach to providing APIs
for accessing analysis metadata. There is something of a
philosophical split, where communities such as ATLAS that
favour centralising analysis metadata have invested corre-
spondingly in a uniform access layer not only for extracting
information from metadata stores, but also transforming this
information into a form directly applicable to analysis. This
may inject a higher dependence on the broader collaboration
software stack than is needed for direct metadata access.
Other communities have favoured a minimalist style, avoid-
ing these sorts of dependencies in pursuit of lightweight
analysis code with fewer restrictions on users. However, this
may lead to a larger implementation and validation burden
on users.

In future metadata systems, a simple API should be pro-
vided for requesting and retrieving metadata payloads. This
is important for ensuring frictionless access in analysis code.
Ideally, access tools should have minimal dependencies and
be easily installable, so as to minimise restrictions on analy-
sis framework design and analysis job payload sizes, rather
than coupled to heavier collaboration software libraries that
may be more cumbersome to install and use on local hard-
ware. The ability to preload only required metadata based
on job configuration may be helpful for optimising metadata
access for distributed analysis jobs. A few issues need to be
taken into account in considering these targets.

Providing raw metadata payloads through a minimal
interface may be straightforward via REST-ful APIs [11].
However, depending on how the payloads themselves are
structured, it may be more or less convenient to translate
them into a form that is useful for analysis. For example,
it may be efficient to store calibration information in the
form of parameters for fitted functions, which if sufficiently
complex may be impractical for users to reimplement. While
this need not directly impact the metadata system itself, a

choice may need to be made between defining a more sub-
stantial adjacent software layer for application of the stored
metadata, and choosing a simpler format that may be less
precise or efficient to apply.

Trends in analysis software evolution may also have
implications for the programming model by which the meta-
data access tools are provided. In the near term, both C++
and Python are likely to make up a significant share of
analysis codes, with the adoption of data science tools and
columnar analysis models growing. Consequently, multilin-
gual support may be needed (in the absence of strong col-
laboration enforcement of language choices). Distribution
via package installers or managers may be desirable.

The development of new analysis formats like NanoAOD
and DAOD_PHYSLITE [12, 13] may affect the degree of
metadata access needed by the end user. On one hand, rou-
tine calibration operations might be applied centrally rather
than in user code. On the other, file size reduction may
require some operations, notably the application of system-
atic variations, to be done in memory.

Technical Specification

Taking into account the motivations discussed in Sect. 2 and
the technological considerations from Sect. 3, we specify
a general set of requirements and desired features for any
future analysis metadata systems in HEP or in experiments
facing similar challenges. Here the focus is on features that
a future system needs to satisfy, rather than an attempt at
prescribing a specific solution. See the previous sections
for examples of how current metadata systems satisfy these
requirements.

Technical Requirements

• Versioning

– Reproducibility of analysis results—and principle
F1 of the “Findable” guiding principle of FAIR—
demand that metadata identifiers access payloads
that are immutable once published. Payloads them-
selves will need to be periodically updated, in some
cases frequently, without invalidating earlier ver-
sions. Therefore the payloads will need to be hosted
on systems that support a write-once model with
version tracking.

– Versioned payloads of different types will need to
be combined to serve the needs of a full analysis, for
example particle ID or calibration recommendations
for a wide range of objects. A mechanism for aggre-
gating payload versions will be required to cleanly
communicate these groupings. User friendly inter-

 Computing and Software for Big Science (2022) 6:13

1 3

13 Page 8 of 9

faces for browsing and comparing single or aggre-
gate identifiers will be needed, with both scriptable
and web APIs likely being important. The ability to
register and search for relevant metadata is also part
of the “Findable” guiding principle of FAIR (F4).

– For experimentation and incremental changes, com-
binations of aggregate identifiers may be needed.
Merging and override capabilities for the combi-
nation of identifiers will be needed, and the syntax
should permit no ambiguity in these operations.

• Relocatability

– Distribution of the metadata payloads to multiple
sites is needed to avoid connectivity bottlenecks and
barriers. In particular, to ensure that workers with-
out direct access to the hosting servers (e.g. at HPC
facilities or for work while in transit), the capability
to serve metadata from a local cache is needed. Par-
tial caching of predetermined payloads is important
for efficiency.

– Database lookups must be easy to redirect to a pre-
ferred source.

• Lightweight API

– Diverse end-stage analysis code (e.g. Python or
C++ analysis frameworks) must be able to access
the metadata, so access APIs should be lightweight
with minimal dependencies. Programmatic access,
e.g. in Python scripts, must be supported as a first-
class use case. This “interoperability” with standard
analysis workflows is a FAIR guiding principle (I1).

– Protections should be implemented such that API
usage cannot overload a database, even if a high vol-
ume of requests are made from batch or grid jobs.
Both payload storage and identification systems need
to have high availability and robustness, as well as
aggressive caching of requests.

• Extensible system

– User submission of metadata must be allowed, to
support various types of additions. The main use
case will be for updates of metadata derived exter-
nally from central sample production systems, e.g.
calibrations, cross-sections etc. A special case is
the extension of cutflow information, which may be
stored as in-file metadata.

– Robust access control systems will be needed to
restrict additions to vetted submitters. Validation
systems are also necessary, to ensure submissions
can be tested stringently before being made acces-
sible.

• Unobtrusive authentication
– In relation to the “Accessible” FAIR guiding princi-

ple (A1.2), access to the metadata content should be
granted based on persistent authentication methods,
rather than burdening users with repeated sign-in
steps. This is particularly important for program-
matic access to metadata.

• Intervals of Validity

– The metadata identification system must have the
ability to store information about relevant IOVs,
particularly for partial-dataset calibrations.

– This feature might also be usable for additional con-
textual configuration, such as identifying MC vs.
recorded data.

Desirable Features and Other Considerations

• Complete analysis description

– If all metadata descriptions can be captured in a sin-
gle system, then it is natural to extend aggregation
of metadata tags to provide a full description of soft-
ware and inputs needed for a single analysis.

– Recording software versions, job configuration
parameters, input datasets and auxiliary data fully
serves multiple needs, including the tracking, pres-
ervation, or combination of analyses.

– While all analysis metadata identifiers would need
to be encoded in the system, payloads themselves
could be stored in any repository, although long-term
analysis preservation requires guarantees on the lon-
gevity of all relevant storage systems.

• User-applied dataset tags

– Free-form labels attached to event datasets can be
used to serve various purposes, including identifica-
tion and categorisation of analysis inputs, manage-
ment of storage system capacity, and invalidation of
obsolete or incorrect data. Allowing users to attach
arbitrary labels and share those labels would allow
substantial flexibility and would help the system sat-
isfy the “Reusable” FAIR guiding principle (R1).

– Directly interfacing the dataset labelling system to
dataset management and job submission systems
would generate additional hooks for efficient analysis
management.

• Interpretation of metadata content
– Additional tooling, separate from the metadata

access systems, may be useful for payload inter-
pretation. For example, it may be efficient to store
calibration corrections in the form of fit constants,

Computing and Software for Big Science (2022) 6:13

1 3

Page 9 of 9 13

or even as neural network parameters. Centrally pro-
vided tools would then be a more reliable solution
for consistent and correct translation of the payloads
to the final corrections.

Summary

Based on the common experiences of analysers of LHC and
contemporary particle physics experiments, this document
has categorised types of analysis metadata in terms of scope
and content, as well as identifying not only current techno-
logical solutions but also major challenges in the storage and
access of analysis metadata. A list of technical requirements
for future analysis metadata systems addressing the needs of
analysis at larger scales has been compiled, accounting for
the diverse needs for metadata access in evolving analysis
ecosystems, including practical and sociological concerns
for individual analysers, sharing of information within
experimental collaborations and the long-term preservation
of analyses for reuse and reinterpretation. These techni-
cal specifications follow the “FAIR Guiding Principles for
scientific data management and stewardship” allowing for
Findable, Accessible, Interoperable and Reusable Metadata.
While the discussions that led to this document primarily
focused on experiments in high energy physics, the general
principles and many of the specific challenges could also be
applicable to experiments in other fields. The list presented
does not define particular solutions to the problems posed,
but is rather intended to guide future R &D on the concrete
implementation of such systems.

Acknowledgements This project is supported by funding from the
European Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme: T. J. Khoo under grant
agreement 787331-HiggsSelfCoupling and N. Skidmore under grant
agreement 852642-Beauty2Charm. S. Rappoccio is supported by the
National Science Foundation under Grant 2111229.

Funding Open access funding provided by CERN (European Organiza-
tion for Nuclear Research).

Data Availability Statement Data sharing not applicable to this article
as no datasets were generated or analysed during the current study.

Declarations

Conflict of interest On behalf of all authors, the corresponding authors
state that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Apollinari G, Brüning O, Nakamoto OT, Rossi L (2015) High
luminosity large hadron collider HL-LHC. CERN Yellow Rep
5:1–19. https:// doi. org/ 10. 5170/ CERN- 2015- 005.1

 2. ...Wilkinson M, Dumontier M, Aalbersberg IJ, Appleton G, Axton
M, Baak A, Blomberg N, Boiten J-W, Silva S, Luiz OD, Bourne
P, Bouwman J, Brookes A, Clark T, Crosas M, Dillo I, Dumon O,
Edmunds S, Evelo C, Finkers R, Mons B (2016) The FAIR Guid-
ing Principles for scientific data management and stewardship. Sci
Data 3:03. https:// doi. org/ 10. 1038/ sdata. 2016. 18

 3. Brun R, Rademakers F (1997) ROOT—an object oriented data
analysis framework. Nucl Inst Methods A389:81–86. https:// doi.
org/ 10. 5281/ zenodo. 38958 60

 4. Peters AJ, Sindrilaru EA, Adde G (2015) EOS as the present
and future solution for data storage at CERN. J Phys Conf Ser
664(4):042042. https:// doi. org/ 10. 1088/ 1742- 6596/ 664/4/ 042042

 5. Blomer J, Buncic P, Charalampidis I, Harutyunyan A, Larsen D,
Meusel R (2012) Status and future perspectives of CernVM-FS.
J Phys Conf Ser 396:052013. https:// doi. org/ 10. 1088/ 1742- 6596/
396/5/ 052013

 6. Lambert F, Odier J, Fulachier J (2018) Broadcasting dynamic
metadata content to external web pages using AMI (ATLAS Meta-
data Interface) embeddable components. Nov. https:// doi. org/ 10.
1051/ epjco nf/ 20192 14040 04

 7. Kuhr T, Pulvermacher C, Ritter M, Hauth T, Braun N (2019) The
Belle II core software. Comput Softw Big Sci 3(1):1. https:// doi.
org/ 10. 1007/ s41781- 018- 0017-9

 8. Stagni F, Tsaregorodtsev A, Charpentier P et al. (2018)
DIRACGrid/DIRAC: v6r20p15. Oct. https:// doi. org/ 10. 5281/
zenodo. 14516 47

 9. ClemenCiC m and lHCb Collaboration: GitCondDB. (2020),
Jun. – https:// doi. org/ 10. 5281/ zenodo. 57244 90

 10. Barisits M (2019) Rucio—scientific data management. Comput
Softw Big Sci 3(1):11. https:// doi. org/ 10. 1007/ s41781- 019- 0026-3

 11. Fielding, Roy T (2000) Architectural styles and the design of
network-based software architectures. In: Doctoral dissertation,
University of California, Irvine. https:// www. ics. uci. edu/ ~field ing/
pubs/ disse rtati on/ top. htm

 12. Rizzi A, Petrucciani G, Peruzzi M (2019) A further reduction in
CMS event data for analysis: the NANOAOD format. In: EPJ Web
Conf. 214. https:// doi. org/ 10. 1051/ epjco nf/ 20192 14060 21

 13. Elmsheuser J, others (2020) Evolution of the ATLAS analysis
model for Run-3 and prospects for HL-LHC. In: EPJ Web Conf.
245, S. 06014. https:// doi. org/ 10. 1051/ epjco nf/ 20202 45060 14

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5170/CERN-2015-005.1
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.1088/1742-6596/664/4/042042
https://doi.org/10.1088/1742-6596/396/5/052013
https://doi.org/10.1088/1742-6596/396/5/052013
https://doi.org/10.1051/epjconf/201921404004
https://doi.org/10.1051/epjconf/201921404004
https://doi.org/10.1007/s41781-018-0017-9
https://doi.org/10.1007/s41781-018-0017-9
https://doi.org/10.5281/zenodo.1451647
https://doi.org/10.5281/zenodo.1451647
https://doi.org/10.5281/zenodo.5724490
https://doi.org/10.1007/s41781-019-0026-3
https://www.ics.uci.edu/%7efielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/%7efielding/pubs/dissertation/top.htm
https://doi.org/10.1051/epjconf/201921406021
https://doi.org/10.1051/epjconf/202024506014

	Constraints on Future Analysis Metadata Systems in High Energy Physics
	Abstract
	Introduction
	Types of Metadata
	Metadata Scopes

	Motivations
	Sociological Factors
	Analysis Preservation
	Book-keeping

	Technological Considerations
	Metadata Formats
	Repository Structure
	Access Interface

	Technical Specification
	Technical Requirements
	Desirable Features and Other Considerations

	Summary
	Acknowledgements
	References

