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Abstract Alternative theories of gravity not only modify
the polarization contents of the gravitational wave, but also
affect the motions of the stars and the energy radiated away
via the gravitational radiation. These aspects leave imprints in
the observational data, which enables the test of general rel-
ativity and its alternatives. In this work, the Nordtvedt effect
and the Shapiro time delay are calculated in order to con-
strain Horndeski theory using the observations of lunar laser
ranging experiments and Cassini time-delay data. The effec-
tive stress-energy tensor is also obtained using the method of
Isaacson. Gravitational wave radiation of a binary system is
calculated, and the change of the period of a binary system is
deduced for the elliptical orbit. These results can be used to
set constraints on Horndeski theory with the observations of
binary systems, such as PSR J1738 + 0333. Constraints have
been obtained for some subclasses of Horndeski theory, in
particular, those satisfying the gravitational wave speed lim-
its from GW170817 and GRB 170817A.

1 Introduction

General Relativity (GR) is one of the cornerstones of modern
physics. However, it faces several challenges. For example,
GR cannot be quantized, and it cannot explain the present
accelerating expansion of universe, i.e., the problem of dark
energy. These challenges motivate the pursuit of the alter-
natives to GR, one of which is the scalar-tensor theory. The
scalar-tensor theory contains a scalar field φ as well as a
metric tensor gμν to describe the gravity. It is the simplest
alternative metric theory of gravity. It solves some of GR’s
problems. For example, the extra degree of freedom of the
scalar field might account for the dark energy and explain the
accelerating expansion of the universe. Certain scalar-tensor
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theories can be viewed as the low energy limit of string the-
ory, one of the candidates of quantum gravity [1].

The detection of gravitational waves by the Laser Interfer-
ometer Gravitational-Wave Observatory (LIGO) and Virgo
confirms GR to an unprecedented precision [2–7] and also
provides the possibility to test GR in the dynamical, strong
field limit. The recent GW170814 detected the polarizations
for the first time, and the result showed that the pure ten-
sor polarizations are favored against pure vector and pure
scalar polarizations [5]. The newest GW170817 is the first
neutron star-neutron star merger event, and the concomitant
gamma-ray burst GRB 170817A was later observed by the
Fermi Gamma-ray Burst Monitor and the Anti-Coincidence
Shield for the Spectrometer for the International Gamma-
Ray Astrophysics Laboratory, independently [6,8,9]. This
opens the new era of multi-messenger astrophysics. It is thus
interesting to study gravitational waves in alternative metric
theories of gravity, especially the scalar-tensor theory.

In 1974, Horndeski [10] constructed the most general
scalar-tensor theory whose action contains higher derivatives
of φ and gμν , but still yields at most the second order differ-
ential field equations, and thus has no Ostrogradsky instabil-
ity [11]. Because of its generality, Horndeski theory includes
several important specific theories, such as GR, Brans–Dicke
theory [12], and f (R) gravity [13–15] etc..

In Refs. [16–18], we discussed the gravitational wave
solutions in f (R) gravity and Horndeski theory, and their
polarization contents. These works showed that in addition
to the familiar + and × polarizations in GR, there is a mixed
state of the transverse breathing and longitudinal polariza-
tions both excited by a massive scalar field, while a massless
scalar field excites the transverse breathing polarization only.
In this work, it will be shown that the presence of a dynamical
scalar field also changes the amount of energy radiated away
by the gravitational wave affecting, for example, the inspiral
of binary systems. Gravitational radiation causes the damp-
ing of the energy of the binary system, leading to the change
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in the orbital period. In fact, the first indirect evidence for the
existence of gravitational waves is the decay of the orbital
period of the Hulse-Taylor pulsar (PSR 1913+16) [19].

Previously, the effective stress energy tensor was obtained
by Nutku [20] using the method of Landau and Lifshitz
[21]. The damping of a compact binary system due to grav-
itational radiation in Brans–Dicke theory was calculated in
Refs. [22–25], then Alsing et al. [26] extended the analysis
to the massive scalar-tensor theory. Refs. [27,28] surveyed
the effective stress-energy tensor for a wide class of alter-
native theories of gravity using several methods. However,
they did not consider Horndeski theory. Refs. [29,30] studied
the gravitational radiation in screened modified gravity and
f (R) gravity. Hohman [31] developed parameterized post-
Newtonian (PPN) formalism for Horndeski theory. In this
work, the method of Isaacson is used to obtain the effective
stress-energy tensor for Horndeski theory. Then the effective
stress-energy tensor is applied to calculate the rate of energy
damping and the period change of a binary system, which
can be compared with the observations on binary systems
to constrain Horndeski theory. Nordtvedt effect and Shapiro
time delay effect will also be considered to put further con-
straints. Ashtekar and Bonga pointed out in Refs. [32,33] a
subtle difference between the transverse-traceless part of hμν

defined by ∂νhμν = 0, ημνhμν = 0 and the one defined by
using the spatial transverse projector, but this difference does
not affect the energy flux calculated in this work.

There were constraints on Horndeski theory and its sub-
classes in the past. The observations of GW170817 and GRB
170817A put severe constraints on the speed of gravitational
waves [34]. Using this limit, Ref. [35] required that ∂G5/∂X
= 0 and 2∂G4/∂X + ∂G5/∂φ = 0, while Ref. [36] required
∂G4/∂X ≈ 0 and G5 ≈ constant. Ref. [37] obtained the
similar results as Ref. [36], and also pointed out that the
self-accelerating theories should be shift symmetric. Arai
and Nishizawa found that Horndeski theory with arbitrary
functions G4 and G5 needs fine-tuning to account for the
cosmic accelerating expansion [38]. For more constraints
derived from the gravitational wave speed limit, please refer
to Refs. [39–41], and for more discussions on the constraints
on the subclasses of Horndeski theory, please refer to Refs.
[42–46].

In this work, the calculation will be done in the Jordan
frame, and the screening mechanisms, such as the chameleon
[47,48] and the symmetron [49,50], are not considered. Vain-
shtein mechanism was first discovered to solve the vDVZ
discontinuity problem for massive gravity [51], and later
found to also appear in theories containing the derivative
self-couplings of the scalar field, such as some subclasses of
Horndeski theory [52–56]. When Vainshtein mechanism is
in effect, the effect of nonlinearity cannot be ignored within
the so-called Vainshtein radius rV from the center of the mat-
ter source. Well beyond rV, the linearization can be applied.

The radius rV depends on the parameters defining Horndeski
theory, and can be much smaller than the size of a celes-
tial object. So in this work, we consider Horndeski theories
which predict small rV, if it exists, compared to the sizes of
the Sun and neutron stars. The linearization can thus be done
even deep inside the stars. In this case, one can safely ignore
Vainshtein mechanism.

The paper is organized as follows. In Sect. 2, Horndeski
theory is briefly introduced and the equations of motion
are derived up to the second order in perturbations around
the flat spacetime background. Section 3 derives the effec-
tive stress-energy tensor according to the procedure given
by Isaacson. Section 4 is devoted to the computation of
the metric and scalar perturbations in the near zone up to
Newtonian order and the discussion of the motion of self-
gravitating objects that source gravitational waves. In partic-
ular, Nordtvedt effect and Shapiro time delay are discussed.
In Sect. 5, the metric and scalar perturbations are calculated
in the far zone up to the quadratic order, and in Sect. 6, these
solutions are applied to a compact binary system to calcu-
late the energy emission rate and the period change. Sec-
tion 7 discusses the constraints on Horndeski theory based
on the observations. Finally, Sect. 8 summarizes the results.
Throughout the paper, the speed of light in vacuum is taken
to be c = 1.

2 Horndeski theory

The action of Horndeski theory is given by [57],

S =
∫

d4x
√−g(L2 + L3 + L4 + L5) + Sm[gμν, ψm],

(1)

where ψm represents matter fields, Sm is the action for ψm ,
and the terms in the integrand are

L2 = G2(φ, X), L3 = −G3(φ, X)�φ, (2)

L4 = G4(φ, X)R + G4X [(�φ)2 − (φ;μν)
2], (3)

L5 = G5(φ, X)Gμνφ
;μν − G5X

6
[(�φ)3 − 3(�φ)(φ;μν)

2

+2(φ;μν)
3]. (4)

In these expressions, X = −φ;μφ;μ/2 with φ;μ = ∇μφ,
φ;μν = ∇ν∇μφ, �φ = gμνφ;μν , (φ;μν)

2 = φ;μνφ
;μν and

(φ;μν)
3 = φ;μνφ

;μρφ;ν ;ρ for simplicity. Gi (i = 2, 3, 4, 5)

are arbitrary functions of φ and X .1 For notational simplicity
and clarity, we define the following symbol for the function
f (φ, X),

f(m,n) = ∂m+n f (φ, X)

∂φm∂Xn

∣∣∣
φ=φ0,X=0

, (5)

1 G2 is usually called K2 in literature.
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so in particular, f(0,0) = f (φ0, 0) with φ0 the value of φ in
the flat spacetime background.

Suitable choices of Gi reproduce interesting subclasses of
Horndeski theory. For instance, one obtains GR by choosing
G4 = (16πGN)−1 and the remaining Gi = 0, with GN

Newton’s constant. Brans–Dicke theory is recovered with
G2 = 2ωBDX/φ,G4 = φ,G3 = G5 = 0, while the massive
scalar-tensor theory with a potential U (φ) [26] is obtained
with G2 = 2ωBDX/φ − U (φ), G4 = φ, G3 = G5 = 0,
where ωBD is a constant; or with G2 = X − U (φ), G4 =
g(φ), G3 = G5 = 0. Finally, f (R) gravity is given by
G2 = f (φ) − φ f ′(φ), G4 = f ′(φ), G3 = G5 = 0 with
f ′(φ) = d f (φ)/dφ.

2.1 Matter action

Although there are no coupling terms between matter fields
ψm and φ, matter fields ψm indirectly interact with φ via the
metric tensor. For example, in Brans–Dicke theory, φ acts
effectively like the gravitational constant, which influences
the internal structure and motion of a gravitating object, so
the binding energy of the object depends on φ. Since the total
energy E is related to the inertial mass m, then m depends
on φ, too. When their spins and multipole moments can be
ignored, the gravitating objects can be described by point like
particles, and the effect of φ can be taken into account by the
following matter action according to Eardley’s prescription
[58],

Sm = −
∑
a

∫
ma(φ)dτa, (6)

whose stress-energy tensor is

Tμν = 1√−g

∑
a

ma(φ)
uμuν

u0 δ(4)(xλ − xλ
a (τ )), (7)

where xλ
a (τ ) describes the worldline of particle a and uμ =

dxμ(τ)/dτ . Therefore, if there is no force other than grav-
ity acting on a self-gravitating object, this object will not
follow the geodesic. This causes the violation of the strong
equivalence principle (SEP).

In this work, the gravitational wave is studied in the flat
spacetime background with gμν = ημν and φ = φ0, so we
expand the masses around the value φ0 in the following way,

ma(φ) = ma

[
1 + ϕ

φ0
sa

−1

2

(
ϕ

φ0

)2

(s′
a − s2

a + sa) + O(ϕ3)

]
. (8)

Here, ϕ = φ − φ0 is the perturbation, and ma = ma(φ0) for
simplicity. This expansion also requires that φ0 �= 0, so the

present discussion does not apply to f (R) gravity. sa and s′
a

are the first and second sensitivities of the mass ma ,

sa = d lnma(φ)

d ln φ

∣∣∣
φ0

, s′
a = −d2 lnma(φ)

d(ln φ)2

∣∣∣
φ0

. (9)

The sensitivities measure the violation of SEP.

2.2 Linearized equations of motion

The equations of motion can be obtained and simplified using
xActpackage [59–63]. Because of their tremendous complex-
ity, the full equations of motion will not be presented. Inter-
ested readers are referred to Refs. [57,64]. It is checked, xAct
package gives the same equations of motion as Refs. [57,64].
For the purpose of this work, the equations of motion are
expanded up to the second order in perturbations defined as

gμν = ημν + hμν, φ = φ0 + ϕ. (10)

These equations are given in Appendix A.
The gravitational wave solutions are investigated in the

flat spacetime background, which requires that

G2(0,0) = 0, G2(1,0) = 0. (11)

This can be easily checked by a quick inspection of Eqs.
(A.1) and (A.2). Then dropping higher order terms in Eqs.
(A.1) and (A.2), the linearized equations of motion are thus
given by

(G2(0,1) − 2G3(1,0))�ϕ + G2(2,0)ϕ + G4(1,0)R
(1)

= −
(

∂T

∂φ

)(1)

, (12)

G4(0,0)G
(1)
μν − G4(1,0)(∂μ∂νϕ − ημν�ϕ) = 1

2
T (1)

μν , (13)

where T = gμνTμν is the trace, � = ημν∂μ∂ν from now on,
and the superscript (1) implies the leading order part of the
quantity.

The equations of motion can be decoupled by introducing
an auxiliary field h̃μν defined as following,

h̃μν = hμν − 1

2
ημνh − G4(1,0)

G4(0,0)

ημνϕ, (14)

where h = ημνhμν is the trace, and the original metric tensor
perturbation is,

hμν = h̃μν − 1

2
ημν h̃ − G4(1,0)

G4(0,0)

ημνϕ, (15)

with h̃ = ημν h̃μν . The equations of motion are gauge invari-
ant under the the following infinitesimal coordinate transfor-
mation,
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ϕ′ = ϕ, h̃′
μν = h̃μν − ∂μξν − ∂νξμ + ημν∂ρξρ, (16)

with x ′μ = xμ+ξμ. Therefore, one can choose the transverse
gauge ∂ν h̃μν = 0, and after some algebraic manipulations,
the equations of motion become

(� − m2
s )ϕ = T (1)∗

2G4(0,0)ζ
, (17)

�h̃μν = − T (1)
μν

G4(0,0)

, (18)

where T (1)∗ = G4(1,0)T (1) − 2G4(0,0)(∂T/∂φ)(1)2 with

T (1) = ημνT (1)
μν , and the mass of the scalar field is

m2
s = −G2(2,0)/ζ,

ζ = G2(0,1) − 2G3(1,0) + 3G2
4(1,0)/G4(0,0). (19)

Of course, ζ �= 0, otherwise ϕ is non-dynamical.
From the equations of motion (17) and (18), one concludes

that the scalar field is generally massive unlessG2(2,0) is zero,
and the auxiliary field h̃μν resembles the spin-2 graviton field
h̄μν = hμν − ημνh/2 in GR. h̃μν is sourced by the matter
stress-energy tensor, while the source of the scalar pertur-
bation ϕ is a linear combination of the trace of the matter
stress-energy tensor and the partial derivative of the trace
with respect to φ. This is because of the indirect interaction
between the scalar field and the matter field via the metric
tensor.

3 Effective stress-energy tensor

The method of Isaacson [65,66] will be used to obtain
the effective stress-energy tensor for gravitational waves in
Horndeski theory in the short-wavelength approximation,
i.e., the wavelength λ � 1/

√
R with R representing the typ-

ical value of the background Riemann tensor components.
This approximation is trivially satisfied in our case, as the
background is flat and R = 0. In averaging over several
wavelengths, the following rules are utilized [67]:

1. The average of a gradient is zero, e.g., 〈∂μ(h̃ρσ ∂ν h̃)〉 = 0,
2. One can integrate by parts, e.g., 〈h̃∂ρ∂σ h̃μν〉 = −〈∂ρ h̃

∂σ h̃μν〉,

where 〈 〉 implies averaging. These rules apply to not only
terms involving h̃ but also those involving ϕ. In the case of a
curved background, these rules are supplemented by the one
that covariant derivatives commute, which always holds in
the flat background case.

2 The way defining T (1)∗ is different from the one defining T ∗ in
Ref. [26] in that the coefficient of T (1)∗ is not 1.

With this method, the effective stress-energy tensor in
an arbitrary gauge can be calculated straightforwardly using
xAct and given by,

TGW
μν

=
〈

1

2
G4(0,0)

(
∂μh̃ρσ ∂ν h̃

ρσ − 1

2
∂μh̃∂ν h̃ − ∂μh̃νρ∂σ h̃

σρ

−∂ν h̃μρ∂σ h̃
σρ

)
+ ζ∂μϕ∂νϕ

+G4(1,0)(m
2
sϕh̃μν + ∂μϕ∂ρ h̃ρν + ∂νϕ∂ρ h̃ρμ

−ημν∂σ ϕ∂ρ h̃
ρσ )

〉
. (20)

It can be checked that this expression is gauge invariant
under Eq. (16). In fact, the terms in the first around brackets
take exactly the same forms as in GR excerpt for a differ-
ent factor. The fourth line remains invariant, as ϕ′ = ϕ in
the gauge transformation. To show that the remaining lines
are also gauge invariant, making the replacement h̃μν →
h̃μν − ∂μξν − ∂νξμ + ημν∂ρξρ gives

Remaining lines

=
〈
G4(1,0)(m

2
sϕh̃μν + ∂μϕ∂ρ h̃ρν + ∂νϕ∂ρ h̃ρμ

−ημν∂σ ϕ∂ρ h̃
ρσ )

〉

+
〈
m2

s G4(1,0)ϕ(−∂μξν − ∂νξμ + ημν∂ρξρ)

+G4(1,0)(−∂μϕ∂ρ∂ρξν − ∂νϕ∂ρ∂ρξμ

+ημν∂σ ϕ∂ρ∂ρξσ )
〉
. (21)

Far away from the matter, ∂ρ∂ρϕ = m2
sϕ according to

Eq. (17). Substituting this into the fourth line of Eq. (21), one
immediately finds total derivatives of the forms ∂μ(ϕ∂ρ∂ρξν)

and ∂σ (ϕ∂ρ∂ρξσ ). So the first averaging rule implies that the
last three lines of Eq. (21) vanish. Therefore, the effective
stress-energy tensor (20) is indeed gauge invariant.

In vacuum, the transverse-traceless (TT) gauge (∂ν h̃μν =
0 and h̃ = 0) can be taken, and the effective stress-energy
simplifies,

TGW
μν =

〈
1

2
G4(0,0)∂μh̃

TT
ρσ ∂ν h̃

ρσ
TT + ζ∂μϕ∂νϕ

+m2
s G4(1,0)ϕh̃

TT
μν

〉
, (22)

where h̃TT
μν denotes the transverse-traceless part. In the limit

that G4 = (16πGN)−1 and the remaining arbitrary functions
Gi vanish, Eq. (20) recovers the effective stress-energy tensor
of GR [67]. One can also check that Eq. (20) reduces to the
one given in Ref. [25] for Brans–Dicke theory in the gauge
of ∂ν h̃μν = 0 and h̃ = −2ϕ/φ0.

In order to calculate the energy carried away by gravita-
tional waves, one has to first study the motion of the source.
This is the topic of the next section.
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4 The motion of gravitating objects in the Newtonian
limit

The motion of the source will be calculated in the Newtonian
limit. The source is modeled as a collection of gravitating
objects with the action given by Eq. (6). In the slow motion,
weak field limit, there exists a nearly global inertial reference
frame. In this frame, a Cartesian coordinate system is estab-
lished whose origin is chosen to be the center of mass of the
matter source. Let x represent the field point whose length is
denoted by r = |x|.

In the near zone [68], the metric and the scalar perturba-
tions will be calculated at the Newtonian order. The stress-
energy tensor of the matter source is given by,3

Tμν =
∑
a

mauμuν

(
1 − 1

2
v2
a

−1

2
h j j + sa

ϕ

φ0
+ O(v4)

)
δ(4)(xλ − xλ

a (τ )), (23)

and one obtains,

∂T

∂φ
= −

∑
a

ma

φ0

[
sa

(
1 − 1

2
h j j − v2

a

2

)

−(s′
a − s2

a + sa)
ϕ

φ0
+ O(v4)

]
δ(4)(xλ − xλ

a (τ )).

(24)

In these expressions, the 4-velocity of particle a is uμ
a =

u0
a(1, va) and v2

a = v2
a . With these results, the leading order

of the source for the scalar field is

T (1)∗ = −
∑
a

maSaδ
(4)(xλ − xλ

a (τ )), (25)

with Sa = G4(1,0) − 2G4(0,0)

φ0
sa .

Now, the linearized equations (17, 18) take the following
forms

(� − m2
s )ϕ = − 1

2G4(0,0)ζ

∑
a

maSaδ
(4)(xλ − xλ

a (τ )),

(26)

�h̃μν = − 1

G4(0,0)

∑
a

mauμuνδ
(4)(xλ − xλ

a (τ )),

(27)

3 The matter stress-energy tensor Tμν and the derivative of its trace T
with respect to φ, ∂T/∂φ, are both expanded beyond the leading order,
because the higher order contributions are need to calculate the scalar
perturbations in Sect. 5.

and the leading order contributions to the perturbations are
easily obtained,

ϕ(t, x) = 1

8πG4(0,0)ζ

∑
a

maSa
ra

e−msra , (28)

h̃00(t, x) = 1

4πG4(0,0)

∑
a

ma

ra
, (29)

and h̃0 j = h̃ jk = 0 at this order, where ra = |x − xa |
and the scalar field is given by a sum of Yukawa potentials.
The leading order metric perturbation can be determined by
Eq. (15),

h00 = 1

8πG4(0,0)

∑
a

ma

ra

(
1 + G4(1,0)

G4(0,0)ζ
Sae

−msra

)
, (30)

h jk = δ jk

8πG4(0,0)

∑
a

ma

ra

(
1 − G4(1,0)

G4(0,0)ζ
Sae

−msra

)
, (31)

with h0 j = 0.

4.1 Static, spherically symmetric solutions

For the static, spherically symmetric solution with a single
point mass M at rest at the origin as the source, the time-time
component of the metric tensor is

g00 = −1+ 1

8πG4(0,0)

M

r

(
1 + G4(1,0)

G4(0,0)ζ
SMe−msr

)
+· · · ,

(32)

where SM = G4(1,0)−2G4(0,0)sM/φ0 and sM is the sensitiv-
ity of the point mass M . From this, the “Newton’s constant”
can be read off

GN(r) = 1

16πG4(0,0)

(
1 + G4(1,0)

G4(0,0)ζ
SMe−msr

)
, (33)

which actually depends on the distance r because the scalar
field is massive. The measured Newtonian constant at the
earth is GN(r⊗) with r⊗ the radius of the Earth. The “post-
Newtonian parameter” γ (r) can also be read off by examin-
ing g jk , which is

g jk = δ jk

[
1 + 1

8πG4(0,0)

M

r

(
1 − G4(1,0)

G4(0,0)ζ
SMe−msr

)]
+ · · ·

= δ jk

(
1 + 2

G4(0,0)ζ − G4(1,0)SMe−msr

G4(0,0)ζ + G4(1,0)SMe−msr
GN(r)

M

r

)
+ · · · .

(34)

In the PPN formalism, the space-space components of the
metric take the following form,

gPPN
jk = δ jk

(
1 + 2γGN

M

r

)
+ · · · , (35)
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where the parameter γ is a constant. So

γ (r) = G4(0,0)ζ − G4(1,0)SMe−msr

G4(0,0)ζ + G4(1,0)SMe−msr
. (36)

The above result can recover the results for f (R) gravity
and general scalar-tensor theory [31,69–71] if we keep the
equivalence principle. In the massless case (G2(2,0) = 0), we
get

GN = 1

16πG4(0,0)

[
1 + G4(1,0)

G4(0,0)ζ
SM

]
, (37)

γ = G4(0,0)ζ − G4(1,0)SM
G4(0,0)ζ + G4(1,0)SM

. (38)

Note that GN(r) and γ (r) both depend on SM which reflects
the internal structure and motion of the gravitating object in
question. Even if the scalar field is massless, this dependence
still persists. Therefore, neither of them is universal due to
the violation of SEP caused by the scalar field. It is obvious
that GN(r⊗) should take the same value as GN.

4.2 Equations of motion of the matter

With the near zone solutions (28), (30) and (31) one obtains
the total matter Lagrangian up to the linear order,

Lm = −
∑
a

ma

[
1 − 1

2
v2
a

− 1

32πG4(0,0)

∑
b �=a

mb

rab

(
1 + SaSb

G4(0,0)ζ
e−msrab

)]
,

(39)

where rab = |xa − xb| is the distance between the particles
a and b. The equation of motion for the mass ma can thus
be obtained using the Euler–Lagrange equation, yielding its
acceleration,

a j
a = − 1

16πG4(0,0)

∑
b �=a

mb

r2
ab

r̂ j
ab

×
[

1 + SaSb
G4(0,0)ζ

(1 + msrab)e
−msrab

]
, (40)

with r̂ab = (xa − xb)/rab. In particular, for a binary system,
the relative acceleration a j = a j

1 − a j
2 is

a j = − mr̂ j
12

16πG4(0,0)r2
12

×
[

1 + SaSb
G4(0,0)ζ

(1 + msr12)e
−msr12

]
, (41)

where m = m1 + m2 is the total mass. The first term in the
square brackets gives the result that resembles the familiar
Newtonian gravitational acceleration, while the second one
reflects the effect of the scalar field. In the massless case, the

second term no longer depends on r12 and can be absorbed
into the first one, so the binary system moves in a similar way
as in Newtonian gravity with a modified Newton’s constant.

The Hamiltonian of the matter is

Hm =
∑
a

pa · xa − Lm

=
∑
a

ma

[
1

2
v2
a − 1

32πG4(0,0)

×
∑
b �=a

mb

rab

(
1 + SaSb

G4(0,0)ζ
e−msrab

)]
, (42)

where p j
a = ∂Lm/∂x j

a is the j-th component of the canonical
momentum of particle a, and the total rest mass has been
dropped. In particular, the Hamiltonian of a binary system is
given by

Hm = μv2

2
− μm

16πG4(0,0)r12

×
[

1 + S1S2

G4(0,0)ζ
(1 + msr12)e

−msr12

]
, (43)

where v = v1 − v2, and μ = m1m2/m is the reduced mass.
This will be useful for calculating the total mechanical energy
of a binary system and the ratio of energy loss due to the
gravitational radiation.

4.3 Nordtvedt effect

The presence of the scalar field modifies the trajectories of
self-gravitating bodies. They will no longer follow geodesics.
Therefore, SEP is violated in Horndeski theory. This effect is
called the Nordtvedt effect [72,73]. It results in measurable
effects in the solar system, one of which is the polarization
of the Moon’s orbit around the Earth [74,75].

To study the Nordtvedt effect, one considers a system of
three self-gravitating objects a, b and c and studies the rel-
ative acceleration of a and b in the field of c. With Eq. (40)
and assuming rab � rac ≈ rbc, the relative acceleration is

a j
ab ≈ − 1

16πG4(0,0)

ma + mb

r2
ab

r̂ j
ab

×
[

1 + SaSb
G4(0,0)ζ

(1 + msrab)e
−msrab

]

− mc

16πG4(0,0)

(
r̂ j
ac

r2
ac

− r̂ j
bc

r2
bc

)

+ Sc(sa − sb)

8πG4(0,0)φ0ζ

mcr̂
j
ac

r2
ac

(1 + msrac)e
−msrac , (44)

where the first term presents the Newtonian acceleration
modified by the presence of the scalar field, the second is
the tidal force caused by the gravitational gradient due to the
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object c, and the last one describes the Nordtvedt effect. The
effective Nordtvedt parameter is

ηN = Sc
8πGNG4(0,0)φ0ζ

(1 + msrac)e
−msrac . (45)

This parameter depends on Sc = G4(1,0) −2G4(0,0)sc/φ0, so
this effect is indeed caused by the violation of SEP.

4.4 Shapiro time delay effect

Another effect useful for constraining Horndeski theory is
the Shapiro time delay [76]. In order to calculate this effect,
one considers the photon propagation time in a static (or
nearly static) gravitational field produced by a single mass
M at the origin. Due to the presence of gravitational potential,
the 3-velocity of the photon in the nearly inertial coordinate
system is no longer 1 and varies. The propagation time is
thus different from that when the spacetime is flat. Let the
4 velocity of the photon be uμ = u0(1, v), then uμuμ = 0
gives

−1 + h00 + (δ jk + h jk)v
jvk = 0, (46)

where h00 and h jk are given by Eqs. (30) and (31) specialized
to a single mass M case. In the flat spacetime, the trajectory
for a photon emitted from position xe at time te is a straight
line x(t) = xe+N̂ (t−te), where N̂ is the direction of the pho-
ton. The presence of the gravitational potential introduces a
small perturbation δx(t) so that x(t) = xe+ N̂ (t−te)+δx(t).
Substituting Eqs. (30) and (31) into Eq. (46), one obtains

N̂ · dδx
dt

= − M

8πG4(0,0)r(t)
, (47)

where r(t) = |x(t)|. Suppose the photon emitted from posi-
tion xe is bounced back at position xp and finally returns to
xe. The total propagation time is

�t = 2|xp − xe| + δt, (48)

where δt is caused by the Shapiro time delay effect,

δt = 2
∫ tp

te
N̂ · dδx

dt
dt

= M

4πG4(0,0)

ln
(re + N̂ · xe)(rp − N̂ · xp)

r2
b

, (49)

where re = |xe|, rp = |xp| and rb = |N̂ × xe| is the impact
parameter of the photon relative to the source.

Since M in Eq. (49) is not measurable, one replaces it with
the Keplerian mass

MK = M

16πG4(0,0)GN

(
1 + G4(1,0)

G4(0,0)ζ
SMe−msr

)
, (50)

with SM = G4(1,0) − 2G4(0,0)sM/φ0 and sM the sensitivity
of the source. In terms of MK, the Shapiro time delay is

δt = 2GNMK(1 + γ (r)) ln
(re + N̂ · xe)(rp − N̂ · xp)

r2
b

.

(51)

For the Shapiro time delay occurring near the Sun, r in the
above equation should be 1 AU, as this is approximately
the distance where the Keplerian mass MK of the Sun is
measured.

5 Gravitational wave solutions

In the far zone, only the space-space components of the met-
ric perturbation are needed to calculate the effective stress-
energy tensor. Since the equation of motion (18) for h̃μν takes
the similar form as in GR, the leading order contribution to
h̃ jk is given by,

h̃ jk(t, x) = 1

8πG4(0,0)r

d2 I jk
dt2 , (52)

where I jk = ∑
a max

j
a xka is the mass quadrupole moment.

As in GR, the TT part of h̃ jk is also related to the reduced
quadrupole moment J jk = I jk − δ jkδ

il Iil/3,

h̃TT
jk = 1

8πG4(0,0)r

d2 JTT
jk

dt2 . (53)

The leading order term for the scalar field ϕ is the mass
monopole which does not contribute to the effective stress-
energy tensor, so it is necessary to take higher order terms
into account. To do so, the scalar equation (A.2) is rewritten
with the linearized equations substituted in, which is given
by

(� − m2
s )ϕ

= T (1)∗
2G4(0,0)ζ

+ G4(1,0)T (2)

2G4(0,0)ζ
− 1

ζ

(
∂T

∂φ

)(2)

+
[

(T (1)∗ )2

4G2
4(0,0)ζ

3
− (∂μ∂νϕ)(∂μ∂νϕ)

ζ
+ m2

sϕT
(1)∗

G4(0,0)ζ 2

+m4
sϕ

2

ζ

](
G3(0,1) − 3

G4(0,1)G4(1,0)

G4(0,0)

+ 3
G4(1,0)G5(1,0)

G4(0,0)

−3G4(1,1)

) +
[

ϕT (1)∗
G4(0,0)ζ

+ 2m2
sϕ

2 + (∂μϕ)(∂μϕ)

]

(
− G4(1,0)

2G4(0,0)

+ 3G3
4(1,0)

2G2
4(0,0)ζ

− G2(1,1)

2ζ
+ G3(2,0)

ζ
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−3
G4(1,0)G4(2,0)

G4(0,0)ζ

)
+ G4(1,0)

G4(0,0)

(∂μϕ)∂μϕ − h̃T (1)∗
4G4(0,0)ζ

+T (1)
μν ∂μ∂νϕ

G4(0,0)ζ
(G4(0,1) − G5(1,0)) + ϕT (1)

2G4(0,0)ζ

(
G4(2,0)

−G2
4(1,0)

G4(0,0)

)
− ϕ2

(
G2(3,0)

2ζ
+ m2

s
G4(1,0)

G4(0,0)

)

+h̃μν∂
μ∂νϕ − m2

sϕh̃

2
. (54)

In the following discussion, it is assumed that the scalar
field is massless for simplicity. The details to obtain the fol-
lowing results can be found in Appendix B. The leading order
contribution to ϕ comes from the first term on the right hand
side of Eq. (54), which is the mass monopole moment,

ϕ[1] = 1

8πG4(0,0)ζr

∑
a

maSa . (55)

From now on, the superscript [n] indicates the order of a
quantity in terms of the speed v, i.e., ϕ[n] is of the order
O(v2n). ϕ[1] is independent of time, so it does not contribute
to the effective stress-energy tensor. The next leading order
term is the mass dipole moment,

ϕ[1.5] = 1

8πG4(0,0)ζr

∑
a

maSa(n̂ · va), (56)

in which n̂ = x/r . This gives the leading contribution to the
effective stress-energy tensor. At the next next leading order,
there are more contributions from the remaining terms on the
right hand side of Eq. (54). First, there is the mass quadruple
moment contribution,

ϕ
[2]
1 = 1

8πG4(0,0)ζr

∑
a

maSa[(n̂ · aa)(n̂ · xa) + (n̂ · va)2].

(57)

And the remaining contribution to the scalar wave is

ϕ
[2]
2 = − 1

16πG4(0,0)ζr

∑
a

maSav
2
a

+ 1

64π2G2
4(0,0)ζr

∑
a,b

mamb

rab

(
− Sa

2

+ 3G4(1,0)

2G4(0,0)ζ
SaSb + S′

a Sb
φ0ζ

)

+ 1

64π2G2
4(0,0)ζ

2r

(
G4(2,0) − G2

4(1,0)

G4(0,0)

)∑
a,b

mambSb
rab

,

− G2(3,0)

256π2G2
4(0,0)ζ

3r

∑
a,b

mambSaSbrab

+ 1

64π2G2
4(0,0)ζ

2r
ϒ

∑
a,b

mambSaSb
rab

, (58)

where
∑

a,b means summation over a and b with a �= b, and

ϒ = −3G4(1,0)

2G4(0,0)

+ 3G3
4(1,0)

2G2
4(0,0)ζ

− G2(1,1)

2ζ
+ G3(2,0)

ζ

−3
G4(1,0)G4(2,0)

G4(0,0)ζ
.

Note that the penultimate line of Eq. (58) is a sum of terms
proportional to rab, which grows as rab increases and poten-
tially dominates over other terms. Since matters are confined
within the source zone, this line never blows up.

The scalar field up to the fourth order in velocity is given
by

ϕ = ϕ[1] + ϕ[1.5] + ϕ
[2]
1 + ϕ

[2]
2 . (59)

It is easy to check that this result agrees with Eq. (86) in
Ref. [26] with ms = 0.

6 Gravitational radiation for a compact binary system

This section is devoted to calculating the gravitational radi-
ation for a compact binary system in the case with massless
scalar field . According to Eq. (22), the energy carried away
by the gravitational wave is at a rate of

Ė =
∮

TGW
0 j dS j

≈ −G4(0,0)

2
r2

∫ 〈
∂0h̃

TT
jk ∂0h̃

jk
TT

〉
d�

−ζr2
∫

〈∂0ϕ∂0ϕ〉 d�, (60)

where the integration is carried out on a 2-sphere in the far
zone and in the final step, higher order terms have been
dropped. The first term gives the contribution of the spin-2
gravitational wave, while the second one gives the contribu-
tion of the scalar field.

Next, one has to calculate the motion of the binary system
explicitly. By Eq. (41), the relative acceleration is given by

a j = − ςm

16πG4(0,0)

r̂ j
12

r2
12

, (61)

where

ς = 1 + S1S2

G4(0,0)ζ
. (62)

As in GR, one can orient the coordinate system such that the
orbit lies in the xOy plane. In the polar coordinate system
(r, θ, z), the relative distance is thus given by
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r12(t) = p

1 + e cos θ(t)
, (63)

where

p = 16πG4(0,0)l2

ςm
, (64)

with l the angular momentum per unit mass and e the eccen-
tricity. The orbital period is

T = 2π

√
16πG4(0,0)a3

ςm
. (65)

All these above results can be obtained by suitably modifying
those in GR as found in Ref. [68]. Using Eq. (43) with ms

set to 0, the total mechanical energy of the binary system is

E = − ςμm

32πG4(0,0)a
, (66)

where a = p/(1 − e2) is the semi-major axis.
Following Ref. [26], the rate of energy loss due to the

spin-2 gravitational wave is

Ė2 = −(1 − e2)−7/2
(

1 + 73

24
e2 + 37

96
e4
)

×32

5

ς3μ2m3

(16πG4(0,0))4a5
, (67)

which reproduces the radiation damping of GR in the appro-
priate limit [68].

Ignoring the leading order contribution to ϕ, the higher
order correction is given by

ϕ = f1
r

(n̂ · v) + f2
r

(n̂ · v)2 + f3
r

(n̂ · r12)
2

r3
12

+ f4
r

v2 + f5
rr12

+ f6
r12

r
, (68)

where

f1 = − μ

4πφ0ζ
(s1 − s2), f2 = μ�

8πG4(0,0)ζ
, (69)

f3 = − ςμm�

128π2G2
4(0,0)ζ

, f4 = − μ�

16πG4(0,0)ζ
, (70)

f5 = − μm�′

64π2G2
4(0,0)ζ

+ μm�′

32π2G2
4(0,0)ζ

2

(
G4(2,0) − G2

4(1,0)

G4(0,0)

)

+ μm

64π2G2
4(0,0)ζ

2

[(
3G3

4(1,0)

2G2
4(0,0)

− G2(1,1)

2
+ G3(2,0)

−3G4(1,0)G4(2,0)

G4(0,0)

)
2S1S2

ζ
+ S′

1S2 + S′
2S1

φ0

]
, (71)

f6 = − μmG2(3,0)S1S2

128π2G2
4(0,0)ζ

3
, (72)

and

S′
a = G4(1,0)sa − 2G4(0,0)

φ0
(s2
a − sa − s′

a), (73)

� = G4(1,0) − 2G4(0,0)

φ0

m2s1 + m1s2

m
, (74)

�′ = G4(1,0) − G4(0,0)

φ0
(s1 + s2). (75)

The first term at the right hand side of Eq. (68) is a dipolar
contribution and oscillates at the orbital frequency. This term
is of order v−1  1 relative to the remaining terms. However,
it also depends on the difference in the sensitivities (s1 − s2)

of the objects in the binary system, which might be small
or even vanish. For example, in the Shift-Symmetric Horn-
deski theory (SSHT) with Gi functions of X only, the stellar
sensitivity sa vanishes [77], and in Brans–Dicke theory, the
sensitivity of a black hole is 1/2 [26,78,79]. So if the binary
system consists of, e.g., two neutron stars in SSHT or if the
two stars are black holes in Brans–Dicke theory, the dipolar
radiation vanishes.

In the generic case, (s1 − s2) might not be zero, and the
dipolar contribution should be taken into account. So the
contribution of the scalar field to the energy flux is

Ė0 = −ζr2
∫

〈∂0ϕ∂0ϕ〉 d�

= −(1 − e2)−7/2

×
{

ζς3m3

120(16π)2G3
4(0,0)a

5

[
15(e2 + 4)e2 f 2

4

+10(e2 + 4)e2 f2 f4 + (6e4 + 36e2 + 8) f 2
2

]

+ ζς2m2

1920πG2
4(0,0)a

5

[
− 5a(1 − e2)(2 + e2) f 2

1

+(3e4 + 36e2 + 16) f2 f3 − 5(e2 + 4)e2 f2 f5

+20a2e2(1 − e2)2 f2 f6 − 5e2(e2 + 4) f3 f4

−15e2(e2 + 4) f4 f5 + 60a2e2(1 − e2)2 f4 f6
]

+ ζςm

480G4(0,0)a5

[
(15e4 + 108e2 + 32) f 2

3

+15e2(e2 + 4) f 2
5 + 10e2(e2 + 4) f3 f5

−120a4(1 − 1/
√

1 − e2)(1 − e2)4 f 2
6

−120a2e2(1 − e2)2 f5 f6

−40a2e2(1 − e2)2 f3 f6
]}

. (76)

A straightforward but tedious calculation shows that Eq. (76)
reduces to Eq. (3.24) in Ref. [25] for Brans–Dicke theory
with sensitivities set to zero and the Hadamard regulariza-
tion imposed [80–82]. The period change Ṫ can be mea-
sured experimentally, and the fractional period change Ṫ /T
is given by
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Ṫ

T
= −3

2

Ė0 + Ė2

E
= −(1 − e2)−7/2 ×{

96

5

(
1 + 73

24
e2 + 37

96
e4
)

ς2μm2

(16πG4(0,0))3a4

+ ζς2m2

640πμG2
4(0,0)a

4

[
15(e2 + 4)e2 f 2

4

+10(e2 + 4)e2 f2 f4 + (6e4 + 36e2 + 8) f 2
2

]

+ ζςm

40μG4(0,0)a4

[
− 5a(1 − e2)(2 + e2) f 2

1

+(3e4 + 36e2 + 16) f2 f3 − 5(e2 + 4)e2 f2 f5

+20a2e2(1 − e2)2 f2 f6 − 5e2(e2 + 4) f3 f4

−15e2(e2 + 4) f4 f5 + 60a2e2(1 − e2)2 f4 f6
]

+ πζ

10μa4

[
(15e4 + 108e2 + 32) f 2

3

+15e2(e2 + 4) f 2
5 + 10e2(e2 + 4) f3 f5

−120a4(1 − 1/
√

1 − e2)(1 − e2)4 f 2
6

−120a2e2(1 − e2)2 f5 f6

−40a2e2(1 − e2)2 f3 f6
]}

. (77)

The first term is caused by the spin-2 gravitational wave,
while the remaining ones by the scalar field.

Given the sensitivities (sa, s′
a) of all kinds of celestial

objects, Eq. (77) can be compared with the observed period
change to set bounds on some of parameters characterizing a
particular scalar-tensor theory (e.g., φ0, G4(0,0), G4(1,0), ζ

etc.) as done in Ref. [26].

7 Observational constraints

In this section, constraints on Horndeski theory are obtained
using observations from lunar laser ranging experiments,
Cassini time-delay measurement and binary pulsars. Since
Horndeski theory contains many parameters, the following
discussions start with generic constraints on the full Horn-
deski theory, and then specify to some concrete subclasses
of Horndeski theory.

7.1 Constraints from lunar laser ranging experiments

The lunar laser ranging experiment gave the most precise
measurement of the Nordtvedt effect, and the Nordtvedt
parameter was determined to be [83]

ηobs.
N = (0.6 ± 5.2) × 10−4 = δ1 ± ε1. (78)

To get the constraints, one requires that |ηN − δ1| < 2ε1 at
95% confidential level. Using Eq. (45), one obtains

−0.98 × 10−3 <
G4(1,0)(1 + msr)

8πGNG4(0,0)φ0ζ
e−msr < 1.1 × 10−3,

(79)

where r = 1 AU and the sensitivity of the Sun is ignored as
its sensitivity is expected to be smaller than 10−4, which is
the white dwarf’s sensitivity [26,79].

7.2 Constraints from Cassini time-delay data

In 2002, the Cassini spacecraft measured the Shapiro time
delay effect in the solar system by radio tracking [84]. The
PPN parameter γ was given by

γmeas. = 1 + (2.1 ± 2.3) × 10−5 = 1 + δ2 ± ε2. (80)

At 95% confidential level, one requires that |γ (r)−γmeas.| <

2ε2, which leads to

−3.35 × 10−5 �
G2

4(1,0)

G4(0,0)ζ
e−msr � 1.25 × 10−5, (81)

in which the Sun’s sensitivity is also ignored, and r = 1
AU. In the massless case, this constraint can be trans-
lated into ωH � 4 × 104 with ωH = G4(0,0)(G2(0,1) −
2G3(1,0))/2G2

4(1,0) [31], which reduces to ωBD when (the
massless) Brans–Dicke theory is considered.

7.3 Constraints from period change for circular motion

Now, one obtains the constraints on Horndeski theory using
the data of pulsars. For this end, one considers the circular
motion of a binary system, not only for simplicity but also
because the first sensitivities sa are known at least in some
subclasses of Horndeski theory, such as Brans–Dicke theory
[26,78,79] and SSHT [77], while the second sensitivities s′

a
are unknown. In the case of the circular motion (e = 0),
one assumes that ω is the orbital angular frequency so that
r12 = a and θ = ωt . The orbital angular frequency can be
obtained using Eq. (64), which is

ω = 2π

T
=

√
ςm

16πG4(0,0)r3
12

. (82)

The total mechanical energy of the binary system is

E = − ςμm

32πG4(0,0)r12
. (83)
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Table 1 Orbital parameters of the binary system PSR J1738+0333 [85]

Eccentricity e (3.4 ± 1.1) × 10−7

Orbital period T (days) 0.354 790 739 8724(13)

Period change Ṫobs (−25.9 ± 3.2) × 10−15

Pulsar mass m1(M�) 1.46+0.06
−0.05

Companion mass m2(M�) 0.181+0.008
−0.007

The rates of radiation damping are greatly simplified,

Ė2 = −32

5

ς3μ2m3

(16πG4(0,0))4r5
12

, (84)

and

Ė0 = − 1

12π

ς2μ2m2(s1 − s2)
2

(16πG4(0,0))2φ2
0ζr4

12

−16

15

ς3μ2m3�2

(16π)4G5
4(0,0)ζr

5
12

, (85)

where the first term comes from the mass dipole moment.
The fractional period change is

Ṫ

T
= − ςμm(s1 − s2)

2

64π2G4(0,0)φ
2
0ζr3

12

− 16

5

ς2μm2�2

(16π)3G4
4(0,0)ζr

4
12

−96

5

ς2μm2

(16πG4(0,0))3r4
12

. (86)

The first two terms are caused by the scalar field, while the
last one by the spin-2 gravitational wave.

Provided that the sensitivities (s1, s2) of celestial objects
are given, Eq. (86) can be compared with the observed period
change to set bounds on some parameters in Horndeski the-
ory, using the observational data of the binary system PSR
J1738+0333 [85]. This is a 5.85-ms pulsar with a white dwarf
companion, orbiting around each other every 8.51 h. Some
of the orbit parameters are tabulated in Table 1.

The eccentricity of PSR J1738+0333 is (3.4±1.1)×10−7,
so the orbit is nearly a circle, and one can use Eq. (86) to
obtain the bounds on Horndeski theory. At 95% confidential
level, one requires that |Ṫpred. − Ṫobs.| < 2σ where Ṫpred. is
determined by Eq. (86) with Eq. (82) substituted in, Ṫobs. is
the observed period change and σ is the uncertainty for Ṫobs..
The expression for Ṫpred. − Ṫobs. is too complicated and will
not be presented here.

7.4 Constraints on special examples

Example 1 Consider a special subclass of Horndeski the-
ory where the scalar field is massless, i.e., G2(2,0) = 0. By
Eq. (37), one can solve for ζ in terms of G4(0,0) and G4(1,0),

ζ = G2
4(1,0)

G4(0,0)(16πG4(0,0)GN − 1)
. (87)

Note that since the Newton’s constant GN is measured in the
vicinity of the Earth, the Earth’s sensitivity s⊗ is ignored in
Eq. (37), and so ζ does not depend on s⊗. Plug ζ into Eq. (81),
and the Shapiro time delay effect constrains G4(0,0),

1 − 3.35 × 10−5

16πGN
� G4(0,0) � 1 + 1.25 × 10−5

16πGN
. (88)

Plug ζ into Eq. (79), and one gets

−0.98 × 10−3 � 16πG4(0,0)GN − 1

8πφ0G4(1,0)GN
� 1.1 × 10−3, (89)

which shows a nice property that the product χ = φ0G4(1,0)

appears in the above expression. In fact, after one substitutes
ζ into Eq. (86), Ṫ can also be expressed as a function of
G4(0,0) and χ , which is too complicated to be presented. Note
that the sensitivities for the pulsar and the white dwarf are
taken to be approximately 0.2 and 10−4, respectively. So the
constraints from the Nordtvedt effect and the period change
of the binary pulsar can be represented by the constraints
on G4(0,0) and χ . The result is given in Fig. 1. The shaded
area is the commonly allowed parameter space (G4(0,0), χ).
Finally, since ζ is given in Eq. (19), one knows that

G2(0,1) − 2G3(1,0)

G2
4(1,0)

� 4.02 × 106GN or

G2(0,1) − 2G3(1,0)

G2
4(1,0)

� −1.50 × 106GN. (90)

Note that the above constraints cannot be applied to the spe-
cial case whereG4 ∝ φ, as in this case,G4(1,0) ∝ G4(0,0)/φ0,
i.e., G4(1,0) and G4(0,0) are not independent of each other.

Example 2 Now, consider a second subclass of Horndeski
theory whose G4 = G4(φ) and G5 = 0. The scalar field
is still assumed to be massless. This subclass satisfies the
constraints set by the gravitational wave speed limit [35–37].
One can introduce a new scalar field φ′ such that G4(φ) =
φ′/16π , and the form of action (1) remains the same after
replacingφ byφ′ in it. So let us simply call the new scalar field
φ, and thus G4(φ) = φ/16π and G4(1,0) = 1/16π . Using
all the constraints discussed in the previous subsections, one
obtains

1 − 3.35 × 10−5

GN
� φ0 � 1 + 1.25 × 10−5

GN
, (91)

and this leads to

G2(0,1) − 2G3(1,0) � 1600GN or G2(0,1) − 2G3(1,0)

� −600GN. (92)
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Fig. 1 The allowed parameter spaces (G4(0,0), χ) set by the Nordtvedt
effect (the region above the dot dashed blue curve), the Shapiro time
delay (the region enclosed by the two vertical, dashed black lines) and
the observation of the binary pulsar PSR J1738+0333 (the region above
the solid red curve, labeled by �Ṫ ), respectively. The shaded area is
the commonly allowed parameter space. The horizontal and the vertical
axes are both measured in units of G−1

N

Example 3 One may also consider the constraints set on a
massive Horndeski theory. In this case, one can only use the
constraints from the Nordtvedt effect and the Shapiro time
delay. The mass ms of the scalar field is expected to be very
small. As suggested in Ref. [26], if 10−21 eV < ms < 10−15

eV, the constraints can also be set on G4(0,0) and χ , pro-
vided that they are independent of each other. The allowed
parameter space (G4(0,0), χ) is approximately given by the
area enclosed by the two vertical dashed curves, and the
dot dashed one in Fig. 1. The constraint on the combination
G2(0,1) −2G3(1,0) is also approximately given by Eq. (90). If
G4 ∝ φ, the constraints are approximately given by Eqs. (91)
and (92).

8 Conclusion

In this work, the observational constraints on Horndeski
theory are obtained based on the observations from the
Nordtvedt effect, Shapiro time delay and binary pulsars.
For this purpose, the near zone metric and scalar perturba-
tions are first calculated in order to obtain the equations of
motion for the stars. These solutions are thus used to study the
Nordtvedt effect and the Shapiro time delay. Then, the effec-
tive stress-energy tensor of Horndeski theory is derived using
the method of Isaacson. It is then used to calculate the rate of
energy radiated away by the gravitational wave and the period
change of a binary system. For this end, in the far zone, the
auxiliary metric perturbation is calculated using the famil-
iar quadratic formula, and the scalar field is calculated with

the monopole moment contribution dominating, although it
does not contribute to the effective stress-energy tensor. The
leading contribution of the scalar field to the energy damp-
ing is the dipolar radiation, which is related to the difference
in the sensitivities of the stars in the binary system, so the
dipolar radiation vanishes if the two stars have the same sen-
sitivity. The energy damping is finally calculated with the far
zone field perturbations, and the period change is derived.
Finally, the observational constraints are discussed based on
the data from lunar laser ranging experiments, the observa-
tions made by the Cassini spacecraft, and the observation on
the PSR J1738+0333. Explicit constraints have been obtained
for both the massless and massive Horndeski theory, and in
particular, for the one satisfying the recent gravitational wave
speed limits [6].
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Appendix A: Equations of motion up to the second
order in perturbations

In this work, the equations of motion are obtained and sim-
plified using xAct package [59–63]. The equations agree with
those listed in Refs. [57,64]. The equations are then perturbed
around a generic background spacetime up to second order
in perturbations in gμν and φ. Finally, the background space-
time is set to be Minkowskian, and the resultant Einstein’s
equations up to the second order in perturbations are

1

2
(T (1)

μν + T (2)
μν )

= −G2(0,0)

2
ημν + G4(0,0)(G

(1)
μν + G(2)

μν ) − G4(1,0)(∂μ∂νϕ

−ημν�ϕ) + G4(1,0)

(
R(1)

μν ϕ − 1

2
ημνR

(1)ϕ

)

+(G4(0,1) − G5(1,0))
[
(∂μ∂ρϕ)∂ν∂ρϕ − (∂μ∂νϕ)�ϕ

+1

2
ημν(�ϕ)2 − 1

2
(∂ρ∂σ ϕ)∂ρ∂σ ϕ

]

+
(
G3(1,0) − G2(0,1)

2

)[
(∂μϕ)∂νϕ − 1

2
ημν�ϕ

]

+G4(1,0)

{
1

2
(∂ρϕ)∂μhνρ + 1

2
(∂ρϕ)∂νhμρ

123
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−1

2
(∂ρϕ)∂ρhμν + hμν�ϕ + ημν

[
1

2
(∂ρh)∂ρϕ

−(∂ρϕ)∂σ h
σ
ρ − hρσ ∂ρ∂σ ϕ

]}
+G4(2,0){ημν[(∂ρϕ)∂ρϕ + ϕ�ϕ]
−(∂μϕ)∂νϕ − ϕ∂μ∂νϕ} − 1

4
G2(2,0)ημνϕ

2, (A.1)

and the scalar equation of motion is

−
(

∂T

∂φ

)(1)

−
(

∂T

∂φ

)(2)

= G2(1,0) + (G2(0,1) − 2G3(1,0))�ϕ

+(G2(2,0) + G4(1,0))(R
(1) + R(2)) + G4(2,0)ϕR

(1)

+(G4(0,1) − G5(1,0))(R
(1)�ϕ − 2R(1)

μν ∂μ∂νϕ)

+G2(0,1)

[
1

2
(∂νϕ)∂νh − hμν∂μ∂νϕ − (∂μh

μν)∂νϕ

]

+(G3(0,1) − 3G4(1,1))[(∂μ∂νϕ)∂μ∂νϕ − (�ϕ)2]
+G3(1,0)[2hμν∂μ∂νϕ + 2(∂μh

μν)∂νϕ − (∂νϕ)∂νh]
+(G2(1,1) − 2G3(2,0))

[
1

2
(∂μϕ)∂μϕ + ϕ�ϕ

]

+1

2
G2(3,0)ϕ

2, (A.2)

where � = ημν∂μ∂ν , and the superscript (1) implies the
leading order piece of the quantity while the superscript (2)

represents the second order piece.

Appendix B: Post-Newtonian expansion of the scalar
field

In this appendix, the procedure to derive the post-Newtonian
expansion of the scalar field is briefly presented. The basic
idea is the following. Suppose a scalar field ψ satisfies the
massless Klein-Gordon equation with a source S,

�ψ = −16π S, (B.3)

where � = ∂μ∂μ. In the far zone, the scalar field is given by

ψ(t, x) = 4
∫
N

S(t − |x − x′|, x′)
|x − x′| d3x ′. (B.4)

Here, the integration is over the near zone N , as ψ will
be calculated only up to the quadratic order in perturbations.
Since r = |x| > |x′|, one can expand the integrand in powers
of x′ in the following way,

ψ(t, x) = 4
∞∑
q=0

(−1)q

q! ∂Q

(
I Q(u)

r

)
, (B.5)

where u = t − r is the retarded time, Q is a multi-index,
namely, ∂Q = ∂ j1∂ j2 · · · ∂ jq and I Q = I j1 j2··· jq , and the
repeated indices imply summation. The symbol I Q(u) is

I Q(u) =
∫
M

S(u, x′)x ′Qd3x ′, (B.6)

in which the integration is over M , the intersection of the
near-zone worldtube with the constant retarded time hyper-
surface u = C . Since ∂ j u = −x j/r = −n̂ j , Eq. (B.5) is
approximately given by

ψ(t, x) = 4

r

∞∑
q=0

1

q!
∂q

∂tq

∫
M

S(u, x′)(n̂ ·x′)qd3x ′+O(1/r2).

(B.7)

For the purpose of the present work, one identifies ψ with
ϕ and −16π S with the right hand side of Eq. (54) up to the
quadratic order. One should further truncate the series in the
above expression at an appropriate order in the following
discussion.

The leading contribution to ϕ comes from the first term on
the right hand side of Eq. (54), which is the mass monopole
moment,

ϕ[1] = − 1
8πG4(0,0)ζr

∫
M d3x ′T (1)∗

= 1
8πG4(0,0)ζr

∑
a maSa .

(B.8)

It does not depend on time, so it does not contribute to the
effective stress-energy tensor.

The next leading order term is the mass dipole moment,

ϕ[1.5] = − 1
8πG4(0,0)ζr

∂t
∫
M d3x ′T (1)∗

= 1
8πG4(0,0)ζr

∂t
∑

a maSa(n̂ · xa)
= 1

8πG4(0,0)ζr

∑
a maSa(n̂ · va).

(B.9)

This gives the leading contribution to the effective stress-
energy tensor.

At the next next leading order, there are more contributions
from the right hand side of Eq. (54). First, there is the mass
quadruple moment,

ϕ
[2]
1 = − 1

8πG4(0,0)ζr
∂2
t
2

∫
M d3x ′T (1)∗ (n̂ · xa)2

= 1
8πG4(0,0)ζr

∂2
t
2

∑
a maSa(n̂ · xa)2

= 1
8πG4(0,0)ζr

∑
a maSa[(n̂ · aa)(n̂ · xa) + (n̂ · va)2].

(B.10)

The above three contributions (B.8), (B.9) and (B.10) all
come from the first term in the source (the right hand side of
Eq. (54)).

Other contributions to the scalar quadruple moment come
from the remaining terms in the source. Firstly, there are the
following three contributions,

ϕ
[2]
2 = − 1

8πG4(0,0)ζr

∫
M

d3x ′ [G4(1,0)T
(2)

−2G4(0,0)

(
∂T

∂φ

)(2)
]
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= − 1

16πG4(0,0)ζr

∑
a

maSav
2
a

+ 1

64π2G2
4(0,0)ζr

∑
a,b

′mamb

rab

(
−3Sa

2

+ 3G4(1,0)

2G4(0,0)ζ
SaSb + S′

a Sb
φ0ζ

)
, (B.11)

ϕ
[2]
3 = 1

16πG4(0,0)ζ

∫
M

d3x ′h̃T (1)∗

≈ − 1

16πG4(0,0)ζ

∫
M

d3x ′h̃00T
(1)∗

= 1

64π2G2
4(0,0)ζr

∑
a,b

′mambSb
rab

, (B.12)

ϕ
[2]
4 = − 1

8πG4(0,0)ζ

(
G4(2,0) − G2

4(1,0)

G4(0,0)

)∫
M

d3x ′ϕT (1)

= 1

64π2G2
4(0,0)ζ

2r

(
G4(2,0) − G2

4(1,0)

G4(0,0)

)
×

∑
a,b

′mambSb
rab

, (B.13)

where
∑′

a,b means summation over a and b with a �= b,
and in the second step of Eq. (B.12), the contribution from
η jk h̃ jkT

(1)∗ is dropped since it is of order O(v2) relative to

h̃00T
(1)∗ .

Secondly, the term containing T (1)
μν ∂μ∂νϕ in Eq. (54) does

not contribute as

T (1)
μν ∂μ∂νϕ =

ρO(1)×O(v2)

T (1)
00 ∂0∂0ϕ +

ρO(v)×O(v)

2T (1)
0 j ∂0∂ jϕ

+
ρO(v2)×O(1)

T (1)
jk ∂ j∂kϕ ,

(B.14)

where each term on the right hand side in the above expres-
sion indicates the relative order of that term to T (1)

00 ϕ, and

ρ = T (1)
00 . Note that the action of ∂0 increases the order by

one since ∂0 is actually −∂/c∂t . Therefore, these terms are of
higher order than those considered in Eqs. (B.11), (B.12) and
(B.13), and will be ignored. Similarly, the term containing
h̃μν∂

μ∂νϕ is also of higher order and dropped.
Thirdly, the following integral will be useful,

I1 =
∫
M

d3xϕT (1)∗ = − 1

8πG4(0,0)ζ

∑
a,b

′mambSaSb
rab

.

(B.15)

The next useful integral is

I2 = ∫
M d3xϕ2

= 1
64π2G2

4(0,0)
ζ 2

∑
a,b mambSaSb

∫
M

d3x
rarb

.
(B.16)

To compute it, we first consider the terms with a = b,

I2,1 = 1
64π2G2

4(0,0)
ζ 2

∑
a m

2
a S

2
a

∫R
0

d3x
r2
a

= 1
16πG2

4(0,0)
ζ 2

∑
a m

2
a S

2
aR.

(B.17)

Remember that R defines the boundary separating the near
zone from the far zone. However, the scalar field should not
depend onR, as shown in Ref. [86]. So this result will be dis-
carded. Second, consider the contributions from terms with
a �= b. Define y = ra = x−xa , then rb = x−xb = y+rab.
Since the source is located deep inside the near zone, |xa | �
R. For x ∈ N , |x|2 = |y+ xa |2 = y2 + 2y · xa + x2

a < R2,
and one knows that,

y < R − ŷ · xa + O(|xa |2/R), (B.18)

where y = |y| and ŷ = y/y. So∫
M

d3x
rarb

≈ ∫
M

d3y
y|y+rab|

− ∮
∂M

xa ·ŷ
y|y+rab|

∣∣∣
y=R

R2d�.
(B.19)

With the relation,

1

|x − x′| =
∞∑
l=0

l∑
m=−1

4π

2l + 1

rl<
rl+1
>

Y ∗
lm(n̂)Ylm(n̂′), (B.20)

where r< is the smaller one of r = |x| and r ′ = |x′|,
n̂ = x/|x| and n̂′ = x′/|x′|, one can show that the bound-
ary integral should be dropped as it depends on R, and the
first integral in Eq. (B.19) gives −2πrab, independent of R.
Therefore,

I2 = − 1

32πG2
4(0,0)ζ

2

∑
a,b

′
mambSaSbrab. (B.21)

The third integral is,

I3 = ∫
M (∂μϕ)(∂μϕ)d3x

≈ ∫
M (∂ jϕ)∂ jϕd3x

= ∮
∂M ϕ∂ jϕdS j − ∫

M ϕ∇2ϕd3x

= − 1
2G4(0,0)ζ

∫
M ϕT (1)∗ d3x,

(B.22)

where dS j is the surface area element. In the second step,
(∂0ϕ)∂0ϕ is ignored, as it is of higher order, and in the final
step, the boundary integral is discarded, as it depends on R.
The fourth integral is

I4 = ∫
M (∂μ∂νϕ)(∂μ∂νϕ)d3x

≈ ∫
M (∂ j∂kϕ)(∂ j∂kϕ)

= ∮
∂M (∂kϕ)∂ j∂kϕdS j − ∮

∂M (∇2ϕ)∂kϕdSk
+ ∫

M (∇2ϕ)2d3x

= ∫
M

(T (1)∗ )2

4G2
4(0,0)

ζ 2 d3x,

(B.23)

where in the second step, higher order terms (∂0∂0ϕ)∂0∂0ϕ

and (∂0∂ jϕ)∂0∂ jϕ are ignored, and in the final step, the sur-
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face integrals are discarded for the similar reasons as before.
With this result, one can easily find out that the contribution
of the second and the third line in Eq. (54) vanishes.

Finally, the remaining contributions to the scalar field are

ϕ
[2]
5 = 1

4πr
G2(3,0)

2ζ

∫
M d3x ′ϕ2

= − 1
128π2G2

4(0,0)
ζ 2r

G2(3,0)

2ζ

∑′
a,b mambSaSbrab,

and

ϕ
[2]
6 = − 1

4πr

∫
M d3x ′

{[
ϕT (1)∗

G4(0,0)ζ
+ (∂μϕ)(∂μϕ)

]

×
(

− G4(1,0)

2G4(0,0)
+ 3G3

4(1,0)

2G2
4(0,0)

ζ
− G2(1,1)

2ζ
+ G3(2,0)

ζ

−3G4(1,0)G4(2,0)

G4(0,0)ζ

)
+ G4(1,0)

G4(0,0)
(∂μϕ)∂μϕ

}

= − 1
8πG4(0,0)ζr

ϒ
∫
M d3x ′ϕT (1)∗

= 1
64π2G2

4(0,0)
ζ 2r

ϒ
∑′

a,b
mambSa Sb

rab
,

(B.24)

where

ϒ = − 3G4(1,0)

2G4(0,0)
+ 3G3

4(1,0)

2G2
4(0,0)

ζ
− G2(1,1)

2ζ

+G3(2,0)

ζ
− 3G4(1,0)G4(2,0)

G4(0,0)ζ
.

Add ϕ
[2]
2 , ϕ

[2]
3 , ϕ

[2]
4 , ϕ

[2]
5 and ϕ

[2]
6 together to give rise to

Eq. (58).
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