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Abstract In this paper, after reconstructing the redshift
evolution of the Hubble function by adopting Gaussian pro-
cess techniques, we estimate the best-fit parameters for some
flat Friedmann cosmological models based on a modified
Chaplygin gas interacting with dark matter. In fact, the expan-
sion history of the Universe will be investigated because
passively evolving galaxies constitute cosmic chronometers.
An estimate for the present-day values of the deceleration
parameter, adiabatic speed of sound within the dark energy
fluid, effective dark energy, and dark matter equation of state
parameters is provided. By this, we mean that the interac-
tion term between the two dark fluids, which breaks the
Bianchi symmetries, will be interpreted as an effective contri-
bution to the dark matter pressure similarly to the framework
of the “Generalized Dark Matter”. We investigate whether
the estimates of the Hubble constant and of the present-day
abundance of dark matter are sensitive to the dark matter–
dark energy coupling. We will also show that the cosmic
chronometers data favor a cold dark matter, and that our find-
ings are in agreement with the Le Châtelier–Braun principle
according to which dark energy should decay into dark mat-
ter.

a e-mail: mohsen@mail.ustc.edu.cn
b e-mail: danielegregoris@libero.it (corresponding author)
c e-mail: khurshudyan@ice.csic.es

1 Introduction

Despite being introduced for addressing a galactic puzzle,
i.e., the flattening of the rotation curves, on cosmological
scales dark matter combined together with dark energy can
account for almost the full energy budget of the Universe.
While there are still no experimental devices for confirming
the existence of dark energy directly, the situation seems to
be different for dark matter thanks to the model-independent
study of its distribution within the Milky Way [1]. In the sim-
plest cosmological scenario, the�ColdDarkMatter (�CDM)
model, dark matter is macroscopically pictured as a pressure-
less fluid [2]. However, different microscopic foundations for
dark matter have been proposed linking it to some fundamen-
tal elementary particle theories like those of massive neutri-
nos [3], sterile neutrinos [4], axions [5], axinos [6], gravitinos
[7], and neutralinos [8], just to mention a few examples (for a
review of the different proposals of dark matter modelings in
terms of elementary particles beyond the standard model, and
how they affect the possible detection methods see [9,10]).
However, massive neutrinos may not explain the formation
of large-scale structures [11,12], while, on the other hand,
sterile neutrinos and axions are consistent with the CP vio-
lation [13,14]. Furthermore, a detection of dark matter con-
stituted of axinos, gravitinos, or neutralinos can lead to an
experimental confirmation of supersymmetric field theories
[15]. Microscopically, the possible different modelings of
dark matter can be classified into hot (with the massive neu-
trinos being one example), warm (as for sterile neutrinos),
and cold (like for axions and neutralinos) depending on the
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energy scale of the elementary particles constituting this fluid
[2].

The aforementioned �ColdDarkMatter model assumes a
dark energy fluid equivalent to a cosmological constant term
entering the Einstein field equations, and that the two dark
fluids are separately conserved, i.e., that they do not interact
with each other through any energy exchange. A consistent
joint interpretation of Planck results and weak lensing data
however suggests that some redshift evolution of the dark
energy equation of state parameter may be necessary [16,
Sect.6.3]. Furthermore, interactions between dark energy and
dark matter can alleviate the coincidence problem [17–20],
and mitigate the discrepancies between the estimates of the
Hubble constant from cosmic microwave background mea-
surements or large scale structures versus supernovae data as
argued in [21,22]; we refer as well to [23–40] for quantita-
tive analyses on whether energy flows between dark matter
and dark energy affect the estimates of various cosmological
parameters. Complementary studies have investigated how
the growth of instabilities in interacting dark models affects
the formation of astrophysical structures [41–48], such as pri-
mordial black holes [49–51], and galactic halos [52–62] due
to the fact that the density of dark matter does not dilute any
longer with the cube of the scale factor of the universe. Grav-
itational waves has been used for constraining dark interac-
tions as well [63–66]. Moreover, a coupling between the dark
energy field and dark matter, with the latter pictured as neutri-
nos, affects the neutrinos’ masses estimates [67–69]. From a
more mathematical point of view, specific interplays between
the equation of state of dark energy and the interaction term
with dark matter can give rise to different types of finite-time
kinematic and matter density singularities [70,71].

For taking into account the observational requirement of
an evolving equation of state of dark energy, we model the
dark energy fluid as a modified Chaplygin gas [72,73], rather
than considering just a redshift parametrization [74,75],
because of its well established physical motivation. In fact,
this fluid approach belongs to the wider class of chameleon
field theories in which the constant equation of state param-
eter p = wρ is promoted to an energy-dependent functional
according to w → w(ρ), and therefore it exhibits a sort of
running [76,77]. In particular, our fluid model interpolates
between an ideal fluid behavior at low energy densities and
a generalized Chaplygin gas in the high energy limit. There-
fore, we implement a sort of asymptotic freedom at low ener-
gies because the interactions within the fluid are suppressed
[78,79], while at high energies, we match with the Born–
Infeld paradigm with our model being formulated in terms
of the Nambu–Goto string theory [80].

Therefore, in this paper, we test a set of dark energy–dark
matter interacting models with the purpose of enlightening
the physical properties of dark matter. In fact, the interaction
term between the two fluids behaves as an effective pressure

entering the energy conservation equation, and consequently
affecting the dust picture of dark matter. Thus, evaluating
the effective equation of state parameter for the dark mat-
ter, we can discriminate between cold, warm, and hot mod-
els.

From the technical point of view, we employ Gaussian
Process techniques for reconstructing the redshift evolution
of the Hubble function with the purpose of selecting the best
cosmological model involving energy flows between dark
matter and dark energy. The latter is modeled in the form
of the modified Chaplygin gas. In particular, we use 30 data
points for H = H(z) consisting of samples deduced from
the differential age method, allowing the Gaussian Process to
constrain the model parameters. Our purpose is to extend and
complement the analysis of [81,82] by allowing a redshift-
dependent equation of state for dark energy (for accounting
for Planck observations), and interactions in the dark sector
(for alleviating the coincidence problem).

Our paper is organized as follows: we introduce our cos-
mological model in Sect. 2 reviewing the physical properties
of the modified Chaplygin gas and the features of the postu-
lated energy exchanges between the two cosmic fluids. Then,
in Sect. 3 we explain the importance of the cosmic chronome-
ters as model-independent observational data for the recon-
struction of the Hubble function, and for constraining the
values of the free parameters entering our class of models. In
sect. 4 we present the reconstruction for the Hubble function
through gaussian processes, while in Sect. 5 we describe the
numerical method we have adopted for the integration of the
field equations. The same Sect. exhibits explicitly also our
cosmological results comparing and contrasting between the
different possible choices of the interaction term. Lastly, we
conclude in Sect. 6 with some remarks about the importance
of our study in light of the current literature estimates of
the cosmological parameters by means of various different
datasets.

2 Overview of the cosmological model

In this section we will introduce the basic equations of the
cosmological model under investigation. For the geometrical
modeling of the Universe we adopt the flat Friedmann metric
which, in a Cartesian system of coordinates, reads [83]:

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (1)

where a(t) is the time-dependent scale factor of the Uni-
verse. Moreover, we picture the matter content of the Uni-
verse as two perfect fluids with energy density ρ(t) and
pressure p(t), respectively. Their stress-energy tensors are
Tμ

ν = diag[−ρi (t), pi (t), pi (t), pi (t)] with i = de,m for
dark energy and dark matter respectively. The relevant Ein-
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stein field equation Gμν = 8πG Tμν is given by

(
ȧ

a

)2

:= H2 = 1

3M2
p

[ρde + ρm] , (2)

where M2
p = (8πG)−1 is the reduced Planck mass, H is the

Hubble function, and an overdot denotes a time derivative.
Then, the Bianchi identities Tμν ;ν = 0 deliver

ρ̇m + 3Hρm = 0,

ρ̇de + 3H (ρde + p) = 0, (3)

which account for two separately-conserved dark matter and
dark energy fluids. However, in this paper we will introduce
an interaction term Q between these two fluids breaking the
Bianchi symmetry (of course the total energy of the Universe
is still conserved because dark matter is transformed into dark
energy or viceversa), and the coupled evolution of the two
fluids is now given by

ρ̇m + 3Hρm = Q,

ρ̇de + 3H (ρde + p) = −Q. (4)

2.1 Modeling of dark energy as a modified Chaplygin gas

For the modeling of the dark energy fluid we adopt the mod-
ified Chaplygin gas proposal based on the equation of state
[84]:

p = Aρde − B

ρα
de

, (5)

in which A, B and α are constant parameters while ρde
is the energy density of the fluid. The modified version of
the Chaplygin gas is an extension of the generalized Chap-
lygin gas whose limit corresponds to the choices A = 0
and α > 0; also, selecting A = 0 and α = 1 the
model reduces to the original Chaplygin gas. The mod-
ified Chaplygin gas implements a form of effective free-
dom in the cosmic fluid [78,79]. In fact, if α > 0 then
the equation of state (5) reduces to that of an ideal fluid
with pressure and energy density directly proportional to
each other p ∝ ρ at high energies (which can possibly
occur in the first instants after the big bang). On the other
hand, if α < 0 the linear behavior is realized at low ener-
gies (i.e., at late ages) when the fluid dilutes due to the
expansion of the Universe. Since the constituents of an ideal
gas have only kinetic and not potential energy, in these
two regimes they essentially behave as free particles. The
occurrence of one of these two cases will be explored in
this paper through the use of the cosmic chronometers. The
modified Chaplygin gas has been tested in [85–88] against

Constitution+CMB+BAO data, and against Union+CMB+
BAO observations using Markov Chain Monte Carlo tech-
niques. In this paper, we will quantify the role of the inter-
action terms on the estimates of the cosmological parame-
ters comparing with these literature results. More formally,
exploiting the fluid–scalar field correspondence in the canon-
ical framework [89,90], the pressure and energy density of
the Chaplygin gas (5) can be related to the kinetic energy
X = − 1

2g
μν∂μφ∂νφ and the potential V of a scalar field φ

via:

ρde = φ̇2

2
+ V, p = φ̇2

2
− V, (6)

or equivalently

V = 1

2

[
(1 − A)ρde + B

ρα
de

]
, φ̇2 = (1+A)ρde− B

ρα
de

. (7)

Debnath et al. [91] has extensively investigated the char-
acteristics of the potential V = V (φ) in a flat Fried-
mann Universe dominated by the modified Chaplygin gas.
At early times, which correspond to a(t) → 0 the poten-
tial can either approach zero (for A = 1), or diverge
(for A �= 1). At late times, which correspond to a(t) →
∞, the potential approaches the constant value V (φ) →(

B
1+A

) 1
1+α

. Therefore, at late times for A = −1 the

potential diverges if α > −1, and approaches zero other-
wise. Analytically, in a flat Friedmann universe whose only
energy-matter content is the modified Chaplygin gas (5) the
potential of the underlying self-interacting scalar field is
[91,92]:

V (φ) = 1 − A

2

(
B

1 + A

) 1
1+α

cosh
2

1+α

√
3(1 + A)(1 + α)φ

2

+ B

2

(
B

1 + A

)− α
1+α

cosh− 2
1+α

√
3(1 + A)(1 + α)φ

2
. (8)

2.2 Modeling of the interaction terms

An interaction term between the dark matter particles and
the dark energy molecules behaves phenomenologically as
an effective pressure 	 which couples the conservation equa-
tions of the two cosmic fluids (breaking the Bianchi identi-
ties). In general, the interaction term would be written as
[93,94]

Q = 3H	. (9)
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In this paper, we consider an effective pressure parametrized
as

	 = b
ρm
der

−n + (−1)sρm
mr

n

ρu
, (10)

where the parameter b quantifies the strength of interac-
tions between dark energy and dark matter. This quantity
cannot be fixed by any theoretical first principle argument,
and therefore its value will be estimated through the model
selection procedure. A non-zero value for b can be inter-
preted as a manifestation of a fifth force mediated by a pos-
tulated cosmon field acting between dark matter and dark
energy [95] violating the weak equivalence principle [96].
In particular, a positive b implies that dark energy is decay-
ing into dark matter, while a negative sign is consistent with
an energy flow in the opposite direction. The Le Châtelier–
Braun principle favors a decay of dark energy into dark
matter (and not viceversa) for maintaining the whole sys-
tem close to thermal equilibrium because in this case the
entropy of the universe will increase [97]. Interestingly, it
seems that it is still an open question how to reconcile
thermodynamically viable interacting models with the prob-
lem of formation of astrophysical structures [98]. In (10)
ρ = ρde + ρm is the total energy budget of the universe, and

r = ρde

ρm
(11)

is the relative abundance of the two cosmic fluids. In this sec-
tion, we will show that the elegant parametrization (10) is rich
enough for covering both the models with linear and nonlin-
ear energy interactions, and with fixed or variable direction
of the energy flow. In fact, for s odd the effective pressure 	

is allowed, at least in principle, to switch its sign during the
time evolution of the Universe depending on the interplay
between the densities of the two dark fluids. This scenario
would correspond to a phase transition between decelerating-
accelerating (or viceversa) phases of the universe [99–101].
In light of this dependence on the background energy den-
sity when s is odd, the effective pressure can be interpreted
as a chameleon field [76,77]. We stress that the interaction
term (10) relies only on the abundance of the two dark flu-
ids, and not on their physical nature or modeling (we just
need to assume a time-evolving dark energy, which therefore
rules out the case of a cosmological constant) [102]. To sum-
marize, we can speak of effective pressure because in this
class of models dark matter is behaving as a non-ideal fluid
with equation of state parameter 	/ρm , and not any longer
as pressureless dust [103]. The inferred value for the effec-
tive dark matter equation of state parameter will allow us to
discriminate between the models of cold vs. warm vs. hot
dark matter. The explicit models we will test in this paper

are:

Q1 = 3Hbρde, (12)

which corresponds to the choice m = 1, n = 0, s → ∞,
u = 0.

Q2 = 3Hbρm, (13)

which corresponds to the choice m = 1, n = 1, s → ∞,
u = 0.

Q3 = 3Hb (ρde + ρm) , (14)

which corresponds to the choicem = 1, n = 0, s = 0, u = 0.

Q4 = 3Hb (ρde − ρm) , (15)

which corresponds to the choice m = 1, n = 0, s = 1,
u = 0. In this model the effective pressure 	 may switch its
sign during the evolution of the universe depending on the
relative abundance between the two dark fluids, inverting the
direction of the energy flow from dark matter to dark energy.

Q5 = 3Hb
√

ρdeρm, (16)

which corresponds to the choicem = 1/2, n = 1/2, s → ∞,
u = 0.

Q6 = 3Hb
ρdeρm

ρde + ρm
, (17)

which corresponds to the choice m = 2, n = 1, s → ∞,
u = 1.

Q7 = 3Hb
ρ2
de

ρde + ρm
, (18)

which corresponds to the choice m = 2, n = 0, s → ∞,
u = 1.

Q8 = 3Hb
ρ2
m

ρde + ρm
, (19)

which corresponds to the choice m = 2, n = 2, s → ∞,
u = 1.

The interaction terms Q3 and Q4 are symmetric under the
reflection ρde ↔ ρm . The linear interaction terms Q1–Q4

can be interpreted as a first-order Taylor expansion, which
holds at low energy densities for any parameterization of the
term Q. On the other hand, an analogy with chemical and
nuclear reactions suggests that the interaction term should
depend on the product of the abundances of the two species

123



Eur. Phys. J. C (2021) 81 :544 Page 5 of 14 544

[104]. Lastly, looking at the Friedmann equation (2), we note
that, as for any model with interactions, the evolution of
the Hubble function remains decoupled from the evolution
of the cosmic fluids [105]. We stress that when assuming
these types of interactions, the following hypothesis should
be made: interactions are negligible at high redshifts grow-
ing in strength at lower redshifts, motivating the analysis of
their impact on the cosmological parameters from available
observational datasets.

3 Cosmic chronometers data

The role of passively evolving early galaxies as cosmic
chronometers permits to measure the expansion history of
the Universe directly without the need of relying on any cos-
mological model, and in particular without the need of mak-
ing any at a priori hypothesis on the nature of dark energy
and dark matter. In fact, this approach is based on the mea-
surement of the differential age evolution as a function of the
redshift for these galaxies, which in turn provides a direct
estimate of the Hubble parameter:

H(z) = − 1

(1 + z)

dz

dt
≈ − 1

(1 + z)


z


t
. (20)

The redshift is related to the scale factor of the Universe via

1 + z = 1

a
. (21)

The dependence on the measurement of a differential quan-
tity, that is 
z/
t , is the most important strength of this
approach because it provides many advantages in minimizing
some common sources of uncertainty and systematic effects
(for a detailed discussion see [106]). We exploit 30 data points
of H = H(z) consisting of 30 point samples deduced from
the differential age method. Keeping this in mind, first, we
will use Gaussian Process techniques for reconstructing the
Hubble vs. Redshift evolution, and then we will optimize
the free parameters of our family of cosmological interacting
models. The data points we will consider are taken from [107]
and are exhibited in Table 1. Then, we can select the best
model by estimating the differential area 
A′ as explained
in detail in the next section.

4 Gaussian process techniques for the H = H(z)
reconstruction

Gaussian process techniques, which have been studied in
detail in [108], constitute a set of model-independent algo-
rithms that can be exploited for the reconstruction of the
Hubble parameter; they are particularly useful when studying

dark energy–dark matter interacting models. This procedure
relies on the following assumptions. First, it is assumed that
each observational datum satisfies a Gaussian distribution in
such a way that the full set of observational data obey to
a multivariate normal distribution. The relationship between
two different data points is accounted for by a function called
covariance function. The values of the data at some red-
shift point at which they have not been directly measured
would be extrapolated with the use of the covariance function
because the points obey to the multivariate normal distribu-
tion. Besides, also the derivative (up to some order) of the
function, that we want to reconstruct, at these data points,
can be calculated through the covariance function. There-
fore, this mathematical formalism allows us to numerically
reconstruct every smooth function at any point via its depen-
dence on the data and the values of the slopes at those points.
Thus, the crucial task in Gaussian process techniques is to
determine the covariance function at different points starting
from the available measured data.

In general, when reconstructing a mathematical function
through a gaussian process algorithm, different functional
behavior of the covariance function may be implemented.
The most convenient choice is to consider the probability
distribution of the measured data points keeping in mind that
the Gaussian process should be regarded as a generalization
of the Gaussian probability distribution. In this paper, the
observational data are the distances D to the host galaxies
which obey to a Gaussian distribution with certain known
mean and variance. With this information in hand, Gaussian
processes allow us to reconstruct at posteriorly the distribu-
tion of the function H(z) implementing the known Gaussian
distribution characterizing D into (20).

Therefore, the key of this algorithm is the covariance func-
tion k(z1, z2) which correlates the values of the distance
to a certain galaxy D(z) at the two different redshift ages
z1 and z2. In general, one can choose from different func-
tional behaviors for the covariance function k(z1, z2), all of
which are characterized by the two hyperparameters σ f and
�; the latter would be determined testing against the observa-
tional data via a marginal likelihood. As a subsequent step,
exploiting the inferred covariance function, the values of the
function we want to reconstruct can be extrapolated at any
arbitrary redshift point for which no measured data are avail-
able. Then, using the relation between the Hubble function
H(z) and the distance D, the redshift evolution of the Hubble
function can be provided. Due to its model independence, this
method has been widely applied in the reconstruction of dark
energy equation of state and of the Hubble parameter [109–
112], or in the test of the concordance model [113–115], for
the analysis of the dynamical features of the dark energy by
taming the matter degeneracy [99], and in light of cosmic
chronometers in the �CDM model [81]. The purpose of the
present work is exactly to revisit the latter by considering an
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Table 1 The observational data for H = H(z) and their uncertainty σH in units of km/s/Mpc. The 30 data points were obtained from the differential
age method of cosmic chronometers. This table is taken from [107] (see references therein for comments about each data point)

z H(z) σH z H(z) σH

0.07 69 19.6 0.4783 80.9 9

0.09 69 12 0.48 97 62

0.12 68.6 26.2 0.593 104 13

0.17 83 8 0.68 92 8

0.179 75 4 0.781 105 12

0.199 75 5 0.875 125 17

0.2 72.9 29.6 0.88 90 40

0.27 77 14 0.9 117 23

0.28 88.8 36.6 1.037 154 20

0.352 83 14 1.3 168 17

0.3802 83 13.5 1.363 160 33.6

0.4 95 17 1.4307 177 18

0.4004 77 10.2 1.53 140 14

0.4247 87.1 11.1 1.75 202 40

0.44497 92.8 12.9 1.965 186.5 50.4

evolving dark energy equation of state based on the modified
Chaplygin gas fluid.

In this paper we adopt a gaussian exponential distribution
as our covariance function k(z1, z2):

k (z1, z2) = σ 2
f exp

(
− (z1 − z2)

2

2�2

)
. (22)

We can reconstruct the redshift evolution of the Hubble func-
tion and that of the equation of state of dark energy (mod-
ified Chaplygin gas in our case) by modifying the GaPP
package developed in [108]. We exhibit the outcome of the
Reconstruction Process in Fig. 1 in which we display both the
reconstructed H vs. z curve and the 30 model-independent
measurements of H(z) with the corresponding error bars we
have used (compare with Table 1). The blue surface repre-
sents the 1σ confidence region of the reconstruction.

5 Numerical analysis

We integrate the system constituted by the Friedmann equa-
tion (2) and by the energy conservation equations (4) using
the iterative numerical differential equations solvers known
under the name of Runge–Kutta method [116]. This method
uses the input for the initial values, let us say (xn , yn), for
evolving them into (xn+1, yn+1) by use of a discretized sys-
tem of equations. Explicitly, the steps of the numerical algo-
rithm we used to integrate our system of differential equations
read as [116]:

Fig. 1 The figure displays the reconstructed curve for H = H(z)
using Gaussian process techniques assuming an exponential covariance
function and the 30 model-independent measurements of H(z) with the
corresponding error bars. The blue surface represents the 1σ confidence
region of the reconstruction

K1 = h · f (xn, yn) ,

K2 = h · f

(
xn + h

2
, yn + K1

2

)
,

K3 = h · f

(
xn + h

2
, yn + K2

2

)
,

K4 = h · f (xn + h, yn + K3) ,

yn+1 = yn + K1

6
+ K2

3
+ K3

3
+ K4

6
,

(23)
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whereh is the step size and f (x, y) is the differential equation
to solve, i.e. the Friedmann equation and energy conservation
equations, respectively. Once provided with a set of initial
conditions, this algorithm is able to deliver the values for
the Hubble function, the energy density of dark matter and
of dark energy for each interacting model. After integrating
numerically the theoretical field equations, we implement the
procedures from [111] for the gaussian reconstruction, and
from [81] for the model selection:

• We use the data from Table 1 to generate the mock sam-
ples for the 30 values of the Hubble function at the same
redshift, and for each redshift value zi (i = 1, . . . , 30),
assuming that the measurements follow a Gaussian ran-
domized distribution:

Hmock (zi ) = H (zi ) + rσi , (24)

where r is a Gaussian random variable with mean 0, vari-
ance 1, and σi is the dispersion at zi .

• Then, we reconstruct the mock function Hmock(z),
and we calculate a normalized absolute area difference
between this function and the actual function using the
formula


A′ =
∫ 2

0 dz
∣∣Hmock(z) − H(z)

∣∣∫ 2
0 dzH(z)

. (25)

The probability that the theoretical prediction of our cos-
mological model differs from the reconstructed function
is quantified by the differential area 
A′ which should
be minimized by optimizing appropriately the values of
the model free parameters. In fact, we will need to esti-
mate the possible randomized realizations which come
with a differential area smaller than a specific value by
presenting the cumulative probability distribution versus

A′. In our paper we are required to adopt this so-called
AreaMinimization Statistic rather than discrete sampling
statistics, e.g. weighted least squares, because we are
comparing two continuous curves and not isolated points
[117, Sect.5].

• Lastly, we build the distribution of frequency versus
differential area 
A′ from which we can construct the
cumulative probability distribution.

Applying this procedure to every interacting model Qi

that we have introduced in Sect. 2, we calculate the differen-
tial area 
A′ from (25) by replacing Hmock with the recon-
structed function Hi (z). Furthermore, we optimize the val-
ues of the free parameters characterizing each model (three
parameters (A, B, α) which enter the equation of state of
the modified Chaplygin gas as from (5), and the parame-
ter b quantifying the strength of the interactions between

dark energy and dark matter). We allow these free parame-
ters to take values in the following ranges: H0 ∈ (40, 90),
m0 ∈ (0.2, 0.7), A ∈ (−2, 2), B ∈ (−2, 2), b ∈ (−1, 1), and
α ∈(−1.0, 1.0).

5.1 Numerical results

Being the cosmic chronometers data in Table 1 dependent on
the redshift and not on the time, for tackling the optimization
process it is mathematically convenient to recast the model
equations (2)–(4)–(5) as

dH

dz
= 3H2 + p

2(1 + z)H
,

dm

dz
= −Q + 3Hm p

3(1 + z)H3 ,

p = 3A(1 − m)H2 − B

(3(1 − m)H2)α
, (26)

where we have used (20), the definitions of the matter param-
eters de = ρde

3H2 and m = ρm
3H2 , and the Friedman equation

de + m = 1. Each interaction term Qi should also be re-
expressed as a function of m and H2, rather than of ρm and
ρde, accordingly.

We exhibit in Table 2 the best fit values for the model
parameters H0, m0, A, B, α, and b for each dark energy–
dark matter interacting model. Table 3 shows the present-
day values of the deceleration parameter q0, adiabatic speed
of sound squared for the dark energy fluid c2

s = ∂p
∂ρde

=
A + αB

ρα+1
de

, and the effective equation of state parameters for

dark energy ω = p
ρde

, and dark matter ωe f f = 	
ρm

for each
interacting model. The deceleration parameter is computed
using the formula q = 1+3ω(1−m)

2 . We display in Fig. 2 the
cumulative distribution of the differential area 
A′, as cal-
culated from (25), for each cosmological model under inves-
tigation. We remind that the interaction terms between dark
energy and dark matter can be found in (12), . . . , (19) for
Q1, . . . , Q8 respectively and that the former fluid is pictured
according to the equation of state (5).

The error bars presented in Table 2 are found by applying
Markov-Chain-Monte-Carlo hammer (emcee) Bayesian data
analysis with flat priors about the mean values we have previ-
ously found through the interplay of gaussian reconstruction
and optimization process1 [118]. This procedure relies on the
assumption that the data in Table 1 come with independent
Gaussian errors, and we refer to [119] for an assessment of
this claim. Then, the error bars in Table 3 are computed from
those in Table 2 via the propagation formula

1 Our python code is an appropriate re-elaboration of the freely avail-
able one https://emcee.readthedocs.io/en/stable/tutorials/line/.
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σ f (x,y,z,...)

=
√(

∂ f (x, y, z, . . .)

∂x

)2

σ 2
x +

(
∂ f (x, y, z, . . .)

∂y

)2

σ 2
y +

(
∂ f (x, y, z, . . .)

∂z

)2

σ 2
z + · · ·. (27)

Moreover, we have found that should we replace the gaus-
sian kernel (22) with the Matérn one2 [81, Eq.(A.1)]

k (z1, z2) = σ 2
f exp

(
−3|z1 − z2|

l

)

×
(

1 + 3|z1 − z2|
l

+ 27|z1 − z2|2
7l2

+18|z1 − z2|3
7l3

+ 27|z1 − z2|4
35l4

)
(28)

in the reconstruction of the cosmic history H = H(z) before
performing the optimization process, the estimates of the
mean values we have presented in Table 2 would be affected
at most by a 3% variation. This is less than both their 1σ

uncertainty and than the uncertainties which affect the astro-
physical data from Table 1 on which the reconstruction is
based.

5.2 Discussion

First of all, it should be noted that the results exhibited
in Table 2 clearly suggest that the simplest one-parameter
Chaplygin gas model p = − B

ρde
cannot account for the

cosmic chronometers data because we have obtained that
the dark energy density should come with a positive power,
e.g. α < 0, in its equation of state. More technically, when
insisting to assume such a model, we could not find any
global minimum for the differential area 
A′ when per-
forming the optimization process. This result should not
be naively interpreted as suggesting that a three-parameter
model like the modified Chaplygin gas of (5) performs bet-
ter than the Chaplygin gas just because it involves two more
free parameters which can be appropriately tuned, but it is
a genuinely physical result. We would like to mention as
well that this is not the first time that a negative value of
α is estimated: see for example [120,121] where Planck
2015, type-Ia supernovae, and Hubble parameter data are
used. In this paper we found that assuming the dark sector
to be composed by two components interacting with each
other, our estimates deviate more from the Chaplygin gas

2 It is already known that the Matérn kernel provides a less smooth
reconstructed curve for the function H(z) vs. z [81, Fig.7] making
more problematic for the �CDM model to account for the data at high
redshift because the reconstruction delivers a slower increase than the
one predicted by the model.

behavior than the ones in this previous investigation. Fur-
thermore, it should be noted also that the scenario in which
no energy flows between dark energy and dark matter occur
is not favoured either, and that the best model is actually
the one based on non-linear interactions between dark mat-
ter and dark energy as ∼ ρ2

m/(ρm + ρde). More specifically,
the optimization process applied to the �CDM model deliv-
ers the estimates H0 = 70.17+2.88

−2.75, m0 = 0.2844+0.1001
−0.0991,

q0 = −0.3279+0.1042
−0.1051, with 
A′ = 0.02249; it should be

noted that already the results reported in Table 2 implic-
itly suggest that according to our analysis �CDM is not the
favoured model because it can be obtained from ours by fix-
ing A = −1, B = 0 = b. We need also to remark that the
estimates of the cosmological parameters for all the model-
ings of the interaction terms presented in Tables 2 and 3 are
degenerate with each other within the 1σ interval.

A more transparent physical characterization of the dark
energy fluid modeled according to the modified Chaplygin
gas (5) comes from the study of the following energy condi-
tions [122]:

Null energy condition: ρ + p ≥ 0; (29)

Weak energy condition: ρ ≥ 0, ρ + p ≥ 0; (30)

Dominant energy condition: ρ ≥ |p|; (31)

Strong energy condition: ρ + p ≥ 0, ρ + 3p ≥ 0. (32)

Explicitly they read as:

Null energy condition: (1 + A)ρ − B

ρα
≥ 0; (33)

Weak energy condition: ρ ≥ 0, (1 + A)ρ − B

ρα
≥ 0; (34)

Dominant energy condition: ρ ≥
∣∣∣Aρ − B

ρα

∣∣∣; (35)

Strong energy condition: (1 + A)ρ − B

ρα
≥ 0, (1 + 3A)ρ − 3B

ρα
≥ 0.

(36)

For example, a phantom energy fluid violates all the null,
weak, and strong energy conditions [123–128], while a cos-
mological constant term and a quintessence fluid violate only
the strong energy condition [129–131]. For the case of the
modified Chaplygin gas analyzed in this paper, considering
the present-day value of the effective equation of state param-
eter ω from Table 3, we can conclude that regardless the
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Table 2 The optimal values for the model free parameters A, B, α, b,
H0 and m0 for each dark energy–dark matter interacting model. We
remind that the equation of state we are adopting for the dark energy
is p = Aρde − B

ρα
de

, and that b quantifies the strength of interaction

between dark energy and dark matter according to the modelings (12),

. . . , (19) for Q1, . . . , Q8 respectively. For the case of Q0 appearing in
the last row we have set b = 0, i.e. no interaction between dark energy
and dark matter, by assumption. The best models in light of cosmic
chronometers data are the ones with a lower value of 
A′. The Hubble
constant is expressed in units of km/Mpc/s

Qi Parameters

A′ H0 m0 A B α b

Q1 0.01306 66.48+9.97
−10.09 0.3107+0.0994

−0.0987 −0.3343+0.1004
−0.0988 1.8493+0.1001

−0.0991 −0.8334+0.0099
−0.0099 0.0830+0.0993

−0.1008

Q2 0.01220 66.47+9.88
−9.89 0.3145+0.1002

−0.1004 −0.0002+0.1009
−0.0999 1.6758+0.1007

−0.0991 −0.9168+0.0099
−0.0097 0.0837+0.0993

−0.1004

Q3 0.02023 66.52+9.90
−10.00 0.4580+0.0990

−0.0988 −0.1951+0.0993
−0.1004 2.1950+0.1000

−0.0989 −0.9100+0.0098
−0.0096 0.0827+0.0980

−0.1007

Q4 0.01733 66.55+10.07
−9.92 0.2961+0.1004

−0.0992 −0.5401+0.0990
−0.0999 2.4000+0.0993

−0.0985 −0.7500+0.0099
−0.0097 0.0854+0.0986

−0.0996

Q5 0.01269 66.44+10.02
−9.82 0.3147+0.0990

−0.1001 −0.3332+0.0989
−0.1000 2.0252+0.0996

−0.0993 −0.8333+0.0099
−0.0100 0.0836+0.0988

−0.0989

Q6 0.01275 66.47+10.04
−9.90 0.3159+0.0992

−0.0997 −0.3332+0.0993
−0.0996 2.0246+0.0996

−0.0994 −0.8334+0.0100
−0.0098 0.1670+0.0999

−0.0995

Q7 0.01383 66.44+9.92
−9.96 0.3143+0.0996

−0.1002 −0.5001+0.0993
−0.0985 2.0252+0.0992

−0.0997 −0.7501+0.0099
−0.0099 0.1669+0.0984

−0.0994

Q8 0.01168 66.51+9.93
−9.83 0.3146+0.0994

−0.0995 −0.1669+0.0992
−0.0982 1.3250+0.0997

−0.0994 −0.9166+0.0099
−0.0100 0.1673+0.0985

−0.0999

Q0 0.02157 66.54+9.85
−9.92 0.3188+0.0988

−0.0975 −0.5997+0.0995
−0.1003 1.4409+0.0984

−0.0995 −0.0808+0.0987
−0.0983 0

Table 3 The present-day values of the deceleration parameter q0, adia-
batic speed of sound squared for the dark energy fluid c2

s = ∂p
∂ρde

, and the

effective equation of state parameters for dark energy ω = p
ρde

and dark

matter ωe f f = 	
ρm

for each cosmological model. These quantities have
been computed from those in Table 2 and the corresponding error bars
are found by applying the propagating formula (27). The expressions
for the interaction terms Q1, . . . , Q8 can be found in (12), . . . , (19)

respectively. The model Q0 corresponds to the choice b = 0, i.e. no
interaction between dark energy and dark matter. The best model in light
of the cosmic chronometers data is Q8 (see Table 2). The uncertainties
are hugely affected by the errors on the datapoints at high redshift z ∼ 2
and on the datapoint at z = 0.48 (see Table 1). A complete discussion
on the cosmological consequences of the results here presented can be
found in Sect. 5.2

Qi q0 c2
s ω ωe f f

Q1 −0.2640+0.1127
−0.1112 −0.6715+0.1077

−0.1061 −0.7389+0.1090
−0.1075 0.1841+0.2203

−0.2236

Q2 −0.3074+0.1357
−0.1338 −0.7199+0.1316

−0.1298 −0.785+0.1319
−0.1302 0.0836+0.0993

−0.1004

Q3 −0.4444+0.1128
−0.1124 −1.0747+0.1387

−0.1382 −1.1617+0.1387
−0.1448 0.1805+0.2139

−0.2198

Q4 −0.3279+0.1042
−0.1051 −0.7230+0.1007

−0.1016 −0.7840+0.1014
−0.1023 0.1176+0.1164

−0.1160

Q5 −0.2981+0.1119
−0.1130 −0.7025+0.1073

−0.1085 −0.7764+0.1088
−0.1100 0.1233+0.1457

−0.1459

Q6 −0.2971+0.1122
−0.1122 −0.7029+0.1079

−0.1079 −0.7768+0.1094
−0.1093 0.1142+0.0683

−0.0680

Q7 −0.2279+0.1044
−0.1036 −0.6558+0.1008

−0.1001 −0.7077+0.1015
−0.1007 0.2496+0.1472

−0.1487

Q8 −0.3085+0.1264
−0.1258 −0.7347+0.1223

−0.1217 −0.7864+0.1230
−0.1224 0.0526+0.0309

−0.0314

Q0 −0.1131+0.1016
−0.1024 −0.5997+0.0995

−0.1003 −0.6000+0.0995
−0.1003 0

modeling of the interaction term, but for Q3, only the strong
energy condition is violated. This is a remarkable difference
between our class of interacting models versus the strength-
ened dark energy proposal of [132] which instead violates
also the null and weak energy conditions.

Since our numerical investigation suggests that c2
s < 0,

we need to mention that the issue of the stability under
small-wavelength perturbations for such configurations was
addressed in [89,133,134], and indeed literature exhibits
examples of cosmological applications involving fluids sup-
ported by a negative adiabatic speed of sound squared [135].

Combined interpretation of the Planck Power Spectra +
Baryon Acoustic Oscillation + Lens in a perturbed flat Fried-

mann Universe has allowed the reconstruction of the cosmic
history of the dark matter equation of state [136] in the frame-
work of so-called “Generalized Dark Matter” [136,137]. Our
results exhibited in Table 3 show that cosmic chronometers
data favor the coldest dark matter equation of state, that is,
the one with the smallest deviation of the effective equation
of state parameter from zero, although this does not mean
the one with the weakest coupling b between the two dark
fluids because of the non-linear form of the interaction term.
In light of this analysis, the plausible candidates for dark
matter should be objects with slower non-relativistic veloc-
ities. More in general, for all the possible dark energy–dark
matter interactions that we have assumed we have obtained a
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Fig. 2 This figure depicts the cumulative distribution of the differen-
tial area 
A′, as calculated from (25), and whose numerical results are
reported in Table 2 together with the optimal values for the model free
parameters. The specific forms of the dark energy–dark matter interac-
tion terms Q1, . . . , Q8 can be found in Eqs. (12), . . . , (19) respectively.
The notation Q0 refers to the scenario in which no energy flow between
the two components of the dark sector are assumed. A lower value of

A′ indicates that the corresponding interaction term is favoured by the
cosmic chronometers data. As a term of comparison we exhibit also the
result for the �CDM model. The cosmological consequences of these
results are explored in Table 3, where the corresponding values for the
present day deceleration parameter, adiabatic speed of sound inside the
dark energy fluid, and effective equation of state parameters for dark
energy and dark matter are exhibited. We refer as well to Sect. 5.2 for
a discussion about the cosmological meaning of our results

positive value for the parameter b implying that dark energy
is decaying into the dark matter in agreement with the Le
Châtelier–Braun principle [97].

6 Conclusion

In this paper, we have shown that also a model selection in
light of the cosmic chronometer datasets favors some sort of
interaction between dark energy and dark matter beyond the
coincidence problem and the Hubble tension issue already
extensively investigated in the literature. Another way of
interpreting our result would be that in our framework dark
matter is not any longer a pressure-less dust fluid but a mate-
rial with a non-trivial evolving equation of state as in the
“Generalized Dark Matter” proposal because the interaction
term can be recast as an effective contribution to the dark
matter pressure. In fact, the fitting procedure has delivered a
nonzero value for the constant quantifying the amount of the
energy flow between dark energy and dark matter. Our result
seems quite robust because we have explored many possi-
ble different realizations of the interaction term beyond the
first-order linear approximation by allowing it to depend on
several combinations of the dark energy, or on the dark mat-

ter amount, or on a combination of them. Similarly, we have
obtained estimates of H0  66 km/s/Mpc and m  0.3 for
all the interaction terms we have assumed. Furthermore, our
analysis keeps suggesting that the simpler cosmological con-
stant modeling of the dark energy fluid should be replaced
by some sort of evolving field, and actually that also the
generalized Chaplygin gas scenario (arising in the stringy
Born–Infeld theory) should be promoted to the case of the
modified Chaplygin gas. Moreover, we have also commented
that an interaction term between the two cosmic fluids may
also avoid the occurrence of a big rip singularity without
the need of invoking any mysterious quantum gravity effect
because a phantom fluid scenario was ruled out by investigat-
ing the energy conditions for the best-fit values of the model
parameters. In a set of future works, we will explore more
in detail whether our results depend on the particular fluid
approach chosen for the modeling of the dark energy.
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