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ABSTRACT
While it is well known that ““ biased galaxy formation ÏÏ can increase the strength of galaxy clustering,

it is less clear whether straightforward biasing schemes can change the shape of the galaxy correlation
function on large scales. Here we consider ““ local ÏÏ biasing models, in which the galaxy density Ðeld atd

ga point x is a function of the matter-density Ðeld d at that point : We consider both determin-d
g
\ f (d).

istic biasing, where f is simply a function, and stochastic biasing, in which the galaxy-density is ad
grandom variable whose distribution depends on the matter density : We show that even whend

g
\ X(d).

this mapping is performed on a highly nonlinear density Ðeld with a hierarchical correlation structure,
the correlation function m is simply scaled up by a constant, as long as m > 1. In stochastic biasing
models, the galaxy autocorrelation function behaves exactly as in deterministic models, with (theX(d)
mean value of X for a given value of d) taking the role of the deterministic bias function. We extend our
results to the power spectrum P(k), showing that for sufficiently small k the e†ect of local biasing is
equivalent to the multiplication of P(k) by a constant, with the addition of a constant term. If a cosmo-
logical model predicts a large-scale mass correlation function in conÑict with the shape of the observed
galaxy correlation function, then the model cannot be rescued by appealing to a complicated but local
relation between galaxies and mass.
Subject headings : galaxies : clusters : general È galaxies : formation È large-scale structure of universe

1. INTRODUCTION

If galaxies form with greater efficiency (per unit mass) in
high-density regions, then their clustering can be ampliÐed
with respect to that of the underlying mass distribution

This ampliÐcation is often summarized in(Kaiser 1984).
terms of a ““ bias factor ÏÏ b, where is the ratiob2\ m

g
(r)/m(r)

of the galaxy autocorrelation function to the mass autocor-
relation function. Biased galaxy formation plays a crucial
role in cosmological scenarios that assume a critical density
()\ 1) universe since these models predict excessively high
velocity dispersions in galaxy groups and clusters, unless
the amplitude of mass correlations is lower than the
observed amplitude of galaxy correlations et al.(Davis

et al. & Rees At Ðrst1985 ; Bardeen 1986 ; Dekel 1987).
glance, it appears obvious that bias can alter the shape of
the autocorrelation function in addition to changing the
amplitude, since one can simply write the bias factor b as a
bias function b(r). A physical theory of biased galaxy forma-
tion, however, cannot specify b(r) directly ; it can only
specify how the efficiency of galaxy formation depends on
environmentÈb(r) is an output of such a theory, not an
input. For example, the widely examined ““ high-peak ÏÏ
model of galaxy formation predicts a scale-independent bias
factor, at least in the linear regime et al.(Bardeen 1986).

The possibility of scale-dependent bias became a serious
issue once it was shown that the shape of the galaxy auto-
correlation function di†ered from the shape predicted by
the ““ standard ÏÏ cold dark matter (CDM) model on large
scales close to the linear regime et al. With(Maddox 1990).
scale-dependent bias, one could, in principle, resolve this
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discrepancy by appealing to the complex astrophysics of
galaxy formation instead of altering the CDM modelÏs fun-
damental cosmological assumptions (e.g., the value of )).
However, the speciÐc schemes that have been proposed to
achieve the requisite scale dependence are all nonlocal ; the
efficiency of galaxy formation is directly modulated in a
coherent fashion over large scales & White(Babul 1991 ;

et al. While this sort of coherent modulation isBower 1993).
physically possible, it seems a priori less natural than
models in which the efficiency of galaxy formation depends
only on properties of the local environment. (Such nonlocal
bias models also tend to break the hierarchical relation
between the two-point and three-point correlation func-
tions & Gaztan8 aga and[Frieman 1994].) Weinberg (1995)

Peacock, & Heavens applied a wide range ofMann, (1998)
local biasing schemes to cosmological N-body simulations,
and they found that these schemes did not change the shape
of the galaxy autocorrelation function or of its Fourier
transform, the power spectrum, on large scales, though they
did alter the shape in the nonlinear regime.

Is nonlocality essential to producing scale-dependent bias
on large scales? In this paper we address this question ana-
lytically, extending results from earlier work. Coles (1993)
showed that an arbitrary local bias applied to a Gaussian
density Ðeld ampliÐes (or depresses) the autocorrelation
function by a constant multiplicative factor. His argument
works for Gaussian Ðelds even when the rms Ñuctuations
are nonlinear, but in the real universe the nonlinear density
Ðeld cannot be Gaussian because densities cannot be nega-
tive. In practice, the efficiency of galaxy formation may
depend on the mass density averaged over a fairly small,
nonlinear scale, and there will almost certainly be scatter
about the mean relation between galaxy and mass densities
because of the inÑuence of a variety of physical e†ects.
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In a seminal Fry & Gaztan8 aga hereafterpaper, (1993,
FG) examined biasing schemes in which the galaxy density
is an arbitrary function of the local mass density. FG
expand the biasing function in a Taylor series and show
that if the cumulants of the mass-density Ðeld exhibit hierar-
chical relations, then the cumulants of the locally biased
galaxy-density Ðeld also exhibit hierarchical relations in the
limit that Sd2T > 1. examined only one-point distribu-FG
tion functions, but their approach can be generalized to deal
with correlation functions at nonzero separation (see, e.g.,

for a discussion of the three-point function).Fry 1994
The arguments in °° and below extend the results2 3 FG

in two ways. First, we show that if the mass clustering
follows a hierarchical pattern, then local bias multiplies the
autocorrelation function by a constant factor on large
scales (where m > 1), even if the bias is applied on a scale
where the density Ðeld is nonlinear. We then show that this
result carries over to stochastic local biasing, in which the
galaxy density is a random variable whose mean value is a
local function of the matter density. In we show how our° 4
results for the galaxy autocorrelation function translate into
results for the power spectrum. We summarize our conclu-
sions in ° 5.

2. DETERMINISTIC LOCAL BIAS

A general form of deterministic local bias relates the
density Ñuctuation Ðeld of the galaxies, to the densityd

g
,

Ñuctuation Ðeld of the matter, d, at the same point x
through an arbitrary function f :

d
g
(x)\ f [d(x)] . (1)

We use quantities without subscripts, such as d and m, to
refer to the underlying matter distribution, and subscripted
quantities like and to refer to the biased distribution ofd

g
m
ggalaxies. Although equation represents the most general(1)

form of local bias in which is a function only of d, oned
gcould imagine more general local functions in which isd

galso a function of, for example, the local velocity Ðeld or
derivatives of the local gravitational potential. Implicit in
equation is a smoothing scale on which the continuous(1)
Ðelds d(x) and are deÐned. Physically, this scale indi-d

g
(x)

cates the range over which the environment directly inÑu-
ences the efficiency of galaxy formation. In a random Ðeld
with signiÐcant long-wavelength power, the local density
contrast is itself correlated with the density contrast on
larger scales, and it is this correlation that allows a local
transformation to amplify m(r) by a constant factor on large
scales however, the et al. model(Kaiser 1984) ; Bower (1993)
for scale-dependent bias e†ectively incorporates an
““ inÑuence ÏÏ scale of tens of Mpc, which implies that a
forming galaxy is ““ aware ÏÏ of the physical conditions far
away. We do not consider here the time evolution of the
bias (see and & Peebles for such aFry 1996 Tegmark 1998
discussion) ; our bias function represents the present-day
relation between d and d

g
.

and have demonstrated a number ofColes (1993) FG
important properties of biasing models deÐned by equation

For the case where d is a Gaussian Ðeld,(1). Coles (1993)
shows that on all scales where m(r) > 1 form

g
(r) P m(r)

almost any choice of the function f. In other words, arbi-
trary local biasing of a Gaussian density Ðeld does not alter
the shape of the autocorrelation function on large scales.
Coles also notes that his argument fails for some simple,
albeit physically unlikely, functions, such as d

g
\ d2[ Sd2T.

expand the function f in a Taylor series :FG

f (d) \ ;
k/0

= b
k

k !
dk , (2)

where is chosen to give They then derive theb0 Sd
g
T \ 0.

cumulants of in terms of the cumulants of d and thed
gbiasing coefficients in the limit that Sd2T > 1. In thisb

k
,

limit, it is obvious from equation that the leading-order(2)
e†ect on the variance is inp

g
2\ b12 p2 ; FGÏs notation

m
g, 2 \ b12 m2] O(m22) , (3)

where (see eq. [9]).m2\Sd2T \ p2 FG,
With the expansion (eq. the galaxy autocorrela-FG [2]),

tion function can be written

m
g
(x1, x2)\ Sd

g
(x1)dg(x2)T , (4)

\ ;
j,k/0

= b
j
b
k

j ! k !
Sd(x)jd(x2)kT . (5)

If the smoothing scale on which d(x) is deÐned is large
enough, then Sd2T > 1, and only the j \ k \ 1 term sur-
vives, implying that & Baugh(Gaztan8 aga 1998)

m
g
(x1, x2)\ b12 m(x1, x2)] O(m2) . (6)

In other words, if there is a deterministic local relation
between galaxy density and mass density on some scale in
the linear regime, then the autocorrelation function in the
linear regime is multiplied by a scale-independent factor b12,where is the Ðrst derivative of the local bias function f (d)b1evaluated at d \ 0. This argument is a trivial extension of
the one-point argument for the variance given by ana-FG,
logous FryÏs (1994) of the skewness resultto extension FG
to the three-point correlation function.

What if the density Ðeld is nonlinear on the scale where
local bias operates, so that This situation isSd2T Z 1?
physically plausible, and we are no longer free to discard the
higher order terms in the sum in equation We can still(5).
make progress if we introduce the assumption that the clus-
tering is hierarchical, i.e., the connected part of

is given bySd(x1)jd(x2)kT (Peebles 1980 ; Fry 1984 ;
Bernardeau 1996)

Sd(x1)j d(x2)kTc
\ C

j,kSd2Tj`k~2Sd(x1)d(x2)T ] O(m2) . (7)

Although the assumption of hierarchical clustering can be
shown to be rigorously valid only in the quasi-linear regime,
numerical simulations show that it holds to a fairly good
approximation even in the nonlinear regime (Colombi,
Bouchet, & Schae†er Bouchet, & Hernquist1994 ; Colombi,

see & Matsubara for the opposing point of1996 ; Suto 1994
view), and there are theoretical grounds for believing that
hierarchical clustering should apply in the nonlinear regime

& Peebles & Schae†er(Davis 1977 ; Peebles 1980 ; Balian
There is also support for hierarchical clustering in the1989).

observed galaxy distribution (see, for example, etSzapudi
al. but this is not directly relevant to our argument1995),
since we are interested in the dark matter clustering hier-
archy, which cannot be observed directly. The validity of
equation for our evolved density Ðeld is the key assump-(7)
tion we make in this section ; it allows us to generalize equa-
tion to the biasing of nonlinear Ðelds.(6) Bernardeau (1996)
begins with equation and derives a gravitationally(7)
induced ““ bias,ÏÏ but this di†ers from the arbitrary bias func-
tions we are dealing with here.
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With the hierarchical assumption, we can write

m
g
(x1, x2) \ ;

j,k/0

= b
j
b
k

j ! k !
[C

j,k(p2)j`k~2m(x1, x2)

] O(m2)] Sd(x1)jd(x2)kTunconnected] . (8)

The Ðrst two terms arise from the connected part of
while the last term is the unconnected part.Sd(x1)jd(x2)kT,

Note, however, that this unconnected part can be written as
powers of lower order correlations, which can themselves be
expanded out according to equation [There are no(7).
terms of zeroth order in m arising from the unconnected
terms of the form because all such termsSd(x1)jTSd(x2)kT,
are cancelled by other terms included in In the end, web0.]obtain

m
g
(x1, x2) \

C
;
jk

K
j,k

b
j
b
k

j ! k !
(p2)j`k~2

D
m(x1, x2) ] O(m2) ,

(9)

where is a set of constants. Hence, we Ðnd that forK
j,km > 1, the quantity is approximately con-b2\ m

g
(r)/m(r)

stant. Again, we wish to emphasize that we have assumed
nothing about the linearity of the density Ðeld at the scale of
biasing ; all we have assumed is the validity of equation (7).

Both the result for Gaussian initial condi-Coles (1993)
tions and the result (eq. are special cases of ourFG [6])
general result. If the underlying mass-density Ðeld is Gauss-
ian, as in the case discussed by then the densityColes (1993),
Ðeld is hierarchical in the sense that equation is satisÐed,(7)
but all of the hierarchical coefficients vanish except forC

j,kwhich is unity. Then our conditions are satisÐed, andC1,1, Formally, the Coles result holdsm
g
(x1, x2)\ b2m(x1, x2).even for the case Sd2T [ 1, but this is not a physically realis-

tic case, since the density Ðeld will be Gaussian only for
Sd2T > 1.

To obtain the result, we simply take p2> 1 in equa-FG
tion Then the j \ k \ 1 term dominates, and we reob-(8).
tain equation This equation di†ers from our more(6).
general result in that if the local bias is applied on a nonlin-
ear scale, then all of the Taylor series coefficients of the bias
function contribute to determining the bias factor on large
scales, not just b1.Our argument for scale-independent bias fails when m
becomes larger than unity, which is a good thing, since local
bias can change the shape of the autocorrelation function
and power spectrum in this regime (Weinberg 1995 ; Mann
et al. Note, however, that our argument does hold1998).
even for the case of quadratic biasing, f (d) \ d2[ Sd2T.
The reason that the (1993) fails in this caseColes argument
is that a Gaussian density Ðeld has no connected higher
moments, so terms linear in m vanish.

3. STOCHASTIC LOCAL BIAS

The bias model of equation can at best be an ideal-(1)
ization. Even in the case where galaxies ““ trace the mass,ÏÏ
f (d) \ d, there will be Poisson Ñuctuations about the mean
relation because of the discrete nature of the galaxy dis-
tribution. More generally, we expect the probability of
forming a galaxy in a given region to depend on many
factors, including the history of accretion and mergers in the
nearby environment. Many of these factors will be corre-
lated with the local density, but they will not be completely
determined by it. We can quantify our ignorance by allow-

ing for stochastic bias, in which the galaxy density is a
random variable which depends in some way on the under-
lying matter density, but which is not completely deter-
mined by it. Little previous work has been done on
stochastic bias models, although (1997) recentlyPen has
attempted to model the joint galaxy-matter probability dis-
tribution function using a bivariate Gaussian as a starting
point. Other recent discussions of stochastic biasing include
those of & Lahau andDekel (1997), Dekel (1998), Tegmark
& Peebles (1998).

Let us therefore assume that the galaxy-density at ad
gpoint x is a random variable X, which is a function of the

underlying matter density at that same point :

d
g
(x) \ X[d(x)] . (10)

We again assume that X includes a constant term that gives
As in the case of deterministic local bias, weSd

g
T \ 0.

assume some smoothing scale over in which and d ared
gdeÐned, so that the bias does not occur at a geometric point

but over some small volume. The random variable X is
uniquely speciÐed by the probability of producing a partic-
ular value of X, given an underlying value of d, which we
write in the standard way as p (X o d), the probability of X
given d. Note that our assumption that the stochastic bias is
purely local is actually very restrictive. It means, for
example, that the distribution of the random variable X is
the same at every point in space with the same d, and that
there are no correlations between this distribution at di†er-
ent points in space.

The probability of measuring a galaxy-density at thed
g1point and a galaxy-density at the point isx1, d

g2 x2
P(d

g1, d
g2) \

P
P(X1 o d1)P(X2 o d2)p(d1, d2)dd1 dd2 , (11)

where we have used subscripts 1 and 2 to denote the values
of X and d at the points and and to denotex1 x2, p(d1, d2)the two-point probability distribution of the matter density
at these points. (Note that in this equation.) For thisd

g
\ X

model, the galaxy autocorrelation function is

m
g
(x1, x2) \ SX(x1)X(x2)T , (12)

\
P

X1X2P(X1 o d1)P(X2 o d2)p(d1, d2)

] dd1 dd2 dX1 dX2 . (13)

We can perform the integration over and to obtainX1 X2
m
g
(x1, x2) \

P
X(d1)X(d2)p(d1, d2)dd1 dd2, (14)

where is the mean value of X for a given value of d.X(d)
This result generalizes in a straightforward way to all of the
higher-order correlation functions.

The argument that leads from equation to equation(10)
is almost trivial, but the result is rather remarkable. It(14)

shows that the calculation of the correlation function for the
most general possible stochastic local biasing model can be
reduced to the equivalent problem for a deterministic local
bias, with taking the role of the bias function. Hence,X(d)
all of the mathematical machinery developed here and in
other papers for the problem of deterministic local bias can
be used for stochastic bias. Thus far, we have made no
assumptions about the underlying density Ðeld d. If we now
repeat our assumption from the previous section that d
exhibits hierarchical clustering, then we obtain the same
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result as in the previous section : is constant as long asm
g
/m

m > 1. Equation takes a particularly simple form if gal-(14)
axies trace the mass on average, In this case, weX(d) \ d.
obtain simply This result tells us that them

g
(r)\ m(r).

random Ñuctuations about the mean density make no dif-
ference in the Ðnal autocorrelation function.

These results may seem counterintuitive, since stochastic
bias ought to introduce some sort of increased ““ scatter ÏÏ in
the Ðnal density distribution, and it certainly increases the
Ðnal rms density Ñuctuation. One must remember, however,
that represents a volume-averaged correlation function,m

gwithin which all of the random Ñuctuations have been aver-
aged out. What does change for the case of stochastic bias
are the random Ñuctuations relative to The variance ofm

g
.

the autocorrelation function at some Ðxed separation is

pm2\
P

(d
g1dg2)2p(d

g1, d
g2)dd

g1 dd
g2

[
CP

d
g1 d

g2 p(d
g1, d

g2)dd
g1 dd

g2
D2

. (15)

In terms of our stochastic bias function X(d), this becomes

pm2\
P

X1(d1)2X2(d2)2p(d1, d2)dd1 dd2

[
CP

X1(d1)X2(d2)p(d1, d2)dd1 dd2
D2

. (16)

To illustrate the way in which is increased, we considerpm2again the simple class of models in which and weX(d) \ d,
use equation to calculate the di†erence between for(16) pm2the stochastic case, and for the deterministic casepm2 d

g
\ d :

pm2(stochastic) [ pm2(deterministic)

\
P

p
X
2(d1)pX

2(d2)p(d1, d2)dd1 dd2 . (17)

Here is the variance of the distribution of X for a givenp
X
2(d)

value of d,

p
X
2(d) \ X(d)2[ X(d)2 . (18)

Since is positive, this result shows that randomness inp
X
2(d)

the bias function increases the Ñuctuations about the mean
value of Conceptually speaking, equationsm

g
. (15)È(17)

presume that one estimates from many di†erent pairsm
g
(r)

of positions with spatial separation r (or from a single pair
of positions in an ensemble of universes) and computes the
variance of these estimates. In practice, one must averagepm2over a large number of position-pairs in order to get an
estimate of that is at all useful, but stochastic biasing willm

gstill act to increase the variance in estimates of from onem
gvolume of the universe to another. These Ñuctuations,

which can be measured in large redshift surveys, encode
information about the degree of stochasticity in the galaxy
formation process at Ðxed local mass density. (Of course,
even in the absence of stochastic bias, the variance in ism

gnonzero.)
The rms Ñuctuation of a smoothed Ðeld can be written as

an integral over m(r). The conclusion that form
g
(r) \ m(r)

at Ðrst seems to contradict the obvious fact thatX(d) \ d
stochasticity will increase the rms Ñuctuations smoothed on
any length scale ; however, these two results are not contra-
dictory. Recall that we assumed the initial density Ðeld is
smoothed over some scale and that local bias operatesR

sover this same smoothing scale. Our assumption that the

distribution of X is uncorrelated at di†erent points is
invalid for separations less than which means equationR

s
,

also fails on such short separations. This is most(11)
obvious for the case of zero separation. If we measure the
density at a single point then the product of probabil-x1,ities in equation must be replacedP(X1 o d1)P(X2 o d2) (12)
by the single probability and equationP(X1 o d1), (12)
becomes

m
g
(x1, x2) \ SX(x1)X(x2)T , (19)

\
P

X1X1P(X1 o d1)p(d1)dd1 dX1 . (20)

Integrating over givesX1
m
g
(x1, x2) \

P
X(d)2p(d)dd . (21)

For the deterministic case where the correspondingd
g
\ d,

quantity is

m
g
(x1, x2)\

P
d2p(d)dd . (22)

For the special case where we haveX(d)\ d,

m
g
(stochastic) [ m

g
(deterministic)

\
P

[X(d)2[ X(d)2]p(d)dd . (23)

But for all values of d, soX(d)2[ X(d)2[ 0 m
g
(stochastic)

Thus, stochastic bias increases the[ m
g
(deterministic)[ 0.

rms Ñuctuations, but the entire e†ect is due to the change in
at separations smaller than our initial smoothingm

g
(r)

length ; at these length scales our arguments regarding the
e†ects of stochastic bias on the autocorrelation function do
not apply.

4. THE POWER SPECTRUM

Although we have focused so far on the autocorrelation
function, many observational studies of large-scale struc-
ture use its Fourier transform, the power spectrum, to
quantify clustering on the largest scales. Mann et al.The

numerical study of local biasing focuses mainly on(1997)
the power spectrum. The mass power spectrum P(k) is
related to the mass autocorrelation function m(r) by

P(k)\ 4n
P

m(r)
sin (kr)

kr
r2 dr , (24)

and the galaxy power spectrum is

P
g
(k) \ 4n

P
m
g
(r)

sin (kr)
kr

r2 dr . (25)

In we showed that deterministic local bias applied to a° 2,
hierarchically clustered density Ðeld gives form

g
(r) \ b2m(r)

m(r) > 1, but we can put no constraint on the bias for m(r) Z
1. Let be a distance such that m(r) > 1 when Wer0 r [ r0.can therefore write

m
g
(r)\ b2m(r) ] m8 (r) , (26)

where for Substituting this equation intom8 (r) \ 0 r [ r0.equations and we get(24) (25),

P
g
(k) \ b2P(k)] 4n

P
0

r0
m8 (r)

sin (kr)
kr

r2 dr . (27)

If we choose a Ðxed value of k for which thenkr0> 1,
kr > 1 over the entire range of integration in the second
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term, so this integral just reduces to which is4n /0r0 m8 (r)r2 dr,
a constant, independent of k. Thus, in the regime k > 1/r0,

P
g
(k) \ b2P(k) ] c , (28)

where b is the large-scale bias factor of the autocorrelation
function and c is a constant, which may be positive or nega-
tive. This is just a more rigorous way of noting that the
power spectrum for is dominated by the correlationk \ k0function at though small scale Ñuctuations canr [ 1/k0,add a constant o†set to P(k). Equation is not quite the(28)
same as a scale-independent ampliÐcation of P(k). The
power spectrum estimated by & EfstathiouBaugh (1993)
from the APM survey, however, continues to rise out to

h~1 Mpc, so in realistic models the constant c is2n/k Z 130
likely to become unimportant on large scales, at least until
one reaches the turnover in the power spectrum.

5. CONCLUSIONS

We have shown that for a local bias function applied to a
density Ðeld with a hierarchical correlation structure, the
only e†ect is to rescale the autocorrelation function by an
overall bias factor b2 on length scales for which m(r) > 1 ; no
change in the shape of the autocorrelation function can be
induced by such a local transformation. For the power spec-
trum, for sufficiently small k, the result is also a rescaling,
with the possible addition of a constant term. Although we
have assumed hierarchical clustering, our result holds as
long as

Sd(x1)jd(x2)kT \ D
j,kSd(x1)d(x2)T ] O(m2) , (29)

where is independent of the separation between andD
j,k x1Equation is actually a slightly weaker conditionx2. (29)

than the assumption of hierarchical clustering (eq. [7]),
because the moment on the left-hand side of equation is(29)
not connected.

If there is a bias between galaxies and mass (and the
galaxy morphologyÈdensity relation implies that there must

be bias for at least some kinds of galaxies), then the physics
that causes it may well be complex. Our stochastic biasing
result, however, implies that all environmental e†ects on the
efficiency of galaxy formation inÑuence only to them

g
(r)

extent that they are correlated with the mass density itself,
and if these e†ects are local, then they still will not change
the shape of the autocorrelation function on scales in the
linear regime. & Ostriker Fig. 4) presented a ÐrstCen (1992,
attempt to calculate the full distribution function P(d

g
o d)

using a hydrodynamic cosmological simulation of the stan-
dard CDM model. We can expect substantial progress from
this a priori approach to biased galaxy formation over the
next few years, since advances in computer power and algo-
rithms now allow simulations of much higher dynamic
range and permit broader explorations of cosmological
parameter space. Our results imply, however, that all of
these calculations should produce galaxy populations with

on large scales. Only a biasing mechanism thatm
g
(r) P m(r)

coherently modulates galaxy luminosities on scales larger
than those over which the matter actually moves, e.g., sup-
pression or enhancement of star formation by quasar radi-
ation & White et al. can rescue a(Babul 1991 ; Bower 1993),
cosmological model that predicts the wrong shape for m(r)
on the scales where m(r) > 1. Since a physical mechanism of
this sort would surely have a di†erent impact on galaxies of
di†erent luminosities and morphological types, the giant
redshift surveys becoming available in the next few years
will allow us to test whether nonlocal biasing occurred in
the real universe by comparing the large-scale correlation
functions of di†erent classes of galaxies.
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