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Abstract Volcanoes in the East Asian/Pacific region have been the source of some of the largest

magnitude eruptions during the Late Quaternary, and accurately evaluating their eruptive histories is

essential for hazard assessments. To overcome difficulties in resolving and precisely dating eruptions in the

near‐source realm, the high‐resolution (varved) sediments of Lake Suigetsu (central Honshu, Japan) were

examined for the presence of non‐visible (cryptotephra) layers from 50 ka up until the 30 ka Aira‐Tanzawa

(AT) caldera‐forming event of Aira volcano. Cryptotephra layers are four times more frequently preserved

than visible markers in the Suigetsu sediments, meaning that this archive provides a unique and

unprecedented record of eruptions that were dispersed over the densely populated regions of central

Honshu. Major and trace element volcanic glass chemistry is used to fingerprint the ash layers and

pinpoint their volcanic origin. Tephras are found throughout the investigated sediments, but the highest

abundance of ash fall events are recorded between 39 and 30 ka, capturing a period of intense volcanism at

calderas on Kyushu Island (Japan). The augmented Suigetsu tephrostratigraphy records at least seven

eruptions from Aso caldera (southern Kyushu) that post‐date the widespread ACP‐4 Plinian eruption

(ca. 50 ka) and four explosive events from Aira (central Kyushu) that occurred leading up to the catastrophic

caldera‐forming AT eruption (ca. 30 ka).

1. Introduction

Volcanoes distributed across the heavily populated East Asian/Pacific region have been the source of some

of the largest known caldera‐forming events (Simkin & Siebert, 2000), blanketing Japan and the surrounding

seas in ash (e.g., Machida & Arai, 2003; Mahony et al., 2016; McLean et al., 2020; Schindlbeck et al., 2018;

Smith et al., 2013). Accurately reconstructing the tempo and magnitude of pre‐historic eruptions at these

volcanoes is an essential component of risk and hazard assessments (Kiyosugi et al., 2015). Unfortunately,

the burial, destruction, and subsequent erosion of eruption deposits in near‐source areas contribute to an

incomplete geological record, hampering our ability to accurately reconstruct eruption histories. Piecing

together fragmentary records close to the source volcano is further complicated by the fact that many

Japanese volcanoes erupt successive deposits with geochemically very similar compositions (e.g., Kimura

et al., 2015; Machida and Aria, 2003; McLean et al., 2018; Smith et al., 2013); consequently, deciphering

the true number of events is challenging and can result in an under‐recording of eruptions (e.g., Albert

et al., 2018). Furthermore, precisely evaluating the tempo and recurrence intervals of past eruptions using
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near‐source volcanic successions is difficult, and for many volcanoes in Japan this remains a significant

obstacle, particularly at low‐K (tholeiitic) and medium‐K (calc‐alkaline) centers, where mineral phases

are largely unsuitable for 40Ar/39Ar dating. Consequently, dating such eruptions from the last 50 ka is

heavily reliant upon the sporadic discovery of charcoal fragments buried within eruption units that are sui-

table for 14C dating.

Fortunately, volcanic ash (tephra) deposits are routinely identified in distal sedimentary (palaeoclimate and

archaeological) archives in and around Japan (e.g., Albert et al., 2019; Chen et al., 2019; Furuta et al., 1986;

Machida & Arai, 1983, 2003; McLean et al., 2018; Moriwaki et al., 2016), which provide critical insights into

the tempo, behavior and ash dispersals of highly explosive volcanism in East Asia. The Lake Suigetsu sedi-

mentary archive provides a key tephrostratotype of explosive events for Japan (e.g., Smith et al., 2013), and

the unique high‐precision chronology (e.g., Bronk Ramsey et al., 2012) ensures that tephra layers identified

in the radiocarbon timeframe are robustly dated. The sediments also preserve numerous non‐visible (cryp-

totephra) layers throughout the sequence (e.g., McLean et al., 2018), which are derived from more distal

sources and/or lower magnitude events.

This paper explores the cryptotephra record preserved in the ca. 14 m of the varved (annually laminated)

Lake Suigetsu sediments (SG14 core) dated between 50 and 30 ka (Bronk Ramsey et al., 2012; Schlolaut et al.,

2012; 2018). While muchmore is known about recent eruptions from the proximal volcanological record, the

periodicity and repose intervals during the 50 and 30 ka window are at present poorly understood. During

this period, the high‐resolution sediments of Lake Suigetsu can provide unprecedented insight into the tim-

ing and frequency of large eruptions and their associated ash fall events dispersed over the now heavily

populated regions of East Asia. Several large calderas situated downwind of Lake Suigetsu (i.e., those on

the Ryukyu‐Kyushu arc; Figure 1), and Aira and Aso in particular are thought to have been very active

between 50 and 30 ka, based on the record preserved in the proximal volcanic stratigraphies (e.g.,

Miyabuchi, 2009, 2011; Nagaoka et al., 2001). Despite this, almost no distal ash equivalents have been iden-

tified. Currently, most eruption ages established during this period are poorly constrained and are either

broadly extrapolated based on their stratigraphic position relative to the ~30 ka Aira‐Tanzawa (AT) ash from

Aira or radiocarbon dated via palaeosols developed during periods of quiescence. A more thorough eruption

chronology can aid our understanding of the behavior of these centers prior‐to (e.g., Aira) or following (e.g.,

Aso) large caldera‐forming events.

2. Study Site and Potential Tephra Sources

2.1. Lake Suigetsu, Central Japan

Lake Suigetsu is the largest of the “Mikata Five Lakes” (covering an area of ca. 4.2 km2), located in a small

tectonic basin on the western side of the Mikata fault, Honshu Island, central Japan (Figure 1; 35°35′0″N,

135°53′0″E, 0 m above present sea level; Figure 1a). The main tributary is the River Hasu, which enters

on the southeast side of Lake Mikata and flows through a narrow channel into Lake Suigetsu (Figure 1b).

This unique configuration of the lakes and hydrological setting means that cryptotephra layers are well pre-

served within the fine and laminated (varved) sediments. Suigetsu is also adequately situated away from the

large calderas of Hokkaido and Kyushu and so is not inundated with locally sourced volcanic glass, which

would also preclude the identification of cryptotephra layers with low concentrations of glass shards.

The “SG06” sedimentary core (Figure 1a) was extracted from Lake Suigetsu in 2006, with the composite

sequence spanning ca. 73.2 m. The SG06 core was obtained from four overlapping boreholes A, B, C, and

D, which were situated ca. 20 m apart; (Nakagawa et al., 2012). The lake was re‐cored in 2014 (“SG14”),

to provide additional material for scientific analysis and to prepare sediments for display at the Fukui

Prefectural Varve Museum. The sediments were obtained from new boreholes E, F, G, and H, which were

located ca. 320 m further east of those from SG06. The SG14 sediments were utilized for the cryptotephra

investigations outlined in this study.

2.2. Sources of Visible Tephra Dispersed to Lake Suigetsu

Thirty‐one visible ash layers (named according to their SG06 Composite Depths [CD]) were originally iden-

tified in the SG06 core (McLean et al., 2016; Smith et al., 2011, 2013), most of which originating from arc vol-

canoes south of Suigetsu, situated in the Kyushu Central and Southern Volcanic region (Kikai, Aira, Aso,
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and Ata volcanoes; Figure 1; see Albert et al., 2019). Four visible tephra layers in the Suigetsu sequence

(SG06‐0226, SG14‐1091, SG06‐1288, SG14‐3216) originate from intraplate volcanoes Ulleungdo (South

Korea) and Changbaishan (North Korea/China) (Figure 1; McLean et al., 2016, 2018, 2020; Smith

et al., 2011).

The visible tephrostratigraphic sequence investigated here (50 to 30 ka) is composed of five key markers (see

Table 1; Figure 2), which include the Central Pumice Cone 4 (ACP4) eruption from Aso caldera (ca. 50 ka;

correlated to Suigetsu tephra SG06‐3912), the Ikeda (SI) tephra erupted from Sambe (ca. 46 ka; SG06‐3668),

an eruption from Ko‐Fuji (ca. 44 ka; SG06‐3485), the Ulleung‐Yamato (U‐Ym) tephra erupted from

Ulleungdo (ca. 40 ka; SG14‐3216), and the AT tephra (ca. 30 ka; SG06–2650) erupted from Aira (Albert

et al., 2018, 2019; McLean et al., 2020; Smith et al., 2013). Since cryptotephra analysis is typically able to inte-

grate eruption stratigraphies from more distal volcanic sources (e.g., Bourne et al., 2015; Cook et al., 2018;

Jensen et al., 2014; Lane et al., 2015; Mackay et al., 2016; van der Bilt et al., 2017), it is possible that cryptote-

phra layers identified within these sediments may also originate from other more distal sources (>1,000 km)

Figure 1. (a) Volcanoes in Japan, North Korea/China (Changbaishan) and South Korea (Ulleungdo) (black and orange triangles) known to have been active dur-

ing the Late Quaternary (data from Machida & Arai, 2003). Volcanoes mentioned within the text are colored orange, and a star denotes the location of Lake

Suigetsu. The visible ash dispersal for the AT (Aira volcano; 30 ka) tephra is marked by a dashed line (as defined by Machida & Arai, 2003). (b) Location of the five

Mikata lakes, which are situated west of the active Mikata fault, adjacent to Wakasa Bay. The positions of coring campaigns SG06 and SG14 are marked on Lake

Suigetsu (modified after Nakagawa et al., 2005).
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across East Asia. For instance, ash erupted from the Izu‐Bonin and NE Japan arc are preserved as

low‐concentration cryptotephra layers in the Holocene sediments of Lake Suigetsu (McLean et al., 2018).

3. Materials and Methods

3.1. Cryptotephra Extraction Techniques

The master SG14 core (composite sequence) was contiguously subsampled at a ca. 5 cm resolution, from the

ACP4 tephra (39.1 m CD) to the base of the AT tephra (26.5 m CD), avoiding the known high‐energy event

layers (e.g., flood horizons; Schlolaut et al., 2014). If elevated peaks in shard concentrations were observed in

the ca. 5 cm scan sample, the sediment was resampled at a 1 cm resolution to more precisely determine the

stratigraphic positioning of the peak. All samples were wet sieved through a 25 μm mesh and processed

using the heavy liquid floatationmethod outlined by Turney (1998) and Blockley et al. (2005). The extraction

residues were mounted on slides using Canada Balsam, and glass shards were counted via microscopic

examination to quantify the number of shards per gram of dried sediment (s/g). Glass shards were extracted

from samples chosen for geochemical analysis and hand‐picked from a welled‐slide using a micromanipu-

lator (see Lane et al., 2014). These shards were mounted in Epoxy resin stubs, which were sectioned and

polished to expose a flat surface and carbon coated for electron microprobe analysis.

3.2. Major Element Analysis of the Glass Shards

Major and minor element compositions of individual glass shards from the SG14 tephra layers and

near‐source reference material were measured using a JEOL‐8600 wavelength‐dispersive electron microp-

robe (WDS‐EMP) at the Research Laboratory for Archaeology and History of Art (RLAHA), University of

Oxford. Analyses used an accelerating voltage of 15 kV, beam current of 6 nA, and 10 μm‐diameter beam.

Peak counting times were 12 s for Na, 50 s for Cl, 60 s for P, and for 30 s for all other elements. The electron

microprobe was calibrated using a suite of mineral standards and the PAP absorption correctionmethod was

applied for quantification. The accuracy and precision of these data were assessed using analyses of the

MPI‐DING reference glasses (ATHO‐G‐1, StHs6/80‐G, and GOR132‐G) from the Max Plank Institute

(Jochum et al., 2006), which were run as secondary standards. Analyses of these secondary standards lie

Figure 2. Glass shard concentrations (shards per gram of dry sediment; capped at 5,000) in the annually laminated sediments of the Lake Suigetsu SG14 core

(50 to 30 ka). The tephrostratigraphy is divided into three zones (1–3) for illustrative purposes. Concentration of low‐resolution (5 cm) samples are shown in

gray, and high‐resolution samples (1 cm) are overlain in blue. Tephra isochrons are labeled using their SG06/SG14 composite depth, with visible layers in

bold. Peaks in shard concentrations that coincide with visible, high‐energy event layers (EL) are not considered primary. SG06 visible tephra correlations and ages

after Albert et al. (2018, 2019) and McLean et al. (2020).
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within two standard deviations centered on the preferred values and are presented in the supporting infor-

mation. Data were filtered to remove non‐glass analyses and those with analytical totals <93%. The raw

values (given in the Supplementary Material) were normalized to 100% to better enable comparison and

to account for variable hydration and are presented as such in all tables and figures in the main text.

3.3. Trace Element Analysis of the Glass Shards

Trace element compositions for the glass shards obtained from the SG14 sediments were measured by laser

ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) at the Department of Solid Earth

Geochemistry, Japan Agency for Marine‐Earth Science and Technology (JAMSTEC). The analytical equip-

ment used include the deep‐ultraviolet (200 nm) femtosecond laser ablation system (DUV‐FsLA) of

OK‐Fs2000K (OK Laboratory, Tokyo, Japan) connected to the modified high‐sensitivity sector field

ICP‐MS of Element XR (Thermo Scientific, Bremen, Germany). All analyses used a 25 μm crater diameter

and depth, and conditions followed those reported by Kimura and Chang (2012). Tenmajor elements includ-

ing P2O5 and 33 trace elements were analyzed for each sample and were also run alongside several

MPI‐DING references glasses (Jochum et al., 2006) and the BHVO‐2G standard provided by the

Geological Survey of Japan. Accuracies of the BHVO‐2G glass analyses are typically <3% for most elements,

<5% for Sc, Ga, Sm, Eu, Gd, and U, and <10% for Ni, Cu, and Lu. Full trace element data sets and secondary

standard analyses are provided in the supporting information.

Trace element compositions for proximal units Aso‐Kpfa, A‐Fm, and A‐Knwere performed using an Agilent

8,900 triple quadrupole ICP‐MS (ICP‐QQQ) coupled to a Resonetics 193 nm ArF excimer laser‐ablation sys-

tem in the Department of Earth Sciences, Royal Holloway, University of London, using analytical proce-

dures and data reduction (Microsoft Excel) methods outlined by Tomlinson et al. (2010). MPI‐DING

glasses (StHs6/80‐G and ATHO‐G‐1; Jochum et al., 2006) were analyzed alongside the tephra deposits to

monitor the accuracy. Full operating conditions used to analyze these reference samples are provided in

the supporting information, along with the analyses of the MPI‐DING glasses.

3.4. Chronology of the Lake Suigetsu Sediment Cores

A detailed Bayesian age model was used to determine the deposition age of ash layers identified in the

Suigetsu sediments. The composite Suigetsu sedimentary sequence (correlation model ver. 08 May 2016)

was modeled on to the IntCal13 timescale (Reimer et al., 2013) implementing three successive

cross‐referenced Poisson‐process (“P_Sequence”) depositional models using OxCal (ver. 4.3; Bronk

Ramsey, 2008, 2017). These include 775 AMS 14C dates obtained from terrestrial plant macrofossils from

the upper 38 m (SG06‐CD) of the SG93 and SG06 cores (Kitagawa & van der Plicht, 1998a, 1998b, 2000;

Staff et al., 2013a, 2013b) and varve counting between 12.88 and 31.67 m SG06 CD (Marshall et al., 2012;

Schlolaut et al., 2012). SG06 Event Free Depths (EFDs; model ver. 29 Jan 2011) were used within the age

model, which excludes instantaneous deposits >5 mm in thickness, (i.e., high‐energy event layers, such

as floods) (see Schlolaut et al., 2012; Staff et al., 2011).

4. Results

4.1. Tephrostratigraphy

Twenty‐five ash layers (five visible and 20 cryptotephra layers) are identified in the SG14 varved sediments

spanning 50 to 30 ka (39.1 m CD to 26.5 m CD) (Figure 2; Table 1). These ash layers are herein labeled using

their SG14 composite depth in cm (SG14 correlation model 30 May 2017) that is rounded to the nearest inte-

ger (Table 1). For continuity, SG06 labels are used for the four visible tephra layers that were previously iden-

tified and geochemically characterized in the SG06 cores (Table 1; Figure 2).

Cryptotephra layers are clearly identified within the sediments as they are characterized by significant peaks

in glass shard concentrations, which range from 1,400 to >20,000 s/g (Figure 2; Table 1). Glass shard char-

acteristics (e.g., shard size, morphology, and color) vary considerably between isochrons (Table 1) but

remain relatively uniform in each layer. This provides a first order discrimination between primary and sec-

ondary ash layers, since ash is well‐sorted during dispersal, but reworking processes tend to mix glass from

several sources (as observed in flood layers; McLean et al., 2018). On average, one ash layer per metre is

observed between 39 and 30 m CD (Zones 3 and 2; Figure 2), whereas 15 ash layers are identified in the

4 m prior to the AT ash (30–26 m CD; Zone 1). Several of the cryptotephras identified in Zone 1 are
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closely spaced; such as SG14‐2841 and SG14‐2838, which are only separated by 3 cm of sediment that is

equivalent to ca. 50 years.

Despite the relatively high glass concentrations in primary isochrons, very low levels of background glasses

(i.e., those identified consistently through the sediments) are observed, which indicates very little reworking

of material in the lake catchment through this period. As expected, background glass concentrations are

lowest in regions furthest from visible ash horizons, for example, throughout Zone 1 they remain below

100 s/g (Figure 2). Following (i.e., stratigraphically above) the 1 mm thick visible layer SG06‐3912 (ACP4,

Aso), similar shard characteristics and glass compositions are observed for ca. 1 m of sedimentation.

Higher background concentrations are observed during the Holocene sediments (typically between 500

and 5,000 s/g), due to the presence of several much thicker visible ash layers at 10 ka and 7.3 ka (e.g.,

U‐Oki and K‐Ah tephra), which were more easily reworked and continuously in‐washed from the local

catchment (McLean et al., 2018).

4.2. Glass Geochemical Compositions

Major and minor element glass compositions of the ash layers identified between 50 and 30 ka are presented

in Table 2 and in Figure 3. The major element compositions of SG14‐2941 and SG14‐2838 could not be ana-

lyzed due to the high abundance of microlite inclusions within the glass. Trace element compositions were

obtained for several cryptotephra layers with suitable shard sizes to further characterize and assist correla-

tions (Table 2; Figure 4). The cryptotephras can be categorized using their glass affinities into four composi-

tional groups, described below and outlined in Table 1.

Compositional Group 1 spans a wide SiO2 (58–72 wt.%) and K2O (2–5 wt.%) range and include seven cryp-

totephra layers and one visible (SG06‐3912) tephra layer (Table 1). Four of these tephra layers have homo-

geneous compositions (SG14‐2625, SG14‐2649, SG14‐2739, and SG14‐2752), and three are heterogeneous

(SG14‐2841, SG14‐3085, and SG14‐3605) with both silicic (population a) and less evolved (population b)

end‐members (Figures 4a and 4b). When normalized to the primitive mantle (Sun & McDonough, 1989),

the lower SiO2 population glasses are less enriched in Large Ion Lithophile Elements (LILE; e.g., Rb, Ba,

and K) and High Field Strength Elements (HFSE), compared to the silicic population, and possess very simi-

lar Rare Earth Element (REE) profiles with light REE enrichment relative to the heavy REEs (La/Yb ratio).

Compositional Group 1 shows strong depletions in Nb and Ta (Figure 4) consistent with subduction related

genesis.

Compositional Group 2 is characterized by highly silicic glass compositions (>75 wt.% SiO2), which all have

>2.7 wt.% K2O (Figure 3). Four of these tephra layers contain glasses that are very homogenous and compo-

sitionally similar (SG14‐3814, SG14‐2856, SG14‐2873, and SG14‐3844), which are also distinguished by their

low CaO (0.79–1.64 wt.%) content. Furthermore, SG14‐2814, SG14‐2873, and SG14‐3844 all have identical

mantle normalized profiles, which can be easily distinguished from Compositional Group 1 by more pro-

nounced Eu anomalies and steeper REE profiles (La/Yb; Table 2; Figure 4). This subgroup is also less

enriched in HFSE, in particular Nb (Figures 4c and 4d). In comparison, silicic glasses from SG14‐2830 have

similar mantle normalized profiles, but lower in light REE, and therefore exhibit a flatter REE profile (La/Yb

ratios).

Compositional Group 3 consists of tephra layers SG14‐3336 and SG14‐2965, which contain medium and

low‐K glasses, respectively. SG14‐3336 glass compositions are particularly heterogeneous, with SiO2 from

70.5 to 80.0 wt.%, K2O from 1.45 to 2.97, and CaO from 0.90 to 3.16 wt.% (Figure 3). The four geochemical

analyses for SG14‐2965 (and several other low‐total results; supporting information) show that these are very

distinctive from the other SG14 glasses presented here, with SiO2 from 74.14 to 74.65 wt.%, K2O from 0.74 to

0.81 wt.%, and CaO from 2.56 to 2.80 wt.%. Unfortunately, trace element compositions could not be deter-

mined for SG14‐3336 and SG14‐2965 as the shape and size of the shards meant that there was not sufficient

area for analysis.

Compositional Group 4 comprises two alkali‐rich (Na2O+K2O ≥ 10 wt. %) tephra layers, named SG14‐3380

and the visible deposit SG14‐3216, which are classified as phonolites and trachytes, respectively (Figure 3c).

When normalized to the primitive mantle (Sun & McDonough, 1989), both tephras show significant deple-

tions in Ba, Sr, and Eu, typical of K‐feldspar fractionation (Figures 4e and 4f). SG14‐3216 has a Y/Th ratio of
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1.04 ± 0.70, whereas for SG14‐3380, it is 3.62 ± 0.23 (Table 2). The paucity of depletions in Nb and Ta within

these volcanic glasses is inconsistent with subduction related volcanism (e.g., Kimura et al., 2015; Figure 4).

5. Provenance of the Suigetsu Cryptotephra Identified Between 50 and 30 ka

5.1. Geochemically Discriminating Volcanic Sources

Geochemical glass data sets for key widespread ash layers in East Asia are well established (e.g., Albert

et al., 2019, and references therein; Kimura et al., 2015; Machida & Arai, 2003; McLean et al., 2018;

Figure 3. Major element compositions of the tephra layers preserved within the laminated sediments of Lake Suigetsu

(SG14 core) between 50 and 30 ka. These are labeled using their SG06/SG14 composite depths. (a, b) SiO2 and K2O

compositions of tephra layers versus their stratigraphic position. (c, d) Total alkalis versus silica plot (TAS; with

whole‐rock classification based on Le Bas et al., 1986). (e, f) Bivariate plots for FeO
T
, CaO, SiO2, and Al2O3 (error bars

represent 2 × standard deviation of repeat analyses of the StHs6/80‐G MPI‐DING standard glass).
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Nakamura, 2016; Okuno et al., 2011; Schindlebeck et al., 2018), and their characteristics can be used to help

provenance the tephra layers preserved in the Lake Suigetsu sequence.

It is relatively straightforward to distinguish tephra erupted from different arc sources distributed along the

length of Japan, which can typically be discriminated by their SiO2 to K2O ratios (Figures 5a and 5b). For

instance, Late Quaternary glasses erupted from the Kyushu Central Volcanic Region (CVR; e.g., Aso) and

Southern Volcanic Region (SVR; e.g., Aira, Ata, and Kikai) typically contain medium to high‐K composi-

tions and are clearly distinguishable at a major element level from tephra deposits erupted at volcanoes

along the SW and NE Japan arcs (see Albert et al., 2019; Kimura et al., 2015; Figure 5). Vitreous tephra

deposits erupted from Aso have the highest known K2O content produced at a Japanese volcano (>3 wt.%

K2O at 66 wt.% SiO2, and the most evolved (~70 ‐ 72 wt.% SiO2) extend to 6 wt.% K2O) and are therefore some

of the most compositionally distinct. However, some centres (e.g., Kikai, Ata and Aira) erupt very composi-

tionally similar tephra over tens to hundreds of thousands of years, with only slight major element variances.

Therefore, trace element compositions, which reflect more subtle source characteristics and magmatic pro-

cesses (e.g., Allan et al., 2008; Tomlinson et al., 2010), can be used to successfully fingerprint these sources.

Vitreous tephra derived from all sources in Japan are enriched in LILE (e.g., Rb, Ba, and K) relative to REE

(e.g., La to Yb) (Albert et al., 2019; Kimura et al., 2015), which is expected given their subduction genesis.

Since, LILE concentrations are linked to K2O, these elements are also very useful discriminators between

Figure 4. Average primitive mantle normalized glass compositions [of Sun & McDonough, 1989] of the tephra layers

(compositional groups 1, 2, and 4) preserved within the laminated sediments of Lake Suigetsu (SG14 core) between

50 and 30 ka. Trace element data for SG06‐3912 (ACP4) and SG06‐2650 (AT) are from Albert et al. (2019), and SG14‐3216

and SG14‐3380 are from McLean et al. (2020).
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different arc sources (Figures 5d–5f). Furthermore, Y and Th can clearly separate glass erupted from the

Kyushu calderas situated in the fore‐arc (e.g., Kikai, Ata and Aira) (Albert et al., 2019; Figure 5d). Only

intraplate volcanoes Ulleungdo (South Korea) and Changbaishan (North Korea/China) are known to have

dispersed alkaline tephras across Japan during the Quaternary (Chen et al., 2019; Lim et al., 2013; Machida

& Arai, 2003; McLean et al., 2020; Sun et al., 2014) and are therefore easily discriminated from those origi-

nating from Japan and other nearby arc settings.

(a) (b)

(d)(c)

(e) (f)

Figure 5. Major and trace element compositions of the SG14 cryptotephra layers (50 to 30 ka) in comparison to those

established for major eruptive centers in East Asia. Proximal geochemical fields are shown for Japanese volcanoes

(data from Albert et al., 2019), Changbaishan volcano (North Korea/China; Chen et al., 2016; McLean et al., 2016, 2020),

and Ulleungdo volcano (South Korea; McLean et al., 2018, 2020; Smith et al., 2011). Error bars represent 2 × standard

deviation of repeat analyses of the StHs6/80‐G MPI‐DING standard glass.
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In summary, the SG14 cryptotephra layers identified are provenanced to the following source regions or

volcanoes.

1. Group 1 : Kyushu Central Volcanic Region (CVR), Japan: Aso caldera, (n = 8 layers preserved in Lake

Suigetsu between 50 and 30 ka).

2. Group 2: Kyushu Southern Volcanic Region (SVR), Japan: Aira, and other southern Kyushu sources

(n = 3).

3. Group 3: Central and northern Honshu/Kurile arc tephras, (n = 2).

4. Group 4: Ulleungdo (South Korea) and Changbaishan (North Korea/China), (n = 2).

These correlations and groups are discussed in detail below, as well as other tephras that have not been cor-

related to known eruptions or volcanoes. Group 4 tephras that are derived from intraplate volcanic sources

west of the Japanese arc (e.g., SG14‐3216 and SG14‐3380) are comprehensively reviewed by McLean

et al. (2020), in order to place these eruptions within the known eruptive records of Changbaishan and

Ulleungdo volcanoes.

5.2. Group 1: Aso Caldera, Kyushu CVR (Japan)

Aso caldera (32°53′04″N, 131°06′14″E) is situated 530 km SW from Lake Suigetsu on the Kyushu CVR arc

(Figure 1). Aso is one of the largest active volcanoes on Earth, and the caldera was formed by a series of

at least four VEI 6–7 eruptions (oldest to youngest; Newhall and Self, ): Aso‐1 (ca. 270 ka), Aso‐2 (ca.

140 ka), Aso‐3 (ca. 112–134 ka), and Aso‐4 (ca. 86–87 ka; correlated to SG06‐4963 in Lake Suigetsu;

Aoki, (2008); Albert et al. (2019)). Post‐caldera cones that formed after the Aso‐4 eruption cycle are

thought to have produced small, frequent explosive episodes that have generated deposits over 100 m

thick on the eastern side of the caldera (Miyabuchi, 2009). The largest magnitude post‐Aso‐4 eruptions

are associated with the Aso Central Cone (Miyabuchi, 2009), the most significant of which producing

the Aso Central Cone Pumice 4 (ACP4; VEI 4; Takada, 1989) tephra deposit, which is correlated to tephra

SG06‐3912 (50.3 ka; Albert et al., 2019). This ash layer marks the basal depth of the cryptotephra inves-

tigations presented here.

Miyabuchi (2009, 2011) provides details of proximal evidence of other post‐caldera forming events that

occurred between the deposition of the ACP4 (ca. 50 ka; SG06‐3912) and AT ash (ca. 30 ka) (summarized

in Figure 6a). Notably, a period of intense silicic, explosive activity is estimated to have occurred between

31 and 30 ka, directly following the formation of a thick soil and prior to the AT eruption

(Miyabuchi, 2009, 2011; Figure 6a). This activity includes the Aso‐Kusasenrigahama pumice (Kpfa;

Watanabe et al., 1982), which is found 1 m below the AT ash in the proximal stratigraphy and is thought

to be themost voluminous of the fall units erupted from the Kusasenrigahama crater (2.21 km3 bulk volume;

Miyabuchi, 2011). Proximally, the Aso‐Kpfa is characterized by six fall units at outcrops to the east of the cal-

dera (E1–E6) and five units to the west (W1–W5) (Miyabuchi et al., 2003, 2004), implying numerous eruptive

phases and a fluctuating dispersal axis (Miyabuchi, 2009).

As outlined above, glass compositions from Aso are easily discriminated from other centers across Japan

and, importantly, those situated further south in the Kyushu SVR (e.g., Aira, Kikai, Ata) (Figure 5a), due

to their clear HKCA affinity. Characteristically, glass erupted from Aso has a wide compositional range,

from basalt to rhyolite (Figures 5c and 5d), which has been sequentially erupted during caldera forming

events (e.g., Aso‐3 eruption; Kaneko et al., 2015). Whole rock data of the proximal units identified by

Miyabuchi (2009, 2011) between 67 and 30 ka suggest that explosive mafic (basaltic to basaltic andesitic;

SiO2 = 48–56 wt.%) eruptions were dominant, with infrequent silicic pumice and ash fall events (e.g.,

Aso‐Kpfa; Ono, 1989; Miyabuchi, 2009). Detailed proximal volcanic glass data sets derived from the erup-

tive products of Aso during the 50 to 30 ka timeframe are not yet available, apart from the Aso‐Kpfa

deposit, which is characterized within this study. We find the Aso‐Kpfa glass compositions are exclu-

sively rhyolitic, containing ca. 69.5 wt.% SiO2 4.3 wt.% K2O (Figures 6c–6e). Trace element glass compo-

sitions are also typical of those erupted from Aso and are relatively homogeneous (e.g.,

Th = 11.9 ± 1.6 ppm; Y = 33.8 ± 4.5 ppm [2.s.d]) compared to the other characterized Aso units

(Figure 6f).

Seven cryptotephra layers identified in the Lake Suigetsu sediments (SG14‐2625, SG14‐2649, SG14‐2739,

SG14‐2752, SG14‐2841, SG14‐2997, SG14‐3085) have HKCA glass compositions and are characteristic of
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those derived fromAso (Figures 6b–6d). These glasses range frommafic (e.g., SG14‐2625), intermediate (e.g.,

SG14‐2841), and silicic (e.g., SG14‐2649, SG14‐2649) in composition, or in the case of SG14‐3085 and

SG14‐3605, the glasses span the entire compositional range. Trace element signatures of SG14‐2752,

SG14‐2841, SG14‐3085, and SG14‐3605 are enriched in the LILE (Rb) and HFSE (Th, U, Zr), typical of

Aso glasses (Figure 4a). Due to the lack of detailed proximal volcanic glass data sets it is not yet possible

to correlate the majority of the identified SG14 cryptotephra to specific units identified in the near source

(a) (b)

(c) (d)

(e) (f)

Figure 6. (a) Proximal volcanic stratigraphy compiled at outcrops at Aso caldera (Miyabuchi, 2011), (b) FeO
T
content

verses Suigetsu age for Aso derived tephra layers, (c, d) major element glass compositions of compositional Group 2

(Aso derived tephra layers) in comparison to other proximal deposits derived from Aso outcrops (Albert et al., 2019)

including fields (in gray) for glass compositions of the Aso‐3 (3W, 3C, and 3A) event (Kaneko et al., 2015), (e, f) major and

trace element compositions for Aira derived tephras (compositional Group 3) in relation to Aira proximal glass

chemistries (Albert et al., 2019; Smith et al., 2013; this study).
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realm. However, here we are able to show that only the glasses of SG14‐2752 geochemically overlap those of

the newly analyzed Aso‐Kpfa proximal deposit (Figures 6c, 6d, and 6f).

The Aso‐Kpfa eruption age is constrained at the caldera by its stratigraphic position beneath the AT tephra,

as well as several radiocarbon dates obtained from bulk sediment samples of the underlying palaeosols

(Miyabuchi, 2009). Paleosol 14C ages dated by Miyabuchi (2009) can be re‐calibrated using IntCal13 to

28,720‐29,615 and 31,110‐31,940 cal. year BP. In contrast, SG14‐2752 is dated using the Lake Suigetsu chron-

ology to 32,647‐32,376 cal. year BP (95.4% confidence interval), which is significantly older than the maxi-

mum radiocarbon ages. This means that either (i) SG14‐2752 represents a pre‐Aso‐Kpfa eruption at

Kusasenrighama/Aso caldera that has not yet been geochemically characterized at source, or (ii) the bulk

soil 14C dates from the paleosol underlying the Aso‐Kpfa deposit are not accurate and were perhaps contami-

nated by youngermaterial. One of the calibrated paleosol ages is younger than the known eruption age of the

overlying AT tephra (30,174–29,982 cal. year BP; Albert et al., 2019), which provides further support that the

radiocarbon measurements of the soil may not be accurate. Using this evidence we tentatively suggest that

SG14‐2752 represents the distal fallout of at a significant phase of the Aso‐Kpfa eruptive sequence that

occurred ca. 32.5 ka.

In summary, the Aso‐derived tephrostratigraphy preserved at Lake Suigetsu is in agreement with proximal

evidence, suggesting that a productive period of activity occurred prior to the AT event. Five separate ash fall

events fromAso are preserved in the Lake Suigetsu archive between 35 and 30 ka, indicating that these erup-

tions dispersed ash over 500 km from source.

5.3. Group 2: Aira and Other Sources South of Suigetsu

5.3.1. Aira, Southern Kyushu (Japan)

Aira caldera is situated at the northern end of Kagoshima Bay in southern Kyushu (31°40'N 130°40′E;

Figure 1). The flooded collapse structure was formed by the enormous VEI 7 eruption that dispersed the

AT ash across the majority of Japan (Aramaki, 1984; Machida & Arai, 2003). The AT eruption ejected

approximately 463 km3 of bulk tephra and is preserved as a >30 cm thick sand‐sized tephra (SG06‐2650)

in Lake Suigetsu (Fukushima & Kobayashi, 2000; Machida & Arai, 2003; Smith et al., 2013). This eruption

is most precisely dated using the Lake Suigetsu chronology to 30,174–29,982 IntCal13 year BP (95.4% confi-

dence interval; Albert et al., 2019) and forms the upper boundary of the cryptotephra record presented here.

The caldera‐forming event began with the Plinian eruption (Osumi pumice fall), which was followed by the

Tsumaya and Ito pyroclastic flows (Aramaki, 1984).

In the context of this timeframe (50–30 ka), outcrops from around Aira indicate that the center produced

three pyroclastic successions between the 58 ka A‐Iwato formation (A‐Iw; VEI 6) and the 30 ka AT

(VEI 7). These successions are separated by well‐developed palaeosols and include the ca. 33 ka

Otsuka pumice fall deposit (A‐Ot; VEI 4), the ca. 31 ka Fukaminato tephra formation (A‐Fm; VEI 5),

and the ca. 30 ka Kenashino tephra formation (A‐Kn) (Machida & Arai, 2003). Nagaoka et al. (2001)

constrained the age of these eruptions using bulk sediment 14C ages of palaeosols between the A‐Ot,

A‐Fm, and A‐Kn units. Here, we incorporate these radiocarbon dates within an OxCal Bayesian phase

model (ver. 4.3.2; Bronk Ramsey, 2017) to generate calibrated age estimates for these events. This model

is further constrained by inserting the Suigetsu‐derived AT eruption age, which is known to post‐date

these deposits. Using this phase model, the A‐Ot eruption is dated to 33,216–30,730 IntCal13 year BP,

A‐Fm to 30,933–29,865 IntCal13 year BP, and A‐Kn to 30,437–29,545 IntCal13 year BP (95.4% confidence

interval).

Importantly, volcanic glass from Aira can be distinguished from other sources distributed along the Kyushu

SVR arc by their lower Y/HREE and higher Th contents (Figure 5d; Albert et al., 2019). Glasses erupted from

Aira are typically homogenous, and trace element compositions are required to robustly distinguish tephra

from sequential eruptions. Indeed, Albert et al. (2019) showed that glass compositions of the A‐Iw eruption

(ca. 58 ka) are subtly elevated in K2O (ca. 0.3 wt. %) compared to ash erupted during the 30 ka AT event but

could be more confidently discriminated using concentrations of the HFSE. Specifically, the older A‐Iw

glasses displayed lower Zr content than the AT glasses, most likely relating to a greater degree of zircon frac-

tionation (Figure 6f). Here, geochemical characterization of the intervening Aira eruption units (A‐Kn and

A‐Fm) indicates that they also display the same offsets with respect to the AT eruption deposits, again with
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ca. 0.4 wt.% higher K2O (Figure 6e) and lower Zr content than the AT tephra. The A‐Fm trace element com-

positions are more heterogeneous in comparison to those of the A‐Kn and the older A‐Iw unit, with Zr ran-

ging from 70–100 ppm (Figure 6f).

Four cryptotephra layers in the Suigetsu sediments, SG14–3844, SG14–2873, SG14–2856 and SG14–2814,

have compositions that are distinctive of those erupted fromAira (Table 1; Figure 5). The trace element com-

positions of glass from these four cryptotephra layers are more subtly depleted in Zr and more enriched in

Th, compared to the AT (Oshumi and Ito) tephra, and are generally more consistent with those of A‐Kn,

A‐ Fm, and A‐Iw (Figure 6f). While, subtle offsets exist between the trace element compositions of the prox-

imal Aira deposits (A‐Kn and A‐Fm; Figure 6f) and the distal SG14 ash layers, this is attributed to slight dif-

ferences in the analytical setup between the two instruments used. Indeed, by correcting the proximal and

distal Aira trace element glass data based on differences between the measured and known contents of

the StHs6/80‐G reference glass, routinely measured on the respective instruments, the chemical similarity

between the proximal and distal glasses is clear.

Since these pre‐AT tephra units from Aira are compositionally similar we must use the chrono‐stratigraphy

to facilitate correlations. Since SG14‐2856 and SG14‐2873 are separated by less than 400 years using the Lake

Suigetsu varve chronology, then it is possible that their near‐source counterparts would not be separated by a

prominent palaesol. Therefore, it is possible that in the proximal stratigraphy these would be interpreted as

separate phases of one of the pre‐AT eruptive formations (A‐Kn, A‐Fm or A‐Ot). Based purely on strati-

graphic grounds and the eruptive formations recognized at the volcano (Nagaoka et al., 2001), we tentatively

suggest that SG14‐2814 relates to the A‐Kn formation, SG14‐2856/SG14‐2873 relates to the A‐Fm formation,

and SG14‐3844 is the distal equivalent of the A‐Ot formation. While these correlations are not entirely con-

sistent with the existing 14C dates of the palaeosols between the A‐Kn, A‐Fm, and A‐Ot formations (Nagaoka

et al., 2001), it is possible that the 14C dates are erroneously young. This is supported by the fact that the

paleosol age of the A‐Kn deposit (30,437–29,545 cal. year BP) overlaps that of the known age of the AT erup-

tion (30,174–29,982 cal. year BP; Albert et al., 2019), despite these units being separated by a well‐developed

palaoesol in the proximal sequence. Such soils are also developed between the underlying eruptive units in a

period of just 3 ka.

5.3.2. Uncorrelated Tephra From Kyushu

Tephra layers SG14‐2830 (ca. 34.2 ka), SG14‐2995 (ca. 37.4 ka), and SG14‐3016 (ca. 37.8 ka) are also attrib-

uted to explosive volcanism on the Kyushu arc (Figures 5b and 5c). Considering the compositional over-

lap, and equivalent shard textures (platy, bubble‐walled shards), SG14‐2830 and SG14‐3016 at least are

highly likely to originate from the same source. Trace element compositions obtained for SG14‐2830

are less depleted in Nb, Sr, and Eu compared to glass erupted from Aira and therefore more consistent

with deposits from Ata and Kikai that are elevated in HFSE (Figures 4c and 4d; Albert et al., 2019).

Ata in particular is known to have been active between 50 and 30 ka (Machida & Arai, 2003; Nagaoka

et al., 2001), but further proximal samples are required to build geochemical data sets and secure a cor-

relation for these events.

5.4. Group 3: Uncorrelated Tephra from Central and Northern Japan

5.4.1. Uncorrelated Tephra From Central Honshu

SG14‐3336 (ca. 42.0 ka) is compositionally similar to the older visible tephra layer SG06‐6634 (ca. 130 ka)

identified in the Suigetsu core (Albert et al., 2019; Smith et al., 2013), although glass compositions are ca.

0.5 wt. % lower in FeOT. Heterogeneous and medium‐K series eruptions are known from stratovolcanoes

in central Honshu, including Akagi, Haruna, and Asama (Figures 5e and 5f). Chronologically, the ca.

45 ka eruption of Haruna (Haruna‐Hassaki ash; Hr‐Hs) and the ca. 44 ka eruption of Akagi (Akagi‐

Kanuma; Ag‐KP) are possible correlatives (Geshu & Oishi, 2011; Suzuki, 1996). However, proximal samples

obtained from these units do not span the entire geochemical range of SG14‐3336, precluding a robust cor-

relation at this time (Figures 5e and 5f).

5.4.2. Uncorrelated Tephra From Hokkaido and the Kurile Arc

SG14‐2965 (ca. 36.9 ka) glass shards are very distinctive and contain <1 wt.% K2O, suggesting that this

deposit was erupted from a source from NE Hokkaido or Kurile arc. The only known low‐K source to

have dispersed ash to central Honshu is Mashu (Ma‐b tephra), situated in eastern Hokkaido (McLean

et al., 2018). However, SG14‐2965 glass compositions can be distinguished from Mashu tephra (e.g.,
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Ma‐b and older deposits), by CaO (ca. 0.5 wt.% lower) and other minor elements including TiO2

(Figures 5e and 5f).

6. Discussion

6.1. Tempo, Origin, and Dispersal of Ash Fall Events Reaching Central Honshu

The augmented Lake Suigetsu tephrostratigraphic record (50 to 30 ka) indicates that, on average, an ash fall

event reached central Honshu at least once every 1,300 years (Figure 7). However, between 39 and 30 ka the

average return interval was significantly higher, with at least one eruption recorded every ca. 500 years,

which is in close agreement with that observed during the Holocene (McLean et al., 2018). The record is

dominated by ash fall events erupted from sources south of Suigetsu on the SVR and CVR (n = 18;

Figure 7), and most of which (n = 8) are derived from explosive activity from Aso (CVR).

Four eruption events are identified from different arc regions in Japan (e.g., central Honshu) and other

nearby volcanic settings (Changbaishan and Ulleungdo), which highlights that other sources also have

the potential to disperse ash more widely than previously anticipated. Interestingly, these eruption events

(a) (b)

Figure 7. (a) Summary of the augmented Lake Suigetsu (SG14) tephrostratigraphy (visible and cryptotephra layers)

spanning 50 to 30 ka. The distal tephra layers are correlated to their volcanic sources and, where possible, specific

eruptions, using the compositions of the volcanic glass. The Suigetsu sediments preserve evidence of a significant period

of activity from centers on the Ryukyu‐Kyushu arc (e.g., Aira and Aso) prior to the AT caldera‐forming eruption dated

to ca. 30 ka. (b) The timing of other key widespread and large magnitude (VEI 7–5) eruptions known from other

regions north of Lake Suigetsu, which were not identified in the sediments (data from Machida & Arai, 2003).

Approximate eruption ages are shown by dashed boxes, as reported by Suzuki (1996); Machida and Arai (2003);

Yamamoto et al. (2010); Geshu and Oishi (2011); Uesawa et al. (2016); Matsu'ura et al. (2017).
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are clustered between 45 and 39 ka, when no other ash layers are recorded from productive centers south-

west of Suigetsu. However, it is not possible to attribute the cause of this change, due to the number of con-

trolling parameters and preservation biases that affect the presence of cryptotephra layers. For example, this

may represent a change in eruption styles and mechanisms (e.g., explosivity; efficient fragmentation of

magma; Cassidy et al., 2018) or external differences during eruptions (e.g., wind direction and strength;

Carey & Sparks, 1986).

Several volcanoes in northern Honshu and Hokkaido are known to have been very active between 50 and

30 ka (e.g., Towada, Shikotsu); yet, distal ash deposits from these large magnitude events (VEI 5–7) have

not been identified in this study of the Suigetsu sediments (Figure 7). It is possible that they are preserved

as lower concentrated peaks of glass shards in the sediments or are hidden in the reworked “tails” that follow

visible tephra layers. Identifying these markers would be of significant value for tephrochronology and help

to further constrain their eruption histories. The identification of other primary cryptotephra peaks in the

sediments may be achieved through detailed studies of shard morphologies, supplemented by further geo-

chemical analysis. This was shown to be possible in the Holocene sedimentation, where the distinctive vesi-

cular To‐Cu (Towada) shards were clear within the platy K‐Ah remobilized glass (McLean et al., 2018).

The Japanese cryptotephra layers identified within the sediments of Lake Suigetsu are the first known distal

occurrences of these eruption events. Therefore, further ash deposits between Suigetsu and their sources

(e.g., in other high‐resolution lake and marine cores) are required to better constrain the magnitude of these

events and integrate other eruption stratigraphies. Nevertheless, it is clear that these must have had a VEI of

at least 4, in order to have been dispersed as far as Lake Suigetsu (located 300 km from the nearest potential

source) and have been preserved as a cryptotephra layer. Cryptotephra ash fall events are likely to be thin

and perhaps of limited consequence so far from source, but such fine ash (typically <80 μm)may have impli-

cations for air traffic, air and water quality, and critical infrastructure (e.g., Horwell & Baxter, 2006).

6.2. Constrained Eruption Chronology for Aso and Aira

The Suigetsu tephrostratigraphy provides detailed insight into the behavior of two of themost active calderas

in Japan, Aso and Aira, which are central to hazard assessments for Japan and even possible candidates for

the next VEI 7 eruption (Newhall et al., 2018). Here, we confirm that both centers were very active between

50 and 30 ka (as informed by their proximal stratigraphies), producing moderate to large explosive events

within short temporal scales (ca. 300 years for both). Almost all of these eruptions have yet to be the subject

of detailed petrological investigations, so the glass compositions and constrained eruption ages allow a new

insight and comparisons into the magma generation and storage pre‐ (Aira) and post‐ (Aso) caldera‐forming

events.

Prior‐to the AT eruption (VEI 7; Machida & Arai, 2003) of Aira, the Suigetsu record indicates that at least

four large eruption events occurred and are dated to ca. 33.8, 34.8, 35.2, and 49.2 ka (Table 1; Figure 7).

The Suigetsu chronology also indicates that these eruptions occurred as frequently as 3,600 years before

the enormous AT event. These erupted characteristically high silicic glass compositions (75.5–78.9 wt.%

SiO2) that are compositionally similar on major elements (Albert et al., 2019; Machida & Arai, 2003), but

we show that they can be geochemically distinguished from the AT ash using their trace element composi-

tions (e.g., Zr, Y, and Th).

The Suigetsu sediments indicate that Aso erupted compositionally different magmas through time, ranging

from rhyolitic to andesitic in composition and producing at least eight widespread tephra units over 20 ka

(Table 1; Figure 7). Furthermore, Aso was also very active prior to the AT eruption at ca. 30 ka, with at least

one eruption every 600 years between ca. 32.6 and 30.3 ka. The bulk volumes estimated for the Aso eruption

events (Miyabuchi, 2009, 2011) in some cases are small; yet, they are preserved over 600 km from the vent.

This could imply that perhaps the eruption volumes are underestimated, the transport mechanism is highly

efficient, and/or the eruptions generated very fine ash suitable for widespread ash dispersal.

7. Conclusions

New insights into the frequency and timing of East Asian volcanism between 50 and 30 ka are elucidated

through the identification of non‐visible (cryptotephra) layers preserved in the laminated (varved) sediments

of Lake Suigetsu (Japan). Four times more cryptotephra layers are preserved relative to visible layers,
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meaning that this tephrostratigraphy provides an unprecedented record of ash that has been dispersed over

central Honshu. Major and trace element compositions of the glass shards allow most of these distal tephras

to be correlated to their volcanic source; however, additional datasets from proximal outcrops are pivotal to

integrate these records and learn more about these individual eruption events.

Of the 25 ash layers presented in the augmented tephrostratigraphy, 19 of these were dispersed from eruptive

centres southwest of Suigetsu, which is unsurprising considering the prevailing westerly winds. However,

the record indicates that other sources have the potential to reach central Honshu, including Ulleungdo

(500 km NW of Suigetsu) and Changbaishan (1,000 km NW). Explosive activity from Aso and Aira is most

frequently recorded in the record and indicates that these calderas were very active between 35 and 30 ka.

Aso erupted compositionally different magmas through time, producing eight widespread events over

20 ka. Here, we also show that Aira erupted explosively 1.3 ka before the catastrophic VEI 7

caldera‐forming eruption that blanketed Japan in the AT ash.
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