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INFN — Sezione di Roma Tre,

I-00146 Rome, Italy
bDipartimento di Fisica, Università di Roma “La Sapienza” and
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1 Introduction

The discovery of a new scalar resonance with a mass around 125 GeV at the Large Hadron

Collider (LHC) [1, 2] opened a new era in high-energy particle physics. The study of the

properties of this particle provides strong evidence that it is the Higgs boson of the Standard

Model (SM), i.e., a scalar CP-even state whose coupling to the other known particles has

a SM-like structure and a strength proportional to their masses [3–5]. At present, the

combined analysis based on 7 and 8 TeV LHC data sets [5] shows that the couplings with

the vector bosons are found to be compatible with those expected from the SM within a

∼ 10% uncertainty, while in the case of the heaviest SM fermions (the top, the bottom

quarks and the τ lepton) the compatibility is achieved with an uncertainty of ∼ 15− 20%.

Concerning the future, the best present estimates [6, 7] indicate that at the end of the LHC

Run-2 at
√
s = 13− 14 TeV center-of-mass-energy, the fit of the Higgs boson couplings to

the vector bosons is expected to reach a ∼ 5% precision with 300 fb−1 luminosity, while

the corresponding ones for the fermions, with the exception of the µ lepton, can reach

∼ 10−15% precision. Similar estimates for the end of the High Luminosity option indicate

a reduction of these numbers by a factor ∼ 2.

The study of the Higgs self interactions, coming from the scalar potential part in the

Standard Model (SM) Lagrangian, is in a completely different status. In the SM, the Higgs

potential in the unitary gauge reads

V (φ1) =
m2
H

2
φ2

1 + λ3vφ
3
1 +

λ4

4
φ4

1 (1.1)

where the Higgs mass (mH) and the trilinear (λ3) and quartic (λ4) interactions are linked

by the relations λSM
4 = λSM

3 = λ = m2
H/(2 v

2), where v = (
√

2Gµ)−1/2 is the vacuum

expectation value, and λ is the coefficient of the (Φ†Φ)2 interaction, Φ being the Higgs

doublet field.
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The experimental verification of these relations, that fully characterize the SM as a

renormalizable Quantum Field Theory, relies on the measurements of processes featuring at

least two Higgs bosons in the final state. However, since the cross sections for this kind of

processes are quite small, constraining the Higgs self interaction couplings within few times

their predicted SM value is already extremely challenging. In particular, information on λ3

can be obtained from Higgs pair production with the present bounds on this reaction from

8 TeV data that allow to constrain λ3 within O(±(15 − 20)λSM
3 ) [8–11]. At

√
s = 13 TeV,

the Higgs pair production cross section, in the SM, is around 35 fb in the gluon-fusion

channel [12–21] and even smaller in other production mechanisms [22, 23] that suggests,

assuming an integrated luminosity of 3000 fb−1, that it will be possible to exclude at the

LHC only values in the range λ3 < −1.3 λSM
3 and λ3 > 8.7 λSM

3 via the bb̄γγ signatures [24]

or λ3 < −4 λSM
3 and λ3 > 12 λSM

3 including also bb̄τ τ̄ signatures [25]. Concerning the

quartic Higgs self-coupling λ4, its measurement via triple Higgs production seems beyond

the reach of the LHC [26, 27] due to the smallness of the corresponding cross section

(around 0.1 fb) [20].

In order to constrain the trilinear Higgs self coupling, a complementary strategy based

on the precise measurements of single Higgs production and decay processes was recently

proposed. In this approach the effects induced at the loop level on single Higgs processes

by a modified λ3 coupling are studied. This approach builds on the assumption that New

Physics (NP) couples to the SM via the Higgs potential in such a way that the lowest-

order Higgs couplings to the other fields of the SM (and in particular to the top quark

and vector bosons) are still given by the SM prescriptions or, equivalently, modifications

to these couplings are so small that do not swamp the loop effects one is considering. This

strategy was first applied to ZH production at an e+e− collider in ref. [28] and later to

Higgs production and decay modes at the LHC [29–31].

The aim of this work is twofold. On the one side we apply the same strategy to the

precise measurements of the W boson mass, mW , and the effective sine, sin2 θlep
eff . In order

to constrain λ3 we look for effects induced by an anomalous Higgs trilinear coupling at the

loop level in the predictions of mW and sin2 θlep
eff . Following the approach of ref. [29] we

parametrize the effect of NP at the weak scale via a single parameter κλ, i.e. the rescaling

of the SM trilinear coupling λSM
3 , so that the φ3

1 interaction in the potential is given by

Vφ3
1

= λ3 v φ
3
1 ≡ κλλSM

3 v φ3
1 , λSM

3 ≡ Gµ√
2
m2
H , (1.2)

and compute, in the unitary gauge, the effects induced by κλ in the two-loop W and Z

boson self-energies, which are the relevant quantities entering in the two-loop determination

of mW and sin2 θlep
eff . On the other side we specify better the anomalous coupling approach

employed above by showing that, at the order we are working, i.e. at the two-loop level, it

is equivalent to the use of a SM Lagrangian with a scalar potential given by an (in)finite

tower of (Φ†Φ)n terms. Furthermore, we show that the use of the unitary gauge in the

anomalous coupling approach does not introduce any gauge-dependent problematics.

The paper is organised as follows. In section 2 we discuss the contributions induced by

an anomalous Higgs trilinear coupling in mW and sin2 θlep
eff . Section 3 is devoted to show that
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the addition to the SM Lagrangian of (Φ†Φ)n terms gives rise to the same contributions.

In the following section we discuss the constraints on λ3 that can be obtained from the

current data. In the last section we summarise and draw our conclusions.

2 λ3-dependent contributions in mW and sin2 θlep
eff

We consider a Beyond-the-Standard-Model (BSM) scenario, described at low energy by

the SM Lagrangian with a modified scalar potential. We further assume that only Higgs

self couplings will be affected by this modified potential while the strength of the couplings

of the Higgs to fermions and vector bosons will not change with respect to its SM value,

or, equivalently, that any modification of these couplings is going to induce effects much

smaller than the ones coming from the “deformation” of the Higgs self couplings.

In the MS formulation of the radiative corrections [32–34] the theoretical predictions of

mW and sin2 θlep
eff are expressed in terms of the pole mass of the particles, the MS Weinberg

angle θ̂W (µ) and the MS electromagnetic coupling α̂(µ), defined at the ’t-Hooft mass scale

µ, usually chosen to be equal to mZ . In particular, given the radiative parameters ∆r̂W ,

∆α̂, YMS defined through (sin2θ̂W (mZ) ≡ ŝ2) [35]

Gµ√
2

=
πα̂(mZ)

2m2
W ŝ

2 (1 + ∆r̂W ) , α̂(mZ) =
α

1−∆α̂(mZ)
,

ρ̂ ≡ m2
W

m2
Z ĉ

2 =
1

1− YMS

, (2.1)

with ĉ2 = 1− ŝ2, mW is obtained from mZ , α,Gµ via

m2
W =

ρ̂m2
Z

2

1 +

[
1− 4Â2

m2
Z ρ̂

(1 + ∆r̂W )

]1/2
 , (2.2)

where Â = (πα̂(mZ)/(
√

2Gµ))1/2, while the effective sine is related to ŝ2 via

sin2 θlep
eff = k̂`(m

2
Z)ŝ2, k̂`(m

2
Z) = 1 + δk̂`(m

2
Z), (2.3)

where k̂`(q
2) is an electroweak form factor1 (see ref. [36]) and

ŝ2 =
1

2

1−

[
1− 4Â2

m2
Z ρ̂

(1 + ∆r̂W )

]1/2
 . (2.4)

In our BSM scenario the modifications of the scalar potential affect the radiative

parameters ∆r̂W and YMS at the two-loop level while ∆α̂ and δk̂`(m
2
Z) are going to be

affected only at three loops. Recalling that the present knowledge of mW and sin2 θlep
eff

in the SM includes the complete two-loop corrections, we are going to discuss only the

1In our MS formulation the top contribution is not decoupled. Then k̂ is very close to 1 and sin2 θlep
eff

can be safely identified with ŝ2 [36].
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φ1 φ1

W W

φ1 +
φ1

φ1

φ1 φ1

φ1

φ1=
φ1

a) b) c) d)

φ1 φ1 φ1 φ1 φ1 φ1

φ1
e1) e2)e)

W W W

Figure 1. Two-loop λ3-and-λ4-dependent diagrams in the W self-energy, in the unitary gauge.

The dark blob represent the insertion of the modified diagrams in the one-loop Higgs self energy,

shown in the second row. The black point represents either an anomalous λ3 or λ4.

modifications induced in ∆r̂W and YMS . The two-loop contribution to ∆r̂W and YMS can

be expressed as [35]

∆r̂
(2)
W =

ReA
(2)
WW (m2

W )

m2
W

− A
(2)
WW (0)

m2
W

+ . . . (2.5)

Y
(2)

MS
= Re

[
A

(2)
WW (m2

W )

m2
W

− A
(2)
ZZ(m2

Z)

m2
Z

]
+ . . . (2.6)

where AWW (AZZ) is the term proportional to the metric tensor in the W (Z) self energy

with the superscript indicating the loop order, and the dots represent additional two-loop

contributions that are not sensitive to a modification of the scalar potential.

From the knowledge of the additional contributions induced in ∆r̂
(2)
W and Y

(2)

MS
one can

easily obtain the modification of the radiative parameters ∆r and κe(m
2
Z) of the On-Shell

(OS) scheme [37]. Considering only new contributions from the modified scalar potential

one can write

∆r(2) = ∆r̂
(2)
W −

c2

s2
Y

(2)

MS
, (2.7)

where c2 ≡ m2
W/m

2
Z , s2 = 1 − c2 with ∆r being the radiative parameter entering the

mW−mZ interdependence. The effective sine is related to s2 in the OS scheme via sin2 θlep
eff =

κe(m
2
Z)s2 and for the new contributions in κe(m

2
Z) one can write

κ(2)
e (m2

Z) = 1− c2

s2
Y

(2)

MS
. (2.8)

The new contribution in the self energies in eqs. (2.5), (2.6) can be parametrized just

by a modification of the trilinear coupling as described in eq. (1.2). In order to correctly

identify the effects related to the φ3
1 interaction we follow ref. [29] and work in the unitary

gauge. Here we discuss the W self energy but an identical analysis can be done also for

the Z self energy.
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The two-loop diagrams in the W self energy that are sensitive to a modification of

the Higgs self couplings are depicted in figure 1. The dark blob in diagrams 1a), 1d)

represents the one-loop Higgs self energy or the one-loop Higgs mass counterterm that

in our scenario gets modified with respect to the SM result in the unitary gauge by the

diagrams in figure 1e). The amplitudes of the diagrams in figure 1 were generated using

the Mathematica package FeynArts [38] and reduced to scalar Master Integrals using

private codes and the packages FeynCalc [39, 40] and Tarcer [41]. After the reduction to

scalar integrals we were left with the evaluation of two-loop vacuum integrals and two-loop

self-energy diagrams at external momenta different from zero. The former integrals were

evaluated analytically using the results of ref. [42]. The latter ones were instead reduced

to the set of loop-integral basis functions introduced in ref. [43]. For their numerical

evaluation we used the C program TSIL [44]. Our results are expressed in terms of the OS

Higgs mass that specifies the Higgs mass counterterm.

Few observations are in order: i) the insertion of the “cactus” diagram e2) in diagrams

a) and d) in figure 1 gives rise to a contribution proportional to the quartic Higgs self

couplings on which we did not make any assumption. However, this contribution is exactly

cancelled by the corresponding Higgs mass counterterms diagram so that the final result

does not depend on λ4. This finding is general and does not depend on the particular scheme

used to define the Higgs mass. Using a different Higgs mass definition, like, e.g., an MS

Higgs mass, m̂H , the expression for the W self-energy acquires an explicit λ4 dependence.

However, this dependence is going to be cancelled by the λ4 dependence of m̂H , when the

latter is extracted from a physical quantity like the OS mass. ii) We expect the modified

potential to contain Higgs self interactions with a number of φ1 fields larger than 4 (quintic,

sextic, etc. interactions). However, none of these interactions is going to contribute to the

W self energy at the two-loop level.2 Thus the new contributions induced by our BSM

scalar potential at the two-loop level are only functions of κλ. iii) The contribution to the

physical observables given by the diagram 1d) vanishes in the differences of self energies

(see eqs. (2.5), (2.6)).

As in the case of single Higgs processes the λ3-dependent contributions can be divided

into a part quadratically dependent on λ3 and another linearly proportional to λ3. The

former is due to the diagram 1a) with the insertion of diagram 1e1) and of its corresponding

Higgs mass counterterm. The latter is given by diagrams 1b), 1c).

3 Equivalence with a (Φ†Φ)n theory

In this section we show that the results presented in section 2, where no specific assumption

on the BSM scalar potential was made, can be obtained using a SM Lagrangian with a

scalar potential of the form

V NP =

N∑
n=1

c2n(Φ†Φ)n , Φ =

(
φ+

1√
2
(v + φ1 + iφ2)

)
, (3.1)

2A quintic self interaction gives rise to a two-loop tadpole. However, tadpole contributions cancel in

eqs. (2.5), (2.6).

– 5 –
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where N can be a finite integer or infinite, and in the latter case we assume the series to be

convergent. This is the only constraint we impose on the c2n coefficients, in particular we

do not assume an effective-field-theory (EFT) scaling on them, i.e. c2n+2 ∼ c2n/Λ
2 with Λ

the scale of NP. The SM potential is recovered setting N = 2 in eq. (3.1) with c2 = −m2

and c4 = λ where −m2 is the Higgs mass term in the SM Lagrangian in the unbroken phase.

Defining φ2u = φ+φ− + 1
2φ

2
2 the n-th term in the series can be written as

(Φ†Φ)n =
n∑
k=0

k∑
j=0

j∑
h=0

(
n

k

)(
k

j

)(
j

h

)
φn−k2u

(
v2

2

)k−j (
φ2

1

2

)j−h
(vφ1)h , (3.2)

with (
n

k

)(
k

j

)(
j

h

)
=

n!

(n− k)!(k − j)!(j − h)!h!
, (3.3)

and its contribution to any Higgs self interaction can be labelled by the triplet {k, j, h}.
For example, the minimum of the potential can be obtained from the triplet {n, 1, 1}:

d V NP

dφ1

∣∣∣∣
φ1=0

= v

N∑
n=1

c2n n

(
v2

2

)n−1

= 0 , (3.4)

while the Higgs mass is given by the two triplets {n, 1, 0} and {n, 2, 2}. However, due to

the condition in eq. (3.4), the first one is giving a vanishing contribution so that

m2
H = v2

N∑
n=1

c2n n(n− 1)

(
v2

2

)n−2

. (3.5)

The potential V NP up to quartic interactions can be written as

V NP
4φ =

m2
H

2v2

[
φ+φ−(φ+φ− + φ2

2) +
1

4
φ4

2

]
+

(
m2
H

2v2
+ dλ4

)
1

4
φ4

1

+

(
m2
H

2v2
+ 3 dλ3

)
φ2

1

[
φ+φ− +

1

2
φ2

2

]
+

(
m2
H

2v
+ v dλ3

)
φ3

1

+
m2
H

2v
φ1

(
φ2

2 + 2φ+φ−
)

+
1

2
m2
H φ

2
1 . (3.6)

with

dλ3 =
1

3

N∑
n=3

c2n n(n− 1)(n− 2)

(
v2

2

)n−2

, (3.7)

dλ4 =
2

3

N∑
n=3

c2n n
2(n− 1)(n− 2)

(
v2

2

)n−2

. (3.8)

It is worth noting that in eq. (3.6) only few couplings are modified with respect to their

SM values. In particular, concerning the unphysical scalars, only the coupling of φ2u φ
2
1 is

modified, with a deformation that is related to the deformation of λ3.

In order to show that the result for the two-loop W self energy computed using V NP is

egual to the one obtained assuming an anomalous λ3 working in the unitary gauge, we have

– 6 –
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φ1 φ1
W W W WW W W W

W W W W W W

φ2, φ+ φ2, φ+

W W

φ1 φ1 φ1 φ1φ1 φ1 φ1 φ1

φ+
a) b) c) d)

Wφ+ φ+ φ+ φ+ φ+

φ+ φ+ φ+ φ+ φ2 φ2

γ, Z φ1, φ2 φ+

h)g)f )e)

Figure 2. Two-loop diagrams in the W self-energy, involving unphysical scalars where modified

couplings (black points) from V NP4φ appear. The dark blob represents the insertion of the relevant

one-loop self energy (see figure 3).

a1)

φ1

a2)a)

=
φ1 φ1 φ1 φ1 φ1+

φ2 φ+

;

b)

=
φ1

b1)

φ1

φ1

φ+

d)

=
φ+ φ+

φ1

φ+

d1)c)

=
φ2 φ2

φ1

φ2 φ2

c1)

;

Figure 3. One-loop self energy and tadpole diagrams that contain modified couplings with respect

to the SM.

to analyze the two-loop diagrams that are modified with respect to their SM result working

in a generic Rξ gauge. Besides the ones in figure 1, now computed in an Rξ gauge, the

diagrams containing unphysical scalars, shown in figure 2, should be taken into account. In

the latter figure the dark blob represents the insertion of the relevant one-loop self energy.

In figure 3 we show for the various self energies and the tadpole only the diagrams that

are modified with respect to their SM result due to the new scalar potential V NP . It easy

to show that the only non-vanishing contributions in figures 1a), 1d), 2a) come from the

insertion of diagram e1) in figure 1 plus its corresponding counterterm diagram while all

the other insertions being of the cactus type (see 1e2) and 3a)) are cancelled against the

corresponding Higgs mass counterterm diagrams. Furthermore the sum of diagrams 1a)

and 2a) is gauge invariant. Similarly one can prove that the sum of diagrams 1b), 1c), 2b),

and 2c), is gauge invariant.

To complete our proof about the equivalence of the two computations we have to show

that the additional contributions with respect to the SM results in the diagrams 2d)–2h)

– 7 –
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C1 C2

mW 6.27× 10−6 −1.72× 10−6

sin2 θlep
eff −1.56× 10−5 4.55× 10−6

Table 1. Values of the coefficients C1 and C2.

and in the corresponding counterterm diagrams must vanish. Diagram 2d) is automati-

cally zero, while in the remaining diagrams a self energy of an unphysical scalar is always

present. According to V NP
4φ the only modified contributions in the one-loop self energies

of the unphysical scalars are given by diagrams 3c1) and 3d1). To the contribution of dia-

grams 2e)–2h) with the insertion of 3c1) or 3d1) one has to add the counterterm diagrams.

The counterterm associated to the renormalization of the mass of an unphysical scalar

contains a term related to the mass of the corresponding vector boson plus a term that

is related to the renormalization of the vacuum. The former is not affected by our modi-

fied scalar potential. The latter, when v is identified with the minimum of the radiatively

corrected potential, is given by the tadpole contribution [45]. Then the only modified con-

tribution in the mass renormalization of the unphysical scalars is given by diagram 3b1).

Thus, the additional contributions with respect to the SM result in the diagrams 2e)-2h)

are exactly cancelled by the additional contributions in the unphysical scalar mass coun-

terterm diagrams. The key point in this cancellation is the fact that the modification in

the vertex with three physical Higgses and the one in the vertices containing two physical

and two unphysical Higgses are related by a factor 3/v as shown in eq. (3.6).

We have shown that in a theory with a scalar potential given by eq. (3.1) the two-

loop W self energy is modified with respect to its SM value by additional contributions

that are gauge-invariant. Then, one can directly compute them in the unitary gauge,

that corresponds to the computation with an anomalous λ3 once the identification κλ =

1 + 2v2/m2
H dλ3 is made.

4 Results

The analytic expressions for the contributions induced in ∆r̂
(2)
W and Y

(2)

MS
by an anoma-

lous λ3 are reported in the appendix. These contributions are going to modify the SM

predictions for mW and sin2 θlep
eff via eqs. (2.1)–(2.4).

Denoting as O either mW or sin2 θlep
eff one can write

O = OSM
[
1 + (κλ − 1)C1 + (κ2

λ − 1)C2

]
, (4.1)

with the values of the coefficients C1 and C2 reported in table 1.

Let us comment on the validity of eq. (4.1). At the two-loop level we are working, the

contributions induced by an anomalous Higgs trilinear coupling in the precision observables

are finite (see table 1 or the appendix), i.e. they are not sensitive to the NP scale Λ

associated with the modification of the potential. This situation is analogous to what

happens in single Higgs processes where new contributions induced by an anomalous λ3 at

– 8 –
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DΧ2

ggF+VBF

Mw+Sineff

ggF+VBF+Mw+Sineff
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ΚΛ
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0.4

0.6

0.8

1.0

p-value

Figure 4. Left: χ2 for the different sets of observables described in the text, the two horizontal

lines represent ∆χ2 = 1 and ∆χ2 = 3.84. Right: corresponding p-value, the horizontal line is

p = 0.05.

the NLO are also finite [29]. As in single Higgs processes if NNLO effects are considered, one

expects that at three or more loops the modified potential is going to induce contributions

not only proportional to λ3 but also to quartic, quintic etc. Higgs self interactions and

moreover these contributions will be sensitive to the NP scale.

The constraints on κλ we are going to derive below assume the validity of a perturbative

approach. Then, we expect any higher-order contribution to be subdominant with respect

to the effects we are computing. This implies that these higher-order contributions should

not contain any large amplifying factor related to the scale Λ, or equivalently that Λ cannot

be too far from the Electroweak scale. Furthermore, since at the three-loop level one expects

the anomalous contribution from the trilinear coupling to grow as κ4
λ, a restricted range of

κλ should also be imposed. Following ref. [29] we consider |κλ| . 20 as a range of validity

of our perturbative approach.

In order to set limits on κλ from the analysis of precision observables, we perform a

simplified fit. We define the best value of κλ as the one that minimizes the χ2(κλ) function

defined as

χ2(κλ) ≡
∑ (Oexp −Othe)

2

(δ)2
, (4.2)

where Oexp refers to the experimental measurement of the observable O, Othe is its theo-

retical value obtained from eq. (4.1) and δ is the total uncertainty, that we take as the sum

in quadrature of the experimental and theory errors. In order to ascertain the goodness of

our fit, we also compute the p-value as a function of κλ:

p-value(κλ) = 1− Fχ2
(n)

(χ2(κλ)) , (4.3)

where Fχ2
(n)

(χ2(κλ)) is the cumulative distribution function for a χ2 distribution with n

degrees of freedom, computed at χ2(κλ).

In the fit we consider not only the two precision observables but also the signal strength

parameter for single Higgs production in gluon fusion (ggF) and vector boson fusion (VBF).

The latter observables were indicated as the P2 set in ref. [29] where it was shown that

they were returning the most stringent bound on κλ. We then considered three set of data:
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• The P2 set in ref. [29]. The experimental results are presented in table 8 of ref. [5].

See ref. [29] for more details.

• The W mass and effective sine. For the W mass we use the latest result by the ATLAS

collaboration mW = 80.370± 0.019 GeV [46]. This number, although it has a slightly

larger uncertainty with respect to the world average mW = 80.385±0.015 GeV [47], it

is closer to the SM prediction mW = 80.357±0.009±0.003 where the errors refer to the

parametric and theoretical uncertainties [35]. Concerning the effective sine, we use the

average of the CDF [48] and D0 [49] combinations sin2 θlep
eff = 0.23185± 0.00035 [47],

to confront against the SM result sin2 θlep
eff = 0.23145±0.00012±0.00005, where again

the errors refer to parametric and theoretical uncertainties respectively [35, 50].

• The combination of these two sets of data.

The χ2(κλ) and p-value functions for the three sets are reported in figure 4. In partic-

ular for the combination we find

κbest
λ = 0.5 , κ1σ

λ = [−4.7, 8.9] , κ2σ
λ = [−8.2, 13.7] , (4.4)

where the κbest
λ is the best value and κ1σ

λ , κ2σ
λ are respectively the 1σ and 2σ intervals. We

identified the 1σ and 2σ intervals assuming a χ2 distribution. The comparison between the

numbers in eq. (4.4) and the corresponding ones for the ggF+VBF case [29], namely

κbest
λ = −0.24 , κ1σ

λ = [−5.6, 11.2] , κ2σ
λ = [−9.4, 17.0] (P2 set), (4.5)

shows that the inclusion of the precision observables reduces the allowed range for κλ.

Similarly, looking at the solid black line in the p-value part of figure 4, we can exclude at

more than 2σ models with κλ in the regions κλ < −13.3 and κλ > 20.0.

These results indicate that in the future, when more accurate measurements will be

available, the combination on mW and sin2 θlep
eff with single Higgs processes could be very

powerful in constraining the allowed region for κλ, in particular the region of positive κλ.

5 Conclusions

In this work we have discussed how the predictions of the W boson mass and the effec-

tive sine are affected by loops featuring an anomalous trilinear Higgs coupling. Following

ref. [29] we have chosen to present our results in the contest of the κ-framework, parametris-

ing the effect of NP at the weak scale via a single parameter, κλ, i.e. the rescaling of the SM

Higgs trilinear coupling. Indeed, given a generic scalar potential constructed using only

the Higgs doublet field, at the two-loop level these precision observables are only sensitive

to the modification of the trilinear Higgs coupling. As in ref. [29] we worked in the unitary

gauge to easily identify the effects we were looking for. We proved that the latter choice

is just a technical trick and does not introduce any gauge-dependent issues. In fact, we

have explicitly shown that our approach is equivalent, to the order we were working, to

an analysis of mW and sin2 θlep
eff in a generic Rξ gauge performed in a theory described by
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a SM Lagrangian in which the scalar potential is modified by the addition of an (in)finite

tower of (Φ†Φ)n terms.

Concerning this scalar potential, one important point to remark is the fact that we

did not make any assumption on the size of the coefficients of the various terms in the

potential, so that in principle we do not have a priori any restriction on κλ, apart from

the requirement of perturbativity. This is at variance with an EFT approach based on

the addition to the SM Lagrangian of a dimension six (Φ†Φ)3 term [30, 31] where the

requirement of v being a global minimum constraints κλ < 3 [51, 52].

However, in order to keep under control higher-order effects induced by quartic, quintic

etc. Higgs self interaction some relations among the c2n coefficients in the potential should

be assumed. In particular, either one assumes that c2n exhibit a scaling with the order

n so that the couplings of the interactions with a large number of φ1 do not grow (as an

example dλ4 does not become larger than dλ3, see eqs. (3.7), (3.8)) or that the various c2n

are related to each other enforcing cancellations among the various terms in the potential.

As we said a theory with a modified trilinear coupling is expected to be valid up

to a scale Λ that cannot be too far from the Electroweak scale. An estimate of Λ can be

obtained by looking when perturbative unitarity is lost in processes like e.g. the annihilation

of longitudinal vector bosons into n Higgs bosons, VLVL → nφ1 [53]. A preliminary study

on this subject indicates that Λ ∼ 1− 3 TeV [54].

We have estimated the sensitivity of mW and sin2 θlep
eff to an anomalous trilinear cou-

pling via a one-parameter fit. We have also shown that when the analysis of the precision

observables is combined with the one from single Higgs inclusive measurements at the LHC

8 TeV, a restricted range of allowed κλ is found. The range found is actually competitive

with the present bounds obtained from the direct searches of Higgs pair production.
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A Anomalous contributions in ∆r̂
(2)
W and Y

(2)

MS

Here we give the analytic expressions for the additional contributions induced in ∆r̂
(2)
W and

Y
(2)

MS
by an anomalous λ3. In the formulae below

ζW =
m2
H

m2
W

, ln(x) = log

(
x

µ

)
, (A.1)

with µ the ’t-Hooft mass scale. We find for the κλ contributions

∆r̂
(2,κλ)
W =

(
α̂

4πs2

)2{[ 1

64
ζW
(
−12ζ2

W + 49ζW + 18
)

+ ζW
4ζ2

W − 7ζW + 6

16 (ζW − 1)
ln
(
m2
W

)
+

(
10− 13ζW
16 (ζW − 1)

ζ2
W +

−2ζ4
W + 9ζ3

W − 46ζW + 60

32 (ζW − 1)2 ζW ln
(
m2
W

))
ln
(
m2
H

)
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+
2ζ4

W − 9ζ3
W + 46ζW − 60

64 (ζW − 1)2 ζW ln
(
m2
W

)2
+3

2ζ4
W − 3ζ3

W − 4ζ2
W + 18ζW − 20

64 (ζW − 1)2 ζW ln
(
m2
H

)2
+

(
1

8

(
ζ2
W − 3ζW − 2

)
ζW +

1

8
(ζW − 2) ζW ln

(
m2
W

)
−1

8
(ζW − 2) ζ2

W ln
(
m2
H

))
B0

(
m2
W ,m

2
H ,m

2
W

)
+

1

8
(ζW − 2) ζWB0

(
m2
W ,m

2
H ,m

2
W

)2
+
ζW − 2

8m2
W

ζWS0

(
m2
W ,m

2
W ,m

2
H ,m

2
H

)
−1

2
(ζW − 1) ζ2

WT0

(
m2
W ,m

2
H ,m

2
W ,m

2
H

)
+

1

4
(ζW − 2) ζWU0

(
m2
W ,m

2
H ,m

2
W ,m

2
H ,m

2
W

)
−1

8
ζW
(
ζ2
W + ζW − 6

)
U0

(
m2
W ,m

2
W ,m

2
H ,m

2
H ,m

2
H

)
+

1

16
m2
H

(
ζ3
W − 12ζW + 24

)
M0

(
m2
W ,m

2
H ,m

2
H ,m

2
W ,m

2
W ,m

2
H

)
+3
−2ζ3

W + ζ2
W + 4ζW + 24

64 (ζW − 1)2 ζ2
Wφ

(
1

4

)
+ 3

4ζ2
W − 41ζW + 10

32 (ζW − 1)2 ζWφ

(
1

4ζW

)
−
ζW
(
2ζ4

W − 13ζ3
W + 18ζ2

W + 40ζW − 128
)

64 (ζW − 1)2 φ

(
ζW
4

)]
κλ

+

[(−476ζ4
W + 2403ζ3

W − 4995ζ2
W + 1652ζW + 120

)
256 (ζW − 4) (ζW − 1)

ζW

+3
(ζ4
W − 6ζ3

W + 39ζ2
W − 100ζW + 12

32 (ζW − 4) (ζW − 1)2 ζW ln
(
m2
W

)
+9

(
5ζ4

W − 31ζ3
W + 80ζ2

W − 84ζW + 48

32 (ζW − 4) (ζW − 1)2 ζ2
W −

27ζ2
W

32 (ζW − 1)2 ln
(
m2
W

))
ln
(
m2
H

)
−3

7ζ4
W − 45ζ3

W + 117ζ2
W − 145ζW + 120

64 (ζW − 4) (ζW − 1)2 ζ2
W ln

(
m2
H

)2
+

(
1

32
ζW
(
ζ2
W − 4ζW + 12

)
− 1

16
ζW
(
ζ2
W − 4ζW + 12

)
ln
(
m2
H

)
−9

(ζW − 2)3

32 (ζW − 4)
ζWB0

(
m2
H ,m

2
H ,m

2
H

))
B0

(
m2
W ,m

2
H ,m

2
W

)
+

(
9

2ζ4
W − 13ζ3

W + 33ζ2
W − 36ζW + 32

64 (ζW − 4) (ζW − 1)
ζW

+9
ζ4
W − 6ζ3

W + 14ζ2
W − 8ζW + 8

32 (ζW − 4) (ζW − 1)2 ζW ln
(
m2
W

)
−9

ζ4
W − 7ζ3

W + 19ζ2
W − 24ζW + 20

32 (ζW − 4) (ζW − 1)2 ζ2
W ln

(
m2
H

))
B0

(
m2
H ,m

2
H ,m

2
H

)
+9

ζ2
W − 4ζW + 8

32m2
W (ζW − 4)

ζWS0

(
m2
W ,m

2
W ,m

2
H ,m

2
H

)
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−ζ
3
W − 5ζ2

W + 16ζW − 12

4 (ζW − 4)
ζWT0

(
m2
W ,m

2
H ,m

2
W ,m

2
H

)
+

7ζ3
W − 38ζ2

W + 52ζW + 24

32 (ζW − 4)
ζWU0

(
m2
W ,m

2
W ,m

2
H ,m

2
H ,m

2
H

)
+3

7ζ4
W − 45ζ3

W + 99ζ2
W − 64ζW + 84

64 (ζW − 4) (ζW − 1)2 ζ2
Wφ

(
1

4

)
+27

4ζW − 1

64 (ζW − 1)2 ζ
2
Wφ

(
1

4ζW

)]
κ2
λ

}
, (A.2)

Y
(2,κλ)

MS
=

(
α̂

4πs2

)2{[
f1

(
m2
H

m2
W

)
− 1

c4
f1

(
m2
H

m2
Z

)]
κλ+

[
f2

(
m2
H

m2
W

)
− 1

c4
f2

(
m2
H

m2
Z

)]
κ2
λ

}
,

(A.3)

where we have defined the functions f1, f2 as

f1(ζ ≡ m2
H/m

2) =
1

32

[
−
(
6ζ2 − 11ζ − 15

)
ζ + 4(2ζ − 3)ζln

(
m2
)

+ (ζ − 4)ζ2ln
(
m2
)2

−2

(
10ζ2 + (ζ − 4)ζ2ln

(
m2
))

ln
(
m2
H

)
+ 3ζ3ln

(
m2
H

)2
+4

(
− 2− 3ζ + ζ2 + (ζ − 2)ln

(
m2
)

−(ζ − 2)ζln
(
m2
H

))
ζB0

(
m2,m2

H ,m
2
)

+4(ζ − 2)ζB0

(
m2,m2

H ,m
2
)2

+ 4(ζ − 2)
ζ2

m2
H

S0

(
m2,m2,m2

H ,m
2
H

)
−16(ζ − 1)ζ2T0

(
m2,m2

H ,m
2,m2

H

)
+8(ζ − 2)ζU0

(
m2,m2

H ,m
2,m2

H ,m
2
)

−4
(
ζ2 + ζ − 6

)
ζU0

(
m2,m2,m2

H ,m
2
H ,m

2
H

)
+2
(
ζ3 − 12ζ + 24

)
m2
HM0

(
m2,m2

H ,m
2
H ,m

2,m2,m2
H

)
−3ζ3φ

(
1

4

)
− (ζ − 4)(ζ − 2)ζφ

(
ζ

4

)]
, (A.4)

f2(ζ ≡ m2
H/m

2) =
1

128

[
−
(
238ζ3 − 941ζ2 + 1660ζ + 60

)
ζ

ζ − 4
+

12
(
ζ2 − 4ζ + 12

)
ζ

ζ − 4
ln
(
m2
)

+36
5ζ2 − 20ζ + 32

ζ − 4
ζ2ln

(
m2
H

)
− 6

7ζ2 − 28ζ + 36

ζ − 4
ζ2ln

(
m2
H

)2
+36

(
ζ3 − 5ζ2 + 12ζ − 16

ζ − 4
ζ +

ζ2 − 4ζ + 8

ζ − 4
ζln
(
m2
)

−(ζ − 2)2

ζ − 4
ζ2ln

(
m2
H

)
− (ζ − 2)3

ζ − 4
ζB0

(
m2,m2

H ,m
2
))

B0

(
m2
H ,m

2
H ,m

2
H

)
+4
(
ζ2 − 4ζ + 12

)(
1− 2ln

(
m2
H

))
ζB0

(
m2,m2

H ,m
2
)

– 13 –



J
H
E
P
0
4
(
2
0
1
7
)
1
5
5

+36
ζ2 − 4ζ + 8

m2
H(ζ − 4)

ζ2S0

(
m2,m2,m2

H ,m
2
H

)
−32

ζ3 − 5ζ2 + 16ζ − 12

ζ − 4
ζT0

(
m2,m2

H ,m
2,m2

H

)
+4

7ζ3 − 38ζ2 + 52ζ + 24

ζ − 4
ζU0

(
m2,m2,m2

H ,m
2
H ,m

2
H

)
+6

7ζ2 − 28ζ + 36

ζ − 4
ζ2φ

(
1

4

)]
. (A.5)

In eqs. (A.2)–(A.5)

φ (x) = 4

√
x

1− x
Im(Li2(ei2 arcsin(

√
x))) , (A.6)

and, following refs. [43, 44], we define the d-dimensional functions

B0(s, x, y) = lim
ε→0

[
B(s, x, y)− 1

ε

]
= −

∫ 1

0
dtln[tx+ (1− t)y − t(1− t)s] , (A.7)

S0(s, x, y, z) = lim
ε→0

[
S(s, x, y, z) +

x+ y + z

2ε2

+
s
2 − x− y − z

2ε
− A(x) +A(y) +A(z)

ε

]
, (A.8)

T0(s, x, y, z) = − ∂

∂x
S0(s, x, y, z) , (A.9)

U0(s, x, y, z, u) = lim
ε→0

[
U(s, x, y, z, u) +

1

2ε2
− 1

2ε
− B(s, x, y)

ε

]
, (A.10)

M0(s, x, y, z, u, v) = lim
ε→0

[M(s, x, y, z, u, v)] , (A.11)

with d = 4− 2ε and

A(x) = −i(2πµ)2ε

π2

∫
ddk1(
k2

1 − x
) , (A.12)

B(s, x, y) = −i(2πµ)2ε

π2

∫
ddk1(

k2
1 − x

)(
k2

3 − y
) , (A.13)

S(s, x, y, z) = −
(

(2πµ)2ε

π2

)2 ∫ ∫
ddk1d

dk2(
k2

1 − x
)(
k2

5 − y
)(
k2

4 − z
) , (A.14)

U(s, x, y, z, u) = −
(

(2πµ)2ε

π2

)2 ∫ ∫
ddk1d

dk2(
k2

5 − u
)(
k2

2 − x
)(
k2

3 − z
)(
k2

4 − y
) , (A.15)

M(s, x, y, z, u, v) = −
(

(2πµ)2ε

π2

)2 ∫ ∫
ddk1d

dk2(
k2

1 − x
)(
k2

2 − y
)(
k2

3 − z
)(
k2

4 − u
)(
k2

5 − v
) ,

(A.16)

where we introduced the notation

k3 = k1 − p , k4 = k2 − p , k5 = k1 − k2 , (A.17)

with p2 = s.
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