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Abstract. This review article shows that the occurrence of

macroscopic flow configuration is a universal natural phe-

nomenon that can be explained and predicted on the basis of

a principle of physics (the constructal law): “For a flow sys-

tem to persist in time (to survive) it must evolve in such a

way that it provides easier and easier access to the currents

that flow through it”. The examples given in this article come

from natural inanimate flow systems with configuration: duct

cross-sections, open channel cross-sections, tree-shaped flow

architectures, and turbulent flow structure (e.g., eddies, lami-

nar lengths before transition). Other examples that are treated

in the literature, and which support the constructal law, are

the wedge-shape of turbulent shear layers, jets and plumes,

the frequency of vortex shedding, Bénard convection in fluids

and fluid-saturated porous media, dendritic solidification, the

coalescence of solid parcels suspended in a flow, global at-

mospheric and oceanic circulation and climate, and virtually

all architectural features of animal design. The constructal

law stresses the importance of reserving a place for pure the-

ory in research, and for constantly searching for new physics

– new summarizing principles that are general, hence useful.

1 The constructal law

Why is geometry (shape, structure, similarity) a characteris-

tic of natural flow systems? What is the basis for the hierar-

chy, complexity and rhythm of natural structures? Is there a

single physics principle from which form and rhythm can be

deduced, without any use of empiricism?

There is such a principle, and it is based on the common

(universal) observation that if a flow system is endowed with

sufficient freedom to change its configuration, then the sys-

tem exhibits configurations that provide progressively better

Correspondence to: A. Bejan

(abejan@duke.edu)

access routes for the currents that flow. Observations of this

kind come in the billions, and they mean one thing: a time

arrow is associated with the sequence of flow configurations

that constitutes the existence of the system. Existing draw-

ings are replaced by easier flowing drawings.

I formulated this principle in 1996 as the “constructal law”

of the generation of flow configuration (Bejan, 1996, 1997a–

d):

“For a flow system to persist in time (to survive) it must

evolve in such a way that it provides easier and easier access

to the currents that flow through it”.

This law is the basis for the “constructal theory” of the

generation of flow configuration in nature, which was de-

scribed in book form in Bejan (1997d). Today this entire

body of work represents a new extension of thermodynam-

ics: the thermodynamics of flow systems with configuration

(Bejan, 2000; Bejan and Lorente, 2004, 2005; Lewins, 2003;

Poirier, 2003; Rosa et al., 2004; Torre, 2004).

To see why the constructal law is a law of physics, ask

why the constructal law is different than (i.e. distinct from, or

complementary to) the other laws of thermodynamics. Think

of an isolated thermodynamic system that is initially in a

state of internal nonuniformity (e.g. regions of higher and

lower pressures or temperature, separated by internal parti-

tions that suddenly break). The first law and the second law

account for billions of observations that describe a tendency

in time, a “time arrow”: if enough time passes, the isolated

system settles into a state of equilibrium (no internal flows,

maximum entropy at constant energy). The first law and sec-

ond law speak of a black box. They say nothing about the

configurations (the drawings) of the things that flow.

Classical thermodynamics was not concerned with the

configurations of its nonequilibrium (flow) systems. It

should have been. “The generation of flow configuration in

time” is physics (a natural phenomenon) and it belongs in

thermodynamics.
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This tendency, this time sequence of drawings that the flow

system exhibits as it evolves, is the phenomenon covered by

the constructal law. Not the drawings per se, but the time

direction in which they morph if given freedom. No config-

uration in nature is “predetermined” or “destined” to be or

to become a particular image. No one can say that the time

sequence of configurations required by the constructal law

should end with “this particular drawing”. The actual evo-

lution or lack of evolution (rigidity) of the drawing depends

on many factors, which are mostly random, as we will see in

Fig. 8. One cannot count on having the freedom to morph in

peace (undisturbed).

The same can be said about the second law. No isolated

system in nature is “predetermined” or “destined” to end up

in a state of uniform intensive properties so that all future

flows are ruled out. One cannot count on the removal of all

the internal constraints. One can count even less on anything

being left in peace, in isolation.

As a thought, the second law does proclaim the existence

of a concept: the equilibrium in an isolated system, at suffi-

ciently long times when all internal constraints have been re-

moved. Likewise, the constructal law proclaims the existence

of a concept: the “equilibrium flow architecture”, which is

defined as the configuration where all possibilities of increas-

ing morphing freedom and flow access have been exhausted

(Bejan and Lorente, 2004, 2005; Bejan, 2006).

Constructal theory is now a fast growing field with con-

tributions from many sources, and with leads in many direc-

tions. This body of work has two main parts. The first is

the focus of this review article: the use of the constructal

law to predict and explain the occurrence of flow patterns in

nature. The second part is the application of the constructal

law as a scientific (physics) principle in engineering design.

This activity of “design as science” is reviewed in Bejan et

al. (2004), Bejan (2004, 2006) and Nield and Bejan (2006).

2 Background

Another way to delineate the place occupied by the construc-

tal law in physics is by reviewing briefly some of the older

and contemporary ideas that have been offered to shed light

on the origin of flow configuration in nature. Extensive re-

views of this body of thinking are provided in the first two

books on the constructal law (Bejan, 1997d, 2000). In this

section I focus only on the work that has emerged in geo-

physics, which is relevant in hydrology.

In brief, the development of science has shown that on nu-

merous occasions scientists have considered as obvious the

statement that “nature optimizes things”. They based great

discoveries on this intuitive feeling (from Heron of Alexan-

dria and Pierre de Fermat in the propagation of light, to Pal-

tridge, 1975, in global circulation and climate), and they did

this “illegally” because a law of optimization (objective, final

form) does not exist in physics.

This mental viewing was expressed in mathematical terms

in the 1700s by the creators of variational calculus (Euler,

Maupertuis, Leibnitz, Lagrange and others). Mathematics is

the most powerful language in science, and language exists

to facilitate and influence thinking. This is why the work

that came after variational calculus has abandoned the search

for optimal drawing (e.g. Heron, Fermat) and adopted instead

the variational calculus paradigm: the search has been for the

right global quantity (functional), which can be minimized or

maximized by selecting the very special “optimal” function

(the destined shape).

Ad-hoc invocations of “optimality” have been many, and

their diversity is due to how one selected the system and

the global quantity that was minimized or maximized. Two

choices (classes) of ad-hoc optimality stand out:

MEP: entropy production, or maximum dissipation (e.g.,

Paltridge, 1975; North, 1981; Lin, 1982; Lorentz et al., 2001;

Dewar, 2003).

EGM: Entropy generation minimization, or minimum

pumping power, minimum work, minimum cost (e.g., Hess,

1913; Murray, 1926; Thompson, 1942; Bejan, 1982, 1996;

Rodriguez-Iturbe and Rinaldo, 1997; Weibel, 2000).

All this ad-hoc work is important, taken by itself, or dis-

cussed along with the constructal law. It is important because

it has been successful, over and over again. My earliest work

was also of this kind, intuitive and ad-hoc: e.g., the predic-

tion of transition to turbulence in all flow configurations by

maximizing the rate of momentum transport (mixing) per-

pendicular to the shear flow (Bejan, 1982), and the predic-

tion of the hair strand diameters and porosities of animal hair

(fur) by minimizing the rate of body heat loss (Nield and Be-

jan, 1992; Bejan, 1993). Paltridge’s work was preceded by

the ad-hoc hypothesis of Malkus (1954), according to which

the pattern of cells in Bénard convection is such that it max-

imizes the overall Nusselt number.

Ad-hoc invocations of an intuitively appealing idea did not

make the idea universal enough to elevate it to the rank of

law. The minimization of body heat loss is not the same as

the maximization of mixing. The minimization of dissipation

(EGM above) is even worse – it is the exact opposite of the

maximization of dissipation (MEP above). At best, intuition

is capricious, if not loaded with contradictions.

For science, the ad-hoc approaches have been divisive,

not unifying. Maximum dissipation (MEP) appears to work

in large-scale geophysical and other planetary flows. These

are natural “inanimate” flow systems. Minimum dissipation

(EGM), or maximum thermodynamic performance, is taken

as obvious in animal design, engineering and social organi-

zation. These are “animate” flow systems. Why is there such

disagreement between the animate and the inanimate? This

should have been treated as a big question, after all, the an-

imate and the inanimate obey all the laws of physics (e.g.,

F=ma). Lack of universality means that MEP and EGM are

not laws of physics.
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Confusing the debate even more is the modern use of the

word “entropy” to express the ad-hoc invocations of opti-

mization in nature (note the E in MEP and EGM). Entropy is

the thermodynamic property for which the second law serves

as definition (in the same way that energy is the thermody-

namic property defined based on the first law, and tempera-

ture is the property defined by the zeroth law; see e.g. Bejan,

1997d, chapters 1 and 2). The use of “entropy” in this discus-

sion has perpetuated the view that, somehow, the second law

accounts for the phenomenon of organization in nature. This

is why we read that “order” can be derived from the second

law (Swenson, 1989), that MEP can be deduced from ex-

isting principles (Dewar, 2003) and that “maximum entropy

production is an organizational principle that potentially uni-

fies biological and physical processes” (Dewar, quoted in

Whitfield, 2005, which makes no sense because it is the op-

posite of what governs biological motors and our engines).

And even if such claims were correct, then the derived state-

ment (e.g. MEP) is at best a theorem, not a self-standing law.

Compared with the intuitive approaches reviewed above,

the constructal law stands out in many important respects.

The constructal law is not about a universal function, min-

imization, maximization, or optimal solution, and it is cer-

tainly not about entropy and the second law. The construc-

tal law is about a previously overlooked phenomenon of all

physics (the generation of flow configuration in time), and

the time arrow of this phenomenon. The law is the universal

observation that in time existing flow configurations are re-

placed by configurations that provide greater (easier, faster)

access to the currents that flow.

Said another way, the constructal law is the statement

that makes the time evolution of design (drawing) a prin-

ciple of all physics. That I called it a law in 1996 was not

a claim, but a proposal. Time will tell whether this pro-

posal has merit, and time has been telling. Since 1996,

more and more work is showing that the constructal law

is in agreement with physical observations. Some of this

work is reviewed here in Sects. 3–7, in Bejan (2006) and

at http://www.constructal.org. Even more, when examined

from the perspective of the constructal law, all the published

success with ad-hoc intuitive statements such as MEP and

EGM contributes enormous and independent support for the

constuctal law. Everything now fits under one theoretical

tent, all of design in nature, the animate and the inanimate,

even the apparent contradiction between maximization of

dissipation (MEP) and minimization of dissipation (EGM)

(this most recent step of unification is explained in detail in

the constructal theory of global circulation and climate re-

ported by Reis and Bejan, 2006; see also Bejan, 2006).

The apparent overlap between the conceptual domain of

constructal theory and optimality invocations is the source

of the opposition expressed by three of the reviewers of this

article. The fact is that the constructal law and ad-hoc op-

timality are two different mental viewings. An example of

overlap is given in the last two paragraphs of Sect. 6. Another

example is the constructal law of 1996 versus the model of

West et al. (1997) consisting of dendritic flows, to account

for allometric laws in animal design. Leaving aside the ma-

jor difference between the two approaches (namely, model-

ing (making a copy/facsimile of nature) is empiricism, not

theory), note that the model of West et al. is based on at least

three ad hoc assumptions:

1. There is a “space-filling fractal-like branching pattern”

(read: tree).

2. The final branch of the network is a size-invariant unit.

3. The energy required to distribute resources is mini-

mized.

These three features were already present in 1996 constructal

theory, not as convenient assumptions to polish a model and

make it work but as invocations of a single principle: the

constructal law. West and Brown (2005) acknowledged the

overlap. Specifically, feature 3 is covered by the constructal

law, feature 1 is the tree-flow architecture that in constructal

theory is deduced from the constructal law, and feature 2 is

the smallest-element scale that is fixed in all the constructal

tree architectures. To repeat, in constructal theory the tree-

shaped flow is a discovery, not an observation and not an

assumption.

Because features 1 to 3 are shared by constructal theory

and by the model of West et al., every single allometric law

that West et al. connect to their model is an affirmation of

the validity of constructal theory. Every success of construc-

tal theory in domains well beyond the reach of their model

(e.g., river basins, flight, running, swimming, dendritic so-

lidification, global circulation, mud cracks) is an indication

that animal design is an integral part of a general theoretical

framework – a new thermodynamics – that unites biology

with physics and engineering.

3 Natural flow configurations

There are several classes of natural flow configurations, and

each class can be derived from the constructal law in sev-

eral ways: analytically (pencil & paper), based on numerical

simulations of morphing flow structures, approximately or

more accurately, blindly (e.g. random search) or using strat-

egy (shortcuts, memory), etc. How to deduce a class of flow

configurations by invoking the constructal law is a thought

that should not be confused with the constructal law. “How

to deduce” is an expression of the researcher’s freedom to

choose the method of investigation (Bejan, 2004, p. 58). The

constructal law statement is general: it does not use words

such as tree, complex vs. simple, optimal vs. suboptimal, and

natural vs. engineered.

Classes of flow configurations that our group (at Duke

and abroad) has treated in detail are duct cross-sectional
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low viscosity
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viscosity

time,
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Fig. 1. The evolution of the cross-sectional configuration of a

stream composed of two liquids, low viscosity and high viscosity.

In time, the low viscosity liquid coats all the walls, and the high

viscosity liquid migrates toward the center. This tendency of “self-

lubrication” is the action of the constructal law of the generation of

flow configuration in geophysics (e.g. volcanic discharges, drawn

after Carrigan, 1994) and in many biological systems.

shapes, river cross-sectional shapes, internal spacings, turbu-

lent flow structure, animal movement, physiological on and

off flows, tree-shaped architectures, dendritic solidification

(snowflakes), Bénard convection and global circulation and

climate. In this paper I review some of the main features and

theoretical conclusions. More detailed accounts of these re-

sults and the body of literature that preceded it was given in

my books (Bejan, 1997d, 2000, 2006).

4 Duct cross-sections

Blood vessels and pulmonary airways have round cross-

sections. Subterranean rivers, volcanic discharges, earth

worms and ants carve galleries that have round cross-

sections. These many phenomena of flow configuration gen-

eration have been reasoned (Bejan, 1997d) by invoking the

constructal law for the individual duct, or for the flow sys-

tem (6) that incorporates the duct. If the duct has a finite

size (fixed cross-sectional area A) and the freedom to change

its cross-sectional shape, then, in time, the shape will evolve

such that the stream that flows through the duct flows with

less resistance. If the system (6) is isolated and consists

of the duct and the two pressure reservoirs connected to the

ends of the duct, then the duct architecture will evolve such

that the entire system reaches equilibrium (no flow, uniform

pressure) faster.

The duct cross-section evolves in time toward the round

shape. This evolution cannot be witnessed in blood vessels

and bronchial passages because our observation time scale

(lifetime) is too short in comparison with the time scale of

the evolution of a living system. The morphing of a round

gallery can be observed during erosion processes in soil, fol-

lowing a sudden rainfall. It can be observed in the evolution

of a volcanic lava conduit, where lava with lower viscosity

coats the wall of the conduit, and lava with higher viscosity

positions itself near the central part of the cross-section (Car-

rigan and Eichelberger, 1990; Carrigan, 1994). To have it the

other way – high viscosity on the periphery and low viscosity

in the center – would be a violation of the constructal law.

Additional support for the constructal law is provided by

laboratory simulations of lava flow with high-viscosity in-

trusions (Fig. 1). Initially, the intrusion has a flat cross-

section, and is positioned near the wall of the conduit. In

time, i.e. downstream, the intrusion not only migrates to-

ward the center of the cross-section but also develops a round

cross-section of its own.

This tendency matches what is universally observed when

a jet (laminar or turbulent) is injected into a fluid reservoir.

If the jet initially has a flat cross-section, then further down-

stream it develops into one or more thicker jets with round

cross-sections. The opposite trend is not observed: a round

jet does not evolve into a flat jet.

The superiority of the round shape relative to other

shapes is an important aspect the generalization of which

has become a new addition to the thermodynamics of

nonequilibrium systems: the “thermodynamics of systems

with configuration” (Bejan and Lorente, 2004, 2005; Bejan,

2006).

For example, if the duct is straight and the perimeter of

the fixed-A cross-section is p (variable), then the pressure

drop (1P ) per unit length (1L) is 1P/1L=(2f/Dh)ρV 2,

where Dh=4A/p, V is the mean fluid velocity (ṁ/ρA, fixed)

and f is the friction factor. If the flow regime is laminar and

fully developed, then f =Po/Re, where Re=DhV/ν, the kine-

matic viscosity is ν, and Po is a factor that depends solely

on the shape of the cross-section. For example, Po=16 for

a round cross-section with Poiseuille flow through it. For a

very flat rectangular cross-section, Po is 24. The duct flow

resistance is

1P/1L

ṁ
=

ν

8A2

(

Po
p2

A

)

(1)

where the group in parentheses depends only on the shape of

the cross-section. This group governs the morphing direction

in time.

Table 1 shows the values of the group (Po p2/A) for sev-

eral regular polygonal cross sections. Even though the round

shape is the best, the nearly round shapes perform almost as

well. For example, the relative change in p2 Po/A from the

hexagon to the circle is only 3.7 percent. Square ducts have

a flow resistance that is only 9.1 percent greater than that of

hexagonal ducts.

Even if the duct cross-section is imperfect – that is, with

features such as angles between flat spots, which concentrate

fluid friction – its performance is nearly as good as it can be.

Diversity (several near-optimal shapes) goes with the con-

structal law, not against it. Furthermore, the ceiling of per-

formance of all the possible cross-sections can be predicted

quite accurately when the global constraints (A, ṁ) are spec-

ified.
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Table 1. The laminar flow resistances of ducts with regular polygo-

nal cross sections with n sides (Bejan, 1997d).

n Po p/A1/2 p2Po/A

3 13.33 4.559 277.1

4 14.23 4 227.6

6 15.054 3.722 208.6

8 15.412 3.641 204.3

∞ 16 2π1/2 201.1

5 Open channel cross-sections

The conclusions reached above also hold for turbulent flow

through a duct, in which the global flow resistance is more

closely proportional to p2/A, not Po p2/A. This is rel-

evant to understanding why there is a proportionality be-

tween width (W ) and maximum depth (d) in rivers of all

sizes (Leopold et al., 1964; Scheidegger, 1970). Because

of the high Reynolds number and the roughness of the river

bed, the skin friction coefficient Cf is essentially constant.

The longitudinal shear stress along the river bottom is fixed

(τ= 1
2

Cf ρV 2) because V =ṁ/ρA and the mass flow rate (ṁ)

and the river cross-sectional area (A) are fixed. The total

force per unit of channel length is p τ , where p is the wet-

ted (bottom) perimeter of the cross-section. This means that

the constructal law calls for cross-sectional shapes that have

smaller p values.

For example, if the cross-section is a rectangle of width

W and depth d, then p=W+2d , and A=Wd. The minimiza-

tion of p subject to A = constant yields (W/d)opt=2 and the

pmin/A value shown in Table 2. Other types of cross-sections

can be optimized, and the resulting shape and performance

are almost the same as for the rectangular case. The semicir-

cular shape is the best, but it is not best by much. Once again,

diversity of shapes on the podium of high performance is

consistent with the constructal law. What is indeed random,

because of local geological conditions (e.g. flat vs. curved

river bottoms), coexists with pattern: the optimized aspect

ratio and the minimized flow resistance pmin/A
1/2.

In Table 2, the two most extreme cases are separated by

only 12 percent in flow resistance. This high level of agree-

ment with regard to performance is very important. It ac-

counts for the significant scatter in the data on river bot-

tom profiles, if global performance is what matters, not lo-

cal shape. Again, this is in agreement with the new work on

drainage basins (e.g. Sect. 5), where the computer-optimized

(randomly generated) network looks like the many, never

identical networks seen in the field. There is uncertainty in

reproducing the many shapes that we see in Nature, but this

is not important. There is very little uncertainty in anticipat-

ing global characteristics such as performance and geometric

scaling laws (the ratio W/d in this case).

Table 2. Optimized cross-sectional shapes of open channels (Bejan,

1997d).

Cross-section (W/d)opt pmin/A1/2

Rectangle 2 2.828

Triangle 2 2.828

Parabola 2.056 2.561

Semicircle 2 2.507

Furthermore, in the optimal shape (half circle) the river

banks extend vertically downward into the water and are

likely to crumble under the influence of erosion (drag on par-

ticles) and gravity. This will decrease the slopes of the river

bed near the free surface and, depending on the bed material,

will increase the slenderness ratio W/d. The important point

is that there remains plenty of room for the empiricism-based

analyses of river bottoms proposed in geomorphology (Chor-

ley et al., 1984), in fact, their territory remains intact. They

complement constructal theory.

6 Tree-shaped flows

River basins and deltas, like the lungs and vascularized tis-

sues of animal design, and like the tissues of social design

and animal movement, are dendritic flow structures. The

observed similarities between geophysical trees and biolog-

ical trees have served as basis for empiricism: modeling in

both fields, and descriptive algorithms in fractal geometry.

In constructal theory, the thought process goes against the

time arrow of empiricism (Fig. 2): first, the constructal law

is invoked, and from it follows theoretically the deduced flow

architecture. Only later is the theoretical configuration com-

pared with natural phenomena, and the agreement between

the two validates the constructal law.

In constructal theory tree-shaped flows are not models

but solutions to fundamental access-maximization problems:

volume-point, area-point and line-point. Important is the ge-

ometric notion that the “volume”, the “area” and the “line”

represent infinities of points. The theoretical discovery of

trees in constructal theory stems from the decision to connect

one point (source or sink) with the infinity of points (volume,

area, line). It is the reality of the continuum (the infinity of

points) that is routinely discarded by modelers who approxi-

mate the flow space as a finite number of discrete points, and

then cover the space with “sticks”, which (of course) cover

the space incompletely (and, from this, fractal geometry).

Recognition of the continuum requires a study of the inter-

stitial spaces between the tree links. The interstices can only

be bathed by high-resistivity diffusion (an invisible, disorga-

nized flow), while the tree links serve as conduits or low-

resistivity organized flow (visible streams, ducts). Diffusion

www.hydrol-earth-syst-sci.net/11/753/2007/ Hydrol. Earth Syst. Sci., 11, 753–768, 2007
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Fig. 2. Constructal theory proceeds in time against empiricism or

copying from nature (Bejan, 2000).

is “disorganized” because the individuals that flow (fluid

packets, molecules, etc.) flow individually, by interacting

with their neighbors. Such individuals do not flow together.

It is the latter, those flowing together that are “visible”, as

streams (currents) on the background of flow covered by dif-

fusion. Diffusion does not have shape and structure. Stream

flow does.

The two modes of flowing with imperfection (with flow re-

sistance) – must be balanced so that together they contribute

minimum imperfection to the global flow architecture. The

flow architecture is the graphical expression of the balance

between links and their interstices. The deduced architecture

(tree, duct shape, spacing, etc.) is the optimal “distribution of

imperfection”. Those who model natural trees and then draw

the branches as black lines (while not optimizing the layout

of every black line on its allocated white patch) miss half of

the drawing. The white is as important as the black.

The discovery of constructal tree-shaped flow architec-

tures began with three approaches, two of which are reviewed

here. The first was an analytical short cut Bejan (1996,

1997b, c) based on several simplifying assumptions: 90◦ an-

gles between stem and tributaries, a construction sequence

in which smaller optimized constructs are retained, constant-

thickness branches, etc. At the same time, we considered the

A
0

u

v

v

D
0

D
0

0m =m A′′& &

m′′&

L
0

H
0

yPΔ

xΔP

≈

Fig. 3. Elemental area of a river basin viewed from above: seepage

with high resistivity (Darcy flow) proceeds vertically, and channel

flow with low resistivity proceeds horizontally. Rain falls uniformly

over the rectangular area A0=H0L0. The flow from the area to the

point (sink) encounters minimum global resistance when the shape

H0/L0 is optimized. The generation of geometry is the mechanism

by which the area-point flow system assures its persistence in time,

its survival.

same problem (Ledezma et al., 1997) numerically by aban-

doning most of the simplifying assumptions (e.g., the con-

struction sequence) used in the first papers. The third ap-

proach was fully numerical (Bejan and Errera, 1998) in an

area-point flow domain with random low-resistivity blocks

embedded in a high-resistivity background, by using the lan-

guage of Darcy flow (permeability, instead of thermal con-

ductivity and resistivity). Along the way, we found better

performance and “more natural looking” trees as we pro-

gressed in time; that is as we endowed the flow structure with

more freedom to morph.

The first approach is illustrated in Fig. 3. The “elemental”

area of a river basin (A0=H0L0) is the area allocated to the

smallest rivulet (length L0, width D0, depth scale Z, where,

as shown in Sect. 4, Z scales with D0. Rain falls uniformly

on A0 with the mass flow rate ṁ′′
[

kg s−1m−2
]

. Constructal

theory predicts an optimal allocation of area to each channel:

there is an optimal elemental shape H0/L0 such that the total

flow rate
(

ṁ′′A0

)

collected on A0 escapes with least global

flow resistance from A0 through one port on its periphery.

For example, if the water seepage through the wet banks

(perpendicular to the rivulet) is in the Darcy flow regime,

then the pressure (or elevation) difference that derives the

seepage velocity v is of order 1Py∼vµH0/K , where K is

the permeability of the porous medium. If the rivulet flow

is in the Poiseuille regime, then the pressure (or elevation)

drop along the L0 rivulet is of order 1Px∼uµL0/D
2
0 . Here

u is the mean fluid velocity along L0. These equations can

be combined to conclude that the overall pressure difference

that drives the area-point flow is

1Px + 1Py ∼ ṁν

(

L0

D2
0

+
H0

KL0 D0

)

(2)
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Fig. 4. Constructal sequence of assembly and optimization, from

the optimized elemental area (A0, Fig. 3) to progressively larger

area-point flows.

The derivation of Eq. (2) is detailed in Bejan (1997d, 2000).

This expression can be minimized with respect to the shape

of the area element, and the result is

(

L0

H0

)

opt

∼

(

φ0
A0

K

)1/3

(3)

where φ0 is the area fraction occupied by the rivulet on the

flow map, φ0=D0L0/H0L0≪1. When the area element has

optimal shape, 1Py is of the same order as 1Px . This is a

frequent occurrence in the maximization of area-point flow

access: the optimal partitioning of the driving force between

the two flow mechanisms is synonymous with the optimiza-

tion of area geometry (Lewins, 2003).

The optimized area element becomes a building block with

which larger rain plains can be covered. The elements are

assembled and connected into progressively larger area con-

structs, in a sequence of assembly with optimization at every

step. During this sequence, the river channels form a tree

architecture in which every geometric detail is deduced, not

assumed. The construction is illustrated in Fig. 4, and in

the current literature (Neagu and Bejan, 1999; Lundell et al.,

2004; Kockman et al., 2005). For river basins with constant-

Cf turbulent flow, the constructal sequence shows that the

best rule of assembly is not doubling but quadrupling (Bejan,

2006) (e.g. A2=4 A1 in Fig. 4) and that river basins deduced

in this manner exhibit all the Hortonian scaling relationships

observed in natural river basins (Bejan, 2006, Sect. 13.5).

Another approach to deducing tree-shaped drainage basins

from the constructal law is presented in Bejan and Errera

(1998) and Fig. 5. The two flow regimes are seepage (Darcy

flow) through regions of low permeability (K), and seepage

through high-permeability regions (Kp) created by grains

that have been removed (eroded). The surface area A=HL

and its shape H/L are fixed. The area is coated with a homo-

geneous porous layer of permeability K . The small thickness

of the K layer, i.e., the dimension perpendicular to the plane

H×L, is W , where W≪(H , L).

An incompressible Newtonian fluid is pumped through

one of the A faces of the A×W parallelepiped, such that the

Fig. 5. Area-point flow in a porous medium with Darcy flow and

grains that can be dislodged and swept downstream (Bejan and Er-

rera, 1998).

mass flow rate per unit area is uniform, ṁ” [kg/m2s]. The

other A face and most of the perimeter of the H×L rectan-

gle are impermeable. The collected stream (ṁ” A) escapes

through a small port of size D×W placed over the origin of

the (x, y) system. The fluid is driven to this port by the pres-

sure field P(x, y) that develops over A. The pressure field

accounts for the effect of slope and gravity in a real river

drainage basin, and the uniform flow rate ṁ” accounts for

the rainfall.

The global resistance to this area-to-point flow is the ra-

tio between the maximal pressure difference (Ppeak) and the

total flow rate (ṁ” A). The location of the point of maxi-

mal pressure is not the issue, although in Fig. 5 its position

is clear. It is important to calculate Ppeak and to reduce it at

every possible turn (in time) by making appropriate changes

in the internal structure of the A×W system. Determinism

results from invoking a single principle and using it consis-

tently.

Changes are possible because finite-size portions (blocks,

grains) of the system can be dislodged and ejected through

the outlet. The removable blocks are of the same size and

shape (square, D×D×W ). The critical force (in the plane

of A) that is needed to dislodge one block is τD2, where
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Fig. 6. The evolution (persistence, survival) of the tree structure

when K/Kp=0.1 (Bejan and Errera, 1998).

τ is the yield shear stress averaged over the base area D2.

The yield stress and the length scale D are assumed known.

They provide an erosion criterion and a useful estimate for

the order of magnitude of the pressure difference that can be

sustained by the block. At the moment when one block is dis-

lodged, the critical force τD2 is balanced by the net force in-

duced by the local pressure difference across the block 1P ,

namely 1PDW . The balance τD2∼1PDW suggests the

pressure-difference scale 1P ∼τD/W , which along with D

can be used for the purpose of nondimensionalizing the prob-

lem formulation. For example, the dimensionless pressure

difference isP̃ =P /(τD/W ), and the intensity of the rainfall

is described by the dimensionless number M=ṁ′′ νD/ (τK).

A simple way to model erosion is to assume that the space

vacated by the block is also a porous medium with Darcy

flow except that the new permeability (Kp) of this medium

is sensibly greater, Kp>K . This assumption is correct when

the flow is slow enough (and W is small enough) so that the

flow regime in the vacated space is Hagen-Poiseuille between

parallel plates. The equivalent Kp value for such a flow is

W 2/12 (cf. Bejan, 2004).

The pressure P̃ and the block-averaged pressure gradient

increase in proportion with the imposed mass flow rate (M).

The mass flow rate is “imposed” because in this scenario ṁ′′

plays the role of the artificial (imposed) rainfall in labora-

tory simulations of the evolution of river basins (e.g., Bejan,

1997d). When M exceeds a critical value Mc, the first block

is dislodged. The physics principle that we invoke is this:

the resistance to fluid flow is decreased through geometric

changes in the internal architecture of the system. To gen-

erate higher pressure gradients that may lead to the removal

of a second block, we must increase the flow-rate parameter

M above the first Mc, by a small amount. The removable

block is one of the blocks that borders the newly created Kp

domain. The peak pressure rises as M increases, and then

drops partially as the second block is removed. This pro-

cess can be repeated in steps marked by the removal of each

additional block. In each step, we restart the process by in-

creasing M from zero to the new critical value Mc. During

this sequence the peak pressure decreases, and the overall

area-to-point flow resistance (P̃peak/Mc) decreases monoton-

ically.

The key result is that the removal of certain blocks of K

material and their replacement with Kp material generate

macroscopic internal structure. The mechanism and the re-

sulting structure are deterministic: every time we repeat this

process we obtain exactly the same sequence of images.

For illustration, consider the case K/Kp=0.1, shown in

Fig. 6. The number n on the abscissa represents the num-

ber of blocks that have been removed. The domain A is

square and contains a total of 2601 building blocks of base

size D×D; in other words, H=L=51D. Figure 6 also shows

the evolution of the critical flow rate and peak pressure. The

curves appear ragged because of an interesting feature of

the erosion model: every time that a new block is removed,

the pressure gradients redistribute themselves and blocks that

used to be “safe” are now ready to be dislodged even without

an increase in M . The fact that the plotted Mc values drop

from time to time is due to restarting the search for Mc from

M=0 at each step n.

The shape of the high-permeability domain Kp that ex-

pands into the low-permeability material K is that of a tree.

New branches grow in order to channel the flow collected

by the low-permeability K portions. The growth of the first

branches is stunted by the fixed boundaries (size, shape) of

the A domain. The older branches become thicker; however,

their early shape (slenderness) is similar to the shape of the

new branches.

The slenderness of the Kp channels and the interstitial K

regions is dictated by the K/Kp ratio, that is, by the degree

of dissimilarity between the two flow paths. Highly dissim-

ilar flow regimes (K/Kp≪1) lead to slender channels (and

slender K interstices) when the overall area-to-point resis-

tance is minimized. On the other hand, when K/Kp is close

to 1, channels (fingers) do not form: the eroded region grows

as a half disc (Bejan and Errera, 1998).
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Figure 6 stresses the observation that the availability of

two dissimilar flow regimes (Kp 6=K) is a necessary precon-

dition for the formation of deterministic structures through

flow-resistance minimization. The “glove” is the high-

resistance regime (K), and the “hand” is the low-resistance

regime (Kp): the two regimes work “hand in glove” toward

minimizing the overall resistance.

The raggedness of the P̃peak(n) curves disappears when

the flow-rate parameter M is increased monotonically from

one step to the next (e.g., Fig. 7). Each step begins with the

removal of the first block that can be dislodged by the flow

rate M . Following the removal of the first block, the M value

is held fixed, the pressure field is recalculated and the block

removal criterion is applied again to the blocks that border

the newly shaped Kp domain. To start the next step, the M

value is increased by a small amount 1M . The M(n) curves

shown in Fig. 7 are stepped because of the assumed size of

1M and the finite number (1n) of blocks that are removed

during each step. Although the monotonic M(n) curves ob-

tained in this manner are not the same as the critical flow-rate

curves Mc(n) plotted in Fig. 6, they too are deterministic.

Figure 7 corresponds to a composite porous material with

K/Kp=0.1, which is the same material from which the river

basin of Fig. 6 was constructed. Compare the shapes of the

high-conductivity domains shown in these figures. The hand-

in-glove structure is visible in all three figures; however, the

finer details of the Kp domain depend on how the flow rate M

is varied in time. The main difference between the patterns

of Fig. 6 and those of Fig. 7 is visible relatively early in the

erosion process: Diagonal fingers form when the flow rate

is increased monotonically. In conclusion, the details of the

internal structure of the system depend on the external “forc-

ing” that drives it, in our case the function M(n). The struc-

ture is deterministic, because it is known when the function

M(n) is known.

Major differences exist between natural river drainage

structures and the deterministic structures illustrated in

Figs. 6 and 7. One obvious difference is the lack of sym-

metry in natural river trees. How do we reconcile the lack of

symmetry and unpredictability of the finer details of a nat-

ural pattern with the deterministic mechanism that led us to

the discovery of tree networks of Figs. 6 and 7? The an-

swer is that the developing structure depends on two entirely

different concepts: the generating mechanism, which is de-

terministic, and the properties of the natural flow medium,

which are not known accurately and at every point.

In developing Fig. 8, we assumed that the resistance that

characterizes each removable block is distributed randomly

over the basin area. This characteristic of river beds is well

known in the field of river morphology (Leopold et al., 1964).

For the erosion process we chose the system (K/Kp=0.1)

and the M(n) function of Fig. 7, in which M increased mono-

tonically in steps of 0.001. The evolution of the drainage

system is shown in Fig. 8. The emerging tree network is con-

siderably less regular than in Fig. 7, and reminds us more

Fig. 7. The evolution (persistence, survival) of the tree struc-

ture when K/Kp=0.1 and the flow rate M is increased in steps

1M=10−3 (Bejan and Errera, 1998).

of natural river basins. The unpredictability of this pattern,

however, is due to the unknown spatial distribution of system

properties, not to the configuration-generating principle (the

constructal law), which is known.

The natural phenomenon of river basin generation is simi-

lar to the time sequences shown in Figs. 6–8. See for exam-

ple, the sequence of drawings of the development of an ar-

tificial river basin over a 15.2 m×9.1 m rainfall erosion area

(Parker, 1977; reproduced as Fig. 13.19 in Bejan, 2006). At

the start, there is no drawing. In time, the tree drawing flows

better and better, and in each time frame the drawing is tree-

shaped. There are similarities and differences between these

images and numerical simulations that appear in the hydrol-

ogy literature. For example, Rodriguez-Iturbe et al. (1992)

modeled the river basin by postulating the existence of a large

number of channels on a rectangular domain (one channel for

each little square element of the domain) and then moving the

channels randomly on the computer such that the global flow

resistance of basin is minimized (recall EGM). After enough

random modifications of the assembly of line channels, the
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Fig. 8. The evolution (persistence, survival) of the tree structure

in a random-resistance erodable domain, when K/Kp=0.1 and M

increases in steps of 0.001 (Bejan and Errera, 1998).

ultimate pattern becomes dendritic, irregular and similar to

what we see in nature and the frames of Figs. 6–8. If the pro-

cess is repeated, the sequence of modifications is different,

the ultimate pattern is different, but it is once again dendritic

and irregular.

In such ad-hoc invocation of EGM, the focus is on the end

objective and pattern. In constructal theory, the story is the

time direction of the changes in flow pattern, in which the

sequence of drawings is unique, like the sequence of natu-

ral drawings (Parker, 1977). Another important difference

is that the flow along the smallest channel is as important

(i.e. in balance with) the seepage perpendicular to the chan-

nel (see again Fig. 3). Channels and hill slopes are allocated

optimally to each other. This is unlike in the numerical simu-

lations of Rodriguez-Iturbe et al. (1992), where the smallest

area elements and channels are of one size and postulated,

and where the global flow resistance accounts only for the

cumulative resistance of the channels.

 

Fig. 9. Floating object at the interface between two fluid masses

with relative motion (Bejan, 2000).

7 Turbulent flow structure

A turbulent flow has “structure” because it is a combination

of two flow mechanisms: viscous diffusion and streams (ed-

dies). Both mechanisms serve as paths for the flow of mo-

mentum. According to the constructal law, the flow structure

called “turbulence” is the architecture that provides the most

direct path for the flow of momentum from the fast regions

of the flow field to the slow regions (Bejan, 1997d, 2000).

This tendency of optimizing the flow configuration so that

momentum flows the easiest is illustrated in Fig. 9. An ob-

ject (iceberg, tree log) floats on the surface of the ocean. The

atmosphere (a) moves with the wind speed Ua , while the

ocean water (b) is stationary. If (a+b) form an isolated sys-

tem initially far from equilibrium, the constructal law calls

for the generation of flow configuration that brings (a) and

(b) to equilibrium the fastest. The floating object is the “key”

mechanism by which (a) transfers momentum to (b). The ex-

treme configurations of this mechanism are (1) and (2). The

forces with which (a) pulls (b) are

F1 ∼ LDCD

1

2
ρaU

2
a F2 ∼ D2CD

1

2
ρaU

2
a (4)

where the drag coefficient CD is a factor of order 1. The

constructal configuration is (1), because F1>F2 when L>D.

This is confirmed by all objects that drift on the ocean: ice-

bergs, debris, abandoned ships, etc.

The turbulent eddy is the equivalent key mechanism when

momentum access is maximized between two regions of the

same flowing fluid. Instead of the air and water shear flow

of Fig. 9, in Fig. 10 we consider the shear flow between fast

and slow regions of the same fluid (a). Configuration (1) is

the laminar shear flow (viscous diffusion), where the shear

stress at the (a)–(a) interface is τ1∼µU∞/D. Configuration
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Fig. 10. The two momentum-transfer mechanisms that compete at

the interface between two flow regions of the same fluid (Bejan,

2000).

(2) is the eddy flow: the wrinkling, rolling and thickening of

the shear. The rolls have the peripheral speed U∞. The roll

is a counterflow that transfers horizontal momentum in the

downward direction [from (a) to (a)] at the rate (ρDU∞)U∞.

The rate of momentum transfer per unit of interface area in

two dimensions is τ2∼ρDU∞U∞/D.

Rolls (eddies) are a necessary constructal feature of

the prevailing flow architecture when τ2>τ1, which yields

U∞D/ν>1. More precise evaluations of τ1 and τ2,

substituted into τ2>τ1, yield the local Reynolds number cri-

terion for the formation of the first eddies:

Rel =
U∞D

ν
> O(102) (5)

This prediction is supported convincingly by the laminar-

turbulent transition criteria reviewed in Table 3. The tra-

ditional criteria are stated in terms of critical numbers that

range from 30 to 4×1012. All the Rel equivalents of these

classical observations agree with Rel∼102 at transition.

The main theoretical development is that the constructal

law accounts for the occurrence of eddies – eddies in the eye

of the mind where, before the invocation of the law, eddies

were alien (not known) as a happening, drawing and con-

cept. Each eddy is an expression of the optimal balance be-

tween two momentum transport mechanisms (cf. τ1∼τ2), in

the same way that every rivulet is in balance with the seep-

age across the area allocated to the rivulet (cf. Fig. 3). For

the first time in the physics of fluid flow, the eddy structure is

deduced, not assumed (the eddy is not an assumed and over

grown “disturbance”).

The support for the theoretical view of turbulence as a con-

structal configuration-generation phenomenon is massive.

Table 3 is one example of how an entire chapter of fluid me-

chanics is replaced by a single theoretical formula, Eq. (5).

Another example is Fig. 11, which shows a large number of

measurements of the laminar length (Ltr) in the best known

Fig. 11. The universal proportionality between the length of the

laminar section and the buckling wavelength in a large number of

flows (Bejan, 2004).

flow configurations, versus the buckling wavelength (λB) in

the transition zone. All the data are correlated by the line

Ltr

λB

∼ 10 (6)

It was shown in Bejan (2004) that this proportionality can be

predicted by invoking Eq. (5).

Other features of turbulent structure that have been de-

duced from the constructal law are the wedge shape (self-

similar region) of turbulent shear layers, jets and plumes,

the Strouhal number associated with vortex shedding, Bénard

convection in fluids and fluid-saturated porous media heated

from below, etc. These developments are reviewed in Be-

jan (1997d, 2000). This approach has been taken to cover

all scales, to predict purely theoretically the main features

of global atmospheric and oceanic circulation and climate

(Bejan and Reis, 2005; Reis and Bejan, 2006), the morphol-

ogy of liquid droplets that impact a wall (splat vs. splash,

cf. Bejan and Gobin, 2006), and the dendritic clustering of

dust particles (Reis et al., 2006). It was also used to predict

dendritic solidification (snowflakes), dendritic evaporation

(vegetation) and the coalescence of solid parcels suspended

in flow Bejan (1997d, 2000). Many more classes of natural

flow architectures that obey the constructal law have been de-

scribed in biology, from the necessity of intermittent breath-

ing and heartbeating, to the scaling laws of all animal lo-

comotion (running, flying, swimming) (Bejan, 2000, 2006;

Bejan and Marden, 2006).
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Table 3. Traditional critical numbers for transitions in several key flows and the corresponding local Reynolds number (Bejan, 2000).

Flow Traditional

Critical Number

Local

Reynolds

Number

Boundary-layer flow over flat plate Rex∼2×104–106 Re1∼94–660

Natural convection boundary layer along vertical wall with uniform

temperature (Pr∼1)

Ray∼109 Re1∼178

Natural convection boundary layer along vertical wall with constant

heat flux (Pr∼1)

Ra∗y∼4×1012 Re1∼330

Round jet Renozzle∼30 Re1≥30

Wake behind long cylinder in cross flow Re∼40 Re1≥40

Pipe flow Re∼2000 Re1∼500

Film condensation on a vertical wall Re∼450 Re1∼450

8 Mathematical formulation of the constructal law

Professor K. Roth, the editor in chief of this journal, made

the important observation that laws of physics are invariably

expressed in mathematical statements, i.e. that the construc-

tal law cited in Sect. 1 is deficient in this respect. I agree,

and in this section I show how we have formulated the con-

structal law mathematically in analytical geometry (Bejan

and Lorente, 2003, 2004, 2005). It is worth noting how-

ever that the history of the evolution of science (e.g. Bejan,

2006, Sect. 13.9) shows that it takes time before a new idea is

expressed in crisp mathematical terms. Because the subject

here is the thermodynamics of nonequilibrium (flow) sys-

tems, recall S. Carnot’s mental viewing of heat flowing from

high to low temperature through a steam engine, “like river

water through a turbine”. S. Carnot said in prose the essence

of thermodynamics. His vision was put into mathematical

terms threee decades later by R. Clausius, who invented for

this purpose the concept and property called entropy. But

even then, after the math, when the new laws needed help

to be explained to the public, Clausius had to resort to bom-

bastic prose to demystify the math (entropy) that he invented

(see his famous line: “Die Energie der Welt ist constant. Die

Entropie der Welt strebt einem Maximum zu”.).

Just like Clausius, in order to mathematize the constructal

law we had to define new properties for a thermodynamic

system that has configuration. These properties distinguished

it from a static (equilibrium, nothing flows) system, which

does not have configuration. The properties of a flow system

are:

(1) global external size, e.g., the length scale of the body

bathed by the tree flow L;

(2) global internal size, e.g., the total volume of the ducts

V ;

(3) at least one global measure of performance, e.g., the

global flow resistance of the tree R;

(4) configuration, drawing, architecture; and

(5) freedom to morph, i.e., freedom to change the configu-

ration.

The global external and internal sizes (L, V ) mean that a

flow system has at least two length scales L and V 1/3. These

form a dimensionless ratio – the svelteness Sv – which is a

new global property of the flow configuration (Lorente and

Bejan, 2005).

Sv =
external length scale

internal length scale
=

L

V 1/3
. (7)

(a) Survival by increasing flow performance

Figure 12 was drawn for constant L: the global size is

the same for all the flow architectures that are represented by

this figure. The constructal law (Sect. 1) is the statement that

summarizes the common observation that flow structures

that survive are those that morph (evolve) in one direction in

time: toward configurations that make it easier for currents

to flow. This statement refers strictly to structural changes

under finite-size constraints. If the flow structures are free to

change (free to approach the base plane in Fig. 12), in time

they will move at constant-L and constant-V in the direction

of progressively smaller R. If the initial configuration
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is represented by point 1, then a later configuration is

represented by point 2. The constructal law requires

R2 ≤ R1 (constant L, V ) (8)

If freedom to morph persists, then the flow structure will con-

tinue toward smaller R values. Any such change is charac-

terized by

dR ≤ 0 (constant L, V ) (9)

The end of this migration is the “equilibrium flow structure”,

where the geometry of the flow enjoys total freedom. Equi-

librium is characterized by minimal R at constant L and V .

In the vicinity of the equilibrium flow structure we have

dR = 0 and d2R > 0 (constant L, V ) (10)

The R(V ) curve shown in the bottom plane of Fig. 12 is the

edge of the cloud of possible flow architectures with the same

global size L. The curve has negative slope because of the

physics of flow: the resistance decreases when the flow chan-

nels open up:

(

∂R

∂V

)

L

< 0 (11)

In summary, the evolution of configurations in the constant-

V cut (also at constant L, Fig. 12) represents survival through

increasing performance – survival of the fittest. This is the

physics principle that finally underpins the Darwinian argu-

ment, the physics law that rules not only the animate flow

systems but also the natural inanimate flow systems and all

the man and machine species. The constructal law defines

the meaning of “the survivor”, or of the equivalent concept

of “the more fit”. The constructal-law idea that freedom to

morph is good for performance (Fig. 12) also accounts for

the Darwinian argument that the survivor is the one most ca-

pable to adapt.

In the bottom plane of Fig. 12, the locus of equilibrium

structures is a curve with negative slope. The time evolution

of nonequilibrium flow structures toward the bottom edge of

the surface (the equilibrium structures) is the action of the

constructal law.

(b) Survival by increasing svelteness

The same time arrow can be described alternatively

with reference to the constant-R cut through the three-

dimensional space of Fig. 12. Flow architectures with the

same global performance (R) and global size (L) evolve

toward compactness and svelteness – smaller volumes

dedicated to internal ducts, i.e., larger volumes reserved

for the working “tissue” (the interstices). Paraphrasing the

original statement of the constructal law, we may describe

the evolution at constants L and R as follows:

Fig. 12. Performance vs. freedom to change configuration, at fixed

global external size (Bejan and Lorente, 2003, 2004).

For a system with fixed global size and global performance

to persist in time (to live), it must evolve in such a way that

its flow structure occupies a smaller fraction of the available

space.

This is survival based on the maximization of the use

of the available space. Survival by increasing svelteness

(compactness) is equivalent to survival by increasing perfor-

mance: both statements are the constructal law.

(c) Survival by increasing flow territory

A third equivalent statement of the constructal law be-

comes evident if we recast the constant-L design world of

Fig. 12 in the constant-V design space of Fig. 13. In this new

figure, the constant-L cut is the same performance versus

freedom diagram as in Fig. 12, and the constructal law

means survival by increasing performance. The contribution

of Fig. 13 is the shape and orientation of the hypersurface

of nonequilibrium flow structures: the slope of the curve in

the bottom plane (∂R/∂L)V is positive because of physics

(fluid mechanics), i.e., because the flow resistance increases

when the distance traveled by the stream increases.

The world of possible designs can be viewed in the

constant-R cut made in Fig. 13, to see that flow structures

of a certain performance level (R) and internal flow vol-

ume (V ) morph into new flow structures that cover progres-

sively larger territories. Again, flow configurations evolve

toward greater svelteness Sv. The constructal law statement

becomes:
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∂ ∂

 
nce vs freedom to change configuration, at fixed global internFig. 13. Performance vs. freedom to change configuration, at fixed

global internal size (Bejan and Lorente, 2003, 2004).

In order for a flow system with fixed global resistance (R)

and internal size (V ) to persist in time, the flow architecture

must evolve in such a way that it covers a progressively larger

territory.

There is a limit to the spreading of a flow structure, and

it is set by global properties such as performance (technol-

ogy) and internal flow volumes R and V . River deltas in the

desert, animal species on the plain, and the Roman empire

spread in time to their constructal limits. Such is the con-

structal law of survival by spreading, by increasing territory

for flow and movement.

9 A place for theory

In summary, it is possible to rationalize and predict the occur-

rence of flow configuration in nature on the basis of a prin-

ciple of physics: the constructal law. The importance of this

development in fields such as hydrology is greater because

it has the potential of changing the way in which research is

pursued.

Hydrology research is proving every day that science has

hit a wall. Principles such as Newton’s second law of motion

(the Navier-Stokes equations) are not enough. Because of

progressively more powerful computational and information

gathering tools, models are becoming more complex, with

more empirical features to be fitted to measurements. They

provide better description, not explanation. They do not pro-

vide a mental viewing of how things should be. They are not

theory.

What holds for contemporary hydrology also holds for

other extremely active fields such as turbulence research and

biology. Needed are principles with the same universal reach

as that of Newton’s second law of motion and the first and

second laws of thermodynamics. Needed are new laws of

physics. A prerequisite or success on this path is a new atti-

tude: physics is not and never will be complete.

Physics is our knowledge of how nature (everything)

works. Our knowledge is condensed in simple statements

(thoughts, connections), which evolve in time by being re-

placed by simpler statements. We “know more” because of

this evolution in time. Our finite-size brains keep up with the

steady inflow of new information through a process of sim-

plification by replacement: in time, and stepwise, bulky cata-

logs of empirical information (measurements, data, complex

empirical models and rules) are replaced by much simpler

summarizing statements (concepts, formulas, constitutive re-

lations, principles, laws).

The simplest and most universal are the laws. The bulky

and laborious are being replaced by the compact and the fast.

In time, science optimizes and organizes itself in the same

way as a river basin: toward configurations (links, connec-

tion) that provide better access, or easier flowing. The bulky

measurements of pressure drop versus flow rate through

round pipes and saturated porous media were rendered un-

necessary by the formulas of Poiseuille and Darcy. The mea-

surements of how things fall (faster and faster, and always

from high to low) were rendered unnecessary by Galilei’s

principle and the second law of thermodynamics.

The hierarchy that science exhibited at every stage in the

history of its development is an expression of its never end-

ing struggle to redesign itself. Hierarchy means that mea-

surements, ad-hoc assumptions and empirical models come

in high numbers, above which the simple statements rise as

sharp peaks. Both are needed, the numerous and the sin-

gular. One class of flows sustains the other. The many

and unrelated heat engine builders of Cornwall and Scot-

land fed the imagination of one Sadi Carnot. In turn, Sadi

Carnot’s mental viewing (thermodynamics today) feeds the

minds of contemporary and future builders of machines and

atmospheric circulation models.

Science is this never ending process of generation of new

configurations. Better flowing configurations replace exist-

ing configurations. The hands-on developers of empirical

models and heat engines are numerous, like the hill slopes

and the rivulets of a river basin. The principles of Galilei and

Carnot are the big rivers, the Seine and the Danube.

Emerging today is a science of flow systems with config-

urations (Bejan and Lorente, 2004, 2005). A flow system

has more than flow rate and dynamics, which are accounted

for by principles such as mass conservation and Newton’s

second law of motion. A flow system has configuration (ge-

ometry) and freedom to morph. The “boundary conditions”

that we assume routinely in order to solve the Navier-Stokes

equations are in fact the big unknown: the configuration.
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Can the natural occurrence of flow configuration be reasoned

on the basis of a single principle? In this review paper I show

that the answer is yes, and that the principle is the constructal

law (Sect. 1). The generation of flow configuration in time

is a natural phenomenon, as natural as the one-way direction

(irreversibility) of anything that flows.

Edited by: M. Sivapalan
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