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1. Introduction

1.1. In this paper, intended to be the first in a series, we lay new general
foundations for motivic integration and give answers to some important
issues in the subject. Since its creation by Maxim Kontsevich [23], motivic
integration developed quickly and has spread out in many directions. In
a nutshell, in motivic integration, numbers are replaced by geometric ob-
jects, like virtual varieties, or motives. But, classicaly, not only numbers
are defined using integrals, but also interesting classes of functions. The
previous constructions of motivic integration were all quite geometric, and
it was quite unclear how they could be generalized to handle integrals de-
pending on parameters. The new approach we present here, based on cell
decomposition, allows us to develop a very general theory of motivic inte-
gration taking parameters into account. More precisely, we define a natural
class of functions – constructible motivic functions – which is stable under
integration.

The basic idea underlying our approach is to construct more generally
push-forward morphisms f! which are functorial – they satisfy ( f ◦ g)! =
f! ◦ g! – so that performing motivic integration corresponds to taking the
push-forward to the point. This strategy has many technical advantages.
In essence, it allows to reduce the construction of f! to the case of closed
immersions and projections, and in the latter case we can perform induction
on the relative dimension, the basic case being that of relative dimension 1,
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for which we can make use of the cell decomposition theorem of Denef–
Pas [27].

1.2. Our main construction being inspired by analogy with integration
along the Euler characteristic for constructible functions over the reals,
let us first present a brief overview of this theory, for which we refer
to [24], [29], and [37] for more details. We shall put some emphasis on
formulation in terms of Grothendieck rings. Let us denote by SAR the
category of real semialgebraic sets, that is, objects of SAR are semialgebraic
sets and morphisms are semialgebraic maps. Since every real semialgebraic
set admits a semialgebraic triangulation, the Euler characteristic of real
semialgebraic sets may be defined as the unique Z-valued additive invariant
on the category of real semialgebraic sets which takes value one on closed
simplexes. More precisely, let us define K0(SAR), the Grothendieck ring
of real semialgebraic sets, as the quotient of the free abelian group on
symbols [X], for X real semialgebraic, by the relations [X] = [X ′] if X
and X ′ are isomorphic, and [X∪Y ] = [X]+[Y ]−[X∩Y ], the product being
induced by the cartesian product of semialgebraic sets. Then, existence of
semialgebraic triangulations easily implies the following statement:

1.2.1. Proposition. The Euler characteristic morphism [X] �→ Eu(X) in-
duces a ring isomorphism

K0(SAR) ≃ Z.

A constructible function on a semialgebraic set X is a function ϕ : X → Z

that can be written as a finite sum ϕ =
∑

i∈I mi1X i
with mi in Z, X i semi-

algebraic subsets of X, and 1X i
the characteristic function of X i . The set

Cons(X) of constructible functions on X is a ring. If f : X → Y is
a morphism of semialgebraic sets, we have a natural pullback morphism
f ∗ : Cons(Y ) → Cons(X) given by ϕ �→ ϕ ◦ f . Now let us explain how
the construction of a push-forward morphism f∗ : Cons(X) → Cons(Y ) is
related to integration with respect to Euler characteristic.

Let ϕ =
∑

i∈I mi1X i
be in Cons(X). One sets
∫

X

ϕ :=
∑

i∈I

miEu(X i).

It is quite easy to check that this quantity depends only on ϕ. Now if
f : X → Y is a morphism, one checks that defining f∗ by

f∗(ϕ)(y) =

∫

f −1(y)

ϕ| f −1(y),

indeed yields a morphism f∗ : Cons(X) → Cons(Y ), and that furthermore
( f ◦ g)∗ = f∗ ◦ g∗. For our purposes it will be more enlightening to express
the preceding construction in terms of relative Grothendieck rings.
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For X a semialgebraic set, let us consider the category SAX of semial-
gebraic sets over X. Hence objects of SAX are morphisms Y → X in SAR
and a morphism (h : S → X) → (h ′ : S′ → X) in SAX is a morphism
g : S → S′ such that h ′ ◦ g = h. Out of SAX , one constructs a Grothendieck
ring K0(SAX ) similarly as before, and we have the following statement,
which should be folklore, though we could not find it the literature.

1.2.2. Proposition. Let X be a semialgebraic set.

(1) The mapping [h : S → X] �→ h∗(1S) induces an isomorphism

K0(SAX) ≃ Cons(X).

(2) Let f : X → Y be a morphism in SAR. Under the above isomorphism
f∗ : Cons(X) → Cons(Y ) corresponds to the morphism K0(SAX) →
K0(SAY ) induced by composition with f .

1.3. Let us now explain more about our framework. Fix a field k of charac-
teristic 0. We want to integrate (functions defined on) subobjects of k((t))m .
For technical reasons it is wiser to consider more generally integration on
subobjects of k((t))m×kn ×Zr . This will allow considering parameters lying
in the valued field, the residue field, and the value group. In fact, we shall
restrict ourselves to considering a certain class of reasonably tame objects,
that of definable subsets in a language LDP. Typically these objects are de-
fined by formulas involving usual symbols 0, 1,+,−,× for the k((t)) and k
variables, and 0, 1,+,−,≤ for the Z-variables, and also symbols ord for the
valuation and ac for the first non trivial coefficient of elements of k((t)), and
the usual logical symbols (see Sect. 2.1 for more details). Furthermore we
shall not only consider the set of points in k((t))m×kn ×Zr satisfying a given
formula ϕ, but also look to the whole family of subsets of K((t))m×Kn ×Zr ,
for K running over all fields containing k, of points that satisfy ϕ. This
is what we call definable subassignments. Definable subassignments form
a category and are our basic objects of study.

Let us fix such a definable subassignment S. Basically, constructible
motivic functions on S are built from

– classes [Z] in a suitable Grothendieck ring of definable subassignments
Z of S × Ad

k for some d;
– symbols Lα, where L stands for the class of the relative affine line over S

and α is some definable Z-valued function on S;
– symbols α for α a definable Z-valued function on S.

Constructible motivic functions on S form a ring C(S). Any definable
subassignment C of S has a characteristic function 1C in C(S).

1.4. We explain now on an example how one can recover the motivic
volume by considering the push-forward of constructible functions. We
shall consider the points of the affine elliptic curve x2 = y(y − 1)(y − 2)
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with nonnegative valuation, namely the definable subassignment C of A2
k((t))

defined by the conditions

x2 = y(y − 1)(y − 2), ord(x) ≥ 0 and ord(y) ≥ 0.

Since the affine elliptic curve E defined by ξ2 = η(η − 1)(η − 2) in A2
k is

smooth, we know that the motivic volume µ(C) should be equal to [E]
L

,
cf. [14]. Let us consider the projection p : A2

k((t)) → A1
k((t)) given by

(x, y) �→ y. In our formalism p!([1C]) is equal to a sum A + B0 + B1 + B2
with

A = [ξ2 = ac(y)(ac(y) − 1)(ac(y) − 2)][1C(A)]

B0 = [ξ2 = 2ac(y)][1C0]L
ord(y)/2

B1 = [ξ2 = −ac(y − 1)][1C1 ]L
ord(y−1)/2

and

B2 = [ξ2 = 2ac(y − 2)][1C2]L
ord(y−2)/2,

with C(A) = {y | ord(y) = ord(y − 1) = ord(y − 2) = 0} and Ci =
{y | ord(y − i) > 0 and ord(y − i) ≡ 0 mod 2}. So p!([1C]) looks already
like a quite general constructible motivic function.

Let us show how one can recover the motivic volume of µ(C) by com-
puting the integral of p!([1C]) onA1

k((t)). Let πi denote the projection ofAi
k((t))

to the point. One computes π1!(A) = [E]−3
L

, while summing up the corres-
ponding geometric series leads to that π1!(B0) = π1!(B1) = π1!(B2) = L−1,
so that finally π1!(p!([1C])) = [E]

L
. Hence the computation fits with the re-

quirements π1! ◦ p! = (π1 ◦ p)! = π2! and π2!([1C]) = µ(C).
As we will see in the main construction of the push forward operator

denoted with subscript !, in this example p! is calculated with “the line
element” determined by the forms “dx” and “dy” on C and π1! calculates an
integral over the line with respect to the form “dy” (see Theorem 10.1.1).
In our context the line element is of course non-archimedean, see Sect. 8.3.

1.5. Such a computation is maybe a bit surprising at first sight, since one
could think that is not possible to recover the motive of an elliptic curve
by projecting onto the line and computing the volume of the fibers, which
consist of 0, 1 or 2 points. The point is that our approach is not so naive
and keeps track of the elliptic curve which remains encoded at the residue
field level. Our main construction can be considered as a vast amplification
of that example and one may understand that the main difficulty in the
construction is proving that our construction of f! is independent of the way
we may decompose f into a composition of morphisms.

In fact, we do not integrate functions in C(S), but rather their classes
in a graded object C(S) =

⊕
d Cd(S). The reason for that is that we have

to take in account dimension considerations. For instance we could factor
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the identity morphism from the point to itself as the composition of an
embedding in the line with the projection of the line on the point. But
then a problem arises: certainly the point should be of measure 1 in itself,
but as a subset of the line it should be of measure 0! To circumvent this
difficulty, we filter C(S) by “k((t))-dimension of support”. Typically, if ϕ
has “k((t))-dimension of support” equal to d, we denote by [ϕ] its class in
the graded piece Cd(S)1. We call elements of C(S) constructible motivic
Functions (with capital F). One further difficulty is that arbitrary elements
of C(S) may not be integrable, that is, the corresponding integral could
diverge. So we need to define at the same time the integral (or the push-
forward) and the integrability condition. Also, as in the usual construction
of Lebesgue integral, it is technically very useful to consider first only
“positive constructible functions” on S. They form a semiring C+(S) and
we may consider the corresponding graded object C+(S). An important
difference with the classical case, is that in general the canonical morphisms
C+(S) → C(S) and C+(S) → C(S) are not injective.

The main achievement of the present paper is the following: we establish
existence and uniqueness of a) a subgroup IS′C+(S) of C+(S) consisting
of S′-integrable positive Functions on S, b) a push-forward morphism f! :
IS′C+(S) → C+(S′), under a certain system of natural axioms, for every
morphism f : S → S′ of definable subassignments.

1.6. Once the main result is proven, we can grasp its rewards. Firstly, it
may be directly generalized to the relative setting of integrals with param-
eters. In particular we get that motivic integrals parametrized by a definable
subassignment S take their values in C+(S) or in C(S). Also, our use of the
quite abstract definable subassignments allows us to work at a level of gen-
erality that encompasses both “classical” motivic integration as developed
in [14] and the “arithmetical” motivic integration of [15]. More precisely,
we show that the present theory may be specialized both to “classical” mo-
tivic integration and “arithmetical” motivic integration, but with the bonus
that no more completion process is needed. Indeed, there is a canonical for-
getful morphism C(point) → K0(Vark)rat, with K0(Vark)rat the localization
of the Grothendieck ring of varieties over k with respect to L and 1 − L−n ,
n ≥ 1, that sends the motivic volume of a definable object as defined here,
to a representative of the “classical” motivic volume in K0(Vark)rat. So in
the definable setting, “classical” motivic volume takes values in K0(Vark)rat
(and not in any completion of it). Such a result lies in the fact that in our
machinery, the only infinite process that occurs is summation of geometric
series in powers of L−1. A similar statement holds in the arithmetic case.

Another important feature is that no use at all is made of desingulariza-
tion results. On the other side we rely very strongly on the cell decomposition
theorem of Denef–Pas. This makes in some sense things much worse in pos-
itive characteristic, since then desingularization is a reasonable conjecture

1 That notation was already used in Sect. 1.4 without explanation.
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while there is even no sensible guess of what cell decomposition could be
in that case!

1.7. Let us now describe briefly the content of the paper. Our basic objects
of study are the various categories of definable subassignments in the Denef–
Pas language that we review in Sect. 2. An essential feature of these definable
subassignments is that they admit a good dimension theory with respect to
the valued field variables that we call K -dimension. This is established
in Sect. 3. As a first step in constructing motivic integrals, we develop in
Sect. 4 a general machinery for summing over the integers. This is done in
the framework of functions definable in the Presburger language. We prove
a general rationality statement Theorem 4.4.1 which we formulate in terms
of a Mellin transformation. This allows to express punctual summability
of a series in terms of polar loci of its Mellin transform and thus to define
the sum of the series by evaluation of the Mellin transform at 1. This
construction is the main device that allows us to avoid any completion
process in our integration theory, in contrast with previous approaches. In the
following Sect. 5, we define constructible motivic functions and we extend
the constructions and the results of the previous section to this framework.
After the short Sect. 6 which is devoted to the construction of motivic
constructible Functions (as opposed to functions) and their relative variants,
Sect. 7 is devoted to cell decomposition, which is, as we already stressed,
a basic tool in our approach. We need a definition of cells slightly more
flexible than the one of Denef–Pas for which we give the appropriate cell
decomposition theorem à la Denef–Pas, and we also introduce bicells. We
prove a fundamental structure result, Theorem 7.5.1, for definable functions
with values in the valued field which may show interesting for its own right.
Section 8 is devoted to introducing basic notions of differential calculus,
like differential forms, volume forms and order of jacobian in the definable
setting. In Sect. 9, which appears to be technically quite involved, we
construct motivic integrals in relative dimension 1 (with respect to the
valued field variable). In particular we prove a fundamental change of
variable formula in relative dimension 1, whose proof uses Theorem 7.5.1,
and which will be of essential use in the rest of the paper.

We are then able to state our main result, Theorem 10.1.1, in Sect. 10,
and Sect. 11 is devoted to its proof. The idea of the proof is quite simple.
By a graph construction one reduces to the case of definable injections and
projections. Injections being quite easy to handle, let us consider projections.
We already now how to integrate with respect to Z-variables and also with
respect to one valued field variable, integration with respect to residue field
variables being essentially tautological. So to be able to deal with the general
case, we need to prove various statements of Fubini type, that will allow
us to interchange the order in which we perform integration with respect
to various variables. The most difficult case is that of two valued field
variables, that requires careful analysis of what happens on various types
of bicells. Let us note that van den Dries encounters a similar difficulty in
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his construction of Euler characteristics in the o-minimal framework [36].
Once the main theorem is proved, we can derive the main properties and
applications. In Sect. 12, we prove a general change of variable formula and
also the fundamental fact that a positive Function that is bounded above by
an integrable Function is also integrable. We then develop the integration
formalism for Functions in C(X) – that is with no positivity assumption –
in Sect. 13. In Sect. 14 we consider integrals with parameters and extend
all previous resuts to this framework. As a side result, we prove the very
general rationality Theorem 14.4.1.

The last part of the paper is devoted to generalization to the global setting
and to comparison results. In Sect. 15, we consider integration on definable
subsassignments of varieties. This is done by replacing functions by volume
forms, as one can expect. More precisely, if f is a morphism between global
definable subassignments S and S′, we construct a morphism f

top
! sending

f -integrable volume forms on S to volume forms on S′, which corresponds
to integrating Functions in top dimension in the affine case. This provides
the right framework for a general Fubini theorem for fiber integrals (The-
orem 15.2.1). We then show in Sect. 16 how our construction relates with the
previous constructions of motivic integration. In the paper [8] we explain
how it specializes to p-adic integration and we also give some applications
to Ax–Kochen–Eršov theorems for integrals depending on parameters. The
main results of this paper have been anounced in the notes [6] and [7]. The
present version of the paper does not differ from the original version except
for very minor changes. Since our paper was originally put on the arxiv as
math.AG/0410203, we have been able to extend our work to the exponential
setting and to prove a general “Transfer principle” à la Ax–Kochen–Eršov in
this context [9], [10]. Also Hrushovski and Kazhdan [21] developed a gen-
eral theory of integration for valued fields based on Robinson’s quantifier
elimination for algebraically closed valued fields.

In writing the paper we tried our best keeping it accessible to a wide
audience including algebraic geometers and model theorists. In particu-
lar, only basic familiarity with the first chapters of textbooks like those of
Hartshorne [20] and Marker [25] is required. We also attempted to stay
within the realm of geometry as much as possible. For example, we use,
with the hope it would appeal to geometers, the terminology of “definable
subassignments”, introduced in [15], which is certainly familiar to logicians
under other guises. By the foundational nature of the paper, many construc-
tions and proofs are somewhat lengthy and technical, so we made an effort
to make the main results and properties directly accessible and usable by the
reader without having to digest all details. In particular, potential users might
gain additional motivation by having a first look to Sects. 10, 12, 14 and 15
as early as possible. Also, one should stress that, for many applications, it
is enough to consider integration in maximal dimension.

The present work would not exist without Jan Denef, whose insight
and work, in particular concerning the ubiquity of cell decomposition, did
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have a strong influence on our approach. We also thank him warmly for
his crucial encouragements when we started this project in February 2002.
During the preparation of this work, we benefited from the support of many
colleagues and friends. In particular, we would like to adress special thanks
to Antoine Chambert-Loir, Clifton Cunningham, Lou van den Dries, Tom
Hales and Udi Hrushovski for the interest they have shown in our work,
and for comments and useful discussions that helped to improve the paper.
The first author has been supported as a postdoctoral fellow by the Fund for
Scientific Research – Flanders (Belgium) (F.W.O.) during the preparation
of this paper.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

I Preliminary constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2 Definable subassignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Dimension theory for definable subassignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Summation over Presburger sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Constructible motivic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6 Constructible motivic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7 Cell decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8 Volume forms and Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9 Integrals in dimension one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

II Construction of the general motivic measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10 Statement of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
11 Proof of Theorem 10.1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
12 Main properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
13 Integration of general constructible motivic Functions . . . . . . . . . . . . . . . . . . . . . . . . 103
14 Integrals with parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

III Integration on varieties and comparison theorems . . . . . . . . . . . . . . . . . . . . . . . . 110
15 Integration on varieties and Fubini theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
16 Comparison with the previous constructions of motivic integration . . . . . . . . . . . . . 116
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

I. Preliminary constructions

2. Definable subassignments

In this section, we extend the notion of definable subassignments, introduced
in [15], to the context of LDP-definable sets, with LDP a language of Denef–
Pas.

2.1. Languages of Denef–Pas. Let K be a valued field, with valuation map
ord : K× → Γ for some additive ordered group Γ, R its valuation ring,
k the residue field. We denote by x �→ x̄ the projection R → k modulo the
maximal ideal M of R. An angular component map (modulo M) on K is
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a multiplicative map ac : K× → k× extended by putting ac(0) = 0 and
satisfying ac(x) = x̄ for all x with ord(x) = 0.

If K = k((t)) for some field k, there exists a natural valuation map
K× → Z and a natural angular component map sending x =

∑
i≥ℓ ai t

i in
K× with ai in k and aℓ = 0 to ℓ and aℓ, respectively.

Fix an arbitrary expansion LOrd of the language of ordered groups
(+,−, 0,≤) and an arbitrary expansion LRes of the language of rings
LRings = (+,−, ·, 0, 1). A language LDP of Denef–Pas is a three-sorted
language of the form

(LVal, LRes, LOrd, ord, ac),

with as sorts:

(i) a Val-sort for the valued field-sort,
(ii) a Res-sort for the residue field-sort, and
(iii) an Ord-sort for the value group-sort,

where the language LVal for the Val-sort is the language of rings LRings,
and the languages LRes and LOrd are used for the Res-sort and the Ord-
sort, respectively. We only consider structures for LDP consisting of tuples
(K, k,Γ) where K is a valued field with value group Γ, residue field k,
a valuation map ord, and an angular component map ac, together with an
interpretation of LRes and LOrd in k and Γ, respectively.

When LRes is LRings and LOrd is the Presburger language

LPR = {+,−, 0, 1,≤} ∪ {≡n| n ∈ N, n > 1},

with ≡n the equivalence relation modulo n and 1 a constant symbol (with
the natural interpretation if Γ = Z), we write LDP,P for LDP.

As is standard for first order languages, LDP-formulas are (meaning-
fully) built up from the LDP-symbols together with variables, the logical
connectives ∧ (and), ∨ (or), ¬ (not), the quantifiers ∃, ∀, the equality sym-
bol =, and parameters2 .

Let us now recall the statement of the Denef–Pas theorem on elimination
of valued field quantifiers. Fix a language LDP of Denef–Pas. Denote by
Hac,0 the LDP-theory of the above described structures whose valued field
is Henselian and whose residue field is of characteristic zero.

2.1.1. Theorem (Denef–Pas). The theory Hac,0 admits elimination of quan-
tifiers in the valued field sort. More precisely, every LDP-formula φ(x, ξ, α)
(without parameters), with x variables in the Val-sort, ξ variables in the

2 For first order languages, function symbols need to have a Cartesian product of sorts
as domain, while the symbol ord has the valued field-sort minus the point zero as domain.
Our use of the symbol ord with argument x in a LDP-formula is in fact an abbreviation for
a function with domain the Val-sort which extends the valuation (the reader may choose the
value of 0), conjoined with the condition x = 0.
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Res-sort and α variables in the Ord-sort, is Hac,0-equivalent to a finite
disjunction of formulas of the form

ψ(ac f1(x), . . ., ac fk(x), ξ) ∧ ϑ(ord f1(x), . . ., ord fk(x), α),

with ψ a LRes-formula, ϑ a LOrd-formula and f1, . . ., fk polynomials
in Z[X].

Theorem 2.1.1 is not exactly expressed this way in [27]. The present
statement can be found in [35] (3.5) and (3.7). We will mostly use the
following corollary, which is standard in model theory.

2.1.2. Corollary. Let (K, k,Γ) be a model of Hac,0, S ⊂ K be a subring, TS

be the diagram of S in the language LDP ∪ S, that is, TS is the set of atomic
LDP ∪ S-formulas and negations of atomic formulas ϕ such that S |= ϕ,
and HS be the union of Hac,0 and TS. Then Theorem 2.1.1 holds with Hac,0
replaced by HS, LDP replaced by LDP ∪ S, and Z[X] replaced by S[X].

2.2. General subassignments. Let F : C → Sets be a functor from a cat-
egory C to the category of sets. Any data, which associates to each object C
of C a subset h(C) of F(C), will be called a subassignment of F. The point
in this definition is that h is not assumed to be a subfunctor of F.

For h and h ′ two subassignments of F, we shall denote by h ∩ h ′

and h ∪h ′, the subassignments C �→ h(C)∩h ′(C) and C �→ h(C) ∪ h ′(C),
respectively. Similarly, we denote by h ′ \ h the subassignment C �→
h ′(C) \ h(C).

We also write h ′ ⊂ h if h ′(C) ⊂ h(C) for every object C of C. In the case
where h ′ ⊂ h are subassignments of F we will also call h ′ a subassignment
of h (although h itself need not to be a functor).

There is a trivial notion of a morphism between subassignments: for h1
and h2 subassignments of some functors F1, F2 : C → Sets, a morphism
f : h1 → h2 is just the datum, for every object C of C, of a function
f(C) (or f for short) from h1(C) to h2(C). If h ′

i is a subassignment of h i ,
i = 1, 2, one defines the subassignments f(h ′

1) and f −1(h ′
2) in the obvious

way. We can also define the Cartesian product h1 × h2 of h1 and h2 by
(h1×h2)(C) := h1(C)×h2(C) for every object C of C; it is a subassignment
of the functor F1 × F2 which sends an object C of C to F1(C) × F2(C).
Similarly, one can perform other operations of set theory, for example:

The graph of a morphism f : h1 → h2 with h i a subassignment of Fi is
the subassignment of F1 × F2 sending an object C of C to

{(x, y) ∈ h1(C) × h2(C) | f(x) = y}.

If h i for i = 1, 2, 3 are subassignments of Fi : C → Sets and f j :
h j → h3 morphisms for j = 1, 2, the fiber product h1 ⊗h3 h2 is the
subassignment of F1 × F2 sending an object C of C to

{(x, y) ∈ h1(C) × h2(C) | f1(x) = f2(y)}.
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2.3. Definable subassignments. Let k be a field. We denote by Fieldk

the category of all fields containing k. More precisely, to avoid any set-
theoretical issue, we shall fix a Grothendieck universe U containing k and
we define Fieldk as the small category of all fields in U containing k.

It goes without saying that if ℓ is any other field than k, then Fieldℓ

stands for the category of all fields containing ℓ. Although k plays the role
of standard base field throughout the paper, the definitions of Sect. 2 make
sense over any base field ℓ instead of k.

We consider W := Am
k((t)) × An

k × Zr , m, n, r ≥ 0. It defines a func-
tor hW from the category Fieldk to the category of sets by setting hW(K ) =
K((t))m×Kn ×Zr . We shall write h[m, n, r] for hW , where the base field k is
implicit in the notation h[m, n, r]; thus to avoid confusion, we only use this
notation when the base field is clear. However, we will usually explicitly
write hSpec k instead of h[0, 0, 0]; it is the functor which assigns to each K
in Fieldk the one point set.

Fix a language LDP of Denef–Pas3. Any formula ϕ in LDP with coeffi-
cients in k((t)) in the valued field sort and coefficients in k in the residue field
sort, with m free variables in the valued field sort, n in the residue field sort
and r in the value group sort, defines a subassignment hϕ of h[m, n, r] by
assigning to K in Fieldk the subset of h[m, n, r](K ) defined by ϕ, namely,

hϕ(K ) = {x ∈ h[m, n, r](K ) | (K, K((t)),Z) |= ϕ(x)}.

We call hϕ a definable subassignment of h[m, n, r].
If the coefficients of the formula ϕ in the valued field sort all lie in

some subring S of k((t)) and the coefficients in the residue field sort are still
allowed to be in k, we call hϕ a LDP(S)-definable subassignment and we
write LDP(S) to denote the language LDP with such coefficients.

We denote by ∅ the empty definable subassignment which sends each
K in Fieldk to the empty set ∅. Here again, the base field k is implicit in the
notation ∅, and we only use it when the base field is clear.

More generally, if X is a variety, that is, a separated and reduced scheme
of finite type, over k((t)) and X is a variety over k, we consider W ′ :=
X × X × Zr and the functor hW ′ from Fieldk to the category of sets which
to K assigns hW ′(K ) = X(K((t))) × X(K ) × Zr . We will define definable
subassignments of hW ′ by a glueing procedure. Assume first X is affine and
embedded as a closed subscheme inAn

k and similarly for X inAm
k((t)). We shall

say a subassignment of hW ′ is a definable subassignment if it is a definable
subassignment of h[m, n, r]. Clearly, this definition is independent of the
choice of the embedding of X and X in affine spaces.

In general, a subassignment h of hW ′ will be a definable subassignment
if there exist finite covers (X i)i∈I of X and (X j) j∈J of X by affine open

3 Except in Theorem 2.1.1, we always assume without writing that (K((t)), K,Z) is
a structure for LDP for all fields K under consideration (usually K runs over a category
of the form Fieldk). Starting from Sect. 5 the language will be LDP,P, which satisfies this
condition.
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subschemes (defined over k and k((t)) respectively; such covers always exist)
and definable subassignments h ij of hXi×X j×Zr , for i in I and j in J , such
that h =

⋃
i, j h ij . If X as well as its cover (X j) j is defined over some

subring S of k((t)), and if the h ij are LDP(S)-definable subassignments, we
call h a LDP(S)-definable subassignment.

For i = 1, 2, let h i be a definable subassignment of hWi
with Wi =

Xi × X i ×Zri , Xi a variety over k((t)), and X i a variety over k. A definable
morphism f : h1 → h2 is a morphism h1 → h2 (as in Sect. 2.2) whose
graph is a definable subassignment of hW1×W2 . If moreover h1, h2, and
the graph of f are LDP(S)-definable subassignments for some subring S
of k((t)), we call f a LDP(S)-definable morphism.

The set-theoretical operations defined above for general subassignments
also work at the level of definable subassignments, for example, fiber prod-
ucts of definable subassignments are again definable subassignments.

Sometimes we call a definable morphism a definable function, especially
when the image is contained in hZr for some r.

2.4. Using our fixed language LDP of Denef–Pas, we define the cate-
gory of (affine) definable subassignments Defk (also written Defk(LDP)),
as the category whose objects are pairs (Z, h[m, n, r]) with Z a defin-
able subassignment of h[m, n, r], a morphism between (Z, h[m, n, r]) and
(Z ′, h[m′, n′, r ′]) being a definable morphism Z → Z ′, that is, a morph-
ism of subassignments whose graph is a definable subassignment of h[m +
m′, n + n′, r + r ′]. Similarly one defines the category of (global) definable
subassignments GDefk (also written GDefk(LDP)), as the category whose
objects are pairs (Z, hW ) with Z a definable subassignment of hW , where
W is of the form X × X × Zr with X a k((t))-variety and X a k-variety,
a morphism between (Z, hW ) and (Z ′, hW ′) being a definable morphism
Z → Z ′.

More generally if Z is in Defk , resp. GDefk, one considers the category
DefZ , resp. GDefZ , of objects over Z, that is, objects are definable mor-
phisms Y → Z in Defk, resp. GDefk, and a morphism between Y → Z and
Y ′ → Z is just a morphism Y → Y ′ making the obvious diagram commute.

For every morphism f : Z → Z ′ in Defk, composition with f defines
a functor f! : DefZ → DefZ ′ . Also, fiber product defines a functor f ∗ :
DefZ ′ → DefZ , namely, by sending Y → Z ′ to Y ⊗Z ′ Z → Z. We use
similar notations when f : Z → Z ′ is a morphism in GDefk.

Let Y and Y ′ be in Defk (resp. GDefk). We write Y × Y ′ for the ob-
ject Y ⊗hSpec k

Y ′ of Defk (resp. GDefk). We shall also write Y [m, n, r]

for Y × h[m, n, r]. Nevertheless, the notation h[m, n, r] will only be used
for the definable subassignment defined above, and never for a product
h × h[m, n, r] when h itself is a definable subassignment.

Note that hSpec k and ∅ are respectivly the final and the initial objects of
Defk and GDefk.

For a subring S of k((t)), we define Defk(LDP(S)) as the subcategory
of Defk whose objects are pairs (Z, h[m, n, r]) with Z a LDP(S)-definable
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subassignment of h[m, n, r], and whose morphisms are LDP(S)-definable
morphisms. Similarly we define GDefk(LDP(S)), DefZ(LDP(S)), and
GDefZ(LDP(S)) for some Z is in Defk or in GDefk, respectively4 .

2.5. Extension of scalars. Let W = X × X × Zr , with X a k((t))-variety
and X a k-variety, let K be in Fieldk, and let W ′ = X′ × X ′ × Zr , with
X′ = X ⊗ Spec K((t)) and X ′ = X ⊗ Spec K . The extension of scalars
functor sends Z = (Z0, hW ) in GDefk to Z⊗hSpec K := (Z ′

0, hW ′) in GDefK ,
where Z ′

0 is the definable subassignment of hW ′ which is given by the same
LDP-formulas as Z0 on affine covers of X′ and X ′ which are defined over
k((t)) and k, respectively. Using graphs, one defines similarly the image
of morphisms in GDefk under extension of scalars, getting a functor of
extension of scalars GDefk → GDefK .

2.6. Points on definable subassignments. For Z in GDefk, a point x on
Z is by definition a tuple x = (x0, K ) such that x0 is in Z(K ) and K is in
Fieldk. For a point x = (x0, K ) on Z we write k(x) = K and we call k(x)
the residue field of x.

Let f : X → Y be a morphism in Defk, with X = (X0, h[m, n, r])
and Y = (Y0, h[m′, n′, r ′]). Let ϕ(x, y) be the formula which describes the
graph of f , where x runs over h[m, n, r] and y runs over h[m′, n′, r ′]. For
every point y = (y0, k(y)) of Y , we may consider its fibre X y, which is the
object in Defk(y) defined by the formula ϕ(x, y0)

5. Taking fibers at y gives
rise to a functor i∗y : DefY → Defk(y).

Fibers of a morphism f : X → Y in GDefk are defined similarly via
affine covers and we shall use similar notations as for morphisms in Defk.

2.7. T -subassignments. Let T be a theory given by sentences in LDP
with coefficients in k and k((t)) (a sentence is a formula without any free
variables). We denote by Fieldk(T ) the category of fields F over k such that
(F((t)), F,Z) is a model of T and whose morphisms are field morphisms.
Given a k((t))-variety X, a k-variety X, and W = X × X × Zr , we can
restrict the functor hW as defined above to Fieldk(T ) and we also write hW

to denote this functor. We can speak of definable T -subassignments of hW

in exactly the same way as we did above for definable subassignments
of hW . A definable T -morphism between T -subassignments Z and Z ′ is
also defined accordingly.

We define the category GDefk(LDP, T ) of definable T -subassignments
as the category whose objects are pairs (Z, hW ) with Z a definable
T -subassignment of hW , where W is of the form W = X × X × Zr ,

4 When the goal is to interpolate p-adic integrals and Fq[[t]]-integrals, one can use the
ring S = O[[t]] with O some ring of integers. This interpolation as well as a transfer result
between p-adic and Fq[[t]]-integrals is announced in [8], [9] and detailed in [10].

5 Note that the formula ϕ(x, y0) has coefficients in k(y) and k(y)((t)), which is allowed in
Defk(y). So, in Defk(y), the base field is k(y) instead of k.
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and T -morphisms being definable T -morphisms. One defines similarly
Defk(LDP, T ).

For S a subring of k((t)), if one restricts moreover the coefficients in
the valued field sort to S, one defines the categories Defk(LDP(S), T ) and
GDefk(LDP(S), T ) correspondingly.

3. Dimension theory for definable subassignments

3.1. The Zariski closure of a definable subassignment Z of hX with X
a variety over k((t)) is the intersection W of all subvarieties Y of X such that
Z ⊂ hY . We define the dimension of Z as Kdim Z := dim W if W is not
empty and as −∞ if W is empty. More generally, if Z is a subassignment of
hW with W = X × X × Zr , X a variety over k((t)), and X a variety over k,
we define Kdim Z as the dimension of the image of Z under the projection
hW → hX. We shall establish basic properties of this dimension using work
by van den Dries [34], by Denef and Pas [27], and by Denef and van den
Dries [13]. A similar dimension theory in a setting of first order languages
with analytic functions has been developed by Çelikler in [3].

3.2. Since K((t)) is a complete field for any field K , we can use the theory
of K((t))-analytic manifolds as developed for instance in [1], thus using the
t-adic topology on K((t)). By a K((t))-analytic manifold of dimension n ≥ 0,
we mean a separated topological space endowed with an analytic atlas of
charts into K((t))n . Note that we do not assume K((t))-analytic manifolds to
have a countable basis for their topology. We shall consider the empty set
as a K((t))-analytic manifold of dimension −∞.

For any smooth equidimensional variety X over k((t)) and for any K in
Fieldk the set X(K((t))) has a natural structure of K((t))-analytic manifold.
More generally, if X is a smooth equidimensional variety over k((t)), X is
a variety over k, K is in Fieldk, and r is inN, the set hX×X×Zr (K ) has a natu-
ral structure of K((t))-analytic manifold as product manifold of X(K((t)))
and X(K ) × Zr (the latter considered as a discrete set).

The following theorem asserts that definable subassignments are closely
related to analytic manifolds; its proof is given below. We thank Çelikler
for his help with the proof.

3.2.1. Theorem. Let Z be a nonempty definable subassignment of hW and
f : Z → h[1, 0, 0] a definable morphism, with W = X × X × Zr ,
X a variety over k((t)), and X a variety over k. Let {Xi}i be a finite partition
of X into smooth equidimensional varieties.

(i) There exists a finite partition of Z into definable subassignments Z j

such that, for each K in Fieldk and each j, the set Z j(K ) is a K((t))-
analytic submanifold of hXi×X×Zr (K ) for some i only depending on j
and such that the restriction f|Z j

(K ) : Z j(K ) → K((t)) is K((t))-
analytic.
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(ii) If Zi is a partition as in (i), then Kdim Z equals

max
j, K∈Fieldk,

(dim Z j(K )),

where dim Z j(K ) denotes the dimension as a K((t))-analytic manifold.
(iii) There exists a definable subassignment Z ′ of Z which satisfies

Kdim (Z \ Z ′) < Kdim Z and such that Z ′(K ) is a K((t))-analytic
manifold and f|Z ′(K ) : Z ′(K ) → K((t)) is K((t))-analytic for each K
in Fieldk.

3.3. Given a subassignment Z of hW with W as in Theorem 3.2.1 and
X → X′ an embedding of X into a smooth equidimensional variety X′

over k((t)) and K in Fieldk, we endow Z(K ) with the induced topology
coming from the manifold structure on hX′×X×Zr (K ). This topology is
independent of the embedding X → X′. Many notions of general topology
have a meaning in GDefk, for example, if f : Z → Y is a definable
morphism in GDefk, we say f is continuous if for each K in Fieldk the
map f(K ) : Z(K ) → Y(K ) is continuous. Similarly, for Z ⊂ Y in GDefk,
one can construct definable subassignments int(Z) and cl(Z) such that for
each K in Fieldk the set int(Z)(K ), resp. clZ(K ), is the interior, resp. the
closure, of Z(K ) in Y(K ).

3.3.1. Theorem. Let Z and Y be in GDefk and nonempty.

(i) If f : Z → Y is a definable morphism in GDefk, then Kdim Z ≥
Kdim f(Z). If f is a definable isomorphism, then Kdim Z = Kdim Y.

(ii) The inequality

Kdim (Z × Y ) ≤ Kdim Z + Kdim Y

holds.
(iii) If Z and Y are definable subassignments of the same subassignment in

GDefk, one has

Kdim (Z ∪ Y ) = max(Kdim Z, Kdim Y ).

(iv) If Z ⊂ Y, let cl(Z) be the definable subassignment which is the closure
of Z in Y as in Sect. 3.3. Then

Kdim (cl(Z) \ Z) < Kdim Z.

(v) The integer Kdim Z is equal to the largest integer d such that there
exists a definable morphism f : Z → h[d, 0, 0] such that f(Z) has
nonempty interior in h[d, 0, 0] for the topology of Sect. 3.3, and with
f(Z) the image of Z under f .

3.3.2. Example. The inequality in (ii) of Theorem 3.3.1 can be strict: Sup-
pose that −1 does not have a square root in k. Let Z, resp. Y , be a definable
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subassignment of h[1, 0, 0] given by the formula x = x ∧∃y ∈ h[1, 0, 0]y2

= −1, resp. x = x ∧ ∀y ∈ h[1, 0, 0]y2 = −1, where x runs over h[1, 0, 0].
Then the Zariski closure of both Z and Y is A1

k((t)), hence they both have
dimension 1, but the definable subassignment Z × Y is empty, hence its
dimension is −∞.

Proof of Theorem 3.3.1. Let first Z be a definable subassignment of
h[m, n, r] for some m, n, r, and Y a definable subassignment of h[m′, n′, r ′]
for some m′, n′, r ′.

Let L be the language LVal together with the following additional rela-
tion symbols:

(1) for each LOrd-formula ϕ in n free variables the n-ary relation symbol
Rϕ interpreted as follows: Rϕ(a1, ..., an) if and only if ϕ(ord(a1), ...,
ord(an)) holds;

(2) for each LRes-formula ϕ in n free variables the n-ary relation symbol Rϕ

interpreted as follows: Rϕ(a1, ..., an) if and only if ϕ(ac(a1), ..., ac(an))
holds.

For each K in Fieldk let LK be the language L with additional constant
symbols for all elements of K((t)). Then, for each K in Fieldk, it follows from
Theorem 2.1.1 that the structure (K((t)),LK ) has elimination of quantifiers;
moreover, (K((t)),LK ) satisfies the conditions of Proposition 2.15 of [34],
with a topology as in Sect. 3.3. Thus, using the terminology of [34], there is
a dimension function algdim – defined via the Zariski closure of definable
sets – on LK -definable subsets of the structure (K((t)),LK ) for each K .

We claim that

max
K∈Fieldk,(y,z)∈Kn×Zr

algdim (Z(y,z),K) = Kdim Z,(3.3.1)

with Z(y,z),K = Z(K ) ∩ (K((t))m×{(y, z)}), from which the theorem will
follow.

The subassignment Z is given by a formula ϕ(x, y, z), where x are the
Val-variables, y the Res-variables and z the Ord-variables. By Denef–Pas
quantifier elimination Theorem 2.1.1, we can write ϕ as a disjunction over
j of formulas of the form

ψ j(z, ord f1 j(x), . . ., ord fr j(x)) ∧i fij(x) = 0
∧ϑ j(y, ac g1 j(x), . . ., ac gs j(x)) ∧i gij (x) = 0(3.3.2)

∧h1 j(x) = 0 ∧ . . . ∧ h t j(x) = 0,

with fij , gij , h ij polynomials over k((t)) – strictly speaking, these polynomi-
als are defined over the constant symbols of LVal – in the variables x, ψ j

LVal-formulas and ϑ j LRes-formulas. Note that the first two lines of (3.3.2)
determine open conditions. Let Vj be the variety over k((t)) associated to
the ideal (h1 j, . . ., h t j). Just by rewriting the disjunction (3.3.2), we may
suppose that the Vj are irreducible over k((t)). We prove (3.3.1) by induction
on the maximum of the Zariski dimensions of the Vj . For each j and each
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point w = (y0, z0, K ) in h[0, n, r] let Ujw be the definable subassignment
in DefK given by

ψ j(z0, ord( f1 j(x)), . . ., ord( fr j(x))) ∧i fij(x) = 0
∧ϑ j(y0, ac(g1 j(x)), . . ., ac(gs j(x))) ∧i gij (x) = 0

∧h1 j(x) = 0 ∧ . . . ∧ h t j(x) = 0.

Let j0 be such that Vj0 has maximal Zariski dimension, say ℓ0, among
the Vj . In the case where there exists w = (y0, z0, K ) such that the set
U j0w(K ) has a Zariski closure over K((t)) of dimension equal to ℓ0, (3.3.1)
follows. In the case where for all w = (y0, z0, K ) the set U j0w(K ) has
a Zariski closure Vw over K((t)) of dimension < ℓ0, then, since the field of
definition of Vw is contained in the algebraic closure of k((t)) intersected
with K((t)), for each w = (y0, z0, K ), the set U j0w(K ) is contained in
a Zariski closed set defined over k((t)) of dimension < ℓ0. Hence, by com-
pactness, Vj0 can be replaced by a k((t))-variety V ′

j0
of dimension < ℓ0. This

proves (3.3.1).
Theorem 3.3.1 now follows for Z ⊂ h[m, n, r], Y ⊂ h[m′, n′, r ′]

by (3.3.1) and by the equivalent properties of algdim stated in [34]. For
example, to prove (i) we consider the definable morphism

f ′ := π × f : Z → h[0, n, r] × Y : x �−→ (π(x), f(x))

with π : Z → h[0, n, r] the projection. We then compute

Kdim (Z) = max
K∈Fieldk,x∈Kn×Zr

algdim (Zx,K)

≥ max
K∈Fieldk,y∈Kn+n′

×Zr+r′
(algdim ( f ′(Z)y,K ))

= Kdim f ′(Z)

= Kdim f(Z),

with f ′(Z)y,K := Y(K ) ∩ (K((t))m′

×{y}). Indeed, the inequality holds by
the equivalent property for algdim for fixed x, K , and y above x, and the
last equality follows from the definition of Kdim .

These results extend to any definable subassignments Z and Y of functors
of the form hW with W = X × X × Zr , X a variety over k((t)), X a variety
over k, by using affine charts on X and X. ⊓⊔

Proof of Theorem 3.2.1. Theorem 3.2.1 for Z ⊂ h[m, n, r] follows by the
same proof as the proof of Lemma 3.12 of [13], the first part of the proof
of Lemma 3.18 of [13], and the proof of Proposition 3.29 of [13]. For the
convenience of the reader we give an outline of this argument and refer
to [13] for details.

We use the notation of the proof of Theorem 3.3.1. Let Z ⊂ h[m, n, r],
ϕ, and Vj be as in the proof of Theorem 3.3.1. If one takes a partition of each
Vj into smooth k((t))-subvarieties which are irreducible over k((t)), noting
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that the first two lines of (3.3.2) describe an open set, one can easily partition
Z into definable manifolds as in statement (i) by taking appropriate Boolean
combinations (see Lemma 3.12 in [13] for details).

For the part of statement (i) about f : Z ⊂ h[m, n, r] → h[1, 0, 0]
one uses induction on the dimension of Z to obtain a finite partition of Z
such that the restriction of f to each part is continuous (as in the proof
of Proposition 3.29 in [13]), hence one may suppose that f is continuous.
Then one partitions the graph Γ( f ) of f into manifolds as in (i) and one
refines the partition in such a way that the tangent map of the projection
π : Γ( f ) → h[m, n, r] has constant rank on each part (as in the first part
of the proof of Lemma 3.18 of [13]). It then follows that on each part of
this partition the map π is an analytic isomorphism between manifolds with
analytic inverse f .

Statement (ii) for Z ⊂ h[m, n, r] follows from Theorem 3.3.1 (iii)
and (3.3.1) in its proof.

Statement (iii) for Z ⊂ h[m, n, r] follows easily from (i) and The-
orem 3.3.1, by taking the parts Z j of maximal dimension among the parts
obtained in (i), and taking the union of Z j \

⋃
i = j cl(Zi) for Z ′.

Again, this extends to any definable subassignment Z of hW with W =
X × X × Zr , X a variety over k((t)), X a variety over k, by using affine
charts on X and X. ⊓⊔

3.4. Relative dimension. Let Z and Y be in GDefk and let f : Z → Y be
a definable morphism. For every point x on Y let Zx be its fiber, as defined
in Sect. 2.6.

For i in N ∪ {−∞}, we say Z is of relative dimension ≤ i rel. f if
Kdim Zx ≤ i for every point x in Y . We say Z is equidimensional of
relative dimension i rel. f if Kdim Zx = i for every point x in Y .

By Proposition 1.4 of [34] and by using similar arguments as the ones
in the proof of Theorem 3.3.1, we deduce the following proposition:

3.4.1. Proposition. Let Z and Y be in GDefk and let f : Z → Y be
a definable morphism. For every point x on Y let Zx be its fiber (as in
Sect. 2.6). The morphism H : Y → hZ which sends x to Kdim Zx if Zx is
nonempty and to −1 otherwise is a definable morphism. For i in N let Yi

be the definable subassignment of Y given by H(x) = i. Then, the definable
subassignment f −1(Yi) has dimension i + Kdim Yi .

The next proposition is a relative version of Theorem 3.2.1.

3.4.2. Proposition. Let Λ be in Defk. Let Z ⊂ Λ[m, n, r] be a nonempty
definable subassignment over Λ for some m, n, r such that Z → Λ is
surjective. Let f : Z → h[1, 0, 0] be a definable morphism.

(i) There exists a finite partition of Z into definable subassignments Z j

such that, for each λ in Λ, for each K in Fieldk(λ), and each j, the fiber
i∗λ(Z j)(K ) is a K((t))-analytic submanifold of K((t))m×Kn × Zr and
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such that the morphism

f|i∗λ(Z j )(K ) : i∗λ(Z j)(K ) −→ K((t))

is K((t))-analytic.
(ii) There exists a definable subassignment Z ′ of Z satisfying

Kdim
(
i∗λ(Z) \ i∗λ(Z ′)

)
< Kdim i∗λ(Z)

for each λ in Λ and such that, for each K in Fieldk(λ), the fiber i∗λ(Z ′)(K )
is a K((t))-analytic manifold on which f|i∗λ(Z ′)(K ) is K((t))-analytic.

Proof. Apply Theorem 3.2.1 to Z, to f , and to the (Val coordinate functions
of the) structure map g : Z → Λ. Partition further into finitely many
definable subassignments such that the restriction of g to each of the parts
has constant rank d with respect to the Val-variables, and with a constant
submatrix of the Jacobian matrix of g of size d having nonzero determinant.
Now the proposition follows from the implicit function theorem. ⊓⊔

4. Summation over Presburger sets

4.1. Presbuger sets. Let G denote a Z-group, that is, a group which is
elementary equivalent to the integers Z in the Presburger language LPR. We
call (G, LPR) a Presburger structure. By a Presburger set, function, etc., we
mean a LPR-definable set, function. We recall that the theory Th(Z, LPR) has
quantifier elimination in LPR and is decidable [28]. Let S be a Presburger
set. We call a function

f : X ⊂ S × Gm → G

S-linear (or linear for short) if there is a definable function γ from S to G,
and integers 0 ≤ ci < ni and ai , for i = 1, . . ., m, such that for every
x = (s, x1, . . ., xm) in X, xi − ci ≡ 0 (mod ni) and

f(x) =

m∑

i=1

ai

(
xi − ci

ni

)
+ γ(s).(4.1.1)

We define similarly S-linear maps g : X → Gn .
From now on in this section we shall assume that G = Z.

4.2. Constructible Presburger functions. We consider a formal symbol
L and the ring

A := Z

[
L,L−1,

(
1

1 − L−i

)

i>0

]
.

Note that for every real number q > 1, there is a unique morphism of rings
ϑq : A→ R mapping L to q and that, for q transcendental, ϑq is injective.
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We define a partial ordering of A by setting a ≥ b if, for every real number
q > 1, ϑq(a) ≥ ϑq(b). We denote by A+ the set {a ∈ A | a ≥ 0}. Note
that Li , for i in Z, Li −L j , for i > j, and 1

1−L−i , for i > 0, all lie in A+, but,
for instance, L − 2 does not. One has a = b in A if and only if ϑq(a) =
ϑq(b) for all q > 1. Indeed, considering a single transcendental q > 1 is
enough.

Now if S is a definable subset of Zm we define the ring P (S) of con-
structible Presburger functions on S as the subring of the ring of functions
S → A generated by all constant functions into A, all definable functions
S → Z and all functions of the formLβ with β aZ-valued definable function
on S. We denote by P+(S) the semiring of functions in P (S) with values
in A+ and write f ≥ g if f − g is in P+(S). This defines a partial ordering
on P (S). When S is one point we identify P (S) and A.

4.3. Cell decomposition for Presburger sets. In this subsection we recall
the cell decomposition for Presburger sets as presented in [4]. Let G denote
a Z-group. Fix a Presburger set S. We define Presburger cells parametrized
by S, or Presburger S-cells.

4.3.1. Definition. An S-cell of type (0) (also called a (0)-cell or cell for
short) is a subset of S×G which is the graph of a S-linear function S′ → G,
with S′ a definable subset of S. An S-cell of type (1) (also called (1)-cell or
cell for short) is a subset A of S × G of the form

{(s, x) ∈ S′ × G | α(s)�1x�2β(s), x ≡ c (mod n)},(4.3.1)

with S′ a definable subset of S, α and β S-linear functions S′ → G, c and n
integers such that 0 ≤ c < n, and�i either ≤ or no condition, and such that
the cardinality of the fibers As = {x ∈ G | (s, x) ∈ A} cannot be bounded
uniformly for s in S′ by an integer.

Let us consider i j in {0, 1}, for j = 1, . . ., m, and x = (x1, . . ., xm).
A (i1, . . ., im, 1)-cell is a subset A of S × Gm+1 of the form

A =
{
(x, t) ∈ S × Gm+1 | x ∈ D, α(x)�1t�2β(x), t ≡ c (mod n)

}
,

(4.3.2)

with D = πm(A) a (i1, . . ., im)-cell in S × Gm , πm denoting the projection
S × Gm+1 → S × Gm , α, β : D → G S-linear functions, �i either ≤ or
no condition and integers 0 ≤ c < n such that the cardinality of the fibers
Ax = {t ∈ G | (x, t) ∈ A} cannot be bounded uniformly for x in D by an
integer.

A (i1, . . ., im, 0)-cell is a set of the form

{(x, t) ∈ S × Gm+1 | x ∈ D, α(x) = t},

with α : D → G a S-linear function and D ⊂ S × Gm a (i1, . . ., im)-cell.
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A subset of S × Gm is called a S-cell if it is a (i1, . . ., im)-cell for some i j

in {0, 1}.
Now we can state the following:

4.3.2. Theorem (Presburger cell decomposition [4]). Let S be a LPR-
definable set, let X be a LPR-definable subset of S × Gm and f : X → G
a LPR-definable map. Then there exists a finite partition P of X into S-cells,
such that the restriction f |A : A → G is S-linear for every cell A in P .

4.3.3. Remark. Of course, one could assume S is the one point set in the
above statement, but it is more convenient to express it that way, in view of
further generalizations.

4.4. The basic rationality result. Let S be a definable Presburger set. We
consider the ring P (S)[[T1, · · ·, Tr ]] of formal series with coefficients in the
ring P (S). If α is a definable function on S with values inNr , we write T α for
the series

∑
j∈Nr 1C j

T j in P (S)[[T1, · · ·, Tr]], where 1C j
is the characteristic

function of the subset C j of S defined by the formula α(x) = j. We consider
the subring P (S){T1, · · ·, Tr} of power series of the form

∑
i∈I ai T

αi with
I finite, ai in P (S), and αi a definable function on S with values in Nr . In
other words P (S){T1, · · ·, Tr} is the P (S)-subalgebra of P (S)[[T1, · · ·, Tr]]
generated by elements of the form T α with α : S → Nr definable.

We denote by Γ the multiplicative set of polynomials in P (S)[T1, · · ·, Tr ]

generated by the polynomials 1−LαT β := 1−Lα
∏

1≤i≤r T
βi

i , for α inZ and
β = (β1, · · ·, βr) in Nr \ {(0, · · ·, 0)}. We denote by P (S){T1, · · ·, Tr}Γ the
localisation of P (S){T1, · · ·, Tr} with respect to Γ. Since the polynomials
1−LαT β are invertible in P (S)[[T1, · · ·, Tr]], there exists a canonical morph-
ism of rings

P (S){T1, · · ·, Tr}Γ −→ P (S)[[T1, · · ·, Tr]],

which is injective. We denote by P (S)[[T1, · · ·, Tr]]Γ, or by P (S)[[T ]]Γ
for short, the image of this morphism, which we shall identify with
P (S){T1, · · ·, Tr}Γ.

We shall consider the P (S)-module P (S)[[T1, T −1
1 , · · ·, Tr, T −1

r ]], or
P (S)[[T, T −1]] for short. There is a natural product on P (S)[[T, T −1]], the
Hadamard product, defined by

f ∗ g =
∑

i∈Zr

figi T
i,

for f =
∑

i∈Zr fiT
i and g =

∑
i∈Zr gi T

i , that endows P (S)[[T, T −1]] with
a ring structure.

For ε in {+1,−1}r , we denote by ε∗ the P (S)-module automorphism of
P (S)[[T, T −1]] that sends

∑
i∈Zr ai T

i to
∑

i∈Zr ai T
εi with εi = (ε1i1, . . .,

εrir). We denote by P (S)[[T, T −1]]Γ the P (S)-submodule of P (S)[[T, T −1]]
generated by the submodules ε∗(P (S)[[T ]]Γ) for all ε in {+1,−1}r .
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For ϕ in P (S ×Zr), and i in Zr , we shall write ϕi for the restriction of ϕ
to S × {i}, viewed as an element of P (S), and consider the series

M(ϕ) :=
∑

i∈Zr

ϕi T
i

in P (S)[[T, T −1]].

4.4.1. Theorem. Let S be a definable set. For every ϕ in P (S × Zr), the
series M(ϕ) belongs to P (S)[[T, T −1]]Γ. Furthermore, the mapping ϕ �→
M(ϕ) induces P (S)-algebra isomorphisms

M : P (S × Zr) −→ P (S)[[T, T −1]]Γ

and

M : P (S × Nr) −→ P (S)[[T ]]Γ,

the product on the power series rings being the Hadamard product.

4.4.2. Remark. Note that P (S)[[T, T −1]]Γ and P (S)[[T ]]Γ are stable by
Hadamard product since M is a bijection.

Proof. The proof of the first statement is quite easy using the cell decom-
position for Presburger sets recalled in Theorem 4.3.2 and quite similar
statements (compare with Lemma 3.2 of [12]) may be found in the litera-
ture. Let us now prove that the mappings M are isomorphisms. Take ϕ in
P (S × Zr). We may first assume the support of ϕ is contained in S × Nr .
By the cell decomposition theorem we may furthermore assume that the
support of ϕ is contained in an S-cell A and that the restriction of ϕ to A
is of the form

∏
1≤k≤d αkL

β where αk and β are S-linear functions on A.
Let us first consider the case r = 1. When A is a (0)-cell, there is nothing
to prove. Assume now A is a (1)-cell. Consider first the case where there
is no condition �2 in (4.3.1). By Lemma 4.4.3, we can perform a direct
computation of M(ϕ) (which essentially amounts to summing (derivatives)
of geometric series of monomials in L and T1 along an infinite arithmetic
progression) which yields that M(ϕ) is a finite sum of terms of the form

ψ(s)
T

γ(s)
1

(1−La T b
1 )c

, with ψ(s) in P (S), γ : S → N S-linear, a in Z, b > 0 and c

in N.

4.4.3. Lemma. Let R be a ring and let P be a degree d polynomial in R[X].
The equality

∑

n≥a

P(n)T n =

d∑

i=0

[∆i P(a)]T a+i

(1 − T )i+1
(4.4.1)

holds in R[[T ]] for all a in N. Here ∆
i is the i-th iterate of the difference

operator P �→ P(X + 1) − P(X) with the convention ∆
0 P = P. ⊓⊔
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When there is a condition �2 in (4.3.1), we may express M(ϕ) as the
difference of two series of the preceding type.

Consider now the case r = 2. Let us first sum with respect to the variable
T2 in the series M(ϕ). By what we know about the case r = 1, relatively to
S × N, we get that M(ϕ) is a finite sum of terms of the form

∑

i∈N

ψ(s, i) T i
1

T
γ(s,i)

2(
1 − La T b

2

)c ,

with ψ(s, i) in P (S × N), γ : S × N → N definable, a in Z, b > 0 and c
in N. So we just need summing up series of the type

∑

i∈N

ψ(s, i) T i
1 T

γ(s,i)

2 ,

which can be done exactly in the same way as the case r = 1, except that
instead of dealing with geometric series in monomials of L and T1, we have
now to deal with geometric series in monomials of L, T1 and T2 which will
have the effect of producing denominators of the form 1 − La T b

1 T c
2 , with

a in Z, and b and c strictly positive integers.
The case where ϕ belongs to P (S × Zr) for general r is completely

similar. Next we show that every element m in P (S)[[T, T −1]]Γ is of the
form M(ϕ), by using Theorem-Definition 4.5.1. Note that this part of the
theorem is not used in the proof of Theorem-Definition 4.5.1. We may
assume m is in P (S)[[T ]]Γ, and furthermore, by linearity, that it is of the
form

T α

∏ℓ
i=1(1 − Lai T bi)

with α : S → Nr definable, ai in Z, and bi in Nr \ {(0, . . ., 0)}. The case of
general α following easily from the case α = 0, we may assume α = 0. Let
H be the definable subassignment of S × Nr+ℓ given by the condition

(s, c, d) ∈ S × Nr+ℓ ∧

ℓ∑

i=1

di · bi = c.

Note that for each (s, c), the set of d’s in Nℓ satisfying this condition is
finite. Let β : H → Z be the definable morphism (s, c, d) �→

∑ℓ
i=1 diai .

Let ψ be Lβ in P (S × Nr+ℓ). By the finiteness of the fibers, ψ is S × Nr-
summable in the sense of Sect. 4.5. If one sets ϕ to be µS×Nr (ψ), as given
by Theorem-Definition 4.5.1, then, by construction, M(ϕ) = m, which is
what we had to prove. ⊓⊔

4.5. Summation of constructible Presburger functions. Recall the no-
tion of summable families in R or C, cf. [2, VII.16]. In particular, a family
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(zi)i∈I of complex numbers is summable if and only if the family (|zi|)i∈I is
summable in R. We shall say a family (ai)i∈I in A is summable if, for every
q > 1, the family (ϑq(ai))i∈I is summable in R. We shall say a function ϕ
in P (S × Zr) is S-integrable if, for every s in S, the family (ϕ(s, i))i∈Zr is
summable. We shall denote by ISP (S×Zr) the P (S)-module of S-integrable
functions.

4.5.1. Theorem-Definition. For each ϕ in ISP (S×Zr) there exists a unique
function µS(ϕ) in P (S) such that for all q > 1 and all s in S

ϑq(µS(ϕ)(s)) =
∑

i∈Zr

ϑq(ϕ(s, i)).(4.5.1)

Moreover, the mapping ϕ �→ µS(ϕ) yields a morphism of P (S)-modules

µS : ISP (S × Zr) −→ P (S).

Proof. By induction and Fubini’s theorem, it is enough to consider the case
when r = 1. Using Theorem 4.3.2 as in the proof of Theorem 4.4.1, we
may assume that ϕ is of the form

ϕ(s, i) =

{
L

a(i−c)
n

(
i−c

n

)b
h(s) if i belongs to I(s)

0 otherwise,
(4.5.2)

where a lies in Z, b in N, s in S, h in P (S), and

I(s) = {i ∈ Z | α(s)�1i�2β(s), i ≡ c mod n},

with 0 ≤ c < n integers, α, β : S → Z definable functions, �i either < or
no condition, and that the sum

∑

i∈I(s)

q
a(i−c)

n

(
i − c

n

)b

h(s)(4.5.3)

is summable for all s in S and q > 1. Now the theorem follows from
Lemma 4.4.3 and Lemma 4.5.2, which is a refinement of the claim in the
proof of Lemma 3.2 of [12]. ⊓⊔

4.5.2. Lemma. Let b and 0 ≤ c < n be integers. There exist Presburger
functions γℓ j : Z→ Z for ℓ in a finite set L and j = 0, . . ., b, such that

∑

0≤i≤a
i≡cmodn

ib =
∑

ℓ∈L

∏

j=0,...,b

γℓ j(a),

for each a ≥ 0. ⊓⊔
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4.5.3. Characterization of ISP in terms of power series. We denote by
P (S){{T }} the subring of P (S)[[T ]]Γ consisting of series with coefficients
in P (S) such that, for every s in S, at most a finite number of coefficients
have non zero value at s. For instance, for γ : S → N, the series 1−T γ

1−T

belongs to P (S){{T }}, say if r = 1. Let Σ be the multiplicative set gener-
ated by the polynomials 1 − LαT β := 1 − Lα

∏
1≤i≤r T

βi

i , for α in Z \ N

and β = (β1, · · ·, βr) in Nr \ {(0, . . ., 0)}. We denote by P (S)[[T ]]Σ the
subring of P (S)[[T ]]Γ (with the product being the usual product in power
series rings) whose elements are of the form P

Q
with P in P (S){{T }} and

Q in Σ. The ring P (S)[[T ]]Σ captures the summable series among the
series in P (S)[[T ]]Γ, as is shown by Theorem 4.5.4. We shall denote by
P (S)[[T, T −1]]Σ the P (S)-submodule of P (S)[[T, T −1]]Γ generated by the
submodules ε∗(P (S)[[T ]]Σ) for all ε in {+1,−1}r .

4.5.4. Theorem. Let S be a definable set. The transformation M induces
isomorphisms of P (S)-modules

M : ISP (S × Zr) −→ P (S)[[T, T −1]]Σ

and

M : ISP (S × Nr) −→ P (S)[[T ]]Σ.

Proof. Let ϕ be in P (S × Zr). We want to prove that ϕ is S-integrable if
and only if M(ϕ) lies in P (S)[[T, T −1]]Σ. We may assume the support of ϕ
is contained in S ×Nr , so that M(ϕ) belongs to P (S)[[T ]]Γ. It is quite clear
that if M(ϕ) belongs to P (S)[[T ]]Σ, then ϕ is S-integrable. Assume now
M(ϕ) is not in P (S)[[T ]]Σ. Then, there exists s0 in S and q > 1 such that,
extending ϑq coefficientwise to series,

ϑq(M(ϕ))|s=s0 =
Ps0(T1, . . ., Tr)

Qs0(T1, . . ., Tr)
,

with Ps0 and Qs0 in R[T1, . . ., Tr ], such that Ps0 and Qs0 have no non
constant common factor in R[T1, . . ., Tr], and such that for some α ≥ 0
and βi ≥ 0, β = (0, · · ·, 0), the polynomials Qs0 and 1 − qαT

β1
1 . . .T

βr
r

have a non constant common factor in R[T1, . . ., Tr]. Indeed, otherwise,
since one can take q to be transcendental, for every s0 in S, one could write
M(ϕ)|s=s0 as a quotient

Ps0
Qs0

of polynomials in A[T ], with Qs0 in Σ. Since

the polynomials Qs0 all divide a fixed non zero polynomial in A[T ], they
have a common multiple Q in Σ, so we can assume Qs0 is independent of
s0, hence there exists P in P (S){{T }} which gives Ps0 when evaluated at s0
for every s0 in S, and M(ϕ) would belong to P (S)[[T ]]Σ.

It follows there exists z1, . . ., zr in C, with |z1| ≤ 1, . . ., |zr | ≤ 1, such
that Ps0(z1, . . ., zr) = 0 and Qs0(z1, . . ., zr) = 0. In particular the family
(ϑq(ϕ(s0, i)))i∈Nr cannot be summable, since the summability of a family
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of real numbers (ai)i∈Nr implies that the series
∑

i∈Nr ai z
i is convergent for

every z = (z1, . . ., zr) in Cr with |z1| ≤ 1, . . ., |zr| ≤ 1. ⊓⊔

4.5.5. We may also characterise S-integrability in terms of the L-degree
as follows. We consider the unique extension degL : A→ Z∪ {−∞} of the
function degree in L from Z[L] to Z ∪ {−∞} which satisfies degL(ab) =
degL(a) + degL(b). We have degL(a + b) ≤ sup(degL(a), degL(b)), with
equality if a and b are both in A+. Now if S is a definable set and ϕ is
a function in P (S), we denote by degL(ϕ) the function S → Z ∪ {−∞}
which sends s to degL(ϕ(s)).

4.5.6. Proposition. The following conditions are equivalent for a function
ϕ in P (S × Zr):

(i) ϕ is S-integrable.
(ii) For every s in S, lim|x|�→∞ degL(ϕ(s, x)) = −∞, where |x| stands for

|x1| + . . . + |xr |.
(iii) For every q > 1, lim|x|�→∞ ϑq(ϕ(s, x)) = 0.

Proof. Take ϕ in P (S×Zr). If ϕ is S-integrable, we know by Theorem 4.5.4
that M(ϕ) is in P (S)[[T, T −1]]Σ. But if M(ϕ) belongs to P (S)[[T, T −1]]Σ,
then the condition that for every s in S, lim|x|�→∞ degL(ϕ)(s, x) = −∞,
clearly holds. For the reverse implication, we may by the cell decomposition
theorem assume that the support of ϕ is contained in a S-cell A and that the
restriction of ϕ to A is of the form

∏
1≤k≤d αkL

β where αk and β are S-linear
functions on A and that furthermore, for fixed s, lim|x|�→∞ β(s, x) = −∞.
These conditions clearly imply the summability of the corresponding series.
This proves the equivalence of (i) and (ii). The equivalence of (ii) and (iii)
is clear. ⊓⊔

We have the following statement of Fubini type:

4.5.7. Lemma. Let S be a definable set and let ϕ be in P (S × Zr). Write
r = r1 + r2 and identify Zr with Zr1 × Zr2 .

(1) If ϕ is S-integrable, then ϕ, as a function in P (S × Zr1 × Zr2), is
S × Zr1 -integrable, µS×Zr1 (ϕ) is S-integrable and

µS(µS×Zr1 (ϕ)) = µS(ϕ).

(2) Assume ϕ is in P+(S × Zr). Then ϕ is S-integrable if and only if it is
S × Zr1 -integrable and µS×Zr1 (ϕ) is S-integrable.

Proof. In view of Theorem-Definition 4.5.1, the statement amounts to the
fact that if a family of real numbers (ai, j )(i, j)∈Zr1 ×Zr2 is summable then,
for every i, (ai, j ) j∈Zr2 is summable, the family (bi =

∑
j∈Zr2 ai, j )i∈Zr1 is

summable,
∑

i∈Zr1 b j =
∑

(i, j)∈Zr1 ×Zr2 ai, j , and that the reverse statement
holds if the ai, j ’s are all in R+. ⊓⊔
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Let λ : S × Zr → S × Zs be a definable function commuting with the
projections to S. Let Z be a definable subset of S×Zr on which λ is injective.
Let ϕ be a function in P (S × Zr) which is zero outside Z. We define the
function λ+(ϕ) on S × Zs by λ+(ϕ)(λ(s, i)) = ϕ(s, i) and λ+(ϕ)(s, j) = 0
if (s, j) does not lie in the image of λ. Clearly λ+(ϕ) lies in P (S × Zs).

The following statement will be useful in the proof of the change of
variable formula.

4.5.8. Lemma. Let S be a definable set and let λ : S × Zr → S × Zs

be a definable function commuting with the projections to S. Let Z be
a definable subset of S × Zr on which λ is injective. Let ϕ be a function in
P (S × Zr) which is zero outside Z. Then ϕ is S-integrable if and only if
λ+(ϕ) is S-integrable. Furthermore, if these conditions hold, then

µS(ϕ) = µS(λ+(ϕ)).

Proof. The first statement follows directly from the definition of S-integra-
bility and the second from Theorem-Definition 4.5.1. ⊓⊔

4.6. Generalization: From Presburger sets to definable subassignments.
Note that any Presburger subset S of Zm is clearly also LDP,P-definable.
Furthermore, it follows from the Denef–Pas quantifier elimination The-
orem 2.1.1 that a function f : S → Z is LDP,P-definable if and only if it is
LPR-definable.

Let us generalize what we did in Sects. 4.1–4.5 for Presburger subsets
to definable subassignments in GDefk(LDP,P).

Let S be a definable subassignment in GDefk(LDP,P). We denote by |S|
its set of points, defined in Sect. 2.6 (this is indeed a set by Sect. 2.3). Note
that to any definable morphism α : S → h[0, 0, 1] corresponds a function
α̃ : |S| → Z. (Since α and α̃ determine each other we shall not distinguish
their notation after Sect. 4.6.) We define the ring P (S) of constructible
Presburger functions on S as the subring of the ring of functions |S| → A

generated by constant functions |S| → A, and by functions α̃ : |S| → Z

and Lβ̃ : |S| → A for definable morphisms α, β : S → h[0, 0, 1]. We also
denote by P+(S) the semiring of functions in P (S) with values in A+.
Everything we did in Sects. 4.1–4.5, including the proof of Theorem 4.3.2,
generalizes mutatis mutandis to that more general situation, up to minor
changes like replacing S × Zr by S × hZr = S[0, 0, r] or s in S by s in |S|.
To give an example of this adaptation, an element ϕ of P (S[0, 0, r]) lies in
ISP (S[0, 0, r]) if and only if, for every s in |S|, the family (ϕ(s, i))i∈Zr is
summable in the sense of Sect. 4.5. Thus it is allowed to use constructions
and results in Sects. 4.1–4.5 for definable subassignments in GDefk(LDP,P)
in the rest of the paper by referring to the corresponding ones for Presburger
sets.

Note that hZr = h[0, 0, r] has more points than Zr since a point on
h[0, 0, r] consists of a tuple (a, K ) with K in Fieldk and a ∈ Zr . Likewise,
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the ring P (h[0, 0, r]) is larger than the ring P (Zr) defined in Sect. 4.2, since
it contains P (Zr) and is generated as a ring by P (Zr) and characteristic
functions of definable subassignments of the final object hSpec k.

5. Constructible motivic functions

From now on and until the end of the paper, we shall work with LDP = LDP,P
as Denef–Pas language.

5.1. Grothendieck rings and semirings. In previous publications on mo-
tivic integration, free abelian groups of varieties (or Chow motives) over k
were used to build up Grothendieck rings. Here we shall consider a LDP-
variant using definable subassignments, which has several advantages, in
particular, of being “universal” in our setting. In the absolute case, one has
natural ring morphisms to the previous Grothendieck rings (cf. Sect. 16).
Since in integration theory “positive” functions play an important role, we
shall also consider Grothendieck semirings. We first recall some basics from
the theory of semirings.

5.1.1. Semirings. Let us recall that a (commutative) semiring A is a set
equipped with two operations: addition and multiplication. With respect to
addition A is a commutative semigroup (monoid) with 0 as unit element.
With respect to multiplication A is a commutative semigroup with 1 as
a unit element. Furthermore the two structures are connected by the axioms
x(y + z) = xy + xz and 0x = 0. A morphism of semirings is a map-
ping compatible with the unit elements and the operations. A module (or
semimodule) over a semiring A is a commutative semigroup M with an op-
eration · : A× M → A satisfying the familiar axioms (ab) ·m = a · (b ·m),
(a + b) · m = a · m + b · m, a · (m + n) = a · m + a · n, 0 · m = 0,
a · 0 = 0 and 1 · m = m. One defines morphisms of A-modules in the
usual way. Also, if M and N are A-modules, one can define their tensor
product M ⊗A N in the usual way using generators and relations. It is an
A-module representing the functor of bilinear morphisms on M × N and
its existence also follows from classical representability results. If B is an
A-algebra (that is, a semiring together with a morphism A → B), for every
A-module M the module B ⊗A M has a natural B-module structure com-
patible with the A-module structure. Also, if B and C are A-algebras, the
formula

∑
i(bi ⊗ ci)

∑
j(b

′
j ⊗ c′

j) =
∑

i, j bib
′
j ⊗ cic

′
j endowes B ⊗A C with

a structure of A-algebra.

5.1.2. Definition and properties of RDef. Let Z be a definable subassign-
ment in GDefk. We shall use in a essential way the full subcategory RDefZ

of GDefZ , whose objects are definable subassignments Y of Z × hAn
k
, for

some n, the morphism Y → Z being the one induced by projection on
the Z factor. If Y and Y ′ are two objects of RDefZ , their fiber product
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Y ⊗Z Y ′ together with the canonical morphism Y ⊗Z Y ′ → Z yields an
object of RDefZ .

It is this category RDefZ , and not DefZ , that is used to build rela-
tive Grothendieck rings over Z with. This is so because we want the
Grothendieck rings to capture information over the residue fields, not over
the valued field nor the integers.

We define the Grothendieck semigroup SK0(RDefZ,k(LDP)) – or
SK0(RDefZ ) for short –, as the quotient of the free abelian semigroup
over symbols [Y → Z] with Y → Z in RDefZ by relations

[∅ → Z] = 0,(5.1.1)

[Y → Z] = [Y ′ → Z](5.1.2)

if Y → Z is isomorphic to Y ′ → Z and

[(Y ∪ Y ′) → Z] + [(Y ∩ Y ′) → Z] = [Y → Z] + [Y ′ → Z](5.1.3)

for Y and Y ′ definable subassignments of some Z[0, n, 0] → Z. Similarly
one defines the Grothendieck group K0(RDefZ,k(LDP)), or K0(RDefZ ) for
short, as the quotient of the free abelian group over symbols [Y → Z] with
Y → Z in RDefZ by relations (5.1.2) and (5.1.3). Cartesian fiber product
over Z induces a natural semiring, resp. ring, structure on SK0(RDefZ),
resp. K0(RDefZ), by setting

[Y → Z][Y ′ → Z] = [Y ⊗Z Y ′ → Z].

Let us remark that [Z → Z] is the multiplicative unit and that K0(RDefZ) is
nothing but the ring obtained from SK0(RDefZ) by inverting additively every
element. However note that there is no reason for the canonical morphism
SK0(RDefZ) → K0(RDefZ) to be injective in general.

We extend some operations from Sect. 2. If f is a morphism Z → Z ′

in GDefk, then the functor f ∗, as defined in Sect. 2.4, induces a semiring
morphism f ∗ : SK0(RDefZ ′) → SK0(RDefZ) and a ring morphism f ∗ :
K0(RDefZ ′) → K0(RDefZ). Also, if z is a point of Z ′, then the functor i∗z ,
as defined in Sect. 2.6, induces a semiring morphism i∗z : SK0(RDefZ ′) →
SK0(RDefk(z)) and a ring morphism i∗z : K0(RDefZ ′) → K0(RDefk(z)). Note
that f ∗ ◦ g∗ = (g ◦ f )∗ for composable morphisms f, g in GDefk.

Constructing a direct image functor f! (on constructible functions) for
general morphisms f : X → Y in DefY is one of the main purposes of
the paper. However, on the level of RDefY and its Grothendieck rings, with
f a morphism in RDefY , f! is easy to define and is merely a universal
operator. Namely, if f : X → Y is a morphism RDefY , the functor f!, as
defined in Sect. 2.4, restricts to a functor f! : RDefX → RDefY and this
induces a semiring morphism f! : SK0(RDefX) → SK0(RDefY ) and a ring
morphism f! : K0(RDefX) → K0(RDefY ). Note that g! ◦ f! = (g ◦ f )!

for composable such morphisms. It is also clear that the projection formula
f!(x f ∗(y)) = f!(x)y holds for x in SK0(RDefX) (resp. K0(RDefX)) and y
in SK0(RDefY ) (resp. K0(RDefY )).



52 R. Cluckers, F. Loeser

Note that any a in SK0(RDefZ ) is of the form [π : Y → Z], with Y in
RDefZ and π the projection. The definable subassignment π(Y ) depends
only on a and we denote it Supp(a). Note that, by definition, a point z of
Z is a point of Supp(a) if and only if i∗z (a) is different from the empty
subassignment. Also, for a and b in SK0(RDefZ ), we have Supp(a + b) =
Supp(a) ∪ Supp(b) and Supp(ab) = Supp(a) ∩ Supp(b).

5.2. Constructible Presburger functions. In Sect. 4.6, we assigned to
every Z in GDefk the ring P (Z) of constructible Presburger functions on Z.
If f : Z → Y is a morphism in GDefk, composition with f yields natural
morphisms f ∗ : P (Y ) → P (Z) and f ∗ : P+(Y ) → P+(Z), namely,
by sending ϕ to ϕ ◦ f . Similarly, if z is point of Z we have morphisms
i∗z : P (Z) → P (hSpec k(z)) and i∗z : P+(Z) → P+(hSpec k(z)).

For Y a definable subassignment of Z, we denote by 1Y the function in
P (Z) with value 1 on Y and zero on Z \ Y . We shall denote by P 0(Z)
(resp. P 0

+(Z)) the subring (resp. subsemiring) of P (Z) (resp. P+(Z)) gen-
erated by the functions 1Y for all definable subassignments Y of Z and by
the constant function L− 1.

Let us denote by LZ = L the class of Z × hA1
k

in K0(RDefZ ) and in
SK0(RDefZ ). We also denote by LZ − 1 = L− 1 the class of Z × hA1

k\{0} in
SK0(RDefZ ). Note that (L− 1) + 1 = L in SK0(RDefZ ).

We have a canonical ring, resp. semiring, morphism P 0(Z) →
K0(RDefZ ), resp. P 0

+(Z) → SK0(RDefZ ), sending 1Y to [i : Y → Z],
with i the inclusion, and L− 1 to L− 1.

5.2.1. Proposition. Let S be in GDefk.

(1) Let W be a definable subassignment of h[0, n, 0]. The canonical mor-
phisms

P (S) ⊗P 0(S) P 0(S × W ) −→ P (S × W )

and

P+(S) ⊗P 0
+(S) P 0

+(S × W ) −→ P+(S × W )

are isomorphisms.
(2) Let W be a definable subassignment of h[0, 0, r]. The canonical mor-

phisms

K0(RDefS) ⊗P 0(S) P 0(S × W ) −→ K0(RDefS×W)

and

SK0(RDefS) ⊗P 0
+(S) P 0

+(S × W ) −→ SK0(RDefS×W)

are isomorphisms.

Proof. Follows directly from Theorem 2.1.1. ⊓⊔
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5.3. Constructible motivic functions. Let Z be a definable subassignment
in GDefk. We define the semiring C+(Z) of positive constructible motivic
functions on Z as

C+(Z) := SK0(RDefZ ) ⊗P 0
+(Z) P+(Z).

Similarly we define the ring C(Z) of constructible motivic functions on
Z as

C(Z) := K0(RDefZ ) ⊗P 0(Z) P (Z).

Let us remark that C(Z) is nothing but the ring obtained from C+(Z) by
inverting additively every element and that in general there is no reason for
the canonical morphism C+(Z) → C(Z) to be injective.

For ϕ and ϕ′ in C+(Z), we shall write ϕ ≥ ϕ′ if ϕ = ϕ′ + ϕ′′ for some
ϕ′′ in C+(Z).

5.3.1. Proposition. Let S be in GDefk.

(1) Let W be a definable subassignment of h[0, n, 0]. The canonical mor-
phisms

P (S) ⊗P 0(S) K0(RDefS×W) −→ C(S × W )

and

P+(S) ⊗P 0
+(S) SK0(RDefS×W) −→ C+(S × W )

are isomorphisms.

(2) Let W be a definable subassignment of h[0, 0, r]. The canonical mor-
phisms

K0(RDefS) ⊗P 0(S) P (S × W ) −→ C(S × W )

and

SK0(RDefS) ⊗P 0
+(S) P+(S × W ) −→ C+(S × W )

are isomorphisms.

Proof. Direct consequence of Proposition 5.2.1. ⊓⊔

Note that C(hSpec k) is canonically isomorphic to K0(RDefk)⊗Z[L]A and
that C+(hSpec k) is canonically isomorphic to SK0(RDefk) ⊗N[L−1] A+.

5.4. Inverse image of constructible motivic functions. Let f : Z → Y
be a morphism in GDefk. Since f ∗ as defined on P (Y ) and K0(RDefY ) is
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compatible with the morphism P 0(Y ) → K0(RDefY ), one gets by tensor
product an inverse image morphism f ∗ : C(Y ) → C(Z). One defines
similarly f ∗ : C+(Y ) → C+(Z). Clearly f ∗ ◦ g∗ = (g ◦ f )∗ and id∗ = id.

Similarly, if z is a point of Z, there are natural extensions i∗z : C(Z) →
C(hSpec k(z)) and i∗z : C+(Z) → C+(hSpec k(z)) of the restrictions i∗z already
defined.

If Z1 and Z2 are disjoint definable subassignments of some hW , then

C+(Z1 ∪ Z2) ≃ C+(Z1) ⊕ C+(Z2) and
C(Z1 ∪ Z2) ≃ C(Z1) ⊕ C(Z2).

(5.4.1)

If Z1 and Z2 are in GDefS, then we have canonical morphisms

C+(Z1) ⊗C+(S) C+(Z2) → C+(Z1 ×S Z2) and
C(Z1) ⊗C(S) C(Z2) → C(Z1 ×S Z2).

(5.4.2)

5.5. Push-forward for inclusions. Let i : Z →֒ Z ′ be an inclusion be-
tween two definable subassignments of hW . Composition with i yields
morphisms i! : K0(RDefZ ) → K0(RDefZ ′) and i! : SK0(RDefZ ) →
SK0(RDefZ ′). Extension by zero induces morphisms i! : P (Z) → P (Z ′)
and i! : P+(Z) → P+(Z ′). Since they are compatible on P 0(Z) and P 0

+(Z),
we get morphisms i! : C(Z) → C(Z ′) and i! : C+(Z) → C+(Z ′) by tensor
product.

5.6. Push-forward for k-projections. Let S be a definable subassignment
in GDefk and consider the projection f : S[0, n, 0] → S on the first
factor. Recall that, by Proposition 5.3.1, we have a canonical isomorph-
ism C(S[0, n, 0]) ≃ K0(RDefS[0,n,0]) ⊗P 0(S) P (S), so that we may define
a ring morphism f! : C(S[0, n, 0]) → C(S) by sending

∑
i ai ⊗ ϕi to∑

i f!(ai) ⊗ ϕi , with ai in K0(RDefS[0,n,0]), ϕi in P (S), and f!(ai) as in
Sect. 5.1.2; this is clearly independent of the choices. We define a semiring
morphism f! : C+(S[0, n, 0]) → C+(S) in the same way. Clearly these
morphisms satisfy the projection formula

f!(x f ∗(y)) = f!(x)y,(5.6.1)

for x in C(S[0, n, 0]), resp. C+(S[0, n, 0]), and y in C(S), resp. C+(S).

5.7. Rational series and integrability. Let S be a definable subassignment
in GDefk. As in Sect. 4.4, we consider the power series ring C(S)[[T ]] =

C(S)[[T1, . . ., Tr]] and C(S)[[T, T −1]] = C(S)[[T1, . . ., Tr, T −1
1 , . . ., T −1

r ]].
We shall set C(S)[[T ]]Γ := C(S) ⊗P (S) P (S)[[T ]]Γ and C(S)[[T, T −1]]Γ :=

C(S)⊗P (S)P (S)[[T, T −1]]Γ and view them as C(S)-submodules of C(S)[[T ]]

and C(S)[[T, T −1]], respectively.
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Now, for ϕ in C(S[0, 0, r]) and i in Zr , we denote by ϕi the restriction
of ϕ to S × {i}, viewed as an element in C(S), and, as in Sect. 4.4, we set

M(ϕ) :=
∑

i∈Zr

ϕi T
i

in C(S)[[T, T −1]].
By (2) of Proposition 5.3.1, we have a canonical isomorphism

C(S[0, 0, r]) ≃ C(S) ⊗P (S) P (S[0, 0, r]).(5.7.1)

Since, by the extension of Theorem 4.4.1 to the definable subassignment
setting, we have an isomorphism of P (S)-modules

M : P (S[0, 0, r]) −→ P (S)[[T, T −1]]Γ,

we get by tensoring with C(S) the following general rationality statement.

5.7.1. Theorem. Let S be a definable subassignment in GDefk. The map-
ping ϕ �→ M(ϕ) induces a ring isomorphism

M : C(S[0, 0, r]) −→ C(S)[[T, T −1]]Γ.

Similarly, we define the C(S)-modules

ISC(S[0, 0, r]) := C(S) ⊗P (S) ISP (S[0, 0, r])

and

C(S)[[T, T −1]]Σ := C(S) ⊗P (S) P (S)[[T, T −1]]Σ.

We also define

ISC+(S[0, 0, r]) := C+(S) ⊗P+(S) ISP+(S[0, 0, r]),

where we denote by ISP+(S[0, 0, r]) the P+(S)-module P+(S[0, 0, r]) ∩
ISC(S[0, 0, r]). A function in C(S[0, 0, r]) (resp. C+(S[0, 0, r])) will be
called S-integrable if it belongs to ISC(S[0, 0, r]) (resp. ISC+(S[0, 0, r])).

By Theorem 4.5.4 and tensoring with C(S), the isomorphism M induces
an isomorphism of C(S)-modules

M : ISC(S[0, 0, r]) −→ C(S)[[T, T −1]]Σ.(5.7.2)

By tensoring the morphism of P (S)-modules µS : ISP (S[0, 0, r]) →
P (S) with C(S), we get a morphism of C(S)-modules

µS : ISC(S[0, 0, r]) −→ C(S).

Similarly we have a morphism of C+(S)-modules

µS : ISC+(S[0, 0, r]) −→ C+(S).
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5.7.2. Proposition. Let S be a definable subassignment in GDefk and let ϕ
be in C(S × hZr ). Write r = r1 + r2 and identify hZr with hZr1 × hZr2 . If ϕ is
S-integrable, then ϕ, as a function in C(S × hZr1 × hZr2 ), is S × hZr1 -
integrable, µS×hZr1

(ϕ) is S-integrable and

µS(µS×hZr1
(ϕ)) = µS(ϕ).

The statement with C replaced by C+ holds also.

Proof. Follows directly from Lemma 4.5.7 (1). ⊓⊔

Let λ : S[0, 0, r] → S[0, 0, s] be a morphism in Def S. Let ϕ be a function
in C(S[0, 0, r]), resp. C+(S[0, 0, r]). Assume ϕ = 1Zϕ with Z a definable
subassignment of S[0, 0, r] on which λ is injective. Recall that this means
that the function λ(K ) is injective on Z(K ) for each K in Fieldk , cf. Sect. 2.2.
Thus λ restricts to an isomorphism λ′ between Z and Z ′ := λ(Z). We set
λ+(1Zϕ) := [i ′!(λ

′−1)∗i∗](ϕ) in C(S[0, 0, r]), resp. in C+(S[0, 0, r]), where
i and i ′ denote respectively the inclusions of Z and Z ′ in S[0, 0, r] and
S[0, 0, s]. Clearly this definition does not depend on the choice of Z6.

The following statement follows directly from Lemma 4.5.8:

5.7.3. Proposition. Let λ : S[0, 0, r] → S[0, 0, s] be a morphism in GDefS.
Assume λ is injective on a definable subassignment Z of S[0, 0, r]. Let ϕ
be a function in C(S[0, 0, r]) such that 1Zϕ = ϕ. Then ϕ is S-integrable
if and only if λ+(ϕ) is S-integrable. If these conditions are satisfied then
µS(ϕ) = µS(λ+(ϕ)). The statement with C replaced by C+ holds also. ⊓⊔

5.8. Positivity and Fubini. Let S be a definable subassignment in GDefk.
It is quite clear that if f and g are in P+(S[0, 0, r]), f ≥ g and f is S-
integrable, then g is S-integrable. We shall now prove a similar statement
for C+.

For a in SK0(RDefS), we shall write 1a := 1Supp(a), with Supp(a) as
defined in Sect. 5.1.2.

5.8.1. Proposition. Let S be a definable subassignment in GDefk and let f
be a function in C+(S[0, 0, r]). Write f =

∑
i ai ⊗ϕi , with ai in SK0(RDefS)

and ϕi in P+(S[0, 0, r]). Then f is S-integrable if and only every function
1ai

ϕi is S-integrable.

Proof. Let f be an S-integrable function in C+(S[0, 0, r]). Write f =∑
i ai ⊗ ϕi , with ai in SK0(RDefS) and ϕi in P+(S[0, 0, r]). Since f is in

ISC+(S[0, 0, r]), we may also write f =
∑

j b j ⊗ψ j , with b j in SK0(RDefS)

and ψ j in ISP+(S[0, 0, r]). We now use the degree function degL defined

6 The + in λ+ does not refer to positivity but denotes an alternative direct image, which
shall only be later on, Proposition 12.1.2, shown to be related with ! of λ!. Also it should
not be confused with the functor λ+ in A0(b) of Theorem 10.1.1.
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in Sect. 4.5.5. Recall that, for two functions ϕ and ϕ′ in P+(S[0, 0, r]),
degL(ϕ+ϕ′) = sup(degL(ϕ), degL(ϕ

′)). Let us also remark that if a belongs
to P 0

+(S) and ϕ to P+(S[0, 0, r]), the difference degL(aϕ)−degL(1aϕ) may
take only a finite number of distinct values, uniformly for s in |S|. It then
follows from the relations defining the tensor product SK0(RDefS) ⊗P 0

+(S)

P+(S[0, 0, r]) that there is a constant C such that degL(1ai
ϕi) ≤ C +

sup j(degL(ψ j)). From Proposition 4.5.6 we deduce that every function 1ai
ϕi

is S-integrable. The reverse implication being clear, this concludes the proof.
⊓⊔

5.8.2. Corollary. Consider a morphism g : S → Λ in Defk. For every
point λ in Λ consider the fiber Sλ of g at λ. A function f in C+(S[0, 0, r])
is S-integrable if and only if, for every point λ in Λ, the restriction fλ ∈
C+(Sλ[0, 0, r]) of f to Sλ[0, 0, r] is S-integrable. Furthermore, if these
conditions are satisfied, µSλ

( fλ) is equal to the restriction of µS( f )
to Sλ.

Proof. The analogous result with C+ replaced by P+ being clear, the state-
ment follows directly from Proposition 5.8.1. ⊓⊔

5.8.3. Proposition. Let S be a definable subassignment in GDefk. Let f
and g be functions in C+(S[0, 0, r]). If f ≥ g and f is S-integrable, then g
is S-integrable.

Proof. We may write f = g + h with h in C+(S[0, 0, r]). We write g =∑
j b j ⊗ ψ j , with b j in SK0(RDefS) and ψ j in P+(S[0, 0, r]), and similarly

h =
∑

j ′ b j ′ ⊗ ψ j ′ . Since f =
∑

j b j ⊗ ψ j +
∑

j ′ b j ′ ⊗ ψ j ′ , it follows from
Proposition 5.8.1 that every function 1b j

ψ j is S-integrable, which concludes
the proof. ⊓⊔

We now can state the analogue of Lemma 4.5.7 (2). Recall that hZr

stands for h[0, 0, r].

5.8.4. Proposition. Let S be a definable subassignment in GDefk and let ϕ
be in C+(S × hZr ). Write r = r1 + r2 and identify hZr with hZr1 × hZr2 . The
function ϕ is S-integrable if and only if, as a function in C+(S×hZr1 ×hZr2 ),
it is S × hZr1 -integrable and µS×hZr1

(ϕ) is S-integrable.

Proof. If ϕ is S × hZr1 -integrable, we may write ϕ =
∑

i ai ⊗ ϕi with ai

in SK0(RDefS) and ϕi in IS×hZr1
P+(S × hZr ). Replacing ϕi by 1ai

ϕi we
may even assume ϕi = 1ai

ϕi . Hence µS×hZr1
(ϕ) =

∑
i ai ⊗ µS×hZr1

(ϕi). If
µS×hZr1

(ϕ) is S-integrable, it follows from Proposition 5.8.1 that the func-
tions 1ai

µS×hZr1
(ϕi) = µS×hZr1

(ϕi) are all S-integrable. One then deduces
from Lemma 4.5.7 (2) that the functions ϕi are all S-integrable, hence ϕ is
S-integrable. The reverse implication is already known (Proposition 5.7.2).

⊓⊔
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5.8.5. Proposition. Let S be a definable subassignment in GDefk and con-
sider the projections π1 : S[0, n, r] → S[0, 0, r] and π2 : S[0, n, 0] →
S[0, 0, 0]. Let ϕ be a function in C+(S[0, n, r]). Then ϕ is S[0, n, 0]-
integrable if and only if the function π1

! (ϕ) in C+(S[0, 0, r]) is S-integrable.
If these conditions hold, then

π2
! (µS[0,n,0](ϕ)) = µS

(
π1

! (ϕ)
)
.

Proof. Let ϕ be a function in C+(S[0, n, r]). We may write ϕ =
∑

i ai ⊗ϕi

with ai in SK0(RDefS[0,n,0]) and ϕi in P+(S[0, 0, r]). Indeed, it follows from
the second part of Theorem 2.1.1 that the canonical morphism

P 0
+(S[0, n, 0]) ⊗P 0

+(S) P 0
+(S[0, 0, r]) −→ P 0

+(S[0, n, r])

is an isomorphism, from which we deduce a canonical isomorphism

C+(S[0, n, r]) ≃ SK0(RDefS[0,n,0]) ⊗P 0
+(S) P+(S[0, 0, r])

using Propositions 5.2.1 and 5.3.1. We have π1
! (ϕ) =

∑
i π

2
! (ai) ⊗ ϕi . The

key remark is that 1ai
π1∗(ϕi) is S[0, n, 0]-integrable if and only if 1π2

! ai
ϕi

is S-integrable, which holds since integrability is defined by a pointwise
condition. Hence, it follows from Proposition 5.8.1 that ϕ is S[0, n, 0]-
integrable if and only if π1

! (ϕ) is S-integrable. Let us assume that these
conditions hold, so that, by Proposition 5.8.1, each 1ai

ϕi is S-integrable. We
assume ϕi = 1ai

ϕi for every i. Since µS[0,n,0](π
1∗(ϕi)) = π2∗(µS(ϕi)), we

get µS[0,n,0](ϕ) =
∑

i ai ⊗ µS(ϕi), and hence, we deduce π2
! µS[0,n,0](ϕ) =∑

i π
2
! (ai) ⊗ µS(ϕi) = µS(π

1
! (ϕ)). ⊓⊔

Let λ : S[0, n, r] → S[0, n′, r ′] be a morphism in DefS. Let ϕ be
a function in C(S[0, n, r]), resp. in C+(S[0, n, r]). Assume ϕ = 1Zϕ with
Z a definable subassignment of S[0, n, r] on which λ is injective. Thus λ
restricts to an isomorphism λ′ between Z and Z ′ := λ(Z). We define λ+(ϕ)
in C(S[0, n′, r ′]), resp. in C+(S[0, n′, r ′]) as [i ′!(λ

′−1)∗i∗](ϕ), where i and i ′

denote respectively the inclusions of Z and Z ′ in S[0, n, r] and S[0, n′, r ′].
Clearly this definition does not depend on the choice of Z and is compatible
with the definition of λ+ in Sect. 5.7 when n = n′ = 0.

5.8.6. Proposition. Let λ : S[0, n, r] → S[0, n′, r ′] be a morphism in DefS.
Let ϕ be a function in C+(S[0, n, r]) such that ϕ = 1Zϕ with Z a definable
subassignment of S[0, n, r] on which λ is injective. Then ϕ is S[0, n, 0]-
integrable if and only if λ+(ϕ) is S[0, n′, 0]-integrable and if this is the case
then

p!(µS[0,n,0](ϕ)) = p′
!(µS[0,n′,0](λ+(ϕ))),(5.8.1)

with p : S[0, n, 0] → S and p′ : S[0, n′, 0] → S the projections.
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Proof. In the case where n = n′ and λ is the identity on the An
k -factor, that

is, λ is of the form (s, ξ, α) �→ (s, ξ, g(s, α)), with s variable on the S-factor,
ξ on the An

k -factor and α on the Zr-factor, the statement follows directly
from Proposition 5.7.3. Assume now that r = r ′ and that λ is the identity
on the Zr-factor, that is, λ is of the form (s, ξ, α) �→ (s, f(s, ξ), α). Write
g : S[0, n, 0] → S[0, n′, 0] : (s, ξ) �→ (s, f(s, ξ)). Let ϕ be a function
in C+(S[0, n, r]) such that ϕ = 1Zϕ with Z a definable subassignment of
S[0, n, r] on which λ is injective. As in the proof of Proposition 5.8.5 we
may write

ϕ =
∑

i

ai ⊗ ϕi(5.8.2)

with ai in SK0(RDefS[0,n,0]), ϕi in P+(S[0, 0, r]). By the second part of
Theorem 2.1.1, we may assume that g is injective on Supp(ai) for each i.
Using the injectivity of g on Supp(ai), we can write

λ+(ϕ) =
∑

i

g!(ai) ⊗ ϕi,(5.8.3)

where g!(ai) in SK0(RDefS[0,n′,0]) is defined as [X i ⊗S[0,n′,0] S[0, n′, 0] →
S[0, n′, 0]] with ai = [X i → S[0, n, 0]]7. If ϕ is S[0, n, 0]-integrable, we
may assume all the functions ϕi are S-integrable, hence λ+(ϕ) is S[0, n′, 0]-
integrable. For the reverse implication, note that ϕ = λ̃+(λ+(ϕ)) for any
morphism λ̃ : S[0, n′, r ′] → S[0, n, r] which restricts to the inverse of λ′

on Z ′. Relation (5.8.1) then follows from (5.8.2), (5.8.3), and from the
obvious relation p! = p′

! ◦ g!.
Note that if the statement of Proposition 5.8.6 holds for two composable

morphisms λ1 and λ2, it still holds for λ2 ◦ λ1. In particular it follows from
the previous discussion that the statement we want to prove holds for λ of
the form (s, ξ, α) �→ (s, f(s, ξ), g(s, α)). Now consider the case of a general
morphism λ : S[0, n, r] → S[0, n′, r ′]. Let ϕ be a function in C+(S[0, n, r])
such that ϕ = 1Zϕ with Z a definable subassignment of S[0, n, r] on which
λ is injective. By the second part of Theorem 2.1.1 there is a finite partition
of Z into definable subassignments Zi , such that the restriction of λ to each
Zi is of the form (s, ξ, α) �→ (s, fi(s, ξ), gi(s, α)). Since λ+(1Zi

ϕ) only
depends on the restriction of λ to Zi , it follows that the statement we want
to prove holds for 1Zi

ϕ, hence also for ϕ =
∑

i 1Zi
ϕ. ⊓⊔

6. Constructible motivic Functions

6.1. Dimension and relative dimension. Let Z be in Defk and let ϕ be in
C(Z), resp. C+(Z). We say ϕ is of K -dimension ≤ d if it may be written
as a finite sum ϕ =

∑
λi1Zi

in C(Z), resp. in C+(Z), with Kdim Zi ≤ d.

7 This definition of g! is consistent with the definition of the push-forward in Sect. 5.6.
Note that ai can always be written in the form [X i → S[0, n, 0]].
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We say ϕ is of K -dimension d if it is of K -dimension ≤ d and not of
K -dimension ≤ d − 1.

More generally, if Z → S is in DefS for some S and ϕ in C(Z), resp. in
C+(Z), we say that ϕ is of dimension ≤ d rel. the projection Z → S if it
may be written as a finite sum ϕ =

∑
λi1Zi

in C(Z), resp. in C+(Z), with
Zi of relative dimension ≤ d rel. the projection Z → S (as in Sect. 3.4). We
also use the notion of dimension d rel. the projection Z → S, for ϕ in C(Z)
or in C+(Z) if it is of relative dimension ≤ d but not of relative dimension
≤ d − 1.

6.2. Constructible motivic Functions. Let Z be a definable subassign-
ment in GDefk. We denote by C≤d(Z), resp. C≤d

+ (Z), the subgroup, resp. sub-
semigroup, of elements of C(Z), resp. C+(Z), of K -dimension ≤ d. We
denote by Cd(Z) the quotient

Cd(Z) := C≤d(Z)/C≤d−1(Z)

and we set

C(Z) =
⊕

d≥0

Cd(Z),

which is a graded abelian group. Similarly, we denote by Cd
+(Z) the quotient

Cd
+(Z) := C≤d

+ (Z)/C≤d−1
+ (Z)

and we consider the graded abelian semigroup

C+(Z) =
⊕

d≥0

Cd
+(Z).

An element in C(Z), resp. in C+(Z), will be called a constructible
motivic Function, resp. a positive constructible motivic Function (note the
capital F). It is an equivalence class of constructible motivic functions,
resp. of positive constructible motivic functions.

If ϕ in C(Z) or in C+(Z) is of K -dimension d, or if ϕ = 0 in C(Z), we
denote by [ϕ] the class of ϕ in Cd(Z) and in Cd

+(Z).
Let us remark that, since C≤d (Z) is an ideal inC(Z), the product on C(Z)

induces a C(Z)-module structure on C(Z) and on each Cd(Z). Similarly
the product on C+(Z) induces a C+(Z)-module structure on C+(Z).

6.3. More generally, let us fix a definable subassignment S in GDefk and
consider the category GDefS. For Z in GDefS, we define C≤d(Z → S) and
C

≤d
+ (Z → S) as in Sect. 6.2, but by replacing K -dimension by relative

K -dimension relative to S.
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We set Cd(Z → S) := C≤d(Z → S)/C≤d−1(Z → S) and

C(Z → S) =
⊕

d≥0

Cd(Z → S).

One defines similarly Cd
+(Z → S) and C+(Z → S). Also, if ϕ is of relative

dimension d, or if ϕ = 0 in C(Z → S), we denote by [ϕ] the class of ϕ in
Cd(Z → S) and in Cd

+(Z → S). Let us remark that C(id : S → S) = C(S)
and that C(Z → hSpec k) = C(Z) and similarly for C+.

Let f be a Function in C(Z → S). For every point s in S, f naturally
restricts to a Function fs in C(Zs), where Zs denotes the fiber of Z at s.

If Z1 and Z2 are disjoint definable subassignment of some definable
subassignment in GDefS, then (5.4.1) induces isomorphisms

C(Z1 ∪ Z2 → S) ≃ C(Z1 → S) ⊕ C(Z2 → S)

and

C+(Z1 ∪ Z2 → S) ≃ C+(Z1 → S) ⊕ C+(Z2 → S).

Also, (5.4.2) induces morphisms

C(Z1 → S) ⊗C(S) C(Z2 → S) → C(Z1 ×S Z2 → S)

and

C+(Z1 → S) ⊗C+(S) C+(Z2 → S) → C+(Z1 ×S Z2 → S).

7. Cell decomposition

In this section we shall state some variants and mild generalizations of the
cell decomposition theorem of [27] in a form suitable for our needs. Our
terminology concerning cells differs slightly from that used in [27].

7.1. Cells. Let S be in Defk. We will define the notion of a cell Z ⊂
S[1, 0, 0], at first with a base C ⊂ S, and secondly with a more general base
C ⊂ S[0, r, s].

First let C be a definable subassigment of S. Let α, ξ , and c be definable
morphisms α : C → Z, ξ : C → hGm,k

, and c : C → h[1, 0, 0]. The 1-cell
ZC,α,ξ,c with basis C, order α, center c, and angular component ξ is the
definable subassignment of S[1, 0, 0] defined by y in C, ord(z − c(y)) =
α(y), and ac(z−c(y)) = ξ(y), where y lies in S and z in h[1, 0, 0]. Similarly,
if c is a definable morphism c : C → h[1, 0, 0], we define the 0-cell ZC,c

with center c and basis C as the definable subassignment of S[1, 0, 0] defined
by y ∈ C and z = c(y).
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Secondly and finally, a definable subassignment Z of S[1, 0, 0] will be
called a 1-cell, resp. a 0-cell, if there exists a definable isomorphism

λ : Z → ZC = ZC,α,ξ,c ⊂ S[1, s, r],

resp. a definable isomorphism

λ : Z → ZC = ZC,c ⊂ S[1, s, 0],

for some s, r ≥ 0, some basis C ⊂ S[0, s, r], resp. C ⊂ S[0, s, 0], and some
1-cell ZC,α,ξ,c, resp. 0-cell ZC,c, such that the morphism π ◦ λ, with π the
projection on the S[1, 0, 0]-factor, is the identity on Z.

We shall call the data (λ, ZC,α,ξ,c), resp. (λ, ZC,c), sometimes written for
short (λ, ZC), a presentation of the cell Z.

One should note that λ∗ induces a canonical bijection between C(ZC)
and C(Z).

7.1.1. Remark. Cells as defined in [27] fall within our definition, but not the
other way around. Also, any presentation as in [27] of a cell as in [27] can
be adapted to a presentation in the above sense; for a 0-cell this is trivial,
and for a 1-cell this can be done by adding one more Ord-variable.

7.2. Cell decomposition. The following variant of the Denef–Pas cell
decomposition theorem [27] will play a fundamental role in the present
paper:

7.2.1. Theorem. Let X be a definable subassignment of S[1, 0, 0] with S in
Defk.

(1) The subassigment X is a finite disjoint union of cells.
(2) For every ϕ in C(X) there exists a finite partition of X into cells Zi with

presentation (λi, ZCi
), such that ϕ|Zi

= λ∗
i p∗

i (ψi), with ψi in C(Ci) and
pi : ZCi

→ Ci the projection. Similar statements hold for ϕ in C+(X),
in P (X), in P+(X), in K0(RDefX), and in SK0(RDefX).

We shall call a finite partition of X into cells Zi as in Theorem 7.2.1(1),
resp. Theorem 7.2.1(2) for a function ϕ, a cell decomposition of X, resp. a cell
decomposition of X adapted to ϕ.

Proof of Theorem 7.2.1. Clearly (2) implies (1). We show how (2) follows
from the cell decomposition Theorem 3.2 of [27]. To fix notation, let S be
a definable subassignment of h[m, n, r].

First we let ϕ be in C(X). Write ϕ as
∑

i ai ⊗ ϕi with ai in K0(RDefX)
and ϕi in P (X). Let f1, . . ., ft be all the polynomials in the Val-variables
occurring in the formulas8 describing the data X, ai , and ϕi , where we
may suppose that these formulas do not contain quantifiers over the valued

8 By this we mean that we take the defining formulas for X and, for each i, of subassign-
ments in RDefX representing ai and the defining formulas for all definable morphisms
α : X → Z occurring in ϕi , written as a sum of products of constants in A and functions of
the forms Lα and α.
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field sort. Apply the cell decomposition Theorem 3.2 of [27] to the poly-
nomials fi . Using Remark 7.1.1, we see that this yields a partition of
h[m + 1, 0, 0] into cells Z̃ i with presentations λi : Z̃ i → Z̃Ci

and with
some center ci . Write x = (x1, . . ., xm+1) for the Val-variables, ξ = (ξi) for
the Res-variables and z = (zi) for the Ord-variables on Z̃Ci

.
If Z̃ i is a 1-cell, we may suppose that for (x, ξ, z) in Z̃Ci we have

ord(xm+1 − ci) = z1 and ac(xm+1 − ci) = ξ1, by changing the presentation
of Z̃ i if necessary (that is, by adding more Ord-variables and Res-variables).
By the application of Theorem 3.2 of [27] and by changing the presentation
as before if necessary, we may also assume that

ord f j(x) = zkj
,

ac f j(x) = ξl j
,

for (x, ξ, z) in a 1-cell Z̃Ci
, where the indices k j and l j only depend on j

and i.
Since the condition f(x) = 0 is equivalent to ac( f(x)) = 0, we may

suppose that, in the formulas describing X, ai , and ϕi , the only terms
involving Val-variables are of the forms ord f j(x) and ac f j(x). Combining
this with the above description of ord f j(x) and ac f j(x) one can then easily
construct a partition of X into cells Zi and for each such cell a constructible
functions ψ which satisfies the requirements of the theorem. If ϕ is in
C+(X), resp. in P (X), P+(X), K0(RDefX), or in SK0(RDefX), the same
argument works. ⊓⊔

7.2.2. Example. A cell decomposition for hA1
k((t))

: take the disjoint union

of the 0-cell {0} and the 1-cell hA1
k((t))

\ {0} with presentation (λ, Z ′) with

λ(z) = (z, ac(z), ord(z)) and Z ′ defined by ac(z) = ξ, ord(z) = i, ξ = 0.

7.2.3. Corollary. Let Y and Z ⊂ Y [m′, 0, 0] be definable subassignments
and let f : Z → Y be the projection. Suppose that for each y = (y0, K )
in Y , the set Z y(K ) is finite, with Z y the fiber above y. Then the cardinality
of Z y(K ) is bounded uniformly in y = (y0, K ), and, there exists a definable
isomorphism g : Z → Y ′ ⊂ Y [0, n, r] over Y such that p ◦ g = f , with
p : Y [0, n, r] → Y the projection.

Proof. Replacing Z by the graph of f , the essential case to prove is when
Z ⊂ h[m + m′, n, r], Y = h[m, n, r], and f is the projection. First suppose
m′ = 1. Applying Theorem 7.2.1 to Z, the proposition follows immediately
piecewise, and hence globally, since a finite partition can be replaced by
one part by allowing for extra parameters. The case of m′ > 1 is treated by
an inductive application of Theorem 7.2.1. ⊓⊔

7.2.4. Corollary. Let S be in Defk and f : S[1, 0, 0] → h[1, 0, 0] be
a definable morphism. Then there exists a definable isomorphism g :
S[1, 0, 0] → Z ⊂ S[1, n, r] over S[1, 0, 0] and a partition of Z into
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parts X, Y such that for each s = (s0, K ) in S[0, n, r] the map Xs(K ) →
K((t)): u �→ f ◦ g−1(s, u) is injective and the map Ys(K ) → K((t)): u �→
f ◦ g−1(s, u) is constant, with Xs and Ys the fiber of X, resp. of Y , above s
under the projection X → S[0, n, r], resp. Y → S[0, n, r].

Proof. It follows from Theorem 3.2.1, the definition of the dimension of
definable subassignments, and the implicit function theorem for K((t))-
analytic maps, that there is a partition {X0, Y0} of S[1, 0, 0] such that for
each s = (s0, K ) in S the map X0s(K ) → K((t)): u �→ f(s, u) is finite
to one and the map Y0s(K ) → K((t)): u �→ f(s, u) has finite image,
with X0s and Y0s the fibers. To obtain X, apply Corollary 7.2.3 to the map
X0 → S[1, 0, 0] : (s, u) �→ (s, f(s, u)). To obtain Y , apply Corollary 7.2.3
to the projection map π : p(Graph( f|Y0)) → S where p is the projection
S[2, 0, 0] → S[1, 0, 0] onto the (s, f ) variables. ⊓⊔

7.2.5. Lemma. Let ϕ be in C+(S[1, 0, 0]) for some S in Defk and let Z ⊂
S[1, 0, 0] be a 1-cell which is adapted to ϕ|Z and which has a presentation
λ : Z → ZC = ZC,α,ξ,c. There is some ψ in C+(C) with λ∗ p∗(ψ) = ϕ|Z ,
where p : ZC → C is the projection. Let CG be any nonempty definable
subassignment of C and let αG, ξG, cG be the restrictions of α, ξ, c to CG .
Then, the subassignment ZG of Z given by p ◦ λ(x) ∈ CG is a 1-cell with
presentation λG : ZG → ZCG ,αG ,ξG ,cG

, where λG is the restriction of λ
to ZG . Moreover, ZG is adapted to ϕ|ZG

and ϕ|ZG
= λ∗

G p∗
G(ψG ), where ψG

is the restriction of ψ to CG and pG the restriction of p to ZG . A similar
statement holds for 0-cells.

Proof. Clear. ⊓⊔

7.3. Refinements. Let P = (Zi)i∈I and P ′ = (Z ′
j) j∈J be two cell decom-

positions of a definable subassignment X ⊂ S[1, 0, 0] for some S in Defk.
We say P is a refinement of P ′ and write P ≺ P ′ if for every j in J there
exists i( j) in I such that Zi( j) ⊂ Z ′

j .

7.3.1. Lemma. Let Z and Z ′ be cells in S[1, 0, 0] for some S in Defk. Let
(λ′, Z ′

C′) be a presentation of Z ′. If Z ⊂ Z ′ then there exists a presentation
(λ, ZC) of Z and a (necessarily unique) definable morphism g : C → C′

such that g ◦ p ◦ λ = p′ ◦ λ′
|Z , where p : ZC → C and p′ : Z ′

C′ → C′ are
the projections.

Proof. If Z is a 0-cell the statement is clear. Now suppose that Z is a 1-cell
with some presentation (λ0, ZC0). Then Z ′ is also a 1-cell with some pre-
sentation (λ′, Z ′

C′). Let λ be the presentation of Z given by

Z → ZC0×C′ : z �→ (λ0(z), p′ ◦ λ′(z)).

By the non archimedean property this is indeed a presentation of the 1-cell Z,
and the uniqueness and existence of g for this λ is clear. ⊓⊔
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7.3.2. Proposition. Let X be a definable subassignment of S[1, 0, 0] with
S in Defk and let ϕi be a function in C(X) for i = 1, 2. Let Pi be a cell
decomposition of X adapted to ϕi for i = 1, 2. Then there exists a cell
decomposition P of X such that P ≺ Pi for i = 1, 2. Such P is automat-
ically adapted to both ϕ1 and ϕ2. Similar statements hold for ϕi in C+(X),
in P (X), in P+(X), in K0(RDefX), and in SK0(RDefX).

Proof. It follows from Lemma 7.3.1 that if P is a refinement of P1 then
P is automatically adapted to ϕ1. Thus we only have to show that there is
a common refinement P of P1 and P2, but this follows at once from the
definitions and Theorem 7.2.1. ⊓⊔

7.4. Bicells. We will have, for technical reasons, to consider bicells, that
is, cells with 2 special variables. More precisely, they will be needed for
a basic version of Fubini’s theorem.

Fix S in Defk. As for the definition of cells in Sect. 7.1, we shall first
define bicells Z ⊂ S[2, 0, 0] with base C ⊂ S, and then with more general
base C ⊂ S[0, s, i]. Let first C be a definable subassigment of S. Let α and β
be definable morphisms C → Z, ξ and η definable morphisms C → hGm,k

,
c a definable morphism C → h[1, 0, 0], and let d be a definable morphism
C[1, 0, 0] → h[1, 0, 0]. We further assume that either, for every point
y = (y0, K ) in C, the function u �→ d(y, u) is constant on K((t)), or, for
every point y = (y0, K ) in C, it is injective on K((t)).

The bicell ZC,α,β,ξ,η,c,d with basis C is the definable subassignment of
S[2, 0, 0] defined by

y ∈ C

ord(z − d(y, u)) = α(y)

ac(z − d(y, u)) = ξ(y)

ord(u − c(y)) = β(y)

ac(u − c(y)) = η(y),

where y denotes the S-variable, z the first A1
k((t))-variable and u the second

A1
k((t))-variable.

Similarly, we define the bicell Z ′
C,β,η,c,d as the definable subassignment

of S[2, 0, 0] defined by

y ∈ C

z = d(y, u)

ord(u − c(y)) = β(y)

ac(u − c(y)) = η(y),

the bicell Z ′′
C,α,ξ,c,d as the definable subassignment defined by

y ∈ C

ord(z − d(y, u)) = α(y)

ac(z − d(y, u)) = ξ(y)

u = c(y),
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and the bicell Z ′′′
C,c,d as the definable subassignment defined by

y ∈ C

z = d(y, u)

u = c(y).

Now we can define bicells similarly to Sect. 7.1 with general base
C ⊂ S[0, s, i], except that we have 4 types of bicells instead of 2 types
of cells. A definable subassignment Z of S[2, 0, 0] will be called a (1, 1)-
bicell (resp. a (1, 0)-bicell, a (0, 1)-bicell, a (0, 0)-bicell), if there exists
a definable isomorphism

λ : Z −→ ZC ⊂ S[2, s, i],

and a bicell ZC = ZC,α,β,ξ,η,c,d (resp. ZC = Z ′
C,β,η,c,d, ZC = Z ′′

C,α,ξ,c,d,
ZC = Z ′′′

C,c,d) with basis C ⊂ S[0, s, i], such that the morphism π ◦ λ, with
π the projection on the S[2, 0, 0]-factor, restricts to the identity on Z.

We shall call the data (λ, ZC) with ZC of one of the above forms a pre-
sentation of the cell Z.

We define similarly to Sect. 7.2 bicell decompositions of a definable
subassignment Z of S[2, 0, 0] and bicell decompositions of Z adapted to
a given function ϕ in C(Z).

The following statement is an easy consequence of Theorem 7.2.1 and
its Corollary 7.2.4:

7.4.1. Proposition. (1) Every definable subassignment Z of S[2, 0, 0] ad-
mits a bicell decomposition.

(2) For every ϕ in C(Z) there exists a bicell decomposition of Z adapted
to the function ϕ, namely, there exists a finite partition of Z into bicells
Zi with presentation (λi, ZCi

), such that ϕ|Zi
= λ∗

i p∗
i (ψi), with ψi in

C(Ci) and pi : ZCi
→ Ci the projection. Similar statements hold for ϕ

in C+(Z), in P (Z), in P+(Z), in K0(RDefZ ), and in SK0(RDefZ ).

Proof. First apply Theorem 7.2.1 to obtain a partition of Z into cells, adapted
to ϕ. We apply now Corollary 7.2.4 to each center to partition each basis.
By Lemma 7.2.5 this yields a partition of Z into cells, refining the previous
partition. We finish the proof by applying Theorem 7.2.1 to each basis C of
the occurring cells and the functions ψ in C(C) corresponding to ϕ as in
Theorem 7.2.1 (2). ⊓⊔

7.5. Analyticity and cell decomposition. We consider the expansion L∗
DP

of LDP which is obtained by adding the following function symbols for each
integer n > 0:

(1) The symbol −1 : Val → Val for the field inverse on Val \ {0} extended
by 0−1 = 0.

(2) The symbol (·, ·)1/n : Val×Res → Val for the function sending (x, ξ) to
the (unique) element y with yn = x and ac(y) = ξ whenever ξn = ac(x)
and ord(x) ≡ 0 mod n, and to 0 otherwise.
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(3) The symbol hn : Valn+1 × Res → Val for the function sending (a0, . . .,
an, ξ) to the (unique) element y satisfying ord(y) = 0, ac(y) = ξ and∑n

i=0 ai y
i = 0 whenever ξ = 0, ord(ai) ≥ 0,

∑
i∈I ac(ai)ξ

i = 0, and∑
i∈I iac(ai)ξ

i−1 = 0 for I = {i | ord(ai) = 0}, and to 0 otherwise.

The following is a fundamental structure result for definable functions
with values in the valued field. Its proof uses an analogue of Lemma 3.7
of [27] which will be contained in [5].

7.5.1. Theorem. Let f : X → h[1, 0, 0] be a morphism in Defk. Then
there exists a definable isomorphism g : X → X ′ ⊂ X[0, n, r] over X and

a L∗
DP-term f̃ in variables running over X ′ such that f = f̃ ◦ g.

Proof. Let ϕ be a formula describing the graph of f and suppose that ϕ is
of the form (3.3.2) as in the proof of Theorem 3.3.1. Let p j be all polyno-
mials in the Val-sort which appear in ϕ. With exactly the same proof as the
proof of the Denef–Pas cell decomposition in [27] where one replaces the
words strongly definable function by L∗

DP-term (also in Lemma 3.7 of [27],
cf. [5]) and assuming quantifier elimination, one shows that there exists
a cell decomposition of X[1, 0, 0] adapted to ord(p j) for each j such that
the centers ci of the occurring cells Zi are L∗

DP-terms. For each cell Zi , let Z ′
i

be λ−1
i (Graph(ci))∩Graph( f ), where λi is the representation of Zi . Clearly

each Z ′
i is a 0-cell with presentation the restriction of λi to Z ′

i . It follows
from the description (3.3.2) of ϕ that for each point x in X the point f(x) is
a zero of at least one of the polynomials pi(x, ·), and by cell decomposition
that at least one of the centers gives this zero. Hence, the cells Z ′

i form
a partition of the graph of f and one concludes that the restriction of f to
each of finitely many pieces in a partition of X satisfies the statement. One
can glue s pieces together using extra parameters contained in the definable
subassignment A := {ξ ∈ h[0, 1, 0]s |

∑
i ξi = 1 ∧ (ξi = 0 ∨ ξi = 1)}

to index the pieces, by noting that for each element a in A there exists
a definable morphism A → h[1, 0, 0], given by a L∗

DP-term, which is the
characteristic function of {a}. ⊓⊔

Let K be a field. A subset B of K((t)) of the form c + tα K [[t]] is called
a ball of volume L−α. A function f : B → K((t)) is called strictly analytic
if there exists a power series ϕ :=

∑
i∈N ai x

i in K((t))[[x]] converging on
tαK [[t]], equivalently, limi �→∞(ord ai + iα) = ∞, such that f(c + y) = ϕ(y)
for every y in tαK [[t]]. Note that this definition is independent of the choice
of the center c and that if f is strictly analytic on B, its restriction to any
ball contained in B is also strictly analytic.

7.5.2. Lemma. Let K be a field of characteristic zero. Let f be strictly
analytic on a ball B ⊂ K((t)) of volume L−β for some β in Z, and write f ′

for its derivative. Suppose that there exists α in Z such that ord f ′(x) = α
for every x in B. Then the image of f is contained in a ball of volume
L−α−β and cannot be contained in a ball of volume L−α−β−1. For every x0
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in tB, the restriction of f to x0 + tB is a bianalytic bijection onto a ball
of volume L−α−β−1 with strictly analytic inverse. Also, ord( f(z) − f(y)) =
α + ord(z − y) for all y, z in x0 + tB and x0 in B.

Proof. We may assume that B = tβ K [[t]]. Write f =
∑

i ai x
i in K((t))[[x]].

By replacing x by x/tβ and f(x) by ( f(x) − a0)/tα we may suppose that
a0 = α = β = 0. First we prove that ord a1 = 0 and ord ai ≥ 0 for all i. Let
I be {i | ord ai = min(ord a j) j}, let p be the polynomial

∑
i∈I ai x

i and let
p′ be its derivative. If p′ = a1 this is trivial. Suppose that the degree of p′ is
> 0. Since K is infinite there exists for any b in K an element y0 in K such
that

∑
i∈I,i>0 iac(ai)yi−1

0 = b. Taking b = 0, it follows that ord ai = 0 for
i in I . Thus, 1 belongs to I since otherwise ord f ′(0) > 0. Fix c in K((t)).
Taking b = ac(c) if ord c = 0 and b = 0 otherwise, it follows that the image
of f cannot be contained in the set c + tK [[t]].

Now fix x0 in K . It is clear that f maps x0 + tK [[t]] into f(x0) + tK [[t]].
The statement about bianaliticity is well known and follows from the inverse
function theorem for complete fields, stated in [22, Corollary 2.2.1(ii)]. The
statement about the orders follows easily by developing f into power series
around z. ⊓⊔

7.5.3. Theorem. Let X be in Defk, Z be a definable subassignment of
X[1, 0, 0], and let f : Z → h[1, 0, 0] be a definable morphism. Then
there exists a cell decomposition of Z into cells Zi such that the following
conditions hold for every ξ in Ci , for every K in Fieldk(ξ), and for every
1-cell Zi with presentation λi : Zi → ZCi

= ZCi ,αi,ξi ,ci
and with projections

pi : ZCi
→ Ci , πi : ZCi

→ h[1, 0, 0]:

(1) The set πi(p−1
i (ξ))(K ) is either empty or a ball of volume L−αi (ξ)−1.

(2) When πi(p−1
i (ξ))(K ) is nonempty, the function

gξ,K : πi

(
p−1

i (ξ)
)
(K ) → K((t)): x �−→ f ◦ λ−1(ξ, x)

is strictly analytic.

We can furthermore ensure that either gξ,K is constant or (3), (4), and (5)
hold.

(3) There exists a definable morphism βi : Ci → h[0, 0, 1] such that

ord
∂

∂x
gξ,K (x) = βi(ξ)

for all x in πi(p−1
i (ξ))(K ).

(4) When πi(p−1
i (ξ))(K ) is nonempty, the map gξ,K is a bijection onto a ball

of volume L−αi (ξ)−1−βi(ξ).

(5) For every x, y in πi(p−1
i (ξ))(K ), ord(gξ,K(x) − gξ,K (y)) = βi(ξ) +

ord(x − y).

Note that, in this theorem, αi(ξ) and βi(ξ) are independent of K .
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Proof of Theorem 7.5.3. Statement (1) holds automatically if αi is a coordi-
nate function in the image of the presentation λi .

Take a 1-cell Z with presentation λ : Z → ZC and projection p : ZC → C.
By Theorem 7.5.1 we may suppose that f ◦ λ−1 is given by a L∗

DP-term.
We shall now prove statement (2) by induction on the complexity of the
term f ◦ λ−1. Fix ξ0 in C. The case where πi(p−1

i (ξ0))(K ) is empty being
clear, we may assume after translation and homothety that πi(p−1

i (ξ0))(K )

is in fact the ball K [[t]]. Consider the term a−1 with a a term for which the
statement already holds. By cell decomposition we may assume that ord(a)
and ac(a) only depend on ξ0. We may also assume a is non zero. Let us
denote by ã the function induced by a on the ball K [[t]]. We may write

ã = tαη
(

1 +
∑

j≥1

Pj(x)t
j
)
,(7.5.1)

with α in Z, η non zero in K , and Pj polynomials in K [x]. We use here the
fact that K is infinite. Note also that a series in K [[t]][[x]] converges on the
ball K [[t]] if and only if it lies in K [x][[t]]. Since 1+

∑
j≥1 Pj(x)t

j is a unit in
the ring K [x][[t]], the result follows in this case. Similarly, consider a term
(a, ξ)1/n, with a a term for which the statement already holds. As before we
may assume that the function ã induced by a on the ball πi(p−1

i (ξ0))(K )
is of the form (7.5.1). Furthermore we may assume that α lies in nZ and
η = ξn . The result follows since the series 1 +

∑
j≥1 Pj(x)t

j has a unique
n-th root of the form 1 +

∑
j≥1 Q j(x)t

j in the ring K [x][[t]]. Now assume
the term is hn(a0, . . ., an, ξ) where the ai are terms for which the statement
holds and ξ0 ∈ X. We may assume by cell decomposition that ξ , ord(ai)
and ac(ai) only depend on ξ0. Denoting by ãi the function induced by ai on
the ball πi(p−1

i (ξ0))(K ), we may write

ãi = tαi ηi

(
1 +

∑

j≥1

Pi, j (x)t
j
)
,(7.5.2)

with Pi, j in K [x]. We may assume that αi ≥ 0 for all i,
∑

i∈I ηiξ
i = 0,

and
∑

i∈I iηiξ
i−1 = 0, where I denotes the set of i’s with αi = 0. By

the usual proof of Hensel’s lemma by successive approximations modulo
higher powers of t, one gets that there exists universal polynomials Q j in
K [xi,ℓ] 0≤i≤n

1≤ℓ≤ j

such that hn(ã0, . . ., ãn, ξ) is equal to

hn(ã0, . . ., ãn, ξ) = ξ +
∑

j≥1

Q j(Pi,ℓ(x))t
j ,(7.5.3)

from which the assertion follows. This concludes the proof of (2), the result
being clear for the remaining types of terms of the forms +,−, ·, and
constants.
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Statement (3) follows easily: using Theorem 3.2.1 (iii) and general model
theory, there is a definable morphism g which is, almost everywhere, equal
to the derivative of f with respect to the h[1, 0, 0]-variable; then take
a refinement adapted to ord g.

Clearly (4) is a definable condition on ξ in Ci . Let Ci1 be the defin-
able subassignment of Ci given by condition (4) and Ci2 its complement
in Ci . Set X j := p−1

i (Cij) for j = 1, 2; these are cells by Lemma 7.2.5.
It is enough to prove statement (4) for the X j and the restrictions f|X j

.
For X1 and f|X1 , statement (4) is clear and (5) is automatically true by
(2), (4), and Lemma 7.5.2. By Lemma 7.5.2 and the construction of X2,
for ξ in Ci2, p−1

i (ξ)(K ), if nonempty, is mapped under f into a proper
subset of a ball of volume L−αi (ξ)−1−βi(ξ) for every K in Fieldk(ξ). Let Y be
the definable subassignment of Ci2[1, 0, 0] determined by (∃x ∈ X2)y =
(pi ◦λi(x), f(x)). If we now apply cell decomposition to Y , then the fibers of
these cells will be strictly smaller balls than those of volume L−αi (ξ)−1−βi(ξ),
by the definition of cells and the construction. By a fiber product argument,
we may assume that the new parameters we just obtained, as well as those
for Ci , are already present as coordinate functions for X2. If we now apply
again cell decomposition to X2, the fibers of the cells in X2 are strictly
smaller balls than those of volume L−αi (ξ)−1 by Lemma 7.5.2. An applica-
tion of Lemma 7.5.2 shows that (4) and (5) for X2 and f|X2 hold on this cell
decomposition of X2. ⊓⊔

7.5.4. Corollary. Let f : S[1, 0, 0] → S[1, 0, 0] be a definable isomorph-
ism over S and let π : S[1, 0, 0] → h[1, 0, 0] be the projection. Then
there exists a finite partition of S[1, 0, 0] into cells Zi with presentation
λi : Zi → ZCi

and projection pi : ZCi
→ Ci such that the f(Zi) are cells

with presentation (pi ◦λi ◦ f −1, π) : x �→ (pi ◦λi ◦ f −1(x), π(x)) and such
that (1) up to (5) of Theorem 7.5.3 are fulfilled for each 1-cell Zi and the
map π ◦ f .

Moreover, one can take the Zi and f(Zi) adapted to f ∗(ϕ) and ϕ for
given ϕ in C+(S[1, 0, 0]).

Proof. First apply Theorem 7.5.3 to S[1, 0, 0] and the function π ◦ f . Then
apply cell decomposition to f ∗(ϕ) to refine the obtained cells. The corollary
follows. ⊓⊔

7.5.5. Remark. Alternatively to the proofs of Sect. 3, based on the work by
van den Dries, one could prove many of the results of Sect. 3 using cell
decomposition and Theorems 7.5.1 and 7.5.3.

8. Volume forms and Jacobians

8.1. Differential forms on definable subassignments. Let W be of the
form W = X × X × Zr with X a k((t))-variety and X a k-variety. Let h
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be a definable subassignment of hW . Denote by A(h) the ring of definable
functions h → hA1

k((t))
on h. We want to define, for every integer i in N, an

A(h)-module Ω
i(h) of definable i-forms on h, which we do in (8.1.1).

First consider a k((t))-variety Y and the sheaf Ω
i
Y of degree i algebraic

differential forms on Y, namely, the i-th exterior product of the sheaf Ω
1
Y

of Kähler differentials. Denote by AY the Zariski sheaf associated to the
presheaf 9 U �→ A(hU ) on Y. Both Ω

i
Y and AY are sheaves of OY(= Ω

0
Y)-

modules, so we can consider the sheaf

Ω
i
hY

:= AY ⊗OY
Ω

i
Y

of definable degree i differential forms on Y. Note that, in general, the mod-
ule of global sections Ω

i
hY

(Y) is much bigger than AY(Y) ⊗OY(Y) Ω
i
Y(Y).

Now let Y be the subvariety of X which is the Zariski closure of the
image of h under the projection π : hW → hX. Using the ring morphism
A(hY) → A(h) : f �→ f ◦ π, we define the A(h)-module Ω

i(h) of
definable i-forms on h as

Ω
i(h) := A(h) ⊗A(hY) Ω

i
hY

(Y).(8.1.1)

Note that Ω
0(h) = A(h).

Let d be the K -dimension of h. We denote by A<(h) the ideal of A(h)
consisting of definable functions on h vanishing on the complement of
a definable subassignment of K -dimension < d, and we set

Ω̃
d(h) := Ω

d(h)/(A<(h)Ωd(h)).

It is a free A(h)-module of rank 1 since, for Y a k((t))-variety of dimension d,
the sheaf Ω

d
Y is locally free of rank one away from the singular locus.

Let f : h ′ → h be a definable morphism between two definable sub-
assignments. Assume h and h ′ are both of K -dimension d and that the fibers
of f all have K -dimension 0. Under these conditions, we define a natural
pullback morphism

f ∗ : Ω̃(h) −→ Ω̃(h ′)(8.1.2)

as follows. Let ω be in Ω̃(h). By Theorem 3.2.1 (iii), there exist defin-
able subassignments Z ⊂ h, Z ′ ⊂ h ′ such that, for each K in Fieldk,
Z(K ) and Z ′(K ) are K((t))-analytic manifolds, Kdim (h \ Z) < Kdim h,
Kdim (h ′ \ Z ′) < Kdim h ′, fK := f(K )|Z ′(K ) is K((t))-analytic on Z ′(K ),
and such that ω induces a K((t))-analytic d-form ωK on Z(K ). Using partial
differentials with respect to local coordinates10 on Z(K ), it is clear that there

9 This presheaf is actually already a sheaf.
10 On an affine piece, these local coordinates can be taken out of the coordinate functions

on an embedding affine space.
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exists a unique definable d-form ω′ in Ω̃(h ′) which induces a K((t))-analytic
d-form ω′

K on Z ′(K ) with ω′
K = f ∗

K(ωK ) for each K . Define f ∗(ω) as the
class of ω′ in Ω̃(h ′).

8.2. Volume forms on definable subassignments. Let h be a definable
subassignment of hW , W = X × X × Zr . Assume h is of K -dimension d.
There is a canonical morphism of commutative semigroups

λ : A(h) −→ Cd
+(h)

sending a function f to the class of L−ord f , with the convention L−∞ = 0.
Define the space |Ω̃|+(h) of definable positive volume forms on h as the
quotient of the free abelian semi-group on symbols (ω, g), with ω in Ω̃

d(h)
and g in Cd

+(h), by the relations:

( fω, g) = (ω, λ( f )g)

(ω, g + g′) = (ω, g) + (ω, g′)

(ω, 0) = 0,

for all f in A(h) and g′ in Cd
+(h). We shall write g|ω| for the class of (ω, g),

so that g| fω| = gL−ord f |ω|. In particular, if ω is a differential form in Ω̃
d(h)

(or in Ω
d(h)), we shall denote by |ω| the class of (ω, 1) in |Ω̃|+(h). If h ′

is a definable subassignment of h, there is a natural restriction morphism
|Ω̃|+(h) → |Ω̃|+(h ′). When h ′ is of K -dimension d, it is induced by
restriction of differential forms and Functions. When h ′ is of K -dimension
< d, we define it to be the zero morphism.

Note that |Ω̃|+(h) has a natural structure of Cd
+(h)-module. We shall

say an element |ω| with ω in Ω̃
d(h) is a gauge form, if it is a generator

of this Cd
+(h)-module. Gauge forms always exist, since Ω̃

d(h) is a free
A(h)-module of rank 1.

Replacing Cd
+(h) by Cd(h), one defines similarly the Cd(h)-module

|Ω̃|(h).
Let f : h ′ → h be a definable morphism between two definable sub-

assignments. Assume h and h ′ are both of K -dimension d and that the
fibers of f all have K -dimension 0. Under these assumptions, pullback of
functions induces a morphism f ∗ : Cd

+(h) → Cd
+(h ′). Still under these

conditions, the pullbacks f ∗ : Ω̃(h) −→ Ω̃(h ′) and f ∗ : Cd
+(h) → Cd

+(h ′)
induce a natural pullback morphism

f ∗ : |Ω̃|+(h) −→ |Ω̃|+(h ′),(8.2.1)

defined by sending the class of (ω, g) to the class of ( f ∗(ω), f ∗(g)).

8.3. Canonical volume forms. Let h be a definable subassignment of
h[m, n, r] of K -dimension d. We denote by x1, . . ., xm the coordinates
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on Am
k((t)) and we consider the d-forms ωI := dxi1 ∧ . . . ∧ dxid for I =

{i1, . . ., id} ⊂ {1, . . .m}, i1 < . . . < id. We denote by |ωI |h the image of ωI

in |Ω̃|+(h).

8.3.1. Lemma-Definition. There is a unique element |ω0|h in |Ω̃|+(h),
the canonical volume form, such that, for every I , there exists Z-valued
definable functions αI and βI on h, with βI only taking as values 1 and 0,
such that αI + βI > 0 on h, |ωI |h = βIL

−αI |ω0|h in |Ω̃|+(h), and such that
inf I αI = 0.

Proof. Uniqueness is clear. Fix a gauge form |ω| on h. We may write
|ωI |h = βIL

−γI |ω|, with γI and βI Z-valued definable functions on h, and βI

only taking 0 and 1 as values. Clearly we may suppose that βI +γI > inf I γI .
If one sets α = inf I γI , then |ω0|h := L−α|ω| satisfies the required property.

⊓⊔

We call |ω0|h the canonical volume form on h. It is a gauge form on h.
It is an analogue of the canonical volume form defined by Serre in [32] in
the p-adic case.

8.4. Order of jacobian. Let f : X → Y be a definable morphism between
two definable subassignments of h[m, n, r] and h[m′, n′, r ′], respectively.
Assume X and Y are both of K -dimension d and that the fibers of f all have
K -dimension 0. By (8.2.1) we may consider f ∗|ω0|Y and we may write

f ∗|ω0|Y = L− ordjac f |ω0|X,(8.4.1)

with ordjac f a Z-valued function on X defined outside a definable sub-
assignment of K -dimension < d. Since, basically, ordjac comes from cal-
culating (the order of) partial derivatives in the valued field, the restriction
of ordjac f to a definable subassignment of K -dimension < d is a definable
morphism. Thus, ordjac f and Lordjac f make sense as Functions in Cd

+(X).

8.4.1. Proposition (Chain rule for ordjac). Let f : X → Y and g : Y → Z
be definable functions between definable subassignments of K-dimension d.
Assume the fibers of f and g all have K-dimension 0. Then

ordjac(g ◦ f ) = (ordjac f ) + ((ordjac g) ◦ f )

outside a definable subassignment of K-dimension < d.

Proof. Follows directly from the chain rule for the pullback of usual differ-
ential forms. ⊓⊔

8.5. Relative variants. Let h → Λ and h ′ → Λ be morphisms in Defk.
Assume that h → Λ and h ′ → Λ are equidimensional of relative K -
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dimension d. Let f : h ′ → h be a definable morphism whose fibers have
dimension 0 and which commutes with the projections to Λ. On each fiber
hλ and h ′

λ for λ in Λ, let |ω0|hλ
, resp. |ω0|h′

λ
, be the canonical volume form

in |Ω̃|+(hλ) and |Ω̃|+(h ′
λ). For every λ in Λ, let fλ : h ′

λ → hλ be the
map induced by f and write ordjac fλ for the Function in Cd

+(h ′
λ) defined

in Sect. 8.4. As in the non-relative setting Sect. 8.4, behind this are partial
derivatives with respect to valued field variables, which are compatible
with definability by the ε, δ definitions of partial derivatives. Thus, by
construction there exists a unique Function ordjac

Λ
f in Cd

+(h ′ → Λ)
which is the class of a definable morphism h ′ → Z such that the fiber of
ordjac

Λ
f at λ equals ordjac fλ for every λ in Λ.

We have a commutative diagram:

h ��i

���
��

��
��

� Γ ⊂ h × Λ ,

yyss
ss
ss
ss
ss
s

Λ

where i denotes the isomorphism to the graph Γ of h → Λ. By construction,
ordjac

Λ
i = 0 holds.

8.5.1. Remark. It is also possible to define relative analogues of Ω
i(h),

Ω̃
d(h), |Ω̃|+(h), |Ω̃|(h), pullbacks, and |ω0|h . We won’t pursue this.

8.6. Models and volume forms. The following construction will not be
needed until §16. Let X0 be an algebraic variety over Spec k[[t]], say flat
over Spec k[[t]]. Set X := X0 ⊗Spec k[[t]] Spec k((t)). In other words X is the
generic fiber of X0 and X0 is a model of X. Assume X is of dimension d.
Let us denote by U0 the largest open subset of X0 on which the sheaf
Ω

d
X0|k[[t]]

is locally free of rank 1 over k[[t]]. Its generic fiber U :=

U0 ⊗Spec k[[t]] Spec k((t)) may be identified with the smooth locus of X when
X is of pure dimension d. Let us choose a finite cover of U0 by open sub-
sets U0

i on which the sheaf Ω
d
X0|k[[t]]

is generated by a non zero form ωi in

Ω
d

U0
i |k[[t]]

(U0
i ). Each form ωi gives rise to a volume form |ωi| in |Ω|+(hUi

),

where Ui denotes the generic fiber of Ui . The subsets Ui form an open
cover of U . Clearly there exists a unique element |ω0| in |Ω̃|+(hX) such
that |ω0||hUi

= |ωi| in |Ω̃|+(hUi
). Furthermore, |ω0| only depends on the

model X0, not on the choice of the cover by open subsets U0
i .

9. Integrals in dimension one

This section is only needed to show that integrals in dimension 1, as axiom-
atized by Theorems 10.1.1 and 14.1.1, are well defined, and satisfy a basic
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change of variable formula. These results will be used in the proofs of
Theorems 10.1.1 and 14.1.1 and the general change of variables formulas.

9.1. Relative integrals relative to the projection S[1, 0, 0] → S. Let S
be in Defk and let ϕ be in C+(S[1, 0, 0] → S). Since C+(S[1, 0, 0] → S)

=
⊕1

i=0 Ci
+(S[1, 0, 0] → S), we can write ϕ = [ϕ0] + [ϕ1] with ϕi in

C+(S[1, 0, 0]) of relative dimension i relative to the projection S[1, 0, 0] →
S for i = 0, 1. Let Pi for i = 0, 1 be a cell decomposition of S[1, 0, 0]
adapted to ϕi as in Theorem 7.2.1 and set Pii = {Z ∈ Pi | Z is a i-cell}.
Fix Zi in Pii for i = 0, 1. The cell Zi has a presentation λi : Zi → ZCi

with
ZC1 = ZC1,α1,ξ1,c1 ⊂ S[1, s1, r1], and ZC0 = ZC0,c0 ⊂ S[1, s0, r0], for some
ri, si ≥ 0, r0 = 0, some Ci ⊂ S[0, si, ri ], and some definable morphisms ci ,
α1, and ξ1, for i = 1, 2. By Theorem 7.2.1, there is ψi in C+(Ci) such that

ϕi|Zi
= λ∗

i p∗
i (ψi),

where pi is the projection ZCi
→ Ci , i = 0, 1. Note that ψi is unique for

fixed ϕi since λi is an isomorphism and pi is surjective. For i = 0, 1 we
write ji for the inclusion

ji : Ci → S[0, si, ri],

and πi for the projection

S[0, si, ri] → S[0, 0, ri].

9.1.1. Lemma-Definition. The following definitions do not depend on the
choice of λi , i = 0, 1, where we use the above notation. We set

µS,Z0(ϕ01Z0) := π0!( j0!(ψ0))

in C+(S). Also, we say ϕ11Z1 is S-integrable along Z1 if π1! j1!(L
−α1−1ψ1)

is S-integrable and if this is the case we set

µS,Z1(ϕ11Z1) := µS

(
π1!

(
j1!

(
L−α1−1ψ1

)))

in C+(S). Here, ji!, πi!, and µS are as in Sects. 5.5, 5.6, and 5.7, respectively.

9.1.2. Lemma-Definition. The following definitions do not depend on the
choice of ϕi and Pi , i = 0, 1, where we use the above notation. We say ϕ is
S-integrable if ϕ11Z is S-integrable along Z for each Z in P11. If this is the
case we define µS(ϕ) in C+(S) as

µS(ϕ) :=
∑

i=0,1

∑

Z∈Pii

µS,Z(ϕi1Z).
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Proof of Lemma-Definition 9.1.1. We first prove independence from the
choice of λ0. Suppose there is another presentation λ′

0 : Z0 → ZC′
0,c

′
0

and ψ′
0

in C+(C ′
0) with λ′

0
∗ p′

0
∗(ψ′

0) = ϕ0|Z0 with p′
0 : ZC′

0,c
′
0

→ C′
0 the projection.

Then, by the definition of 0-cells and by functoriality of the pullback, there
is a definable isomorphism f0 : C0 → C′

0 over S with f ∗
0 (ψ′

0) = ψ0. Now
independence from the choice of λ0 follows from Proposition 5.8.6.

Let us prove now independence from the choice of λ1. Let λ′
1 : Z1 →

ZC′
1
= Z ′

C′
1,α

′
1,ξ

′
1,c

′
1
⊂ S[1, s′

1, r ′
1] be another presentation, for some s′

1 , r ′
1 ≥ 0

and some definable morphisms α′
1, ξ ′

1, and c′
1, and ψ′

1 in C+(C ′
1) such that

ϕ1|Z1 = λ′∗
1 p′∗

1

(
ψ′

1

)
,

where p′
1 is the projection ZC′

1
→ C ′

1. Write π ′
1 for the projection S[0, s′

1, r ′
1]

→ S[0, 0, r ′
1] and j ′1 for the inclusion C′

1 → S[0, s′
1, r ′

1]. By Lemma 7.3.1
(with Z and Z ′ of Lemma 7.3.1 both equal to Z1 here), we may suppose
that there is a (unique) definable morphism g : C1 → C ′

1 over S such that
g ◦ p1 ◦ λ1 = p′

1 ◦ λ′
1. Indeed, it is enough to compare both λ1 and λ′

1 with
the presentation

λ′′
1 : Z1 → ZC1×C′

1
: z �→

(
p1 ◦ λ1(z), λ

′
1(z)

)
,

and by symmetry it is enough to compare λ′
1 with λ′′

1, hence we may suppose
that λ′′

1 = λ1 and g : C1 → C ′
1 exists, cf. the proof of Lemma 7.3.1. By

functoriality of the pullback we have g∗(ψ′
1) = ψ1. The result now follows

from Lemma 9.1.3 and Proposition 5.8.5. ⊓⊔

9.1.3. Lemma. Let S be in Defk and let X = ZC1,α1,ξ1,c1 ⊂ S[1, 0, 0] be
a 1-cell with basis C1 ⊂ S. Let λ : X → ZC,α,ξ,c be another presentation of
the 1-cell X, with C ⊂ S[0, n, r] and π : C → S[0, 0, r] be the projection.
Then

µS

(
π!(L

−α−1)
)

= L−α1−11C1(9.1.1)

in C+(S).

9.1.4. Example. Let us consider the simple case where X is the 1-cell
ZC1,α1,ξ1,c1 ⊂ h[1, 0, 0] with C1 = h[0, 0, 0], α1 = 0, c1 = 1, ξ1 = −1. So
X is the definable subassignment of h[1, 0, 0] given by ord(x) > 0 ∨ x = 0
(a ball). Another presentation for X is λ : X → ZC,α,ξ,c with C = h[0, 1, 0],
α(η) = 1, c(η) = 0 when η = 0, c(0) = t, ξ(η) = η when η = 0,
ξ(0) = −1, and λ(x) = (ac(x), x) for x with ord(x) = 1 and λ(x) = (0, x)
for x with ord(x) > 1. Hence, the ball X(K ) is partitioned into smaller
balls, and there are “residue field many” of these smaller balls, that is, the
smaller balls are parameterized by C. In this example, the formula (9.1.1)
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in Lemma 9.1.3 holds, since

µh[0,0,0]

(
π!(L

−α−1)
)

= µh[0,0,0]([C] · L−2) = µh[0,0,0](L · L−2)

= µh[0,0,0](L
−1) = L−1 = L−α1−1,

in C+(h[0, 0, 0]), µh[0,0,0] being trivial on C+(h[0, 0, 0]).

9.1.5. Example. Let X be as in Example 9.1.4. Fix γ ≥ 1. Another pre-
sentation for X is λ : X → ZC,α,ξ,c with C = hGm

k
× {i ∈ Z | 1 ≤

i ≤ γ } ∪ (h[0, 1, 0] × {γ + 1}), α(η, i) = i, c(η, i) = 0 when η = 0,
c(0, γ + 1) = tγ+1, ξ(η, i) = η when η = 0, ξ(0, γ + 1) = −1, and
λ(x) = (ac(x), ord(x), x) for x with ord(x) ≤ γ +1 and λ(x) = (0, γ +1, x)
for x with ord(x) > γ + 1 or x = 0. The formula (9.1.1) in Lemma 9.1.3
holds, since

µh[0,0,0]

(
π!(L

−α−1)
)

= µh[0,0,0]

([
Gm

k

]
(L−2 + . . . + L−γ−1) + LL−γ−2)

= µh[0,0,0]((L− 1)(L−2 + . . . + L−γ−1) + L−γ−1)

= µh[0,0,0](L
−1) = L−1 = L−α1−1,

in C+(h[0, 0, 0]). Note that it may happen that tγ is not uniformly definable
in a family but this does not pose any problems by Remark 9.1.7. This
example shows how one can reduce the case where the center takes two
values to the case where the center takes only one value (corresponding to
the first presentation of X in Example 9.1.4).

9.1.6. Remark. Let X be as in Example 9.1.4. Note that, if X(K ) contains
a subset Z of the form

ord(x − c) = α, ac(x − c) = ξ,

then, necessarily α ≥ 0 and ord(c) ≥ 0. Indeed, if α < 0, Z is too large
to be contained in X(K ), and if α ≥ 0 and ord(c) < 0, Z is disjoint
from X(K ). Furthermore, if ord(c) = 0 then α = 0, and Z = X(K ), since
Z is not contained in X(K ) when ord(c) = 0 and α > 0. It follows that
if λ : X → ZC,α,ξ,c is a presentation of X such that ord(c) = 0 on C,
necessarily C should be h[0, 0, 0], and the presentation is similar to the
presentation λ1 with c1 = 1 replaced by c and ξ1 = −1 replaced by −ac(c).

9.1.7. Remark. A function ϕ in C+(Z × Z ′) with Z and Z ′ some definable
subassignments is said not to depend on the Z ′-variables when ϕ can be build
up (in finitely many steps) using formulas which do not involve variables
from Z ′. Clearly ϕ then defines a unique function in C+(Z) by restriction
in the obvious way.

We shall prove Lemma 9.1.3 by essentially reducing to the previous
examples, using the previous remarks.
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Proof of Lemma 9.1.3. We start by assuming S = h[0, 0, 0] for simplicity.
Let K be a field containing k such that C1(K ) is nonempty, i.e. a point η1 (K ).
Note that c(K ) : C(K ) → K((t)) has finite image: this can be seen by using
a valued field quantifier free formula defining the graph of c. Now we
show that α(K ) : C(K ) → Z also has finite image. Namely, if α(K )
takes infinitely many values, it must take arbitrarily large values, so there
exists an infinite sequence of points (ηn)n∈N in C(K ) such that α(K )(ηn) is
strictly increasing. Since c(K ) can take only finitely many values, we may
assume that c(ηn) takes a constant value c̃ for n ∈ N. But then the balls
λ−1 p−1

C (K )(ηn), with pC : ZC,α,ξ,c → C for the projection, would have
their t-adic distance with c̃ go to zero as n increases, which forces c̃ to lie
in the ball X(K ). Similarly, since all balls λ−1 p−1

C (K )(η) are disjoint for
different η ∈ C(K ), no ball around c̃ can be of the form λ−1 p−1

C (K )(η) for
η ∈ C(K ) and hence the domain of λ can not contain c̃ (every ball around
c̃ intersects λ−1 p−1

C (K )(ηn) for sufficiently large n).
By the discussion in Remark 9.1.6, if for some point η in C(K ), c(η) lies

outside X(K ), then C(K ) is a point and α(η) = α1(η1(K )). Reciprocally,
if α(η) = α1(η1(K )), then c(η) lies outside X(K ).

We now consider the case of a general S. Note that the morphism
Im c → C1 has globally finite fibers, meaning that the number of fibers is
finite and bounded uniformly in K , by quantifier elimination of valued field
quantifiers.

Denote by q the projection C → C1. Let us consider the definable
subassignment C′

1 of C1 consisting of those points η1(K ) for which there
exists a point η in C(K ) such that q(η) = η1 and c(η) lies outside X(K ).
Denote by C′′

1 the complement of C′
1 in C1. By additivity we may assume C1

is either C ′
1 or C ′′

1 . By additivity and a similar finite partitioning argument
we may suppose that the number of points in the fibers of Im c → C1
is constant and equal to an integer δ > 0. We will perform an induction
argument on δ > 0 where we show that for δ = 1 the formula (9.1.1) holds,
and that for any presentation λ with some δ > 1 we can find a presentation
λ′ with strictly smaller δ and such that λ and λ′ yield the same result for the
left hand side of (9.1.1).

By Remark 9.1.6, one has that δ = 1 if and only if C1 = C ′
1, and then

the projection C → h[0, 0, 0] induces an isomorphism q : C → C1 and
α = α1 ◦ q. The statement is clear in this case. Hence we may assume the
image of c lies in X.

Now suppose that δ ≥ 2. For notational simplicity we shall assume again
S = h[0, 0, 0], the general construction being completely similar.

The cell ZC,α,ξ,c(K ) induces a partition of X into balls Bη given by
conditions

ord(x − c(η)) = α(η) and ac(x − c(η)) = ξ(η),

where η runs over C(K ).
For every K such that C1(K ) is nonempty, consider the different centers

c j(K ), j ∈ J(K ) with J(K ) finite non empty, where Im c(K ) = {c j(K )}. Let
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us denote by β(K ) the maximum of ord(ci(K ) − c j(K )) for i = j and con-
sider the subset B(K ) of Im c(K ) consisting of points ci(K ) such that there
exists c j(K ) with ord(ci(K ) − c j(K )) = β(K ). We write B(K ) (uniquely)
as the disjoint union of subsets Gi , i = 1, . . ., d, such that two points c1
and c2 of B(K ) belong to the same Gi if and only if ord(c1 − c2) = β(K ).
For each Gi we denote by Bi the largest ball containing Gi and no point in
Im c(K ) \ Gi and by |Gi | the number of elements in Gi . For each i consider
the barycenter c̃i(K ) := |Gi |

−1 ∑
cj∈Gi

c j(K ). Clearly c̃i(K ) belongs to Bi

for each i.
Each point c̃i(K ) belongs to a unique ball Bηi

for a unique ηi ∈ C(K ).
If η = ηi and the ball Bη ⊂ Bi does occur in the partition we may rewrite it
as

ord(x − c̃i(K )) = α(η) and ac(x − c̃i(K )) = ξ(η) + ac(c(η) − c̃i(K )).

Hence we may assume all balls Bη ⊂ Bi occurring in the partition have
center c̃i(K ) except for the ball containing c̃i(K ) which has center c(ηi).
Now if a ball Bη occurring in the partition but not contained in Bi has
a center in Bi, we can replace that center by c̃i(K ). This shows that we may
suppose that each Gi consists exactly of the two points c̃i(K ) and c(ηi) and
that c(ηi) is the center of exactly one ball in the decomposition, the one
containing c̃i(K ).

When δ = 2, one falls back to the computation done in Example 9.1.5
and we can reduce to the case where δ = 1 by the computation done in
that example. Indeed, with the above notation, the two centers are c̃1(K )
and c(η1) for a unique η1 ∈ C(K ) and ord( c̃1(K ) − c(η1)) is equal to
max

η∈C(K )
(α(K )(η)).

When δ > 2, one reduces to smaller δ as follows. For every i, 1 ≤ i ≤ d,
we denote by γi(K ) the supremum of ord(y − c̃i(K )), with y running over
Im c(K ) \ Bi and by Di the smallest ball containing Bi and c̃i(K ) + tγi (K ),
that is, the smallest ball strictly containing Bi. Of course, one may possibly
have Di = D j for some i = j. We denote by γ(K ) the supremum of all
γi(K ), and we denote by J ′ the set of i’s with γi(K ) = γ(K ).

Fix i in J ′. Note that if B j is contained in Di , then j lies in J ′. We denote
by c̃i

′(K ) the barycenter of all points in Im c(K ) ∩ Di . Note that all balls in
our cell decomposition that have a center in Di but are not contained in Di

may be rewritten so to have center c̃i
′(K ).

We replace the presentation λ by a presentation λ′ obtained in the fol-
lowing way. One keeps all balls Bη of λ not contained in some Di for i in J ′,
replacing centers lying in Di by c̃i

′(K ). Now let us explain how we change
the presentation inside a ball Di , i ∈ J ′. For each x in Im c(K ) ∩ Di , let
Γx be the maximal ball strictly contained in Di and containing x. There are
finitely many such balls, and we name them Γ j,i . Note that, by construction,
there exist at least two such balls. So, each of the balls Γ j,i contains strictly
less than δ points in Im c(K ), so we may apply the induction hypothesis to
each of them. That is, we can remove all balls in the presentation λ lying
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in some Γ j,i, add as new balls the balls Γ j,i , taking as center c̃i
′(K ), except

if c̃i
′(K ) lies in Γ j,i, in which case one takes c̃i

′(K ) + tγ(K ) as center. One
keeps the balls Bη in the presentation λ which are contained in Di but not
contained in some Γ j,i, replacing their center by c̃i

′(K ), except when c̃i
′(K )

lies in Bη, in which case one takes c̃i
′(K ) + tγ(K ) as center. In this way, one

gets a new presentation λ′ with strictly smaller δ, since for each i in J ′, the
number of centers lying in Di is at least 3 for λ and is equal to 2 for λ′, and
the other centers did not change.

Note that the writing of tγ(K ) involves additional parameters which are
harmless: one can always allow parameters of order γ to parameterize the
center, work relatively over these parameters, and use Remark 9.1.7 to get
rid of them after integrating. By the previous application of the induction
hypothesis, λ and λ′ yield the same result for the left hand side of (9.1.1).

⊓⊔

The next Lemma is essential for the proof of Lemma-Definition 9.1.2.

9.1.8. Lemma. Let X be as in Lemma 9.1.3. Let λ be any presentation of
X \ Y onto a 1-cell ZC,α,ξ,c with basis C, order α, center c, and angular
component ξ , with Y ⊂ X a 0-cell. Write C ⊂ S[0, n, r] and let π : C →
S[0, 0, r] be the projection. Then, in C+(S),

µS

(
π!(L

−α−1)
)

= L−α1−11Ci
.(9.1.2)

9.1.9. Example. Let X be as in Example 9.1.4. A simple presentation λ for
X \ {0} is given by C = hGm,k

× N0, c(η) = 0, with N0 = {a ∈ Z | a > 0},

ord(x) = α(η), ac(x) = ξ(η),

where η runs over C, and α is the projection on N0, and ξ the projection
on the multiplicative group of the residue field hGm,k

. For this example, one
computes that the formula at the end of Lemma 9.1.8 holds. Namely, in
C+(h[0, 0, 0]),

µh[0,0,0]

(
π!(L

−α−1)
)

= µh[0,0,0]

(
[Gm,k] · L−id−1

)
= [Gm,k]

∑

i>1

L−i

= [Gm,k]
L−2

(1 − L−1)
=

[Gm,k]L
−2

L−1(L− 1)
= L−1,

since [Gm,k]/(L−1) = 1, where the infinite sum is understood as in Sect. 4.5
and id is the identity function on N0.

Proof of Lemma 9.1.8. If Y is the empty subassignment, we are in the
situation of Lemma 9.1.3 and we are done. So, by a partitioning argument
as in the proof of Lemma 9.1.3, we may assume that the preimage of every
point η1 of C1 has a nonempty intersection with Y . By the discussion in the
proof of Lemma 9.1.3 this forces the image of c to be contained in X.
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As in the proof of Lemma 9.1.3, we shall assume S = h[0, 0, 0] for nota-
tional simplicity, and the constructions being canonical, they will carry over
directly to the general relative case by working fiberwise. Fix K with C1(K )
nonempty. For every point x in X(K ) we denote by γ(x) the supremum of
ord(c′ − x) for c′ running over all points in c(C(K )) different from x. Now
consider a point y in Y(K ) and the ball By defined by

ord(x − y + tγ(y)) = γ(y) and ac(x − y + tγ(y)) = 1.

Note that no ball with center c′ = y occurring in the presentation λ can
be contained in By, since it would necessarily be equal to By, which is
impossible. Note that the writing of tγ(y) is again harmless: one can always
allow parameters of order γ to parameterize the center and use Remark 9.1.7
to get rid of them after integrating. Hence y belongs to c(C(K )) and all
balls occurring in the presentation λ that are contained in By have center y.
It follows that the restriction of the presentation λ to By is covered by
Example 9.1.9. Let us remark that there exists a definable subassignment
Y ′ such that, for every K , Y ′(K ) is the union of the balls By when y runs
over Y(K ). Hence, if one considers the presentation λ′ of X obtained from
the presentation λ of X \ Y by keeping the balls in λ not contained in Y ′,
removing the other ones and adding the balls B j as new cells, the statement
we have to prove follows from Lemma 9.1.3 applied to λ′. Note that the
presentation λ′ exists since one may view the balls B j as parameterized
by Y . ⊓⊔

Proof of Lemma-Definition 9.1.2. First we prove independence of µS(ϕ)
from the choice of ϕi , i = 0, 1. Actually, ϕ0 is uniquely defined. For ϕ1,
we suppose that there is ϕ′

1 in C+(S[1, 0, 0]) with [ϕ1] = [ϕ′
1] and we

suppose that the cell decomposition P1 is adapted to both ϕ1 and ϕ′
1 (see

Proposition 7.3.2). For a 1-cell Z in P1 with basis C, representation λ :
Z → ZC, and projection p : ZC → C, one has ψ,ψ′ in C+(C) satisfying
λ∗ p∗(ψ) = ϕ1|Z and λ∗ p∗(ψ′) = ϕ′

1|Z . Since [ϕ1] = [ϕ′
1] we must have

ψ = ψ′ and hence ϕ11Z = ϕ′
11Z , by the definitions of 1-cells and adapted

cell decompositions. This shows that there is no dependence on the choice
of ϕ1 either.

We now prove that µS(ϕ) does not depend on the choice of P0. By
Proposition 7.3.2 it is enough to consider a refinement P ′

0 of P0 adapted to ϕ0
and to compare

∑
Z∈P00

µS,Z(ϕ01Z) with
∑

Z∈P ′
00

µS,Z(ϕ01Z), where P ′
00 is

the collection of 0-cells in P ′
0. Clearly, for each 1-cell Z in P0 (resp. in P ′

0)
we have ϕ01Z = 0, because ϕ0 is of relative dimension 0 and P0 (resp. P ′

0)
is adapted to ϕ0. Note that the union of two 0-cells is a 0-cell, and that for
two different 0-cells Z1, Z2 in P00 one has

µS,Z1∪Z2(ϕ01Z1∪Z2) = µS,Z1(ϕ01Z1) + µS,Z2(ϕ01Z2).

Let Z be the union of all 0-cells in P00 and Z ′ be the union of all 0-cells
in P ′

00. Then Z and Z ′ are 0-cells. Since P ′
0 is a refinement of P0, it follows
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that Z ⊂ Z ′ and that Z ′ \ Z is also a 0-cell. We also have ϕ01Z ′\Z = 0, since
P0 and P ′

0 are adapted to ϕ0. One computes

µS,Z ′(ϕ01Z ′) = µS,Z(ϕ01Z) + µS,Z ′\Z(ϕ01Z ′\Z)

= µS,Z(ϕ01Z)

which proves that µS(ϕ) is independent of the choice of P0.
Now let us prove that µS(ϕ) is independent of the choice of P1. By

Proposition 7.3.2 it is enough to compare two cell decompositions P1 and P ′
1

of S[1, 0, 0] adapted to ϕ1 such that P ′
1 is a refinement of P1. Fix a 1-cell Z

in P1. Note that the union of two disjoint 1-cells is a single 1-cell. Similarly,
the union of two disjoint 0-cells is a single 0-cell. For the disjoint union of
two 1-cells Z1, Z2, adapted to ϕ, one has clearly

µS,Z1∪Z2(ϕ11Z1∪Z2) = µS,Z1(ϕ11Z1) + µS,Z2(ϕ11Z2).

Also, a 0-cell cannot contain a 1-cell. Hence, we may suppose that Z ′ ⊂ Z
and that Z \ Z ′ is a 0-cell, with Z ′ in P ′

1. Let λ : Z → ZC = ZC,α,ξ,c be
a presentation of Z, and let λ′ : Z ′ → Z ′

C′ = Z ′
C′,α′,ξ ′,c′ be a presentation

of Z ′. Write p : ZC → C and p′ : Z ′
C′ → C ′ for the projections. By a fiber

product argument we may suppose that λ = id : Z → Z = ZC . Let Z ′
1 be

the definable subassignment of Z ′ determined by

x ∈ Z ′ ∧ α ◦ p(x) = α′ ◦ p′ ◦ λ′(x),

and set Z1 := Z ′
1, Z2 := Z \ Z1, Z ′

2 := Z ′ \ Z ′
1.

Then, by Proposition 7.2.5, Zi and Z ′
i , i = 1, 2, are either empty or

1-cells. Also, for x in Z ′
2,

α ◦ p(x) < α′ ◦ p′ ◦ λ′(x),

by the non archimedean property, since Z ′ ⊂ Z.
Since the equalities µS,Zi

(ϕ1Zi
) = µS,Z ′

i
(ϕ1Z ′

i
) for i = 1, 2 imply that

µS,Z(ϕ1Z) = µS,Z ′(ϕ1Z ′) by the above discussion, it is enough to prove the
following claim.

9.1.10. Claim. One has µS,Z2(ϕ1Z2) = µS,Z ′
2
(ϕ1Z ′

2
).

For the proof of the claim, we may suppose that Z = Z2 and Z ′ = Z ′
2. It is

enough to show that

µS,Z ′(1Z ′) = Lα−11C

holds in C+(S), which follows from Lemma 9.1.8. ⊓⊔

9.2. Direct image under the projection S[1, 0, 0] → S. Let S be in Defk

and write π : S[1, 0, 0] → S for the projection. Let ϕ be in C+(S[1, 0, 0]).
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We first suppose that ϕ is in Cd
+(S[1, 0, 0]) for some d. Fix ϕ̂ in

C
≤d
+ (S[1, 0, 0]) such that ϕ is the class of ϕ̂. Let P be a cell decomposition

of S[1, 0, 0] adapted to ϕ̂ as in Theorem 7.2.1 and set Pi = {Z ∈ P | Z is
a i-cell} for i = 0, 1.

Fix Zi in Pi , i = 0, 1. The cell Z0 has a presentation

λ0 : Z0 → ZC0 = ZC0,c0 ⊂ S[0, s0, 0],

for some s0 ≥ 0 and some definable morphism c0. There is a unique ψ0 in
C+(C0) such that

ϕ̂|Z0
= λ∗

0 p∗
0(ψ0),

where p0 is the projection p0 : ZC0 → C0. We write j0 for the inclusion
j0 : C0 → S[0, s0, 0], and π0 for the projection S[0, s0, 0] → S. Denote by
γ : C0 → Z the definable morphism y �→ (ordjac p0) ◦ p−1

0 , where ordjac
is defined as in Sect. 8.4.

9.2.1. Lemma-Definition. The following definitions are independent of the
choice of λ0, where we use the above notation. We define

π!Z0,d( ϕ̂1Z0)

as the image of the constructible function π0!( j0!(ψ0L
γ )) in C

≤d
+ (S) under

the natural morphism C
≤d
+ (S) → Cd

+(S). Here, j0! and π0! are as in
Sects. 5.5 and 5.6, respectively.

Also, we say ϕ̂1Z1 is S-integrable along Z1 if ϕ̂1Z1 is S-integrable along
Z1 as in Lemma-Definition 9.1.1. If this is the case,

µS,Z1( ϕ̂1Z1)

as defined in Lemma-Definition 9.1.1 lies in C
≤d−1
+ (S) and we define

π!Z1,d( ϕ̂1Z1)

as the image of µS,Z1( ϕ̂1Z1) under the natural morphism C
≤d−1
+ (S) →

Cd−1
+ (S).

9.2.2. Lemma-Definition. The following definitions are independent of the
choice of P and ϕ̂, where we use the above notation. We say ϕ is S-integrable
if ϕ̂1Z is S-integrable along Z for each Z in P1. If this is the case we define
π!(ϕ) in C+(S) as

π!(ϕ) :=
∑

Z∈P

π!Z,d( ϕ̂1Z),

where π!Z,d( ϕ̂1Z) is defined as in Lemma-Definition 9.2.1.
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Finally we take a general ϕ in C+(S[1, 0, 0]) and we write ϕ =
∑

i ϕi

with ϕi in Ci
+(S[1, 0, 0]). We set

π!(ϕ) :=
∑

i

π!(ϕi),

where each π!(ϕi) is defined as in Lemma-Definition 9.2.2. By the above
discussion this is independent of the choices.

Proof of Lemma-Definition 9.2.1. Let λ′
0 : Z0 → Z ′

C′
0,c

′
0

be a different pre-
sentation of Z0. Since Z0 is a 0-cell, clearly there is a definable isomorphism
g : C0 → C ′

0 compatible with the maps Z0 → C0 and Z0 → C ′
0. By Prop-

osition 8.4.1 and the definition of ordjac, γ = (ordjac p′
0) ◦ p′

0
−1 ◦ g, where

p′
0 denotes the projection p′

0 : ZC′
0

→ C ′
0. Hence, independence from the

choice of λ0 follows by functorial properties of the pullback. Since Z0 is
a 0-cell, one has by Proposition 3.4.1 that Kdim X = Kdim π(X) for each
X ⊂ Z0, where still π : S[1, 0, 0] → S is the projection. Hence, it follows
that π0!( j0!(ψ0L

γ )) is in C
≤d
+ (S). Similarly it follows that µS,Z1(1Z1 ϕ̂) is in

C
≤d−1
+ (S) by Proposition 3.4.1. ⊓⊔

Proof of Lemma-Definition 9.2.2. First we prove independence of π!(ϕ)

from the choice of ϕ̂. Suppose that there is ϕ̂′ in C
≤d
+ (S[1, 0, 0]) whose

class in Cd
+(S[1, 0, 0]) is ϕ. Then there exist ε and ε′ in C

≤d−1
+ (S[1, 0, 0])

such that ϕ̂ + ε = ϕ̂′ + ε′. We may suppose that the cell decomposition P
is adapted to ϕ̂, ϕ̂

′, ε, and ε′. By dimensional considerations similar to the
ones used in the proof of Lemma-Definition 9.2.1, we get that

∑

Z∈P

π!Z,d(ε1Z) =
∑

Z∈P

π!Z,d

(
ε′1Z

)
= 0.

Thus,
∑

Z∈P

π!Z,d(ϕ̂1Z) =
∑

Z∈P

π!Z,d

(
ϕ̂

′
1Z

)
,

by the additivity of π!Z,d , which shows the independence from the choice
of ϕ̂.

We shall now prove that π!(ϕ) is independent of the choice of P . By
Proposition 7.3.2 it is enough to compare two cell decompositions P and
P ′ of S[1, 0, 0] adapted to ϕ̂ such that P ′ is a refinement of P . Similarly as
in the proof of Lemma-Definition 9.1.2, we can fix a 1-cell Z1 in P and we
may suppose that Z ′

1 in P ′ is a 1-cell such that Z ′
0 := Z1\Z ′

1 is a 0-cell in P ′.
By dimensional considerations as in the proof of Lemma-Definition 9.2.1,
we find that π!Z ′

0,d
(ϕ̂1Z ′

0
) = 0. Hence, we only have to show that

π!Z1,d( ϕ̂1Z1) = π!Z ′
1,d

(ϕ̂1Z ′
1
),
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and
∑

j

π!Z j ,d( ϕ̂1Z j
) =

∑

i

π!Z ′
i ,d

( ϕ̂1Z ′
j
),

where the sum on the left, resp. right, hand side is over all 0-cells in P ,
resp. P ′. The first equality follows from Claim 9.1.10 in the same way
as this claim is used in the proof of Lemma-Definition 9.1.2. The second
equality follows in a way similar to the statement for 0-cells in the proof of
Lemma-Definition 9.1.2. ⊓⊔

9.3. Basic properties

9.3.1. Proposition. Let S be in Defk and f , g both in C+(S[1, 0, 0] → S) or
both in C+(S[1, 0, 0]). If g ≥ f and g is S-integrable, then f is S-integrable.

Proof. This follows immediately from Proposition 5.8.3 and the definition
of integrability in Lemma-Definition 9.1.2 by taking a cell decomposition
adapted to f and g which exists by Proposition 7.3.2. ⊓⊔

9.3.2. Proposition (Change of variable in relative dimension 1). Let X
and Y be definable subassignments of S[1, 0, 0] for some S in Defk and let
f : X → Y be a definable isomorphism over S. Suppose that X and Y are
equidimensional of relative dimension 1 relative to the projection to S. Let
ϕ be in C1

+(Y → S). We use ordjacS f as defined in Sect. 8.5. Then, ϕ is

S-integrable if and only if L− ordjacS f f ∗(ϕ) is S-integrable and if this is the
case then

µS(ϕ) = µS(L
− ordjacS f f ∗(ϕ))

holds in C+(S).

Proof. This follows from Theorem 7.5.3 and its corollary. Note that the
morphisms βi ◦ pi ◦λi on the 1-cells Zi , defined in Theorem 7.5.3 (3), have
the same class as ordjacS f|Zi

. ⊓⊔

II. Construction of the general motivic measure

10. Statement of the main result

10.1. Integration. In this section, and until Sect. 15, all definable sub-
assignments will belong to Defk. In particular they will be affine. To be able
to integrate positive motivic constructible Functions, we have to define inte-
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grable positive Functions. These, and more generally S-integrable positive
Functions, will be defined inductively, as follows:

10.1.1. Theorem. Let S be in Defk. There is a unique functor from the cate-
gory DefS to the category of abelian semigroups, Z �→ ISC+(Z), assigning
to every morphism f : Z → Y in DefS a morphism f! : ISC+(Z) →
ISC+(Y ) and satisfying the following axioms:

A0 (Functoriality):
(a) For every composable morphisms f and g in DefS, ( f ◦g)! = f!◦g!.

In particular, id! = id.
(b) Let λ : S → S′ be a morphism in Defk and denote by λ+ : DefS →

DefS′ the functor induced by composition with λ, we have the in-
clusion IS′C+(λ+(Z)) ⊂ ISC+(Z) for Z in DefS, and for ϕ in
IS′C+(λ+(Z)), f!(ϕ) is the same Function computed in IS or in IS′.

(c) If f : X → Y is a morphism in DefS, a positive constructible
Function ϕ on X belongs to ISC+(X) if and only if ϕ belongs to
IY C+(X) and f!(ϕ) belongs to ISC+(Y ).

A1 (Integrability):
(a) For every Z in DefS, ISC+(Z) is a graded subsemigroup of C+(Z).
(b) ISC+(S) = C+(S).

A2 (Additivity): Let Z be a definable subassignment in DefS. Assume Z
is the disjoint union of two definable subassignments Z1 and Z2. Then,
for every morphism f : Z → Y in DefS, the isomorphism C+(Z) ≃
C+(Z1) ⊕ C+(Z2) induces an isomorphism ISC+(Z) ≃ ISC+(Z1) ⊕
ISC+(Z2) under which we have f! = f|Z1! ⊕ f|Z2!.

A3 (Projection formula): For every morphism f : Z → Y in DefS, and
every α in C+(Y ) and β in ISC+(Z), α f!(β) belongs to ISC+(Y ) if
and only if f ∗(α)β is in ISC+(Z). If these conditions are verified, then
f!( f ∗(α)β) = α f!(β).

A4 (Inclusions): If i : Z →֒ Z ′ be the inclusion between two definable
subassignments of some object in DefS, for every ϕ in C+(Z), [ϕ] lies
in ISC+(Z) if and only if [i!(ϕ)] belongs to ISC+(Z ′), with i! defined as
in Sect. 5.5. If this is the case, then i!([ϕ]) = [i!(ϕ)].

A5 (Projection along k-variables): Let Y be in DefS. Consider the projection
π : Z = Y [0, n, 0] → Y. Let ϕ be in C+(Z). Then [ϕ] belongs to
ISC+(Z) if and only if [π!(ϕ)] belongs to ISC+(Y ), π! being defined as
in Sect. 5.6. Furthermore, when this holds, π!([ϕ]) = [π!(ϕ)].

A6 (Projection alongZ-variables): Let Y be in DefS. Consider the projection
π : Z = Y [0, 0, r] → Y. Take ϕ in C+(Z). Then [ϕ] belongs to ISC+(Z)
if and only if there is a function ϕ′ in C+(Z) with [ϕ′] = [ϕ] such that ϕ′

is π-integrable in the sense of Sect. 5.7 and [µS(ϕ
′)] belongs to ISC(Y ).

Furthermore, when this holds, π!([ϕ]) = [µS(ϕ
′)].
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A7 (Relative annuli): Let Y be in DefS and consider definable morphisms α :
Y → Z, ξ : Y → hGm,k

, with Gm,k the multiplicative group A1
k \ {0}, and

c : Y → hA1
k((t))

. Then, if Z is the definable subassignment of Y [1, 0, 0]

defined by ord(z−c(y)) = α(y) and ac(z−c(y)) = ξ(y), and f : Z → Y
is the morphism induced by the projection Y × hA1

k((t))
→ Y, [1Z] is in

ISC+(Z) if and only L−α−1[1Y ] belongs to ISC+(Y ), and, if this is the
case, then

f!([1Z]) = L−α−1[1Y ].

A8 (Graphs): Let Y be in DefS and consider a definable morphism c :
Y → hA1

k((t))
. If Z is the definable subassignment of Y [1, 0, 0] defined by

z − c(y) = 0 and p : Z → Y is the projection, [1Z ] is in ISC+(Z) if and

only L(ordjac p)◦p−1
belongs to ISC+(Y ), and, if this is the case, then

f!([1Z]) = L(ordjac p)◦p−1
.

For f : X → S a morphism, elements of ISC+(X) shall be called
S-integrable positive Functions (or f -integrable positive Functions).

10.1.2. Remark. Axiom A8 is a special case of Theorem 12.1.1 so The-
orem 12.1.1 could replace A8 as an axiom.

10.1.3. Remark. In general f! is a morphism of abelian semigroups but not
of graded semigroups. There is a shift by the relative K -dimension, as, for
instance, in axiom A7.

10.2. Motivic measure. When f : Z → hSpec k is the projection onto
the final subassignment, we write IC+(Z) for IhSpec k

C+(Z). For ϕ in
IC+(Z), we define the motivic measure µ(ϕ) as f!(ϕ) in IC+(Spec k) =
SK0(RDefhSpec k

) ⊗N[L−1] A+. We shall write also µ(Z) for µ([1Z ]), when
Z is a definable subassignment of h[m, n, 0] such that [1Z] is integrable.
By Proposition 12.2.2 this happens as soon as Z is bounded in the sense
of Sect. 12.2.

11. Proof of Theorem 10.1.1

Recall that in this section, and until Sect. 15, all definable subassignments
belong to Defk, so, in particular, they are affine.

11.1. Uniqueness. Using A0, it is enough to show, for every f : X → S,
the uniqueness of ISC+(X) and of f! : ISC+(X) → ISC+(S) = C+(S).
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We consider first the case of a projection π : S × Y → S with Y definable
subassignment of some h[m, n, r]. We may assume Y = h[m, n, r]. Indeed,
π may be factorized as

S × Y

��E
EE

EE
EE

EE
��i
S × h[m, n, r]

xxrr
rr
rr
rr
rr
r

S

with i the inclusion, so we are done by A0 and A4. The case where m = 0 is
dealed with by using A5, A6, and A0. Let us consider now the case m = 1
and take ϕ in C+(S[1, 0, 0]). By Theorem 7.2.1, there exists a cell decom-
position Z of S[1, 0, 0] adapted to ϕ, that is, a finite partition of S[1, 0, 0]
into cells Zi with presentation (λi, ZCi

), such that ϕ|Zi
= λ̃

∗

i p∗
i (ψi), with

ψi in C(Ci) and pi : ZCi
→ Ci the projection. Furthermore, maybe after

applying again Theorem 7.2.1 and taking a refinement of Z, we may assume
the following condition:

ϕ|Zi
is either zero or has the same K -dimension as Zi for every i.

(11.1.1)

Using A2 and A4 we may reduce to the case of the projection f : Z → S
of a cell Z of K -dimension d in S[1, 0, 0] with presentation (λ, ZC) and
a function ϕ in C+(Z) of K -dimension d such that ϕ = λ̃

∗
p∗(ψ), with ψ

in C+(C) and p : ZC → C the projection. We have to decide when [ϕ]
belongs to ISC+(Z) and if it is the case to compute the value of f!([ϕ]). Let
us denote by π̃ : ZC → Z the restriction of the projection on the S[1, 0, 0]-
factor to ZC . The morphism π̃ is the inverse of λ̃. Since π̃ ◦ λ̃ = id, it
follows from A0 that π̃! and λ̃! are mutually inverse. It follows from A4,
A5 and A6 that π̃!([1ZC

]) = [1Z], hence λ̃!([1Z]) = [1ZC
]. So, by using the

projection formula A3, one gets that [ϕ] belongs to ISC+(Z) if and only if
p∗ψ[1ZC

] belongs to ISC+(ZC). By A0, A1(b) and A3 this is equivalent to
the condition that ψp!([1ZC

]) belongs to ISC+(C), which amounts to the
case m = 0 already considered. Now if [ϕ] belongs to ISC+(Z), plugging
in Axioms A7 or A8 depending on the type of the cell ZC, completely
determines the value of f!([ϕ]): it should be equal to h !(ψp!([1ZC

]), with h
the canonical morphism C → S.

Now consider the case of a general morphism f : X → S. We factor it as
f = π ◦ γ f , with γ f : X → X × S the graph morphism and π : X × S → S
the projection. We consider also the projection p : X × S → X. Since
p ◦ γ f = id, it follows from A0 and A1 that IX×SC+(X) = C+(X). Hence
a Function φ in C+(X) will belong to ISC+(X) if and only γ f !(φ) belongs
to ISC+(X × S) and then f!(φ) = π!(γ f !(φ)). Hence we are left with
showing the uniqueness of γ f !. It is enough to show that γ f !(ϕ[1X ]) is
uniquely determined for ϕ in C+(X), since one can always reduce to that
case replacing X by some subassignment and using A4 and A2. Let us
denote by Γ f the graph of f . It follows from the previous discussion of
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projections that p![1Γf
] should be of the form Lα[1X] for some definable

function α on X. Since Lα = γ ∗
f L

α◦p, we get

[1Γf
] = γ f ! p!([1Γf

]) = γ f !

(
γ ∗

f L
α◦p[1X ]

)
= Lα◦pγ f !([1X ]),

by using functoriality and the projection formula hence γ f !([1X ]) should be
equal to L−α◦p[1Γf

]. Since ϕ = γ ∗
f p∗ϕ, it follows again from the projection

formula that γ f !(ϕ[1X]) is uniquely determined. ⊓⊔

11.2. Projections. We will now construct ISC+(S × Y ) and π! when π is
the projection S × Y → S. We start by assuming Y = h[m, n, r], so that
S × Y = S[m, n, r].

When m = n = r = 0 we set ISC+(S) = C+(S) and π! = id.
More generally, we set ISC+(S[0, n, 0]) = C+(S[0, n, 0]) and define

π! : ISC+(S[0, n, 0]) → C+(S)

by π!([ϕ]) = [π!(ϕ)], for ϕ in C+(S[0, n, 0]) of K -dimension d, π! :
C+(S[0, n, 0]) → C+(S) being defined as in Sect. 5.6.

Similarly, when m = n = 0, we define ISC+(S[0, 0, r]) as dictated
by A6. That is, for ϕ in C+(Z), we shall say ϕ belongs to ISC+(S[0, 0, r])
if and only if there is a function ϕ′ in C+(S[0, 0, r]) with [ϕ′] = ϕ such that
ϕ′ is S-integrable in the sense of Sect. 5.7, and we set π!(ϕ) = [µS(ϕ

′)].
Clearly this definition is independent of the choice of the representative ϕ′.

We now consider the case when m = 0 and n, r are arbitrary. In this
case we may mix both definitions. More precisely we have the following
statement, which follows from Proposition 5.8.5:

11.2.1. Proposition-Definition. Let ϕ be a Function in C+(S[0, n, r]).
Consider the following commutative diagram of projections

S[0, n, r]

xx

π1

qq
qq
qq
qq
qq
q

��

π′
1

NN
NN

NN
NN

NN
N

��

πS[0, n, 0]

��
π2 NN

NN
NN

NN
NN

NN
S[0, 0, r] .

ww
π′

2pp
pp
pp
pp
pp
pp

S

Then ϕ is π1-integrable if and only if π ′
1!(ϕ) is π ′

2-integrable. We then say

ϕ is π-integrable. If these conditions hold then π2!π1!(ϕ) and π ′
2!π

′
1!(ϕ) are

equal so we may define π!(ϕ) to be their commun value. ⊓⊔

The case of the projection π : S[1, 0, 0] → S has been considered
in Sect. 9.2, where we defined the notion of S-integrability for ϕ in
C+(S[1, 0, 0]) and also the value of π!(ϕ) when ϕ is S-integrable. We
can go one step further thanks to the following:
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11.2.2. Proposition-Definition. Let ϕ be a Function in C+(S[1, n, r]).
Consider the following commutative diagram of projections

S[1, n, r]

xx

π1

qq
qq
qq
qq
qq

��

π′
1

NN
NN

NN
NN

NN
N

��

πS[1, 0, 0]

��
π2 NN

NN
NN

NN
NN

NN
S[0, n, r] .

ww π′
2pp

pp
pp
pp
pp
pp

S

Then the following conditions are equivalent:

(1) ϕ is π1-integrable and π1!(ϕ) is π2-integrable.
(2) ϕ is π ′

1-integrable and π ′
1!(ϕ) is π ′

2-integrable.

Furthermore, if these conditions are satisfied, then π2!π1!(ϕ) = π ′
2!π

′
1!(ϕ).

We shall say ϕ is S-integrable if it satisfies conditions (1) and (2) and we
shall then define π!(ϕ) to be the commun value of π2!π1!(ϕ) and π ′

2!π
′
1!(ϕ).

Proof. Let ϕ be a Function in C+(S[1, n, r]). Choose a cell decomposition
of S[1, 0, 0] which is adapted to π1!(ϕ). For every cell Z1 ⊂ S[1, 0, 0] with
presentation λ̃ : Z1 → Z ′

1 ⊂ S[1, n′, r ′] in this decomposition let Z be its
inverse image of Z1 under π1.

11.2.3. Claim. The cells Z obtained that way form a cell decomposition of
S[1, n, r], adapted to ϕ, and having as presentation

λ̃ ◦ π1 × idh[0,n,r] :

{
Z → Z ′ ⊂ S[1, n + n′, r + r ′]

(x, y) �→ (λ̃(x), y).

Proof. The claim can be easily verified when n = 0 and when r = 0
and follows in general by factorizing π1 into projections S[1, n, r] →
S[1, 0, r] → S[1, 0, 0]. ⊓⊔

We now consider the following commutative diagram, with λ : Z → Z ′

and λ̃ : Z1 → Z ′
1 as above and where we use the corresponding projections:

Z ⊂ S[1, n, r]

yy

π1

ss
ss
ss
ss
ss

��λ

��

π′
1

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Z ′ ⊂ S[1, n + n′, r + r′]

xx

π̃1

qq
qq
qq
qq
qq

��

π̃′
1

CC
CC

CC
CC

CC
CC

CC
CC

CC
C

Z1 ⊂ S[1, 0, 0] ��
λ̃

��

π2

��
��

��
��

��
��

��
��

�
Z ′

1 ⊂ S[1, n′, r′]

��

π̃2

��
��

��
��

��
��

��
��S[0, n, r]

		
π′

2
vv
vv
vv
vv
vv

S[0, n + n′, r + r′] .oo µ̃

vv π̃′
2mmm

mmm
mmm

mmm
m

S S[0, n′, r′]oo
µ
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There is a unique ψ′ such that ψ = λ∗(ψ′).

(a) It follows from the claim and the construction in Sect. 9.2 that the state-
ment we want to prove is verified for [ψ′], that is, [ψ′] is π̃1-integrable
and π̃1!([ψ

′]) is π̃2-integrable if and only if [ψ′] is π̃ ′
1-integrable and

π̃ ′
1!([ψ

′]) is π̃ ′
2-integrable; if these conditions are satisfied, then

π̃2!π̃1!([ψ
′]) = π̃ ′

2!π̃
′
1!([ψ

′]).
(b) Let us remark that [ψ] is π1-integrable if and only is [ψ ′ ] is π̃1-integrable

and π̃1!([ψ
′]) is λ̃−1-integrable, and that in this case (λ̃

−1
)!π̃1!([ψ

′]) =
π1!([ψ]). This follows from Proposition 5.8.6 and the functoriality of
the so far constructed direct images for projections. By the claim and
the construction of integration in relative dimension 1 in Sect. 9.2,
π1!([ψ]) is π2-integrable if and only if π̃1!([ψ

′]) is π̃2-integrable and
π̃2!π̃1!([ψ

′]) is µ-integrable. If all the previous conditions are satisfied,
then π2!π1!([ψ]) = µ!π̃2!π̃1!([ψ

′]).
(c) By construction of integration in relative dimension 1, [ψ] is π ′

1-inte-
grable if and only if [ψ′] is π̃ ′

1-integrable and π̃ ′
1!([ψ

′]) is µ̃-integrable.
If this holds, then π ′

1!([ψ]) = µ̃!π̃
′
1!([ψ

′]). Furthermore it follows from
Proposition-Definition 11.2.1 that for a Function g in C+(S[0, n + n′,
r + r ′]) the condition g is µ̃-integrable and µ̃!(g) is π ′

2-integrable is
equivalent to g is π̃ ′

2-integrable and π̃ ′
2!(g) is µ-integrable and implies

that π ′
2!µ̃!(g) = µ!π̃

′
2!(g).

The statement we have to prove follows directly from the conjunction
of (a), (b), and (c). ⊓⊔

Now we would like to define ISC+(S[n, m, r]) by induction on n by
using a factorization

S[m, n, r] ��q
S[m − 1, n, r] ��p

S,(11.2.1)

with p and q projections, by saying ϕ in C+(S[m, n, r]) will be S-integrable
if it is S[m−1, n, r]-integrable and q!(ϕ) is S-integrable and setting π!(ϕ) :=
p!(q!(ϕ)).

Since there are m different projections S[m, n, r] → S[m − 1, n, r], the
factorization (11.2.1) is not unique, and we have to check this definition is
independent of the factorization.

By induction it is enough to consider the case (m, n, r) = (2, 0, 0).
Using a bicell decomposition thanks to Proposition 7.4.1 it is enough to
prove the following:

11.2.4. Proposition. Let Z be a bicell in S[2, 0, 0]. Denote by p1 and p2
the two projections S[2, 0, 0] → S[1, 0, 0]. Then [1Z ] is p1-integrable and
p1!([1Z]) is S-integrable if and only if [1Z] is p2-integrable and p2!([1Z ]) is
S-integrable. If these conditions hold, then p!(p1!([1Z])) = p!(p2!([1Z ])).

Proof. Let Z be bicell Z ⊂ S[2, 0, 0] with presentation λ : Z → Z ′ =
ZC,... ⊂ S[2, n, r]. Let us first note it is enough to prove the statement of the
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proposition when λ is the identity and that, in this case, the integrability con-
ditions are always satisfied. To check that, let us consider the commutative
diagram

Z ⊂ S[2, 0, 0]

xx

p1

qq
qq
qq
qq
q

��λ





p2

��
��

��
�

��
��

��
�

Z ′ ⊂ S[2, n, r]

xx

p′
1

qq
qq
qq
qq
q

��

p′
2

��
��

��
��

��
��

��
�

S[1, 0, 0]





p

��
��

��
��

��
��

��
�

S[1, n, r]





p′

��
��

��
�

��
��

��
�

oo µ̃

S[1, 0, 0]

xx
p

qq
qq
qq
qq
qq

S[1, n, r] .oo µ̃

xx p′pp
pp
pp
pp
p

S S[0, n, r]oo
µ

Note first that [1Z ] is p1-integrable if and only if p′
1!([1Z ′]) is µ̃-integrable

and then p1!([1Z ]) = µ̃! p
′
1!([1Z ′]). Indeed this follows from Proposition-

Definition 11.2.2, since [1Z] = (λ−1)!([1Z ′]). Hence by Proposition-Def-
inition 11.2.2 again, the condition [1Z] is p1-integrable and p1!([1Z]) is
p-integrable is equivalent to p′

! p′
1!([1Z ′]) is µ-integrable and then p! p1!([1Z])

= µ! p
′
! p

′
1!([1Z ′]). Since we know that p′

! p
′
1!([1Z ′]) = p′

! p
′
2!([1Z ′]), we can

go the other way back, replacing p1 and p′
1 by p2 and p′

2, in order to get the
required result. Hence, we may now assume that λ is the identity.

We consider first the case where Z is (1, 1)-bicell. As we just explained,
we may assume Z = ZC,α,β,ξ,η,c,d, the definable subassignment of S ×
hA1

k((t))
× hA1

k((t))
defined by

y ∈ C

ord(z − d(y, u)) = α(y)

ac(z − d(y, u)) = ξ(y)

ord(u − c(y)) = β(y)

ac(u − c(y)) = η(y),

where y denotes the S-variable, z the first A1
k((t))-variable and u the second

A1
k((t))-variable. Furthermore, either d(y, u) is a function of y or d(y, u) is

injective as a function of u for every y in C. First let us note that [1Z] is
p2-integrable and that p2!([1Z]) = [1Z2]L

−α−1 with Z2 the 1-cell

y ∈ C

ord(u − c(y)) = β(y)

ac(u − c(y)) = η(y).

It follows that p2!([1Z]) is p-integrable and that p!(p2!([1Z])) is equal to
L−α−1L−β−1[1C].

If d(y, u) is constant as a function of u, our (1, 1)-cell is a product of
1-cells and the result is clear. Let us assume d(y, u) is injective as a function
of u. After refining the cell decomposition, which is allowed, we may assume
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the order of the jacobian of d(y, u), viewed as a function of the variable u
only, is the form γ(y), with γ a function of y only (and not of u).

To compute p!(p1!([1Z])), we shall first prove the following special
case.

11.2.5. Lemma. With the previous notations, consider the definable sub-
assignment Z of S × hA1

k((t))
× hA1

k((t))
defined by

y ∈ C

ord(z − u) = α(y)

ac(z − u) = ξ(y)

ord(u − c(y)) = β(y)

ac(u − c(y)) = η(y).

Then [1Z ] is integrable rel. p1 and p2, p1!([1Z]) and p2!([1Z]) are S-
integrable and p!(p1!([1Z])) = p!(p2!([1Z])).

Proof. By partitioning C we may assume we are in one of the following 4
cases.

If β > α on C, then Z may be rewritten as

y ∈ C

ord(z − c(y)) = α(y)

ac(z − c(y)) = ξ(y)

ord(u − c(y)) = β(y)

ac(u − c(y)) = η(y),

which is a product of 1-cells and the result is clear.
Similarly, if β < α, resp. β = α and ξ + η = 0, Z may be rewritten

as

y ∈ C

ord(z − u) = α(y)

ac(z − u) = ξ(y)

ord(z − c(y)) = β(y)

ac(z − c(y)) = η(y),

and

y ∈ C

ord(z − c(y)) = α(y)

ac(z − c(y)) = ξ(y) + η(y)

ord(u − c(y)) = α(y)

ac(u − c(y)) = η(y),

respectively, in which case the result is clear by symmetry.
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Finally, if β = α and ξ + η = 0, Z may be rewritten as

y ∈ C

ord(z − c(y)) > α(y)

ord(u − c(y)) = α(y)

ac(u − c(y)) = η(y),

in which case the result is also quite clear. ⊓⊔

Now, we want to compute p1!([1Z]). Let consider the image W of

y ∈ C

ord(u − c(y)) = β(y)

ac(u − c(y)) = η(y)

by (y, u) �→ (y, u′ = d(y, u)). We denote by Z ′ the subassignement

ord(z − u′) = α(y)

ac(z − u′) = ξ(y)

(y, u′) ∈ W.

By Proposition 9.3.2 (change of variable formula in relative dimension 1),
p1!([1Z]) is equal to p1!([1Z ′])Lγ . On the other hand, after applying cell
decomposition to W , which as we already remarked is allowed here, we
deduce from Lemma 11.2.5 that [1Z ′] is integrable rel. p1 and p2, p1!([1Z ′])
and p2!([1Z ′]) are S-integrable and p!(p1!([1Z ′])) = p!(p2!([1Z ′])). But
p!(p2!([1Z ′])) is quite easy to compute, being nothing else thanL−α−1µS(W ).
Hence we get that

p1!([1Z ]) = L−α−1µS(W )Lγ .

Since µS(W ) = L−γL−β−1[1C], by Proposition 9.3.2 again, it follows fi-
nally that

p1!([1Z]) = L−α−1L−β−1[1C],

as required.
We consider now the case of a bicell of type (1, 0). As above, we may

assume Z = Z ′
C,β,γ,η,c,d is

y ∈ C

z = d(y, u)

ord(u − c(y)) = β(y)

ac(u − c(y)) = η(y).

Furthermore, either d(y, u) is a function of y or d(y, u) is injective as
a function of u for every y in C. If d(y, u) is constant as a function of u, our
(1, 0)-cell is a product of a 0-cell and a 1-cell and the result is clear. Let us
assume d(y, u) is injective as a function of u.
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As we already remarked, we may refine the cell decomposition in
order to assume the order of the jacobian of d(y, u), viewed as a func-
tion of the variable u only, is a the form γ(y), with γ a function of y
only.

The projection p1 induces a definable isomorphism λ1 : Z → Z1 be-
tween Z and its image Z1. By definition, p1!([1Z]) = Lordjacλ1◦λ−1

1 [1Z1].
Similarly, p2 induces a definable isomorphism λ2 : Z → Z2, with Z2
defined by

y ∈ C

ord(u − c(y)) = β(y)

ac(u − c(y)) = η(y)

and p2!([1Z]) = Lordjacλ2◦λ−1
2 [1Z2]. Write πi : Zi → C for the restrictions

of p to Zi for i = 1, 2.
Set λ : λ1 ◦ λ−1

2 : Z2 → Z1. It is induced by (y, u) �→ (y, d(y, u)),
hence, ordjac λ = γ(y) depends only on y. After refining the cell decom-
position, we may assume that ordjac λ2 ◦ λ−1

2 also depends only on y, that
is, there exists some function µ2 on C such that π∗

2µ2 = ordjac λ2 ◦λ−1
2 (al-

most everywhere). Refining again the cell decomposition, we may assume
that there also exists a function µ1 on C such that π∗

1µ1 = ordjac λ1 ◦ λ−1
1

(almost everywhere). By the chain rule (Proposition 8.4.1) applied to λ, we
find

π∗
2 (γ) = π∗

2 (µ1) − π∗
2 (µ2),

from which the relation

µ1 = γ + µ2(11.2.2)

follows. By the projection formula, which is valid in this case by construc-
tion, we have

p! p1!([1Z ]) = Lµ1 p!([1Z1])

and

p! p2!([1Z]) = Lµ2 p!([1Z2]).

Since

p!([1Z2]) = Lγ p!([1Z1])

by Proposition 9.3.2, we deduce the required result by (11.2.2).
We are now left with the last two cases which are much easier. As above,

we may assume Z = Z ′′
C,α,ξ,c,d or Z = Z ′′′

C,c,d. In both cases the result is
clear since Z is a product of cells. ⊓⊔
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Let us define ISC+(S[n, m, r]) by induction on n by using a factorization

S[m, n, r] ��q
S[m − 1, n, r] ��p

S,(11.2.3)

with p and q projections, and saying ϕ in C+(S[m, n, r]) is S-integrable if
it is S[m − 1, n, r]-integrable and q!(ϕ) is S-integrable and setting π!(ϕ) :=
p!(q!(ϕ)). It follows from Proposition 11.2.4 that these definitions are inde-
pendent under permutation of the coordinates on Am

k((t)).

11.3. We now define ISC+(S×Y ) and π!, with π the projection S × Y → S,
when Y is a definable subassignment of h[m, n, r]. This is done as follows.
We denote by i : S × Y → S[m, n, r] the inclusion and by π̃ the projection
S[m, n, r] → S. To any Function ϕ in Cd

+(S × Y ), we assign the Func-
tion ϕ̃ := i!(ϕ) in Cd

+(S[m, n, r]), which is the “(class of the) Function ϕ
extended by zero outside S × Y”. We shall say ϕ is S-integrable if ϕ̃ is
S-integrable and we shall set π!(ϕ) := π̃!(ϕ̃).

11.4. Before going further in the construction of π!, we shall state some
useful properties that follow from what we already did in Sect. 11.2.

We already have the following form of A0 and A1 for projections:

11.4.1. Proposition. Consider a diagram of projections

π : S × Y × Z ��q
S × Y ��p

S.

A Function ϕ in C+(S × Y × Z) is S-integrable if and only if it is S × Y-
integrable and q!(ϕ) is S-integrable. If this holds, then

π!(ϕ) = p!q!(ϕ).

Proof. One may assume Y and Z are of the form h[m, n, r] and h[m′, n′, r ′],
respectively. The result then follows by induction from Proposition-Def-
inition 11.2.1 and Proposition-Definition 11.2.2. ⊓⊔

Also the projection formula A3 holds for projections:

11.4.2. Proposition. Let S and Y be in Defk and let π : S × Y → S denote
the projection. For every α in C+(S), and every β in ISC+(S × Y ), π∗(α)β
belongs to ISC+(S × Y ) and π!(π

∗(α)β) = απ!(β).

Proof. One may assume Y = h[m, n, r]. If m = 0, the statement follows
from the fact that ISC+(S[0, n, r]) is a C+(S)-module and that π! is C+(S)-
linear. The case m = 1 follows from the case m = 0 by construction, and
the general case is deduced by induction on m. ⊓⊔

We also have the following special case of Theorem 12.1.1:

11.4.3. Proposition. Let S and Y be in Defk. Let Z be a definable sub-
assignment of S × Y. Assume the projection π : S × Y → S induces
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an isomorphism λ between Z and S. Then [1Z], viewed as a Function in
C+(S × Y ), is S-integrable and

π!([1Z]) = Lordjacλ◦λ−1
[1S].

Proof. We may assume Y = h[m, n, r], so that S × Y = S[m, n, r]. For
m = 0, the result is clear, for m = 1 it follows from construction. The gen-
eral case is proved by induction on m using the chain rule Proposition 8.4.1.

⊓⊔

11.5. Definable injections. Let i : X → Y be a morphism in Defk. We
shall assume i is injective, which means that i induces a definable isomorph-
ism between X and i(X).

For every Function ϕ in C+(X), we define a Function i+(ϕ) in C+(Y )
as follows. We shall define i+ on Cd

+(X), and then extend to the whole
C+(X) by linearity. Take ϕ = [ψ] in Cd

+(X). We can choose a definable
subassignment Z of X of dimension d such that ψ is zero outside Z.
The morphism i induces a definable isomorphism γZ between Z and i(Z).
Consider the Function ψ̃ := LordjacγZ◦γ−1

Z (γ−1
Z )∗(ψ) on i(Z). We define the

Function ϕ̃ on Y to be 0 outside i(Z) and to be equal to ψ̃ on i(Z), which
is independent of the choice of Z.

In fact we shall see later (cf. Proposition 12.1.2) that i+ is nothing else
than i!.

This gives support to the following:

11.5.1. Proposition. Let i : X → Y and j : Y → Z be morphisms in Defk.
Assume the morphims i and j are injective. Then ( j ◦ i)+ = j+ ◦ i+.

Proof. Follows directly from Proposition 8.4.1. ⊓⊔

We shall need later the following:

11.5.2. Lemma. Let i : Y → W be an injective morphism in Defk, and
consider the commutative diagram

X × Y

��
π

��idX×i
X × W

��
π

Y ��i
W,

where π denotes the projections. A Function ϕ in C+(X ×Y ) is Y-integrable
if and only if (idX × i)+(ϕ) is π-integrable. When these conditions hold,
we have

π!((idX × i)+(ϕ)) = i+(π!(ϕ)).



98 R. Cluckers, F. Loeser

Proof. We may assume X = h[m, n, r], so that X × Y = Y [m, n, r].
When m = 0, the statement follows from Proposition 5.8.6. Let us now
consider the case m = 1, n = r = 0. Take ϕ in C+(Y [1, 0, 0]) and
consider a cell decomposition Z of adapted to (some representative of) ϕ
and to ordjac(idX × i). Note that the image of Z in W[1, 0, 0] is adapted to
(idX × i)+(ϕ). The result now follows from the construction of π! made in
Sect. 9 since this construction reduces the case m = 1 to the case m = 0.
The general case follows by induction using Proposition 11.4.1. ⊓⊔

11.6. Push-forward for the structural morphism. Let f : X → S be
a morphism in DefS.

We consider the following canonical factorization of f :

X ��
i f

X × S ��
π f

S,

where i f is the graph morphism x �→ (x, f(x)) and π f the canonical projec-
tion. The graph morphism i f induces a definable isomorphism γ f between
X and the graph of f , Γ f := i f (X).

We shall say a Function ϕ in C+(X) is S-integrable if i f +(ϕ) is S-inte-
grable. When this holds we shall set

f!(ϕ) := π f !(i f +(ϕ)).

One should first check that when f is a projection, one recovers the
previous definitions:

11.6.1. Lemma. If f : Y × S → S is the projection on the second factor,
then the above definitions coincide with the ones in Sect. 11.3.

Proof. Let us first consider the case when f is the identity idS. It then
follows from Proposition 11.4.3 applied to the projection ΓidS

→ S, that,
for every Function ϕ in C+(S), iidS+(ϕ) is S-integrable and that πidS!◦iidS+ is
the identity. For the general case, let us consider the commutative diagram

Y × S

��

f

��
i f

Y × S × S

��

π

��

π fS ��
iidS

��
id

NN
NN

NN
NN

NN
NN

NN
NN S × S

��

πidS

S.

By Lemma 11.5.2, a Function ϕ in C+(Y × S) is S-integrable if and only if
i f +(ϕ) is S × S-integrable, and if this is the case, then

π!i f +(ϕ) = iidS+ f!(ϕ),
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so that

πidS!π!i f +(ϕ) = πidS!iidS+ f!(ϕ)

and

π f !i f +(ϕ) = f!(ϕ).
⊓⊔

11.7. Push-forward: the general case. We start from a morphism f :
X → Y in DefS, that is, a commutative diagram

X ��f

��h ��
��

��
� Y .


g

��
��
��
��

S

In Sect. 11.6 we defined a morphism f! : IY C+(X) → IY C+(Y ). By
the following Proposition 11.7.1, f! restricts to a morphism ISC+(X) →
ISC+(Y ) that we shall still denote by f!.

11.7.1. Proposition. A Function ϕ in C+(X) is S-integrable if and only if
it is Y-integrable and f!(ϕ) is S-integrable. If these conditions hold then
h !(ϕ) = g! f!(ϕ).

Proof. We have the following commutative diagram:

X × S

��

i f ×idS

��

πh

X

��

f

II
II

II
II

II
II

I

��
ih

��
h

��
i f

X × Y

��

πf

��
idX×ig

X × Y × S

��

π

Y ��
ig

��

g

NN
NN

NN
NN

NN
NN

NN
NN

N Y × S

��

πg

S

with π the projection on the last two factors.
Let ϕ be a Function in C+(X). The following conditions are equivalent:

ϕ is f -integrable and f!(ϕ)is g-integrable
i f +(ϕ) is π f -integrable and ig+π f !i f +(ϕ)is πg-integrable

(by Definition)



100 R. Cluckers, F. Loeser

(idX × ig)+i f +(ϕ) is π-integrable and π!(idX × ig)+i f +(ϕ)is πg-integrable
(by Lemma 11.5.2)

(i f × idS)+ih+(ϕ) is π-integrable and π!(i f × idS)+ih+(ϕ)is πg-integrable
(by Lemma 11.5.1)

(i f × idS)+ih+(ϕ) is S-integrable
(by Proposition 11.4.1)
ih+(ϕ) is πh-integrable

(by Lemma 11.7.2)
ϕ is h-integrable
(by Definition).

This proves the first statement in the proposition.
Assume now the previous conditions hold. We have

g! f!(ϕ) = πg!ig+π f !i f +(ϕ) (by Definition)
= πg!π!(idX × ig)+i f +(ϕ) (by Lemma 11.5.2)
= (πg ◦ π)!(idX × ig)+i f +(ϕ) (by Proposition 11.4.1)
= (πg ◦ π)!(i f × idS)+ih+(ϕ) (by Lemma 11.5.1)
= πh!ih+(ϕ) (by Lemma 11.7.2)
= h !(ϕ) (by Definition).

11.7.2. Lemma. Let f : X → Y be a morphism in Defk, let S be in Defk,
and consider the commutative diagram

X × S

��
π

��
i f ×idS

X × Y × S

��
π

S S,

where π denotes the projection. A Function ϕ in C+(X × S) is S-integrable
if and only if (i f × idS)+(ϕ) is S-integrable. If this holds, then π!(ϕ) =
π!((i f × idS)+(ϕ)).

Proof. We consider the commutative diagram

X × Y × S

��

p

MM
MM

MM
MM

MM

X × S

��
i f ×idS

qqqqqqqqqq
��id
X × S,

with p the projection. Consider Z := (i f × idS)(X × S). The projection
p induces an isomorphism λ between Z and X × S. It follows from Prop-
osition 11.4.3 that [1Z] is X × S-integrable and that we have p!([1Z]) =



Constructible motivic functions and motivic integration 101

Lordjacλ◦λ−1
[1X×S], hence, by the very definition of i f + and by Prop-

ositions 8.4.1 and 11.4.2, we obtain that p!(i f × idS)+([1X×S]) = [1X×S].
Now, for a general Function ϕ in in C+(X × S), we get similarly by Prop-
osition 11.4.2 that (i f ×idS)+(ϕ) is p-integrable and that p!(i f ×idS)+(ϕ) =
ϕ, after maybe replacing Z by a definable subassignment of smaller dimen-
sion. So, p!(i f × idS)+ is the identity, hence to conclude the proof it is
enough to compose with π! and to apply Proposition 11.4.1. ⊓⊔

11.8. Conclusion of the proof. Now we have everything in hand needed to
check Axioms A0–A9. Axiom A0 follows at once from Prop-
osition 11.7.1. Statements (a) and (b) in A1 are clear by construction.
Since A2 and A4 hold by construction for π!, when π is a projection and
for i+, when i is a definable injection, it follows they hold in general. Sim-
ilarly, A3 holds for π!, when π is a projection, by Proposition 11.4.2 and
for i+, when i is a definable injection, by construction, hence it holds in
general. The remaining Axioms A5–A8 follow from the very constructions
and definitions. ⊓⊔

12. Main properties

Recall in this section, and until Sect. 15, all definable subassignments belong
to Defk, so in particular they are affine.

12.1. Change of variable formula. We can now state the general form of
the change of variable formula.

12.1.1. Theorem. Let f : X → Y be a definable isomorphism between de-

finable subassignments of K-dimension d. Let ϕ be in C
≤d
+ (Y ) of

K-dimension d. Then [ f ∗(ϕ)] belongs to IY Cd
+(X) and

f!([ f ∗(ϕ)]) = Lordjac f ◦ f −1
[ϕ].

Proof. By Proposition 12.1.2, [1X ] is Y -integrable and we have f!([1X]) =

Lordjac f ◦ f −1
[1Y ]. The result follows, since by A1(b) and the projection

formula A3, [ f ∗(ϕ)] = f ∗(ϕ)[1X ] is Y -integrable and f!([ f ∗(ϕ)]) =

ϕ f!([1X ]) = Lordjac f ◦ f −1
[ϕ]. ⊓⊔

12.1.2. Proposition. Let j : X → Y be a definable injection. Then IY C+(X)
= C+(X) and j+ = j!.

Proof. We factor j as

X ��
i j

��j ��
��

��
� X × Y

��
πj

xx
xx
xx
xx
x

Y

.
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Using compatibility with inclusions A4 and the projection formula A3
it is enough to prove that i j+([1X ]) is Y -integrable and that j+([1X ]) =
π j ! ◦ i j+([1X ]). This follows from Proposition 11.4.3 and Proposition 8.4.1.

⊓⊔

12.2. Integrability of bounded Functions on bounded subassignments.
Let X be in Defk. Let ϕ and ϕ′ be Functions in C+(X). We write ϕ ≤ ϕ′ if
there exists a Function ψ in C+(X) such that ϕ′ = ϕ + ψ.

12.2.1. Theorem. Let f : X → S be a morphism in Defk. Let ϕ and ϕ′

be Functions in C+(X) such that ϕ ≤ ϕ′. If ϕ′ is S-integrable, then ϕ is
S-integrable.

Proof. The statement being clear when f is an injection, we assume f is
a projection f : X = S[m, n, r] → S. When m = 0 the result is quite clear,
hence it is enough by induction to consider the case (m, n, r) = (1, 0, 0)
which follows directly from Proposition 9.3.1. ⊓⊔

We shall say a subassignment Z of h[m, n, 0] is bounded if there exists
a natural number s such that Z is contained in the subassignment Ws of
h[m, n, 0] defined by ord xi ≥ −s, 1 ≤ i ≤ m, where the variables xi run
over h[m, 0, 0].

12.2.2. Proposition. If Z is a bounded definable subassignment of
h[m, n, 0], then [1Z] is integrable. More generally, let ϕ be a Function
in C+(Z) of the form a ⊗ αLβ[1Z] with a in SK0(RDefZ ), α a product of
definable morphisms αi : Z → N for i = 1, . . ., ℓ, and β : Z → Z a defin-
able morphism. Assume Z is bounded and the function β is bounded above.
Then ϕ is integrable.

Proof. Assume Z is of K -dimension d. We shall prove the more general
statement by induction on the codimension m − d, assuming the αi are also
bounded above. There exists a closed k((t))-subvariety X of dimension d of
Am

k((t)) such that Z is contained in (hX × hAn
k
) ∩ Ws.

When m = d, [1Z ] ≤ [1Ws
]. Certainly [1Ws

] is integrable and µ([1Ws
]) =

L−s, as can be seen by using a cell decomposition similar to the one in
Example 7.2.2. Also any Function of the form a ⊗ α̃L β̃[1Ws

] with a in
SK0(RDefWs

), α̃ and β̃ constant positive numbers, is integrable, hence the
statement follows from Theorem 12.2.1 in this case.

Assume now m > d. After performing a linear change of coordinates
on Am

k((t)), which we are allowed to do by Theorem 12.1.1, we may assume
that the projection Am

k((t)) → A
m−1
k((t)) on the first m − 1 coordinates restricts

to a finite morphism on X. Denote by Z ′ the image of Z under the pro-
jection p : Z → h[m − 1, n, 0]. Note that Z ′ is bounded. Using a cell
decomposition adapted to ϕ, one may assume that Z is a cell (necessarily
a 0-cell) adapted to ϕ. By the induction hypothesis it is enough to prove that
[1Z] is p-integrable and that p![1Z] is of the form a′ ⊗ α′Lβ′

[1Z ′] with a′
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in SK0(RDefZ ′), α′ a product of definable morphisms α′
i : Z ′ → N, and

the α′
i and β′ bounded above definable functions on Z ′. Let λ : Z → ZC

be a presentation of Z and consider the projections p′ : ZC → C ⊂
h[m − 1, n + n′, 0], π1 : ZC → Z, and π2 : C → Z ′. Since the image
by λ! and πi! for i = 1, 2 of Functions of the above form have a similar
form, we may in fact assume Z = ZC , Z ′ = C and p = p′, that is, we may
assume p induces an isomorphism between Z and Z ′. Since Z is bounded,
it follows from Theorem 7.5.1 that some representative of ordjac p ◦ p−1 is
bounded above on Z ′. Hence, it follows from A8, or from the stronger The-
orem 12.1.1, that p!([1Z]) = Lβ[1Z ′] with β bounded above on Z ′, which
finishes the proof in this case.

Let us now consider the case where the functions αi are no more assumed
to be bounded. We denote by α̃ the morphism (α1, . . ., αℓ) : Z → Nℓ, and,
for n in Nℓ, we set Zn := α̃−1(n) and ϕn := 1Zn

ϕ. By what we already
proved, each ϕn is integrable, and also the Function ψ := a ⊗ Lβ[1Z] is
integrable. Since we may factor the projection of Z → h[0, 0, 0] as the
composition of α̃ : Z → Nℓ with the projection Nℓ → h[0, 0, 0], it follows
that the Function n �→ µ(ψn) is integrable on Nℓ, with ψn := 1Zn

ψ. Hence,
by Proposition 4.5.6, we may write n �→ µ(ψn) as a finite sum of functions
of the form d ⊗h with d in SK0(RDefk) and h in P (h[0, 0, ℓ]) with for each
h lim|n|→∞ degL(h) = −∞. But then also lim|n|→∞ degL(αh) = −∞ for
each h, hence lim|n|→∞ degL(ϕ) = −∞. By Proposition 4.5.6, the function
n �→ µ(ϕn) is integrable on Nℓ, and one deduces that ϕ is integrable. ⊓⊔

13. Integration of general constructible motivic Functions

13.1. From C+(X) to C(X). In this section we shall denote by ι the canon-
ical morphisms ι : C+(X) → C(X) and ι : C+(X) → C(X) for X in Defk.

13.1.1. Proposition. Fix S in Defk. Let f : X → Y be a morphism in DefS.
Let ϕ and ϕ′ be Functions in C+(X) such that ι(ϕ) = ι(ϕ′). Assume that ϕ
and ϕ′ are S-integrable. Then ι( f!(ϕ)) = ι( f!(ϕ

′)).

Proof. It is enough to prove the statement for f an injection or a projection.
When f is an injection the proof is quite clear. Indeed, if ι(ϕ) = ι(ϕ′),
we have ϕ + ψ = ϕ′ + ψ with some ψ in C+(X) which might be not
S-integrable, but is certainly f -integrable (since all Functions in C+(X)
are). It follows that f!(ϕ) + f!(ψ) = f!(ϕ

′) + f!(ψ), which is enough
for our needs. Let us now assume f is a projection. We may assume f
is the projection X = S[m, n, r] → Y = S. The case (m, n) = (0, 0)
follows directly from Lemma 13.1.2 and the case (m, r) = (0, 0) is clear,
so we know the statement holds for X = S[0, n, r], and by induction it
is enough to prove it also holds for X = S[1, n, r]. We explain how an
application of cell decomposition reduces to the case X = S[0, n, r]. Let
ϕ + ψ = ϕ′ + ψ for some ψ. It is enough to consider the case where
ϕ, ϕ′ and ψ all lie in Cd

+(X). We may assume, using cell decomposition,
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that ϕ, ϕ′ and ψ have their support contained in a cell λ : Z → ZC ,
with Z of K -dimension d, and that ϕ = λ∗ p∗(h)[1Z], ϕ′ = λ∗ p∗(h ′)[1Z]
ψ = λ∗ p∗(g)[1Z], with h, h ′, and g in C+(C), where p denotes the projection
ZC → C ⊂ S[0, n + n′, r + r ′]. Moreover we may assume that [1Z ] is
C-integrable. Then [h]+[g′] = [h ′]+[g′], and thus h p!([1Z])+gp!([1Z]) =
h ′ p!([1Z])+gp!([1Z]). Consider the projection π : C → S. Since h p!([1Z])
and h ′ p!([1Z]) are S-integrable by construction, it follows from what we
already proved that, ι(π!(h p!([1Z ]))) = ι(π!(h

′ p!([1Z]))), hence ι( f!(ϕ)) =
ι( f!(ϕ

′)). ⊓⊔

13.1.2. Lemma. We use notation from Sect. 5. Let ϕ and ϕ′ be S-integrable
functions in C+(S[0, 0, r]). Assume ϕ + ψ = ϕ′ + ψ for some function ψ
in C+(S[0, 0, r]). Then ι(µS(ϕ)) = ι(µS(ϕ

′)).

Proof. By Propositions 5.7.2 and 5.8.4, it is enough to consider the case
r = 1. The result being clear if ψ is S-integrable, it is enough to prove we
may replace ψ by some other function ψ′ in C+(S[0, 0, 1]) which is S-inte-
grable. We write ψ =

∑
i ciψi , with ci in C+(S) and ψi in P+(S[0, 0, 1]),

and similarly for ϕ and ϕ′. We may write ψi =
∑

j vij (
∏

ℓ αi, j,ℓ)L
δi, j , with

αi, j,ℓ and δi, j definable morphisms S[0, 0, 1] → Z and the vij in the ring
A, and similarly for the terms occurring in ϕ and ϕ′. We may suppose
that the αi, j,ℓ take values in N, and, by Presburger cell decomposition The-
orem 4.3.2, we may assume that all functions αi, j,ℓ and δi, j have their support
in some S-cell Z and that they are S-linear, that is, of the form (4.1.1), and
similarly for the analogue definable morphisms S[0, 0, 1] → N occurring
in the descriptions of ϕ and ϕ′. Replacing ψ by ψ + ψ̃ for some positive ψ̃,
we may furthermore suppose that all the vij are in A+, where A and A+ are
the ring and semiring defined in Sect. 4.2. If the fibers of Z above S are
all finite, every function on Z is S-integrable, and there is nothing to do.
Suppose thus that Z is a (1)-cell and that all fibers of Z above S are infinite.
By partitioning further we may assume that Z ⊂ S ×N. Regrouping terms,
the equality ϕ + ψ = ϕ′ + ψ can now be rewritten as an equality between
two (positive) sums of terms of the form

w
( ∏

ℓ

αℓ

)
Lδ,(13.1.1)

with the αℓ : Z → N and δ : Z → Z S-linear definable morphisms
and w in the semiring A+. Writing δ(s, x) = a( x−c

n
) + γ(s) with n > 0

for (s, x) on Z, the integrability of (13.1.1) only depends on the integer
coefficient a, namely, it is integrable if and only if a < 0. In the equality
between a sum of terms (13.1.1), one can ignore all terms with a ≥ 0 to
obtain a new equality, because there can be no nontrivial relation between
the terms with a < 0 and those with a ≥ 0. By Proposition 5.8.1 we may
suppose that the terms coming from ϕ and ϕ′ are all integrable. Define
ψ′

i :=
∑

j∈J vij (
∏

ℓ αi, j,ℓ)L
δi, j , where J consists of those j for which Lδi, j
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is S-integrable, and set ψ′ :=
∑

i ciψ
′
i . Then, ψ′ is positive, S-integrable,

and ϕ + ψ′ = ϕ′ + ψ′, which finishes the proof. ⊓⊔

13.2. Fix S in Defk. Let X be in DefS. We shall say a Function ϕ in C(X)
is S-integrable if it may be written as

ϕ = ι(ϕ+) − ι(ϕ−),(13.2.1)

with ϕ+ and ϕ− both S-integrable Functions in C+(X). We denote by
ISC(X) the graded subgroup of C(X) consisting of S-integrable Functions.
If f : X → Y is a morphism in DefS and ϕ is in ISC(X), we set

f!(ϕ) = ι( f!(ϕ+)) − ι( f!(ϕ−)),(13.2.2)

with ϕ+ and ϕ− in ISC+(X) satisfying (13.2.1). By Proposition 13.1.1, this
is independent of the choice of ϕ+ and ϕ−. We define in this way a morphism
of abelian groups

f! : ISC(X) −→ ISC(Y ).

Furthermore, if g : Y → Z is another morphism in DefS, (g ◦ f )! = g! ◦ f!.
When f is the morphism to hSpec(k), we write µ(ϕ) for the element f!(ϕ) in
C(hSpec(k)).

13.2.1. Proposition. The following properties for f! hold:

(1) Additivity and compatibility with inclusions: Axioms A2 and A4 of
Theorem 10.1.1 are satisfied if one replaces C+ and C+ by C and C,
respectively.

(2) Projection formula: If f : X → S is a morphism in Defk , α is in C(S)
and β is in ISC(X), then f ∗(α)β is S-integrable and

f!( f ∗(αβ)) = α f!(β).

(3) Let π be the projection π : S[0, n, 0] → S with S in Defk. Let ϕ be in
C(S[0, n, 0]). Then [ϕ] is S-integrable and π!([ϕ]) = [π!(ϕ)], π! being
defined as in Sect. 5.6.

(4) Let π be the projection π : S[0, 0, n] → S with S in Defk. Let ϕ be in
C(S[0, 0, n]). Then [ϕ] is S-integrable if and only if there is a function
ϕ′ in C(S[0, 0, n]) with [ϕ′] = [ϕ] such that ϕ′ is π-integrable in the
sense of Sect. 5.7. Furthermore, when this holds, π!([ϕ]) = [µS(ϕ

′)].

Proof. The first three assertions follow directly from the corresponding
statements for positive Functions. The last one follows directly from
Lemma 13.1.2. ⊓⊔

The following statement is a direct consequence of Theorem 12.1.1.

13.2.2. Theorem (Change of variable formula). Let f : X → Y be
a definable isomorphism between definable subassignments of K-dimen-
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sion d. Let ϕ be in C≤d(Y ) having a non zero class [ϕ] in Cd(Y ). Then
[ f ∗(ϕ)] is in IY Cd(X) and

f!([ f ∗(ϕ)]) = L(ordjac f)◦ f −1
[ϕ].

14. Integrals with parameters

Recall that, until the end of this section, all definable subassignments belong
to Defk.

14.1. In this section we consider the relative version of Theorem 10.1.1.
By this we mean the construction of a theory for integrals with parameters
in a definable subassignment Λ. One of the great advantages of our proof
of Theorem 10.1.1 is that it carries literally to the relative case.

Let us fix Λ in Defk. We introduce the subcategory Def ′
Λ

of DefΛ whose
objects are definable subassigments S of some Λ[m, n, r], the morphism
p : S → Λ being induced by the projection to Λ. For a given S in Def ′

Λ
,

we denote by Def ′
S,Λ the category whose objects are morphisms Z → S

in Def ′
Λ

. To any object f : S → Λ in DefΛ one may assign its graph
Γ f → Λ in Def ′

Λ
. This yields a functor Γ : DefΛ → Def ′

Λ
which is quasi-

inverse to the inclusion functor Def ′
Λ

→ DefΛ leading to an equivalence of
categories between Def ′

Λ
and DefΛ. More generally the functor Γ induces

an equivalence of categories Φ between DefS and Def ′
Γ(S),Λ, for every S in

DefΛ; this equivalence is compatible with ordjac
Λ

.

14.1.1. Theorem. Let Λ be in Defk. Let S be in DefΛ, resp. in Def′
Λ

. There
is a unique functor from the category DefS, resp. Def ′

S,Λ, to the category
of abelian semigroups, Z �→ ISC+(Z → Λ), assigning to every morphism
f : Z → Y in DefS, resp. in Def ′

S,Λ, a morphism f!Λ : ISC+(Z → Λ) →
ISC+(Y → Λ) and satisfying the axioms similar to A0–A8 of The-
orem 10.1.1 replacing ISC+(_) by ISC+(_ → Λ) with the following
changes:

In A0(b) λ should be a morphism in Defλ, resp. in Def ′
Λ

. In A8, one
should replace the function ordjac by the relative function ordjac

Λ
, as de-

fined in Sect. 8.5.

Furthermore, the relative analogue of Theorem 12.1.1, with ordjac
Λ

instead of ordjac, also holds, and the constructions are compatible with the
equivalence of categories Φ between DefS and Def ′

Γ(S),Λ.

Proof. It is enough to prove the theorem in the relative setting, i.e., in the
Def ′

Λ
setting. The non relative case follows by using the equivalence Φ

which is compatible with ordjac
Λ

, see also the end of Sect. 8.5. Our proofs
of Theorem 10.1.1 and of Theorem 12.1.1 in the absolute setting has been
designed in order to generalize verbatim to the present relative setting, with
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the following changes: replace everywhere absolute dimensions by relative
dimensions; replace everywhere ordjac by its relative analogue ordjac

Λ
.

⊓⊔

14.2. When π : Z → Λ is the morphism to the final object in DefΛ, we
write IC+(Z → Λ) instead of IΛC+(Z → Λ). We also denote by µΛ the
morphism

π!Λ : IC+(Z → Λ) → C+(Λ → Λ) = C+(Λ).

We call it the relative motivic measure. By Corollary 14.2.2 it corresponds
to integrating along the fibers of Λ. One should remark that the notation is
compatible with the one introduced in Sects. 5.7 and 9.

Let Z be in DefΛ. For every point λ of Λ, we denote by Zλ the fiber
of Z at λ, as defined in Sect. 2.6. We have a natural restriction morphism
i∗λ : C+(Z → Λ) → C+(Zλ), which respects the grading.

14.2.1. Proposition. Let f : Z → Y be a morphism in DefΛ. Let ϕ be
a Function in C+(Z → Λ). Then ϕ is f -integrable if and only if, for every
point λ of Λ, i∗λ(ϕ) is fλ-integrable. Furthermore, when these conditions
hold, then

i∗λ( f!Λ(ϕ)) = fλ!

(
i∗λ(ϕ)

)

for every point λ of Λ, where fλ : Zλ → Yλ is the restriction of f to the
fiber Zλ.

Proof. It is enough to prove the statement for injections and projections. The
case of injections being clear let us consider that of projections. It is enough
to consider the case of projections along one sort of variables and the only
case which is not a priori clear is that of a projection Z = Y [0, 0, r] → Y
which follows directly from Corollary 5.8.2. ⊓⊔

In particular we have the following:

14.2.2. Corollary. Let f : Z → Λ be in DefΛ. Let ϕ be a Function in
C+(Z → Λ). Then ϕ is integrable if and only if for every point λ of Λ,
i∗λ(ϕ) is in IC+(Zλ). If these conditions hold, then

i∗λ(µΛ(ϕ)) = µλ

(
i∗λ(ϕ)

)
,

for every point λ of Λ, where µλ denotes the motivic measure on Defk(λ).

It is not clear whether the if and only if statement of Proposition 14.2.1
and its corollary hold for ϕ in C(Z → Λ).
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14.2.3. Remark. Let π : Z → Λ be a morphism in DefΛ. In general
the elements µΛ(ϕ) and π!(ϕ) may be quite different. For instance,
assume that π is an isomorphism, then µΛ([1Z]) = 1Λ, while π!([1Z]) =

Lordjacπ◦π−1
[1Λ]. One should remark that in this case [1Z ] is of degree 0 in

C+(Z → Λ), since the relative K -dimension is 0, while [1Z] is of max-
imal degree in C+(Z). Of course, if Λ is a subassigment of hAm

k ×Zr then
µΛ(ϕ) = π!(ϕ) whenever the integrability conditions are met. Also, if we
have a morphism π ′ : Λ → T in Defk, in general µT ([µΛ(ϕ)]) = µT (ϕ).

14.3. Let X be in DefΛ. The canonical morphism ι : C+(X) → C(X)
induces a morphism ι : C+(X → Λ) → C(X → Λ) for which the analogue
of Proposition 13.1.1 holds. This allows us, for S in DefΛ and X in DefS,
to define ISC(X → Λ), and for f : X → Y a morphism in DefS, to define
f!Λ : ISC(X → Λ) → ISC(Y → Λ) and µΛ : IC(X → Λ) → C(Λ) as
in Sect. 13.2.

The relative analogues of Proposition 13.2.1 and Theorem 13.2.2 hold
in this setting with similar proofs.

14.4. Rationality theorems. Now we can state the following general ra-
tionality theorem.

14.4.1. Theorem. Let π : Z → Λ × Nr be a morphism in Defk, Nr being
considered as a definable subassignment of hZr . For every ϕ in IC(Z →
Λ × Nr), the Poincaré series

Pϕ,π(T ) :=
∑

n∈Nr

µΛ(ϕ|π−1(Λ×{n}))T
n

belongs to C(Λ)[[T1, . . ., Tr]]Γ, where ϕ|π−1(Λ×{n}) is considered as an elem-
ent of IC(Z → Λ) and µΛ(ϕ|π−1(Λ×{n})) as an element of C(Λ), and where
C(Λ)[[T1, . . ., Tr]]Γ is as in Sect. 5.7.

Proof. By construction the function Φ := µΛ×Nr (ϕ) belongs to C(Λ×Nr).
By Proposition 14.2.1, its restriction Φn to C(Λ × {n}) satisfies Φn =
µΛ(ϕ|π−1(Λ×{n})), hence the result follows from Theorem 5.7.1. ⊓⊔

Let us give an example of application of the above result. Let g : X → Λ

be a morphism in Defk, and consider a morphism f : X → hA1
k((t))

. For n ≥ 1,
we denote by Xn the definable subassignment of X defined by

Xn(K ) = {x ∈ X(K )|ord f(x) = n},

for K a field containing k. We denote by fn : Xn → hGm,k
the morphism

given by x �→ ac( f(x)). By taking the product of morphisms g and fn we
get a morphism Xn → Λ × hGm,k

. Here Gm,k is A1
k \ {0}, the affine line
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minus the origin. For ϕ in IC(X → Λ) we consider the generating series

P f,ϕ(T ) :=
∑

n>0

µΛ×hGm,k
(ϕ|Xn

)T n.

By Theorem 14.4.1, P f,ϕ(T ) belongs to C(Λ × hGm,k
)[[T ]]Γ, hence is a ra-

tional series in T . This example encompasses the motivic analogues of ra-
tionality results for p-adic Igusa and Serre series (cf. [11] and [12]) in [14]
and [15]. Motivic analogues of analytic p-adic Igusa and Serre series have
been studied by J. Sebag [31].

14.5. Application to ramification. In this section we shall apply the pre-
ceding results to the study of the behaviour of the motivic measure under
the ramification t �→ t1/e, when the coefficients in the value field sort are
restricted to k[t]. We use the observation that the purely ramified field exten-
sion of degree e of k((t)) is isomorphic to k((t)). We still assume the language
is LDP,P. If ϕ is a formula with coefficients in k[t] in the valued field sort
and coefficients in k in the residue field sort, with m free variables in the
valued field sort, n in the residue field sort and r in the value group sort
and e is an integer ≥ 1, we denote by ϕ(e) the formula obtained by replac-
ing t by te in every occurrence of t in ϕ. For instance, if ϕ is the formula
∃x ord(ty + t3 − x5) ≥ 2, ϕ(e) is the formula ∃x ord(te y + t3e − x5) ≥ 2. We
denote by Z(e) = Z(e)

ϕ the subassignment defined by ϕ(e) . Hence, to the single
formula ϕ we may associate the family (Z(e)

ϕ ), e ∈ N>0, of definable sub-
assignments of h[m, n, r]. We call such a family the (e)-family of definable
subassignments defined by ϕ. A family of morphisms f (e) : Z(e) → Y (e)

will be called a morphism between (e)-families Z(e) and Y (e) if the fam-
ily Graph f (e) is an (e)-family of definable subassignments. We denote by
π(e) : Z → Λ = h[0, n, r] the projection onto the last factors. We also
consider a morphism of (e)-families α(e) : Z(e) → h

(e)
Z = hZ defined by

some formula ψ.

14.5.1. Proposition. Use the above notation, in particular, Λ = h[0, n, r]
and assume that the coefficients of ϕ and ψ in the valued field sort all belong
to k[t]. Assume also that all morphisms α(e) take their values in N and that
for each λ in Λ the fibers (Z(e))λ are bounded as in Sect. 12.2. Then, for

every e, [1Z(e)L−α(e)

] belongs to IC+(Z(e) → Λ) and there is a function Φ in

C+(N>0 × Λ) such that Φ|{e}×Λ coincides with µΛ([1Z(e)L−α(e)

]) for every
e > 0. Here we view N>0 × Λ as a definable subassignment of hZ × Λ.

Proof. The fact that [1Z(e)L−α(e)

] belongs to IC+(Z(e) → Λ) for every e
follows from Proposition 12.2.2 and Proposition 14.2.1. We introduce an
additional variable ϑ in the valued field sort and replace every occurrence
of t in ϕ and ψ by ϑ, to get formulas ϕ̃ and ψ̃. The formula ϕ̃ defines
a definable subassignment Z̃ of h[m + 1, n, r]. We set Λ̃ := Λ[1, 0, 0]

and denote by π̃ the projection Z̃ → Λ̃. Similarly ψ̃ defines a morphism
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α̃ : Z̃ → hZ. It follows again from Proposition 12.2.2 and Proposition 14.2.1
that [1 Z̃L

−α̃] belongs to IC+( Z̃ → Λ̃). Hence, by Sect. 14.2, we may set
Θ := µΛ̃([1 Z̃L

−α̃]) in C(Λ̃). By construction, for every e, i∗ϑ=te(Θ) =

µΛ([1Z(e)L−α(e)

]), where i∗ϑ=te denotes the fiber morphism at te under the
projection Λ̃ → h[1, 0, 0], cf. the proof of Proposition 14.2.1. Hence, the
statement follows from Lemma 14.5.2, which is easily proved, using cell
decomposition. ⊓⊔

14.5.2. Lemma. Let Λ be h[0, n, r] and set Λ̃ := Λ[1, 0, 0]. Let Θ belong
to C+(Λ̃). Then there exists a unique function Φ in C+(N>0 × Λ) such that
Φ|{e}×Λ coincides with i∗ϑ=te(Θ) for every e > 0, where i∗ϑ=te denotes the

fiber morphism at te under the projection Λ̃ → h[1, 0, 0].

Proof. Apply cell decomposition to obtain cells adapted to Θ, say, with
cells having centers ci and base Ci . For every field K containing k, the sets
ci(Ci)(K ) are finite. By dimension theory, there exists a polynomial g in
k((t))[x1], independent of K and i, which vanishes at all points of ci(Ci)(K )
for all K and all i. Hence,

⋃
K{ord(ci(Ci)(K ))} is a finite set of integers.

The condition on n ≥ 0 and on λ in Λ that a value (λ, tn) lies in a given
cell is thus easily checked, by the nature of cell conditions, to be a definable
condition. ⊓⊔

14.5.3. Theorem. Assume the notation and assumptions of Propos-
ition 14.5.1. Then the series

∑

e>0

µΛ

(
ι
([

1Z(e) L
−α(e)]))

T e

belongs to C(Λ)[[T ]]Γ, where ι : C+(Λ) → C(Λ) is the natural map, and
where C(Λ)[[T ]]Γ is as in Sect. 5.7.

Proof. Follows directly from Proposition 14.5.1 and Theorem 14.4.1. ⊓⊔

14.5.4. Remark. The trick of adding a new variable to prove Theorem 14.5.3
(cf. the proof of Proposition 14.5.1) was indicated to us by Jan Denef.

III. Integration on varieties and comparison theorems

15. Integration on varieties and Fubini theorem

15.1. Integrable volume forms. Let S be a definable subassignment of
h[m, n, r] of K -dimension d. We shall consider the canonical volume form
|ω0|S in |Ω̃|+(S), which was introduced in Definition-Lemma 8.3.1. We shall
also consider the image of |ω0|S in |Ω̃|(S), which we shall also denote by
|ω0|S. Let α be in |Ω̃|+(S), resp. in |Ω̃|(S). There exists a unique Function ψα
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in Cd
+(S), resp. in Cd(S), such that α = ψα|ω0|S in |Ω̃|+(S), resp. in |Ω̃|(S).

We shall say α is integrable when ψα is integrable and then set
∫

S

α := µ(ψα)

in C+(hSpec(k)), resp. in C(hSpec(k)).
More generally, if f : S → S′ is a morphism in Defk such that S and S′

have respectively dimension s and s′, we say α in |Ω̃|+(S) is f -integrable
if ψα is f -integrable and then set

f
top
! (α) := { f!(ψα)}s′|ω0|S′,

where { f!(ψα)}s′ denotes the component of f!(ψα) in Cs′

+(S′) (the top di-
mensional component). Let us denote by I f |Ω̃|+(S) the set of f -integrable
positive volume forms. We have thus defined a canonical morphism

f
top
! : I f |Ω̃|+(S) −→ |Ω̃|+(S′).

When S′ = hSpec k, one recovers the above construction.
Let us consider from now on varieties X and X′ over k((t)), and varieties

X and X ′ over k. We want to extend the above construction to the global
setting where f : S → S′ is a morphism of definable subassignments with
S a definable subassignment of hW , W = X × X × Zr , and S′ a definable
subassignment of hW ′ , W ′ = X′ × X ′ × Zr′

. We still assume that S is of
K -dimension s and S′ if of K -dimension s′.

Let U be an affine open in W , that is, a subset of the form U×O×Zr with
U and O, respectively, affine open in X and X. There exists an isomorphism
of varieties ϕ : V → U with V affine open in Am

k((t)) ×A
n
k ×Zr inducing the

identity on the Zr-factor. Similarly, let U ′ be an affine open subset of W ′ and
assume that f(S∩hU) ⊂ S′ ∩hU ′ . We denote by fU : S∩hU → S′ ∩hU ′ the
morphism induced by f . Choose an isomorphism of varieties ϕ′ : V ′ → U ′

with V ′ affine open in Am′

k((t)) × An′

k × Zr′
, inducing the identity on the

Zr′
-factor. We denote by ϕ̃ and ϕ̃′ the restriction of ϕ and ϕ′ to ϕ−1(S ∩ hU )

and ϕ′−1(S′ ∩hU ′), respectively, and by f̃U : ϕ−1(S ∩hU) → ϕ′−1(S′ ∩hU ′)

the morphism such that fU ◦ ϕ̃ = ϕ̃′ ◦ f̃U . We shall say α in |Ω̃|+(S ∩ hU ) if
fU -integrable if ϕ̃∗(α) is f̃U -integrable, and we then define f

top
U ! (α) by the

formula

(ϕ̃′)∗
(

f
top
U ! (α)

)
= f̃

top
U ! (ϕ̃∗(α)),

which makes sense since the morphism (ϕ̃′)∗ yields an isomorphism be-
tween |Ω̃|+(S′ ∩ hU ′) and |Ω̃|+(ϕ′−1(S′ ∩ hU ′)). It follows directly from
Lemma 15.1.1 that this definition does not depend on the choice of ϕ and
ϕ′.
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15.1.1. Lemma. Let f : S → S′ be a morphism in Defk. Consider a com-
mutative diagram

S ��θ

��
f

T

��
f̃

S′ ��θ ′

T ′

in Defk, with θ and θ ′ isomorphisms. Take α in |Ω̃|+(T ). Then α is
f̃ -integrable if and only if θ∗(α) is f -integrable and then

f
top
! (θ∗(α)) = θ ′∗

(
f̃

top
! (α)

)
.

Proof. This follows directly from the fact that, on Functions, θ ′
! f! = f̃!θ! to-

gether with Theorem 12.1.1 or Proposition 12.1.2, and from the observation
that θ!θ

∗(α) = α and similarly for θ ′. ⊓⊔

Now we can handle the general case. We shall say a positive volume
form α in |Ω̃|+(S) is f -integrable if for every affine open subset U in W
and every affine open subset U ′ of W ′ such that f(S ∩ hU ) ⊂ S′ ∩ hU ′ , the
restriction α|U of α to |Ω̃|+(S ∩ hU ) is fU -integrable. If these conditions
hold, we consider a finite covering of W by affine open subsets Ui , i ∈ J ,
and a finite covering of W ′ by affine open subsets U ′

i , i ∈ J , such that
f(S ∩hUi

) ⊂ S′ ∩hU ′
i
, for every i (such coverings always exist). Let (Sℓ)ℓ∈L

be a finite partition of S into definable subassignments such that each Sℓ is
a definable subassignment of hUiℓ

for some iℓ. Set

αℓ := [1Sℓ
]α

in |Ω̃|+(S). Clearly

α =
∑

ℓ∈L

αℓ,(15.1.1)

and it follows from the hypotheses that the restriction αℓ|Uiℓ
of αℓ to

|Ω̃|+(S ∩ hUiℓ
) is fUiℓ

-integrable. Now we can set

f
top
! (α) :=

∑

ℓ∈L

j+
(

f
top
Uiℓ

!(αℓ|Uiℓ
)
)
,(15.1.2)

where j+ denotes the morphism |Ω̃|+(S′ ∩ hU ′
iℓ
) → |Ω̃|+(S′) which is the

zero morphism if S′∩hU ′
iℓ

is of K -dimension < s′, and is given by extension

by zero if S′ ∩ hU ′
iℓ

is of K -dimension s′. By additivity this definition is
independent of all choices we made.

Hence, if we denote by I f |Ω̃|+(S) the set of f -integrable positive volume
forms, we defined a morphism

f
top
! : I f |Ω̃|+(S) −→ |Ω̃|+(S′).
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When S′ = hSpec k, we shall say integrable for f -integrable and write
∫

S
α for

f
top
! (α). In particular

∫
S
α lies in C+(hSpec k) and its definition is compatible

with the beginning of this section.
All the above constructions carry over literally to |Ω̃| replacing every-

where C+ by C and |Ω̃|+ by |Ω̃|.

15.2. General Fubini theorem for fiber integrals. We can now state
a general form of Fubini theorem for motivic integration.

15.2.1. Theorem (Fubini theorem for fiber integrals). Let f : S → S′ be
a morphism of definable subassignments with S a definable subassignment
of hW , W = X × X × Zr and S′ a definable subassignment of hW ′ , W ′ =

X′ × X ′ × Zr′
. Assume S is of K-dimension s, S′ if of K-dimension s′ and

that the fibers Sy of f are of dimension d = s − s′ for all points y in S′.

(1) Let α be in |Ω̃|+(S). Then α is integrable if and only if α is f -integrable

and f
top
! (α) is integrable.

(2) Let α be in |Ω̃|(S). If α is integrable, then α is f -integrable and f
top
! (α)

is integrable.
(3) Let α be in |Ω̃|+(S) or in |Ω̃|(S), and assume that α is integrable. Then

∫

S

α =

∫

S′

f
top
! (α).

Proof. We may reduce to the case where X, X, X′, and X ′ are all affine
spaces. Let us consider the positive case. Note that if ϕ is a f -integrable
Function in Cs

+(S). It follows from the hypothesis made on the dimension
of the fibers of f , that f!(ϕ) lies in Cs′

+(S′). So the result follows from A0,
since p! = p′

! ◦ f!, where p and p′ denote respectively the projections of S
and S′ onto hSpec k. The general case follows directly from the positive case.

⊓⊔

15.3. A reformulation of the change of variable formula. Let f : S → S′

be a morphism in GDefk. Assume S and S′ are of K -dimension s.

15.3.1. Theorem. Let f : S → S′ be a morphism of definable subassign-
ments as above. Assume f is an isomorphism of definable subassignments.
A volume form α in |Ω̃(S′)|+ or in |Ω̃(S′)| is integrable if and only if f ∗(α)
is integrable. When this holds, then

∫

S

f ∗(α) =

∫

S′

α.

Proof. We reduce to the affine case where S and S′ are in Defk. By the very
definition of ordjac f we have

f ∗|ω0|S′ = L− ordjac f |ω0|S,
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and the result follows from the change of variable formula Theorems 12.1.1
and 13.2.2.

15.4. Leray residues. We start by recalling the standard Leray residues
of differential forms in the framework of K((t))-analytic manifolds with K
of characteristic zero, where the notion of K((t))-analytic manifolds is as
in Sect. 3.

Let us consider a morphism f : X → Y of K((t))-analytic manifolds.
Assume X is of dimension r, Y is of dimension s and that for every point
y in Y the fiber Xy of f at y is nonempty and contains a dense open which
is a submanifold of X of dimension d = r − s. Take a degree r differential
form ωX on X and a degree s differential form ωY on Y which is non
zero on a dense open subset. For y in a dense open subset of Y, we define
a degree d differential form (ωX

ωY
)y on a dense open subset of the fiber Xy.

By working on charts, we only have to treat the local case, namely, when
X is the affine manifold K((t))r with coordinates x1, . . ., xr , Y is K((t))s

with coordinates y1, . . ., ys, f is given by s analytic maps f1, . . ., fs, ωX =
gdx1∧. . .∧dxr , and ωY = hdy1∧. . .∧dys, with g, h analytic and h nonzero
on a dense open of Y. For I = {i1, . . ., id} ⊂ {1, . . .r}, i1 < . . . < id, we
denote by JacI the determinant of the matrix (

∂ fi

∂x j
)1≤i≤s, j∈{1,...,r}\I . For each

y in a dense open of Y, there exists I such that JacI is nonzero at a dense
open of the fiber Xy. If then moreover h(y) = 0, we define the differential
form (ωX

ωY
)y on a dense open of Xy to be the differential form

εg

h(y)JacI

dxi1 ∧ . . . ∧ dxid ,

where ε = ±1 is such that, on X,

dx j1 ∧ . . . ∧ dx js ∧ dxi1 ∧ . . . ∧ dxid = εdx1 ∧ . . . ∧ dxr ,

with { j1, . . ., js} = {1, . . ., r} \ I and j1 < . . . < js. It is independent of the
choice of I at a dense open of Xy.

Now we come to the definable setting. Let f : S → S′ be a morphism
of definable subassignments with S a definable subassignment of hW , W =

X × X ×Zr and S′ a definable subassignment of hW ′ , W ′ = X′ × X ′ ×Zr′
.

Assume that S is of K -dimension s, S′ if of K -dimension s′ and that the
fibers Sy of f are of dimension d = s−s′ for all y in S′. Take ωS in Ω̃

s(S) and
ω′

S a generator of the A(S′)/A<(S′)-module Ω̃
s′
(S′). Proceeding as before,

and using Theorem 3.2.1, one defines by the Leray residue construction
an element ( ωS

ωS′
)y in Ω̃

s−s′
(Sy), for every point y in S′ outside a definable

subassignment of K -dimension < s′. Consider now α in |Ω̃|+(S) and |ω|

a gauge form in |Ω̃|+(S′). If α is the class of (ω′, g) and |ω| is the class of
(ω, 1), we define ( α

|ω|
)y as the class of ((ω′

ω
)y, g) in |Ω̃|+(Sy), for every point

y in S′ outside a definable subassignment of K -dimension < s′. The same
construction may be similarly done for |Ω̃| instead of |Ω̃|+.
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The following proposition shows that considering f! is essentially the
same as taking fiber integrals of Leray residues of canonical volume forms.
More precisely:

15.4.1. Proposition. Let f : S → S′ be a morphism in Defk. Assume S
is of K-dimension s, S′ if of K-dimension s′ and f is equidimensional
of dimension d = s − s′. A Function ϕ in Cs

+(S) is f -integrable if and

only if ϕ|Sy
(

|ω0|S

|ω0|S′
)y is integrable for every point y in S′ outside a definable

subassignment of K-dimension < s′. Then, for every point y in S′ outside
a definable subassignment of K-dimension < s′, we have

i∗y( f!(ϕ)) =

∫

Sy

ϕ|Sy

(
|ω0|S

|ω0|S′

)

y

.

Proof. Let ϕ be in Cs
+(S). Assume f = g ◦ h, with g and h satisfying the

hypotheses of the proposition. Then, if the statement holds for g and h, it
also holds for f . Hence, using the embedding of S into the graph of f , it is
enough to prove the statement when f is an isomorphism or when f : S ⊂
S′[m, n, r] → S′ is induced by the projection. In the first case the statement
follows from Theorem 12.1.1. For the second case one reduces similarly to
proving the result when m = 0, which is clear by Proposition 5.8.1, and
when (m, n, r) = (1, 0, 0). In this last case, by using a cell decomposition
adapted to ϕ, one reduces to the case where S is a cell and ϕ = [1S]. One
also may assume S is equal to its presentation. When S is a 0-cell, the
result follows from the case when f is an isomorphism. When S is a 1-cell,
(

|ω0|S

|ω0|S′
)y is nothing else than the restriction of the canonical volume form on

h[0, 0, 1] and the result follows from A7. ⊓⊔

Proposition 15.4.1 should be compared with the following one, which
should give a clear explanation of the difference between f! and µS′ .

15.4.2. Proposition. Let f : S → S′ be a morphism in Defk. Assume S is
of K-dimension s, S′ if of K-dimension s′ and that the fibers Sy of f are

all of dimension d = s − s′. Let ϕ be a Function in IS′Cd
+(S → S′) or in

IS′Cd(S → S′). Then, for every point y in S′, we have

i∗y(µS′(ϕ)) =

∫

Sy

ϕ|Sy
|ω0|Sy

.

Proof. It is enough to consider the positive case, which follows directly
from Proposition 14.2.2. ⊓⊔

15.4.3. Remark. It is possible to generalize this Sect. 15 to a relative setting,
cf. Remark 8.5.1. We will not give more details here.
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16. Comparison with the previous constructions of motivic integration

16.1. Remarks about changing theories. Let T be a theory as in Sect. 2.7.
Let Z be a definable T -subassignment over k (meaning that one allows coef-
ficients from k in the residue field sort and from k((t)) in the valued field sort).
We may consider the subcategory RDefZ(LDP,P, T ) of GDefZ(LDP,P, T ),
whose objects are definable T -subassignments Y of Z × hAn

k
, for some n,

the morphism Y → Z being induced by projection on the Z factor. One de-
fines then similarly as in Sect. 5.1 the Grothendieck semiring and ring
SK0(RDefZ(LDP,P, T )) and K0(RDefZ(LDP,P, T )), which we shall from
now on write SK0(RDefZ) and K0(RDefZ) to make short. One also de-
fines the semiring P+(Z, (LDP,P, T )) and the ring P (Z, (LDP,P, T )) simi-
larly as in Sect. 4.6 and also C+(Z, (LDP,P, T )), C(Z, (LDP,P, T )),
C+(Z,(LDP,P,T )), C(Z,(LDP,P,T )), C+(Z → S,(LDP,P,T )) and C(Z → S,
(LDP,P, T )) as in Sects. 5.3 and 6. Here again, to make short we shall some-
times write P+(Z) for P+(Z, (LDP,P, T )), and so on. Everything we did in
Sects. 5 to 15 extends mutatis mutandis to this more general framework.

Furthermore, all these constructions are functorial with respect to the
theories in the following sense. Let i : T1 → T2 be an inclusion of theo-
ries and let Z be a definable T1-subassignment over k. Since Fieldk(T2) is
a subcategory of Fieldk(T1), by restriction from Fieldk(T1) to Fieldk(T2) we
get a definable T2-subassignment over k we shall denote by i∗(Z). In this
way we get natural functors i∗ : GDefk(LDP,P, T1) → GDefk(LDP,P, T2)
and i∗ : Defk(LDP,P, T1) → Defk(LDP,P, T2). Note also that i∗ induces
a functor i∗ : DefZ(LDP,P, T1) → Defi∗ Z(LDP,P, T2), hence a morphism
i∗ : SK0(RDefZ) → SK0(RDefi∗ Z). Also, by restriction from Z to i∗ Z,
one gets a morphism i∗ : P+(Z) → P+(i∗ Z) sending P 0

+(Z) to P 0
+(i∗ Z),

hence we have a natural morphism i∗ : C+(Z) → C+(i∗Z), and similarly
for C(Z), C+(Z), C(Z), C+(Z → S), C(Z → S), etc.

The following statement, which follows directly from our constructions,
is a typical example of what we mean by being functorial. Similar statements
hold in the relative and global settings.

16.1.1. Proposition. Let i : T1 → T2 be an inclusion of theories and let S
be in Defk(LDP,P, T1). Let f : X → Y be a morphism in Defk(LDP,P, T1).
The morphism i∗ : C(X) → C(i∗X) sends S-integrable Functions to i∗S-
integrable Functions and

i∗ ◦ f! = (i∗( f ))! ◦ i∗.

For S a subring of k((t)), if one restricts the coefficients in the valued
field sort to S and in the residue field sort to k, one can use the cate-
gories Defk(LDP,P(S), T ) and GDefk(LDP,P(S), T ) as defined in Sect. 2.7.
For Z in Defk(LDP,P(S), T ), one can then define correspondingly
RDefZ(LDP,P(S), T ), SK0(RDefZ(LDP,P(S), T )), P+(Z, (LDP,P(S), T )),
C+(Z, (LDP,P(S), T )), C+(Z, (LDP,P(S), T )), and so on. In Sects. 16.3
and 16.4, we will take S = k as coefficients in the valued field sort, in
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order to be able to compare with the previous constructions of motivic
integration.

16.2. Restriction to Tacl: the geometric case. Let us spell out the case
when T1 = T∅ is the empty theory and T2 is the theory Tacl of algebraically
closed fields containing k.

Of course, Defk(LDP,P, T∅) = Defk, so let us describe Defk(LDP,P, Tacl).
By abuse of notation we shall still write h[m, n, r] for i∗h[m, n, r].

By Denef–Pas quantifier elimination Theorem 2.1.1, Presburger quanti-
fier quantifier elimination, and quantifier elimination for Tacl (= Chevalley
constructibility), every object of Defk(LDP,P, Tacl) is defined by a LDP,P-
formula without quantifiers. In particular, for Z in Defk(LDP,P, Tacl), ob-
jects of RDefZ can be seen as constructible sets (in the sense of algebraic
geometry) parameterized by Z. For example, if Z is a subassignment of
h[0, n, 0] defined by the vanishing of a familly of polynomials fi , then
K0(RDefZ ) = K0(VarZ ), where we still write Z for the affine algebraic
variety defined by the vanishing of the polynomials fi , and VarZ denotes
the category of algebraic varieties with a morphism to Z.

To have a neat description of the semiring C+(Z, (LDP,P, Tacl)), for Z in
Defk(LDP,P, Tacl), it is enough to describe morphisms Z → h[0, 0, r] and
in fact to describe morphisms h[m, n, r] → h[0, 0, 1] in Defk(LDP,P, Tacl).

16.2.1. Proposition. Let f : h[m, n, r] → h[0, 0, 1] be a morphism in
Defk(LDP,P, Tacl). There exist polynomials f1, . . ., fs in k((t))[x1, . . ., xm],
polynomials g1, . . ., gs′ , h1, . . ., hs′′ in k[t1, . . ., tn+s], and a Presburger func-
tion F : ZN → Z, with N = r + s + s′ + s′′, such that

f(x, ξ, α) = F
(
ord0 fi(x), 1g j=0(ξ, ac fi(x)), 1hℓ =0(ξ, ac fi(x)), α

)
,

where ord0 is the map ord expanded by ord0(0) = 0, and where 1g j=0,
resp. 1hℓ =0, is the characteristic function of g j = 0, resp. of hℓ = 0, on
h[0, n + s, 0] for each j and ℓ.

Proof. Since, for fi polynomials in k((t))[x1, . . ., xm], conditions of the
form fi = 0 or of the form fi = 0 are equivalent to ac fi = 0 or ac fi = 0,
one may assume that the graph of f is given by a formula where the Val-
variables only occur in the forms ac fi and ord fi with fi polynomials in
k((t))[x1, . . ., xm]. Now the result follows from quantifier elimination. ⊓⊔

16.3. Comparison with the original construction of motivic integration.
We restrict from now on the coefficients in the valued field sort to take
values in k. If one considers the theory Tacl of algebraically closed fields
containing k, then K0(RDefk(LDP,P(k), Tacl)) is nothing else but the ring
K0(Vark) of [14], so we get a canonical morphism

γ : SK0(RDefk) ⊗N[L−1] A+ −→ K0(Vark) ⊗Z[L] A.
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Here, A and A+ are as defined as in Sect. 4.2. Also, if we denote by M̂
the completion of K0(Vark)[L

−1] considered in [14], expanding the series
1 − L−i yields a canonical morphism δ : K0(Vark) ⊗Z[L] A→ M̂.

Let X be an algebraic variety of dimension d over k. Set X0 :=
X ⊗Spec k Spec k[[t]] and X := X0 ⊗Spec k[[t]] Spec k((t)). Consider a definable
subassignment W of hX in the language LDP,P(k). If X is affine and em-
bedded as a closed subscheme in An

k((t)), such that the embedding is defined
over k[[t]], we call W small if W ⊂ Y with Y the subassignment of h[n, 0, 0]
given by ord xi ≥ 0 where xi are coordinates on h[n, 0, 0]. In general we call
W small if there is an open affine cover Ui of X, defined over k[[t]], such that
the intersections W ∩hUi

are small. Assume that W is small. Then, formulas
defining W (in affine open charts defined over k) define a semi-algebraic
subset of the arc space L(X) (in the corresponding chart, with the notations
of [14]), by quantifier elimination for algebraically closed fields and for Z
in the Presburger language. In this way one may assign canonically to every
small W a semi-algebraic subset W̃ of L(X). Similarly, every Z-valued
function α on W which is definable in the language LDP,P(k) gives rise to
a semi-algebraic function α̃ on W̃ .

16.3.1. Theorem. Under the previous assumptions, if |ω0| denotes the
canonical volume form on hX defined in Sect. 8.6, for any bounded be-
low Z-valued definable function α on W, 1WL

−α|ω0| is integrable on hX

and we have

(δ ◦ γ)
( ∫

hX

1WL
−α|ω0|

)
=

∫

W̃

L−α̃dµ′,

with µ′ denoting the motivic measure defined in [14].

16.3.2. Remark. The above result shows that for semi-algebraic sets
and functions the motivic volume of [14] already exists at the level of
K0(Vark) ⊗Z[L] A, and even at the level of SK0(RDefk) ⊗N[L−1] A+, that is,
before any completion process.

Proof. The statement concerning integrability follows directly from Prop-
osition 12.2.2. Similarly as what is performed in the proof of Theorem 5.1′

in [14], we may reduce to the case where X is affine and, using resolution
of singularities and the change of variable formula Theorem 15.3.1, we
may assume that all the functions fi and h occurring in the semi-algebraic
description [14, (2.1) (i)–(iii)] of W̃ and α̃ are monomials. The integrals we
have to compare are then products of similar integrals in one variable which
are equal by direct computation. ⊓⊔

16.4. Comparison with arithmetic integration. Recall that we restrict
the coefficients in the valued field sort to k. Now consider the theory PFF of
pseudo-finite fields containing k. Then K0(RDefk(LDP,P(k), PFF)) is noth-
ing else but the ring denoted by K0 (PFFk) in [16] and [17]. In [15], arithmetic
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integration was defined as taking values in the completion K̂v
0(Motk,Q̄)Q of

a ring Kv
0(Motk,Q̄)Q. It was somewhat later remarked in [16] and [17] that

one can consider a smaller ring denoted by Kmot
0 (Vark)⊗Q, whose definition

we shall now recall. For k a field of characteristic zero, there exists by Gillet
and Soulé [18], Guillen and Navarro–Aznar [19], a unique ring morphism
K0(Vark) → K0(CHMotk), which assigns to the class of a smooth pro-
jective variety X over k the class of its Chow motive, where K0(CHMotk)
denotes the Grothendieck ring of the category of Chow motives over k (with
rational coefficients). By definition Kmot

0 (Vark) is the image of K0(Vark) in
K0(CHMotk) under this morphism. [Note that the definition of Kmot

0 (Vark)
given in [16] is not clearly equivalent and should be replaced by the one
given above.] In [16] and [17], building on the work in [15], a canonical
morphism

χc : K0(PFFk) −→ Kmot
0 (Vark) ⊗Q

was constructed. Recently, J. Nicaise has extended that construction to the
relative setting [26].

The arithmetic motivic measure takes values in a certain completion
K̂mot

0 (Vark) ⊗ Q of the localization of Kmot
0 (Vark) ⊗ Q with respect to

the class of (the image of) the affine line. We have natural morphisms
γ̃ : SK0(RDefk) ⊗ N[L− 1]A+ → K0(PFFk) ⊗Z[L] A. The morphism χc

induces, after taking series expansions of (1−L−i)−1, a canonical morphism
δ̃ : K0(PFFk) ⊗Z[L] A→ K̂mot

0 (Vark) ⊗Q.
Let X be an algebraic variety of dimension d over k. Set X0 :=

X ⊗Spec k Spec k[[t]] and X := X0 ⊗Spec k[[t]] Spec k((t)). Consider a definable
subassignment W of hX in the language LDP,P(k) which is small in the sense
of Sect. 16.3. Clearly the formulas defining W (in affine open charts defined
over k) define a definable subassignment W̃ of hL(X ), with the notations
of [15], by quantifier elimination for Z in the Presburger language.

16.4.1. Theorem. Under the previous assumptions, if |ω0| denotes the
canonical volume form on hX defined in Sect. 8.6, 1W |ω0| is integrable
on hX and we have

(δ̃ ◦ γ̃ )
( ∫

hX

1W |ω0|
)

= ν(W̃ )

with ν denoting the arithmetic motivic measure defined in [15].

Proof. Similar to the proof of Theorem 16.3.1. ⊓⊔

16.4.2. Remark. By Theorem 16.4.1 and by specialization properties of
arithmetic motivic integrals to p-adic integrals for p big enough [17], one
sees that the present formalism of motivic integration is suited to interpolate
p-adic integrals for p big enough. For more detailed results than what
follows from Theorem 16.4.1 and [17] and for a link with Fq((t))-integrals,
we refer to [8].
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16.4.3. Remark. A (partial) comparison with the construction of motivic
integration for formal schemes, as developed by J. Sebag [30], can also be
made.
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