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1. Introduction

In this paper, we study the relationship between two natural invariants of a real
analytic manifold X. The first is the Fukaya category of Lagrangian submanifolds
of the cotangent bundle T ∗X. The second is the derived category of constructible
sheaves on X itself. The two are naively related by the theory of linear differential
equations – that is, the study of modules over the ring DX of differential operators
on X. On the one hand, Lagrangian cycles in T ∗X play a prominent role in the
microlocal theory of DX -modules. On the other hand, in the complex setting, the
Riemann-Hilbert correspondence identifies regular, holonomic DX -modules with
constructible sheaves. In what follows, we give a very brief account of what we
mean by the Fukaya category of T ∗X and the constructible derived category of X,
and then state our main result.

Roughly speaking, the Fukaya category of a symplectic manifold is a category
whose objects are Lagrangian submanifolds and whose morphisms and compositions
are built out of the quantum intersection theory of Lagrangians. This is encoded
by the moduli space of pseudoholomorphic maps from polygons with prescribed
Lagrangian boundary conditions. Since T ∗X is noncompact, there are many choices
to be made as to which Lagrangians to allow and how to obtain well-behaved
moduli spaces of pseudoholomorphic maps. One approach is to insist that the
Lagrangians are compact. With this assumption, the theory is no more difficult
than that of a compact symplectic manifold. One perturbs the Lagrangians so that
their intersections are transverse, and then convexity arguments guarantee compact
moduli spaces.

Our version of the Fukaya category Fuk(T ∗X) includes both compact and non-
compact exact Lagrangians. We work with exact Lagrangians that have well-defined
limits at infinity. To make this precise, we consider a compactification of T ∗X and
assume that the closures of our Lagrangians are subanalytic subsets of the com-
pactification. Two crucial geometric statements follow from this assumption. First,
the boundaries of our Lagrangians are Legendrian subvarieties of the divisor at in-
finity. Second, for any metric on the fibers of T ∗X, its restriction to one of our
Lagrangians has no critical points near infinity. These facts allow us to make sense
of “intersections at infinity” by restricting our perturbations to those which are
normalized geodesic flow near infinity for carefully prescribed times. Given suit-
able further perturbations (which are available in intended applications), we then
obtain compact moduli spaces of pseudoholomorphic maps. The resulting Fukaya
category Fuk(T ∗X) has many of the usual properties that one expects from both
a topological and categorical perspective.

The second invariant of the real analytic manifold X which we consider is the
derived category Dc(X) of constructible sheaves on X itself. This is a triangulated
category which encodes the topology of subanalytic subsets of X. To give a sense of
the size of Dc(X), its Grothendieck group is the group of constructible functions on
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X – that is, functions which are constant along some subanalytic stratification, for
example a triangulation. Examples of objects of Dc(X) include closed submanifolds
equipped with flat vector bundles. More generally, we have the so-called standard
and costandard objects associated to a locally closed submanifold Y ⊂ X equipped
with a flat vector bundle E . Informally, one may think of the standard object as
the complex of singular cochains on Y with values in E , and the costandard as the
complex of relative singular cochains on (Y, ∂Y ) with values in E . A key observation
is that morphisms between these objects are naturally the singular cohomology of
certain subsets of X with values in flat vector bundles.

One formulation of our main result is the following. As we outline below, it may
be viewed as a categorification of the characteristic cycle construction.

Theorem 1.0.1. Let X be a real analytic manifold. Then there is a canonical
embedding of derived categories

Dc(X) ↪→ DFuk(T ∗X).

The result reflects an underlying quasi-embedding of dg and A∞-categories. Fur-
ther arguments show that this is in fact a quasi-equivalence [28].

The remainder of the Introduction is divided into several parts. In the section
immediately following, we discuss motivations for our main result from the long-
developing theory of microlocal geometry. In the section after that, we explain the
general outline of the proof of our main result. Finally, we speculate on possible
applications in the context of mirror symmetry.

1.1. Microlocal geometry. The main result of this paper has a natural place
in the context of microlocal geometry. Broadly speaking, sheaf theory on a real
analytic manifold X may be thought of as a tool to understand local analytic
and topological phenomena and how they assemble into global phenomena. Many
aspects of the theory are best understood from a microlocal perspective, or in
other words as local phenomona on the cotangent bundle T ∗X. Here we collect
a short account of some results from this subject that naturally point toward our
main result. What we present is not intended to be an exhaustive overview of the
subject. For that we refer the reader to the book of Kashiwara-Schapira [20]. It
contains many original results, presents a detailed development of the subject, and
includes historical notes and a comprehensive bibliography.

Our main result may be viewed as a categorification of the characteristic cy-
cle construction for real constructible sheaves introduced by Kashiwara [17]. (For
foundational material on microlocal constructions such as the singular support, see
Kashiwara-Schapira [19].) Given a constructible complex of sheaves F on X, its
characteristic cycle CC(F) is a conical Lagrangian cycle in T ∗X (with values in
the pullback of the orientation sheaf of X) which encodes the singularities of the
original complex. The multiplicity of CC(F) at a given covector is the Euler char-
acteristic of the local Morse groups of the complex with respect to the covector. If
a covector is not in the support of CC(F), it means that there is no obstruction
to propagating local sections of F in the direction of the covector. So for example,
the characteristic cycle of a flat vector bundle on X is the zero section in T ∗X with
multiplicity the dimension of the vector bundle. More generally, the characteristic
cycle of a flat vector bundle on a closed submanifold is the conormal bundle to the
submanifold with multiplicity the dimension of the vector bundle.
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As mentioned earlier, the Grothendieck group of the constructible derived cate-
gory Dc(X) is the space of constructible functions on X. The characteristic cycle
construction descends to an isomorphism from constructible functions to the group
of conical Lagrangian cycles in T ∗X. From this vantage point, there are many
results that might lead one to our main result. First, there is the index formula
of Dubson [6] and Kashiwara [17]. This states that given a constructible complex
of sheaves F , its Euler characteristic χ(X,F) is equal to the intersection of La-
grangian cycles CC(F) · [df ] where df is the graph of a sufficiently generic function
f : X → R. More generally, given two constructible complexes of sheaves F1,F2,
a formula of MacPherson (see the introduction of [11], the lecture notes [13], and
a Floer-theoretic interpretation [21, 22]) expresses the Euler characteristic of their
tensor product in terms of the intersection of their characteristic cycles:

χ(X,F1

L
⊗ F2) = CC(F1) · CC(F2).

The most direct influence on our main result is the work of Ginsburg [11] (in
the complex affine case) and Schmid-Vilonen [32] (in general) on the functoriality
of the characteristic cycle construction. Thanks to their work, one knows how
to calculate the characteristic cycle CC(Ri∗F) of the direct image under an open
embedding i : U ↪→ X. (The functoriality of the characteristic cycle under the other
standard operations is explained by Kashiwara-Schapira [20].) In the subanalytic
context, given an open subset i : U ↪→ X, one can always choose a defining function
m : X → R≥0 for the boundary ∂U ⊂ X. By definition, m is a nonnegative function
whose zero set is precisely ∂U ⊂ X. With such a function in hand, the formula for
open embeddings is the limit of Lagrangian cycles

CC(Ri∗F) = lim
ε→0+

(CC(F) + εΓd log m),

where Γd log m ⊂ T ∗U is the graph of the differential and the sum is set-theoretic.
The proof of our main result may be interpreted as a categorification of this formula.
We explain this in the next section.

1.2. Summary. To relate the constructible derived category Dc(X) to the Fukaya
category Fuk(T ∗X), we proceed in several steps, some topological and some cate-
gorical.

It is well-known that the usual notions of category theory are too restrictive a
context for dealing with the geometry of moduli spaces of pseudoholomorphic maps.
To be precise, Fuk(T ∗X) is not a usual category but rather an A∞-category. Re-
lations among compositions of morphisms are determined by the bubbling of pseu-
doholomorphic disks, and this is not associative but only homotopy associative.
The A∞-category formalism is a means to organize these homotopies (and the ho-
motopies between the homotopies, and so on). In particular, morphisms in an
A∞-category are represented by chain complexes to provide some homotopic flexi-
bility. When this is the only added wrinkle, so that compositions of such morphisms
are in fact associative, one arrives at the special case of a differential graded (dg)
category. To an A∞-category one can assign an ordinary (graded) category by
taking the cohomology of its morphism complexes. This allows for the perspective
that these notions only differ from that of an ordinary category by providing more
homotopic flexibility. (We collect some of the basic notions of A∞-categories in
Section 2 below.)
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The derived category Dc(X) is the cohomology category of a dg category Sh(X)
whose objects are constructible complexes of sheaves. The morphisms in Sh(X)
are defined by starting with the naive definition of morphisms of complexes, and
then passing to the dg quotient category where quasi-isomorphisms are invertible.
Our first step in reaching Fuk(T ∗X) is to observe that Sh(X) is generated by its
full subcategory consisting of standard objects associated to open submanifolds.
In the subanalytic context, given an open subset U ⊂ X, one can always choose
a defining function m : X → R≥0 for the complement X \ U . By definition, m
is a nonnegative function whose zero set is precisely X \ U . To keep track of the
choice of such a function, we define a dg category Open(X) as follows. Its objects
are pairs (U, m), where U ⊂ X is open and m is as described. Its morphisms are
given by complexes of relative de Rham forms and are naturally quasi-isomorphic
with those for the corresponding standard objects of Sh(X). In the language of dg
categories, one can say that Sh(X) is a triangulated envelope of Open(X) and that
Dc(X) is the derived category of both Sh(X) and Open(X).

The aim of our remaining constructions is to embed the A∞-category Open(X)
into the Fukaya A∞-category Fuk(T ∗X). It is simple to say where this A∞-functor
takes objects of Open(X). To explain this, we introduce some notation in a slightly
more general context. Given a submanifold Y ⊂ X and a defining function m :
X → R≥0 for the boundary ∂Y ⊂ X, set f : X \ ∂Y → R to be the logarithm
f = log m, and define the standard Lagrangian LY,f ⊂ T ∗X|Y ⊂ T ∗X to be the
fiberwise sum

LY,f = T ∗
Y X + Γdf |Y ,

where Γdf ⊂ T ∗X|X\∂Y denotes the graph of df and the sum is taken fiberwise
in T ∗X|Y . By construction, LY,f depends only on the restriction of m to Y. In
particular, for an open subset U ⊂ X, we could also take m to be a defining
function for the complement X \ U . In this case, the definition simplifies so that
LU,f is just the graph Γdf over U .

Now given an object (U, m) of Open(X), where U ⊂ X is open and m : X → R≥0

is a defining function for X \U , we send it to the standard Lagrangian LU,f ⊂ T ∗X,
where f : U → R is given by f = log m. If U is not all of X, this is a closed but
noncompact Lagrangian submanifold of T ∗X. To properly obtain an object of
Fuk(T ∗X), we must endow LU,f with a brane structure. This consists of a grading
(or lifting of its squared phase) and relative pin structure. We check that standard
Lagrangians carry canonical brane structures with respect to canonical background
classes. We make LU,f an object of Fuk(T ∗X) by equipping it with its canonical
brane structure.

What is not immediately clear is what our A∞-functor should do with mor-
phisms. To answer this, we first identify Open(X) with an A∞-category Mor(X)
built out of the Morse theory of open subsets of X equipped with defining functions
for their complements. The construction of Mor(X) is a generalization of Fukaya’s
Morse A∞-category of a manifold. As with Open(X), the objects of Mor(X) are
pairs (U, m), where U ⊂ X is open and m : X → R≥0 is a defining function for
X \ U . As usual, it is convenient to set f = log m as a function on U . For a finite
collection of objects (Ui, mi) of Mor(X) indexed by i ∈ Z/(d+1)Z, the morphisms
and composition maps among the objects encode the moduli spaces of maps from
trivalent trees into X that take edges to gradient lines of the functions fj − fi with
respect to some Riemannian metric on X. For example, the morphism complexes
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are generated by the critical points of Morse functions on certain open subsets, and
the differentials are given by counting isolated gradient lines.

There are several delicate aspects to working out the details of this picture. As
usual with such a construction, we must be sure that the functions fi and the
Riemannian metric are sufficiently generic to ensure we have well-behaved mod-
uli spaces. But in our situation, we must also be sure that the gradient vector
fields of the differences fi+1 − fi are not wild at the boundaries of their domains
Ui∩Ui+1. To accomplish this, we employ techniques of stratification theory to move
the boundaries and functions into a sufficiently transverse arrangement. Then there
will be an open, convex space of Riemannian metrics such that the resulting mod-
uli spaces are well-behaved. The upshot is that we obtain an A∞-structure on
Mor(X) whose composition maps count so-called gradient trees for Morse func-
tions on certain open subsets of X. Furthermore, an application of arguments of
Kontsevich-Soibelman [25] from homological perturbation theory provides a quasi-
equivalence

Open(X) � Mor(X).

Finally, we embed the Morse A∞-category Mor(X) into the Fukaya A∞-category
Fuk(T ∗X) as follows. Let (Ui, mi) be a collection of objects of Mor(X) indexed
by i ∈ Z/(d+1)Z, and let LUi,fi

be the corresponding collection of standard branes
of Fuk(T ∗X), where as usual fi = log mi. After carefully perturbing the objects,
we check that the moduli spaces of gradient trees for the former collection may
be identified with the moduli spaces of pseudoholomorphic polygons for the latter.
When all of the open sets Ui are the entire manifold X, this is a theorem of Fukaya-
Oh [9]. These authors have identified the Morse A∞-category of the manifold X
and the Fukaya A∞-category of graphs in T ∗X. To generalize this to arbitrary
open sets, we employ the following strategy. First, using area bounds, we check
that all pseudoholomophic maps with boundary on our standard branes in fact have
boundary in a prescribed region. Next, we dilate our standard branes so that the
theorem of Fukaya-Oh identifies the relevant moduli subspaces. Finally, we check
that the homogeneity of the area bounds guarantees that no critical event occurs
during the dilation. Thus we obtain an A∞-embedding

Mor(X) ↪→ Fuk(T ∗X).

Putting together the above functors gives a quasi-embedding of the A∞-category
Sh(X) of constructible complexes of sheaves on X into the A∞-category of twisted
complexes TwFuk(T ∗X) in the Fukaya category of T ∗X. Taking the underlying
cohomology categories gives an embedding of the corresponding derived categories.

For future applications, it is useful to know where the embedding takes other
objects and morphisms. In particular, we would like to know not only where it takes
standard sheaves on open submanifolds, but also standard sheaves on arbitrary
submanifolds. One approach to this problem is to express standard sheaves on
arbitrary submanifolds in terms of standard sheaves on open submanifolds, and then
to check what the relevant distinguished triangles of constructible sheaves look like
under the embedding. This requires identifying certain cones in the Fukaya category
with symplectic surgeries. Rather than taking this route, we will instead show in the
final section that we may explicitly extend the domain of the embedding to include
standard sheaves on arbitrary submanifolds and morphisms between them. This
has the added value that given constructible sheaves on a stratification, it obviates
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the need to further refine the stratification in order to construct the embedding:
one may use the standard sheaves themselves as a generating set.

Consider the standard sheaf Ri∗LY associated to a local system LY on an ar-
bitrary submanifold i : Y ↪→ X. Suppose that we are given a defining function
m : X → R≥0 for the boundary ∂Y ⊂ X. Recall that we define the standard
Lagrangian LY,m ⊂ T ∗X to be the fiberwise sum

LY,f = T ∗
Y X + Γdf ,

where T ∗XY ⊂ T ∗X is the conormal bundle to Y and Γdf ⊂ T ∗X is the graph
of the differential of f = log m. We write LY,f,LY

for the corresponding standard
object of Fuk(T ∗X) given by LY,f equipped with its canonical brane structure and
the pullback of the flat vector bundle LY ⊗ orX ⊗ or−1

Y , where orX , orY denote the
orientation bundles of X, Y , respectively. The main consequence of the final section
is the following.

Theorem 1.2.1. Under the embedding Dc(X) ↪→ DFuk(T ∗X), the image of the
standard sheaf Ri∗LY is canonically isomorphic to the standard brane LY,f,LY

.

1.3. Mirror symmetry. The connection of this current work to mirror symmetry
is somewhat speculative, though several appearances of constructible sheaves in the
context of mirror symmetry deserve mention.

First, the announced results of Bondal and Bondal-Ruan [4] relate the derived
categories of coherent sheaves on toric Fano varieties with the Fukaya-Seidel cat-
egory on the Landau-Ginzburg side. Their method is to establish equivalences of
both with the derived category of constructible sheaves on a torus with respect to
a specific (non-Whitney) stratification determined by the superpotential. One can
view the result of Bondal-Ruan from the perspective developed in this paper by
identifying (C∗)n with T ∗((S1)n).

Second, Kapustin-Witten [16] place the geometric Langlands program in the con-
text of topological quantum field theory. In particular, they relate the harmonic
analysis of the geometric Langlands program to mirror symmetry by equating Hecke
operators on D-modules with ’t Hooft operators acting on branes. In this setting,
one may interpret the results of this paper as lending some mathematical evidence to
this physical perspective. For example, according to Kapustin-Witten [16], given a
generic eigen-brane for the ’t Hooft operators, there is a corresponding regular, holo-
nomic Hecke eigen-D-module. One might hope to provide an explicit construction
of the eigen-D-module by first identifying the eigen-brane as the microlocalization of
some constructible sheaf, and then applying the Riemann-Hilbert correspondence.

Third, braid group actions have been an active area of interest, especially in
the context of branes in the cotangent bundle of flag varieties B. In the case of
coherent sheaves, braid group actions on Db

coh(T ∗B) have been studied by many
authors (see for example Seidel-Thomas [34]). One may use the results of this paper
to construct the corresponding actions in the symplectic context. Namely, under
the embedding of this paper, the kernels giving the usual braid group action on
the constructible derived category Dc(B) (see for example Rouquier [31]) induce a
corresponding action on DFuk(T ∗B).

Fourth, the work of Kontsevich-Soibelman [26] and Gross-Siebert [14] paints the
large complex structure limit of a Calabi-Yau n-fold as a collapse into a real n-fold
with integral affine structure and a Monge-Ampère metric. The complex n-fold is
recovered from the limit manifold as a quotient of the tangent (or cotangent) bundle
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by the lattice of integer tangent vectors. It is intriguing to imagine a quotient
construction creating a torus fibration from the cotangent bundle.

Finally, it would be interesting to understand whether our result is the local pic-
ture of a relationship that holds more generally for compact symplectic manifolds.
One may consider modules over the deformation quantization as a global ana-
logue of constructible sheaves. (See for example Kontsevich [24], Kashiwara [18],
or Polesello-Schapira [30].) Clear comparisons can then be made between such
modules and the Fukaya category. There is great interest in understanding more
precisely how to interpolate between the local nature of the modules and the global
nature of the Fukaya category.

2. A∞-categories

Here we collect standard material concerning A∞-categories, dg categories, and
triangulated categories. Our reference is Chapter 1 of Seidel’s book [33].

2.1. Preliminaries. Our aim here is not to recall complete definitions, but only
to establish notation.

Let A be a (not necessarily unital) A∞-category with a set of objects ObA, a
Z-graded vector space of morphisms homA(X0, X1), and composition maps

µd
A : homA(X0, X1) ⊗ · · · ⊗ homA(Xd−1, Xd) → homA(X0, Xd)[2 − d] for d ≥ 1.

A dg category is an A∞-category A whose higher composition maps µd
A for d ≥ 3

are equal to zero.
Let H(A) denote the Z-graded cohomological category of A with a set of objects

ObH(A) = ObA and a Z-graded vector space of morphisms

homH(A)(X0, X1) = H(homA(X0, X1), µ1
A).

Let H0(A) denote the ungraded cohomological category with a set of objects
ObH0(A) = ObA and a vector space of morphisms

homH0(A)(X0, X1) = H0(homA(X0, X1), µ1
A).

An A∞-category is said to be cohomologically unital or c-unital if H(A) is unital.
Let F : A → B be an A∞-functor between A∞-categories with map on objects

F : ObA → ObB, and morphism maps

Fd : homA(X0, X1)⊗· · ·⊗homA(Xd−1, Xd) → homB(FX0,FXd)[1−d], for d ≥ 1.

An A∞-functor is said to be c-unital if H(F) is unital.
Throughout what follows, we assume that all A∞-categories are c-unital, and all

A∞-functors are c-unital. We say that an A∞-functor F is a quasi-equivalence if
the induced functor H(F) is an equivalence. We say that F is a quasi-embedding
if H(F) is full and faithful.

2.2. A∞-modules. Let Ch denote the dg category of chain complexes, considered
as an A∞-category.

Given an A∞-category A, an A∞-module over A is an A∞-functor Aopp → Ch.
Let mod(A) denote the A∞-category of A∞-modules over A.

The functor category mod(A) inherits much of the structure of the target cat-
egory Ch. For example, mod(A) is a dg category, and its cohomological category
H0(mod(A)) is a triangulated category. In particular, we have the obvious shift
functor S on modules and the cohomological notion of exact triangle of modules.
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Note that the shift functor may be recovered by taking the cone of the zero mor-
phism to the trivial module, or to the cone of the identity morphism of any module.

For any object Y ∈ ObA, we have the A∞-module Y(X) = homA(X, Y ) with
µd
Y = µd

A. This provides an A∞-Yoneda embedding J : A → mod(A) which
is cohomologically full and faithful. Since the ambient category mod(A) is a dg
category, the image J (A) of the Yoneda embedding is as well. Thus each A∞-
category A is canonically quasi-equivalent to a dg category J (A).

2.3. Triangulated A∞-categories. Given an A∞-category A, an exact triangle
in H(A) is defined to be any diagram in H(A) which becomes isomorphic to an
exact triangle of H(mod(A)) under the Yoneda embedding. A shift SX of an object
X is any object which becomes isomorphic to the shift in H(mod(A)) under the
Yoneda embedding.

A nonempty A∞-category A is said to be triangulated if the following hold:
(1) Every morphism in H0(A) can be completed to an exact triangle in H(A).

In particular, every object X has a shift SX.
(2) For each object X, there is an object X̃ such that SX̃ � X in H0(A).

If A is a triangulated A∞-category, then H0(A) is a triangulated category in the
usual sense. Furthermore, if F : A → B is an A∞-functor between triangulated
A∞-categories, then H0(F) is an exact functor.

Let A be a full A∞-subcategory of a triangulated A∞-category B. The triangu-
lated A∞-subcategory of B generated by A is the smallest full subcategory A that
contains A, is closed under cohomological isomorphism, and is itself triangulated.

A triangulated envelope of a nonempty A∞-category A is a pair (A,F) consisting
of a triangulated A∞-category A and a cohomologically full and faithful functor
F : A → A such that the objects in the image of F generate A. The triangulated
category H0(A) is independent of the choice of envelope up to exact equivalence.
It is sometimes called the derived category of A and is denoted by D(A), but we
will sometimes reserve this to mean a localized version of H0(A). Thus when we
use the term derived category and the notation D(A), we will be explicit about
what is intended.

2.4. Twisted complexes. There are two standard constructions of a triangulated
envelope: (i) the full subcategory of mod(A) generated by the image of the Yoneda
embedding, and (ii) the A∞-category of twisted complexes TwA.

In this paper, we adopt the approach of twisted complexes. The explicit con-
struction of TwA will play no role, only the following formal properties.

First, TwA is a triangulated A∞-category. There is a canonical A∞-functor
ι : A → TwA such that ι is injective on objects, on morphisms we have

homA(X0, X1) = homTwA(ιX0, ιX1),

and the composition maps µd
A and µd

TwA coincide for objects of A and their images
under ι. In short, we may identify A with its image under ι.

We also have the following:
(1) If A is c-unital, then TwA and ι are as well.
(2) TwA is generated by A.

Furthermore, any A∞-functor F : A → B extends to an A∞-functor TwF :
TwA → TwB satisfying the following:

(1) If F is c-unital, then TwF is as well.
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(2) If F is cohomologically full and faithful, then TwF is as well.
(3) If F is a quasi-equivalence, then TwF is as well.

2.5. Homological perturbation theory. Here we recall the general picture of
homological perturbation theory as summarized by Seidel [33].

Let B be an A∞-category. Suppose that for each pair of objects (X0, X1), we
have a chain complex (homA(X0, X1), µ1

A), chain maps

F1 : homA(X0, X1) → homB(X0, X1), G1 : homB(X0, X1) → homA(X0, X1)

of degree 0, and a linear map

T 1 : homB(X0, X1) → homB(X0, X1)

of degree −1 such that

F1 ◦ G1 − id = µ1
BT 1 + T 1µ1

B.

In the preceding set-up, the subscript A is simply suggestive notation. The main
statement of homological perturbation theory is that there is an explicit construc-
tion of an A∞-category A with objects ObA = ObB, and morphism complexes
the given (homA(X0, X1), µ1

A). Furthermore, there are A∞-functors F : A → B,
G : B → A which are the identity on objects and have first-order terms the given
F1,G1. Finally, there is a homotopy between F ◦ G and idB which starts with the
given T 1.

We will use the special case of this construction when G1 is an idempotent π1

and F1 is the inclusion i1 of the image of π1. In other words, for each pair of
objects (X0, X1), we have a chain map

π1 : homB(X0, X1) → homB(X0, X1)

of degree 0 such that π1 ◦ π1 = π1, and a linear map

T 1 : homB(X0, X1) → homB(X0, X1)

of degree −1 such that

i1 ◦ π1 − id = µ1
BT 1 + T 1µ1

B.

In this case, if we take

homA(X0, X1) = π1(homB(X0, X1)),

then the resulting A∞-functors i : A → B, π : B → A are quasi-equivalences.

3. Analytic-geometric categories

When working with sheaves on a manifold X, it is often useful if not indispensable
to restrict to subsets of X that have strong finiteness properties. In this section,
we collect basic material from the theory of subanalytic sets that plays a role in
what follows. All of the results and arguments that we use hold in the context of
analytic-geometric categories. Since this seems to be a natural level of generality, we
adopt it as our framework. What follows is a brief summary of relevant results from
van den Dries-Miller [36]. For a discussion of subanalytic sets alone, see Bierstone-
Milman [3]. The reader may prefer to ignore the generality of analytic-geometric
categories and consider all discussions to take place in the subanalytic category.

Throughout what follows, all manifolds are assumed to be real analytic unless
otherwise specified.
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3.1. Basic definitions. To give an analytic-geometric category C is to equip each
manifold M with a collection C(M) of subsets of M satisfying the following prop-
erties:

(1) C(M) is a Boolean algebra of subsets with M ∈ C(M).
(2) If A ∈ C(M), then A × R ∈ C(M × R).
(3) If f : M → N is a proper analytic map and A ∈ C(M), then f(A) ∈ C(N).
(4) If A ⊂ M , and (Ui)i∈I is an open covering of M , then A ∈ C(M) if and

only if A ∩ Ui ∈ C(Ui), for all i ∈ I.
(5) For every bounded set A ∈ C(R), the boundary ∂A is finite.

Given the above data, one defines a category C as follows. An object is a pair
(A, M) with M a manifold and A ∈ C(M). A morphism (A, M) → (B, N) is
a continuous map f : A → B whose graph Γ(F ) ⊂ A × B belongs to C(M ×
N). Objects of C are called C-sets, and morphisms are called C-maps. When the
codomain of a map is R, we refer to it as a function.

The basic example of an analytic-geometric category is the subanalytic category
Can of subanalytic sets and continuous maps with subanalytic graphs. For any
analytic-geometric category C, the subanalytic subsets of any manifold M belong
to C(M).

3.2. Background results. Most of the fundamental results about subanalytic sets
hold in any analytic-geometric category (although it is unknown whether the uni-
formization and rectilinearization properties of subanalytic sets have analogues).
We limit our discussion here to include only those results which we use.

3.2.1. Derivatives. Given a manifold M , the tangent bundle TM and cotangent
bundle T ∗M are also manifolds. Given a C1 submanifold A ⊂ M , let TA ⊂ TM
denote its tangent bundle and T ∗

AM ⊂ T ∗M its conormal bundle.

Lemma 3.2.1. If A ∈ C(M) is a C1 submanifold of M , then TA ∈ C(TM) and
T ∗

AM ∈ C(T ∗M). If f : M → N is a C-map of class C1, its differential Tf : TM →
TN is a C-map.

3.2.2. Whitney stratifications. Let X, Y be C1 submanifolds of a manifold M , and
let x ∈ X. The triple (Y, X, x) is said to satisfy Whitney’s condition if given any
sequences of points xi ∈ X and yi ∈ Y each converging to x, such that in some
local coordinate chart the secant lines �i = xiyi converge to some line � and the
tangent planes Tyi

Y converge to some plane τ , we have � ⊂ τ. The pair (Y, X) is
said to satisfy Whitney’s condition if for all x ∈ X, the triples (Y, X, x) satisfy the
condition.

A Cp stratification of a manifold M consists of a locally finite collection S = {Sα}
of locally closed Cp submanifolds Sα ⊂ M called strata satisfying

(1) (covering) X =
⋃

α Sα,
(2) (pairwise disjoint) Sα ∩ Sβ = ∅, for α 
= β,
(3) (axiom of frontier) Sα ∩ Sβ 
= ∅ if and only if Sβ ⊂ Sα.

A Cp stratification S = {Sα} of M is called a Cp Whitney stratification if (Sα, Sβ)
satisfies Whitney’s condition for all α, β.

A stratification S of M is said to be compatible with a collection A of subsets of
M if S ∩ A 
= ∅ implies S ⊂ A, for all S ∈ S, A ∈ A.
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Given a map f : M → N between manifolds, a Cp Whitney stratification of f is a
pair (S, T ) where S and T are Cp Whitney stratifications of M and N respectively
such that for each S ∈ S, the map f |S : S → N is a Cp submersion with f(S) ∈ T .

Proposition 3.2.2. Let X ∈ C(M) be closed, and p a positive integer.

(1) For every locally finite collection A ⊂ C(M), there is a Cp Whitney strat-
ification S ⊂ C(M) of M which is compatible with A and has connected
strata.

(2) Let f : M → N be a proper C-map, and let A ⊂ C(M),B ⊂ C(N) be locally
finite collections. Then there is a Cp Whitney stratification (S, T ) of f with
connected strata such that S ⊂ C(M) is compatible with A and T ⊂ C(N)
is compatible with B.

Remark 3.2.3. In Proposition 3.2.2(1), we may find a stratification S ⊂ C(M) of
M such that each stratum S ∈ S is a (Cp, C) cell in M . In particular, each S ∈ S
will be Cp diffeomorphic to Rd, where d = dim S.

To a Whitney stratification S = {Sα} of M , we associate the conical set ΛS ⊂
T ∗M given by the union

ΛS =
⋃
α

T ∗
Sα

M.

By Lemma 3.2.1, if S ⊂ C(M), then ΛS ∈ C(T ∗X). If a stratification S1 of M is
compatible with another S2, then ΛS2 ⊂ ΛS1 .

For a function f : X → R, we say that x ∈ X is a ΛS-critical point of f if we have
df(x) ∈ ΛS . We say that r ∈ R is a ΛS-critical value of f if there is a ΛS–critical
point x ∈ X such that r = f(x); otherwise we say that r is a ΛS-regular value.

Lemma 3.2.4. If f is a C-map, then the ΛS-critical values of f form a discrete
subset of R.

Proof. The ΛS-regular values are a dense open C-subset of R. �

3.2.3. Curve selection lemma.

Proposition 3.2.5. If A ∈ C(M), and x ∈ A\A, then there is a C-map γ : [0, 1) →
M such that γ(0, 1) ⊂ A and γ(0) = x. Furthermore, if p is a positive integer, γ
can be chosen to be injective and of class Cp.

3.2.4. Defining functions. For a function m : M → R, let Z(m) = {x ∈ M |m(x) =
0}. Given a subset A ⊂ M , we call any function m : M → R≥0 with Z(m) = A a
defining function for A. The space of defining functions for A is convex.

Proposition 3.2.6. If A ∈ C(M) is closed and p is a positive integer, then there
is a C-map m : M → R of class Cp with A = Z(m).

Using defining functions, one can construct bump functions as follows. For
A1, A2 ∈ C(M) disjoint and closed with defining functions m1, m2 respectively,
define gi = m2

i /(1 + m2
i ) for i = 1, 2. Then the function b = (g1 + g1g2)/(g1 + g2)

satisfies Z(b) = A1, Z(b−1) = A2, and 0 ≤ b ≤ 1. The existence of bump functions
implies the existence of partitions of unity and constructions which devolve from
them.
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Remark 3.2.7. In simple situations, one can explicitly produce Cp bump functions
with compact support such as

b(x) =

{
(1 − x2)p+1, x2 < 1,

0, otherwise.

4. Constructible sheaves

Let X be a real analytic manifold. All subsets of X are assumed to belong to
some fixed analytic-geometric category unless otherwise specified.

Let CX be the sheaf of locally-constant complex-valued functions on X. By a
sheaf on X, we will always mean a sheaf of CX -modules. A sheaf F is said to be
constructible if there exists a Whitney stratification of X such that the restriction
of F to each stratum is locally-constant and finitely-generated.

We define the localized triangulated dg category Sh(X) of complexes of sheaves
with bounded constructible cohomology as follows. First, we have the naive tri-
angulated dg category Shnaive(X) whose objects are complexes of sheaves with
bounded constructible cohomology and whose morphisms are the usual complexes
of morphisms. Then, we take Sh(X) to be the dg quotient of Shnaive(X) with
respect to the subcategory N of acyclic objects [23]. As explained in [5], this can
be achieved by simply adding a homotopy between zero and the identity to the
endomorphism complex of each object of N . The ungraded cohomological category
H0(Sh(X)) is the usual bounded constructible derived category Dc(X).

We have the six standard derived functors of Grothendieck, f∗, f∗, f!, f !, ⊗ and
Hom. We similarly have the Verdier duality functor D. Note that we only consider
derived functors, though the notation does not make this explicit. We also refer to
objects of Sh(X) as sheaves, though they are proper complexes of sheaves.

4.1. Standard objects. The most accessible objects of Sh(X) are the so-called
standard and costandard sheaves of submanifolds. To be precise, let i : Y ↪→ X
be the inclusion of a submanifold (with its subspace topology) with closure Y ⊂ X
and boundary ∂Y = Y \ Y ⊂ X. Note that the boundary could be a singular
subset. For a local system LY on Y , we call the sheaf i∗LY a standard object, and
the sheaf i!LY a costandard object. The terminology reflects the fact that Verdier
duality intertwines the two extensions

DX(i!LY ) � i∗DY (LY ).

Suppose U ⊂ X is an open set. The complex of sections of i∗LY over U is quasi-
isomorphic to the complex of LY -valued singular cochains

Γ(U, i∗LY ) � C∗(U ∩ Y,LY ).

Similarly, the complex of sections of i!CY over U is quasi-isomorphic to the complex
of LY -valued relative singular cochains

Γ(U, i!CY ) � C∗(U ∩ Y , U ∩ ∂Y,LY ).

4.2. Standard triangles. Fix a subset Z ⊂ X. Let i : U ↪→ Z be the inclusion of
an open set, and j : Y = Z \ U ↪→ Z the inclusion of its complement. Note that
since U is open and Y is closed in Z, we have identities i! � i∗ and j! � j∗. For
any sheaf F on Z, we have the standard distinguished triangles

j∗j
!F → F → i∗i

∗F [1]→, i∗i
!F → F → j∗j

∗F [1]→ .
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For example, if we take F to be CZ and take the cohomology of global sections, we
obtain from these two the standard long exact sequences

H∗(Z, U) → H∗(Z) → H∗(U)
[1]→, H∗(Z, Y ) → H∗(Z) → H∗(Y )

[1]→ .

We also have distinguished triangles associated to truncation functors. Let τ≤�

be the functor which assigns to a complex F the truncated complex

· · · → F�−1 → ker(d�) → 0 → · · · .

The natural map τ≤�F → F induces an isomorphism on cohomology sheaves in
degrees less than or equal to �. Let τ>� be the functor which assigns to a complex
F the truncated complex

· · · → 0 → im(d�) → F�+1 → · · · .

The natural map F → τ>�F induces an isomorphism on cohomology sheaves in
degrees greater than �. We have a distinguished triangle

τ≤�F → F → τ>�F
[1]→ .

4.3. Standard objects generate.

Proposition 4.3.1. Any object of Sh(X) is isomorphic to one obtained from shifts
of standard objects by iteratively forming cones. The same is true for costandard
objects.

Proof. Let F be an object of Sh(X). Fix a stratification S of X such that the
cohomology sheaves of F are constructible with respect to S.

We prove the first assertion (the second is similar, or follows by Verdier duality).
The proof is an induction on the strata, beginning with the open strata. Let
ik : Sk → X be the inclusion of the union of the strata of dimension equal to k,
and let j<k : S<k → X be the inclusion of the union of the strata of dimension less
than k.

Suppose X has dimension equal to n. Then for the sheaf F , we have a distin-
guished triangle

j<n∗j
!
<nF → F → in∗i

∗
nF

[1]→ .

Using truncation functors, we may express the sheaf Fn = in∗i
∗
nF by iteratively

forming cones of shifted standard objects associated to the strata Sn. By construc-
tion, the sheaf F<n = j<n∗j

!
<nF is supported on S<n.

Next we have the distinguished triangle

j<n−1∗j
!
<n−1F<n → F<n → in−1∗i

∗
n−1F<n

[1]→ .

Again, using truncation functors, we may express the sheaf Fn−1 = in−1∗i
∗
n−1F<n

by iteratively forming cones of shifted standard objects associated to the strata
Sn−1. By construction, the sheaf F<n−1 = j<n−1∗j

!
<n−1F<n is supported on

S<n−1.
And so on. In the end, we see that F may be expressed by iteratively forming

cones of shifted standard objects. �
We have the following strengthening of the proposition.

Proposition 4.3.2. Any object of Sh(X) is isomorphic to one obtained from shifts
of constant standard objects i∗CU for open submanifolds i : U ↪→ X by iteratively
forming cones. The same is true for constant costandard objects i!CU .
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Proof. Let F be an object of Sh(X). Choose a stratification T of X such that the
cohomology sheaves of F are constructible with respect to T , and the strata of T
are cells (see Remark 3.2.3). By the previous proposition, and since the strata are
cells, we need to show that for a stratum j : T → X, we can realize the standard
object j∗CT .

Let Star(T ) be the union of all the strata of T which contain T in their closures,
and let s : Star(T ) → X denote its inclusion. Let Star′(T ) be the complement of
T in Star(T ), and let s′ : Star′(T ) → X denote its inclusion. Both Star(T ) and
Star′(T ) are open submanifolds. We have the distinguished triangle

j∗j
!
CStar(T ) → s∗CStar(T ) → s′∗CStar′(T )

[1]→ .

Since T ↪→ Star(T ) is the inclusion of an orientable submanifold, j!
CStar(T ) is

isomorphic to a shift of CT , and the assertion is proved. �

4.4. Open submanifolds. From here on, we focus on standard objects rather
than costandard objects, though there is no reason to prefer one over the other.
Furthermore, we work with standard objects for open submanifolds. By Propo-
sition 4.3.2, such objects generate the entire category Sh(X). Thus it suffices to
work with them in proving our main theorem. While this will simplify many con-
structions, there is a price to pay. First, we will lose concrete touch with other
objects and only understand what is happening with them in an abstract sense –
this has implications for applications of our main result. Second, there are contexts
in which the arguments of Proposition 4.3.2 are not really acceptable – often we are
presented with a fixed stratification and would prefer not to subdivide it further.
To remedy both of these points, we have included a discussion in Section 7 explain-
ing how to generalize our arguments to deal with all standard objects, not only
those for open submanifolds. In what follows, we also consider standard objects
with trivial coefficients and leave the case of arbitrary local systems to the reader.
This is a purely expositional choice, and the reader will have no trouble extending
our arguments. In any case, technically speaking, Proposition 4.3.2 also obviates
the need to consider arbitrary local systems.

For an open subset U ⊂ X, let Ωk(U) denote the space of differential k-forms on
U , and let (Ω(U), d) denote the de Rham complex. Define the support of a k-form
ω ∈ Ωk(U) to be the smallest closed subset supp(ω) ⊂ X such that

ω|U∩(X\supp(ω)) = 0.

Now consider a pair (U, V ), where V ⊂ U ⊂ X such that U \ V is open. Let
(Ω(U, V ), d) denote the relative de Rham complex of differential forms on U \ V
whose support lies in X \ V . The complex (Ω(U, V ), d) calculates the relative
cohomology H∗(U, V ).

Recall that for a subset A ⊂ X, we call any function m : X → R≥0 with zero set
Z(m) = A a defining function for A. We define a dg category Open(X) as follows.
The objects of Open(X) are pairs U = (U, m), where U ⊂ X is an open set and
m : X → R≥0 is a defining function for the complement X \ U .1 The complex of
morphisms from an object U0 = (U0, m0) to an object U1 = (U1, m1) is the relative

1In some contexts, it might be more natural to assume that m is a defining function for the
boundary ∂U ⊂ X. Our requirement that m vanishes on all of X \ U plays no role outside of
reducing future notation.
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de Rham complex

homOpen(X)(U0, U1) = (Ω(U0 ∩ U1, ∂U0 ∩ U1), d).

Note the obvious fact that the morphisms are independent of the defining functions.
Given a third object U2 = (U2, m2), the composition of morphisms is the wedge
product of forms

Ω(U0 ∩ U1, ∂U0 ∩ U1) ⊗ Ω(U1 ∩ U2, ∂U1 ∩ U2) → Ω(U0 ∩ U2, ∂U0 ∩ U2).

To see this is well defined, note that the support of any such wedge product lies in
U1, and thus since

(∂U0 ∩ U2) ∩ U1 = (∂U0 ∩ U2 ∩ U1) ∪ (∂U0 ∩ U2 ∩ ∂U1) ⊂ (∂U0 ∩ U1) ∪ (U2 ∩ ∂U1),

the support is disjoint from ∂U0 ∩ U2.
For an open subset i : U ↪→ X, recall that i∗CU denotes the standard extension

of the constant sheaf on U .

Lemma 4.4.1. For open subsets i0 : U0 ↪→ X, i1 : U1 ↪→ X, we have a canonical
quasi-isomorphism

homSh(X)(i0∗CU0 , i1∗CU1) � (Ω(U0 ∩ U1, ∂U0 ∩ U1), d).

The composition of morphisms coincides with the wedge product of differential
forms.

Proof. By standard identities, we have canonical quasi-isomorphisms

homSh(X)(i0∗CU0 , i1∗CU1) � Γ(X,Hom(i0∗CU0 , i1∗CU1))
� Γ(X, i1∗Hom(i∗1i0∗CU0 , CU1))
� Γ(X, i1∗Hom(ωU1 , i

!
1i0!ωU0))

� Γ(X, i1∗i
∗
1i0!CU0).

Here we have written ωU0 , ωU1 for the dualizing complexes. By de Rham’s theorem,
we also have a canonical quasi-isomorphism

Γ(X, i1∗i
∗
1i0!CU0) � (Ω(U0 ∩ U1, ∂U0 ∩ U1), d).

We leave it to the reader to check the last assertion. �
By the preceding lemma, we may define a dg functor P : Open(X) → Sh(X) by

sending an object U = (U, m) to the standard sheaf i∗CU , where i : U ↪→ X is the
inclusion. By the preceding lemma and Proposition 4.3.2, the induced dg functor
on twisted complexes TwP : TwOpen(X) → Sh(X) is a quasi-equivalence.

4.5. Smooth boundaries. In what follows, we explain how to calculate mor-
phisms in Open(X) using open sets with smooth transverse boundaries. To do
this, we will need to make choices of perturbation data. It will be clear that the
choices range over a contractible set, and that they can be made compatibly for
any finite collection of objects.

Recall that the complex of morphisms from an object U0 = (U0, m0) to an object
U1 = (U1, m1) is the relative de Rham complex

homOpen(X)(U0, U1) = (Ω(U0 ∩ U1, ∂U0 ∩ U1), d).

Our reinterpretation of this will be a complex not only quasi-isomorphic to it but
in fact isomorphic to it.

First, fix a Whitney stratification S0 of X compatible with the boundary ∂U0 ⊂
X, and let ΛS0 ⊂T ∗X be the conical conormal set associated to S0. By Lemma 3.2.4,
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there is η1 > 0 such that there are no Λ0-critical values of m1 in the open interval
(0, η1).

Lemma 4.5.1. For η1 ∈ (0, η1), there is a compatible collection of identifications

(U0 ∩ Xm1>η1 , ∂U0 ∩ Xm1>η1) � (U0 ∩ U1, ∂U0 ∩ U1)

which are the identity on U0 ∩ Xm1≥η1
.

Proof. By construction, there are no ΛS0-critical points of the map

m1 : X0<m1<η1
→ (0, η1).

For η1 ∈ (0, η1), we may construct a compatible collection of diffeomorphisms

(0, η1) → (η1, η1)

by integrating an appropriate collection of vector fields. Thus by the Thom isotopy
lemma, we may lift these diffeomorphisms to obtain identifications

U0 ∩ Xm1>η1 � U0 ∩ U1.

Since S0 is compatible with ∂U0, the constructed identifications respect the pairs.
�

Next, choose η1 ∈ (0, η1), fix the Whitney stratification Sη1 of X given by the
hypersurface Xm1=η1 and its complement, and let ΛSη1

⊂ T ∗X be the conical
conormal set associated to Sη1 . By Lemma 3.2.4, there is η0 > 0 such that there
are no ΛSη1

-critical values of m0 in the open interval (0, η0).

Lemma 4.5.2. For η0 ∈ (0, η0), there is a compatible collection of identifications

(Xm0>η0 ∩ Xm1≥η1 , Xm0>η0 ∩ Xm1=η1) � (Xm0>0 ∩ Xm1≥η1 , Xm0>0 ∩ Xm1=η1)

which are the identity on Xm0≥η0
∩ Xm1≥η1 .

Proof. The argument is similar to that of the previous lemma. By construction,
there are no ΛSη1

-critical points of the map

m0 : X0<m0<η0
→ (0, η0).

For η0 ∈ (0, η0), we may construct a compatible collection of diffeomorphisms

(0, η0) → (η1, η0)

by integrating an appropriate collection of vector fields. Thus by the Thom isotopy
lemma, we may lift these diffeomorphisms to obtain identifications

Xm0>0 ∩ Xm1≥η1 � Xm0>η0 ∩ Xm1≥η1 .

Since Sη1 is compatible with Xm1=η1 , the constructed identifications respect the
pairs. �

Putting together the two previous lemmas, we obtain a compatible collection of
identifications

U0 ∩ U1 � Xm0>η0 ∩ Xm1>η1 .

Now we have the crucial observation: for every open set N0 ⊂ X containing ∂U0 ∩
Xm1≥η1 , there exists η′

0 > 0 such that N0 contains the set Xm0<η′
0
∩ Xm1≥η1 .

Thus by construction, the above identifications induce a compatible collection of
isomorphisms of complexes

(Ω(U0 ∩ U1, ∂U0 ∩ U1), d) � (Ω(Xm0≥η0 ∩ Xm1>η1 , Xm0=η0 ∩ Xm1>η1), d).
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In what follows, we will use this reinterpretation of morphisms of Open(X).

4.6. Morse theory. In the previous discussion, we have constructed a dg functor

P : Open(X) → Sh(X)

such that P identified Sh(X) as a triangulated envelope of Open(X). In this section,
using Morse theory we define an A∞-category Mor(X) and an A∞-functor

M : Open(X) → Mor(X)

which is a quasi-equivalence.
In this section, to simplify the exposition we assume here that X is oriented, and

leave the general case to the reader.

4.6.1. Manifolds with corners. We begin by recalling some standard material from
Morse theory. We first discuss some general facts for an arbitrary open subset
W ⊂ X, then specialize to the case where the closure W ⊂ X is a manifold with
corners.

Let W ⊂ X be an open subset. Let f : W → R be a function which extends
to a small neighborhood of the closure W ⊂ X such that all critical points of the
extension are nondegenerate and lie in W . Let Cr(f) ⊂ W denote the set of critical
points, and let i(x) denote the index of x ∈ Cr(f). Our convention is that a local
minimum has index 0, and a local maximum has index dim X.

Fix a Riemannian metric g on X, and let ∇f denote the gradient vector field.
Let W̃ ⊂ W × R be a maximal domain for the the gradient flow ψt : W̃ → W . For
each w ∈ W , the fiber of W̃ above w is an open (possibly unbounded) interval. For
each x ∈ Cr(f), define the stable and unstable manifolds

W−
x = {w ∈ W | lim

t→+∞
ψt(w) = x}, W+

x = {w ∈ W | lim
t→−∞

ψt(w) = x}.

Implicit in the definition is that for w ∈ W to lie in a stable or unstable manifold,
the fiber of W̃ above w contains the appropriate half-line. The stable manifold
W−

x and unstable manifold W+
x are diffeomorphic to balls of dimension i(x) and

dim X − i(x) respectively. An orientation ω−
x for the stable manifold W−

x and an
orientation ω+

x for the unstable manifold W+
x are said to be compatible if at x the

composite orientation ω−
x ∧ ω+

x coincides with the ambient orientation of X.
Now we specialize to the case when the closure W ⊂ X is a manifold with

corners. To be precise, consider the quadrant

Q = {(x1, . . . , xn) ∈ R
n|x1 ≥ 0, x2 ≥ 0}.

We assume that for each w ∈ W ⊂ X, there is an open neighborhood N(w) ⊂ X,
an open set U ⊂ Rn, and a C1 diffeomorphism ψ : N(w) → U such that

ψ(W ∩ N(w)) = Q ∩ U.

Furthermore, we assume that there are two smooth transverse hypersurfaces H0, H1

⊂ X such that ∂W ⊂ H0 ∪ H1.
We will need the following notion of when a function f on a manifold with corners

W ⊂ X and a Riemannian metric g on X are compatible.

Definition 4.6.1. A pair (f, g), where f is a function on a neighborhood of W
and g is a Riemannian metric on X, is said to be directed if (f, g) is Morse-Smale,
and the gradient vector field ∇f is inward pointing along H0 and outward pointing
along H1.
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With the above set-up, if we have a directed pair (f, g), then for each x ∈ Cr(f),
the closures of the stable and unstable manifolds satisfy

W
−
x ∩ H1 = ∅, W

+

x ∩ H0 = ∅.

4.6.2. Morse moduli spaces. We next recall the moduli space of gradient trees from
Fukaya-Oh [9].

A based metric ribbon tree is a quadruple (T, i, v0, λ) of the following data. First,
T is a finite tree with d + 1 end vertices and no vertex containing exactly two
edges. Second, i : T → D ⊂ R2 is an embedding of T in the closed unit disk such
that the d + 1 end vertices are precisely the intersection i(T ) ∩ ∂D. Third, v0 is a
distinguished end vertex of T . We refer to v0 as the root vertex and the other d
end vertices as the leaf vertices. An edge e ⊂ T is called an interior edge if e does
not contain an end vertex; otherwise e is called an exterior edge. Finally, λ is a
function which assigns to every interior edge ein ⊂ T a positive length λ(ein) ∈ R+.
Two based metric ribbon trees are to be considered equivalent if there is an isotopy
of the closed disk which identifies all of the data.

Fix the orientation of the edges of T such that all arrows point in the direction
of minimal paths from the leaf vertices to the root vertex. The left and right sides
of an edge refer to the components of the complement D \T which are respectively
to the left and right of the edge with respect to the orientation of the edge. Label
the d + 1 components of the complement D \ T with elements of Z/(d + 1)Z in
counterclockwise order starting with 0 for the component to the left of the edge
terminating at the root vertex v0. For an edge e ⊂ T , let �(e) and r(e) denote the
labelings of the left and right sides of e.

For i ∈ Z/(d + 1)Z, let Ui ⊂ X be an open subset with boundary ∂Ui ⊂ X
a smooth hypersurface. Suppose that the boundaries ∂Ui form a transverse col-
lection of hypersurfaces. Let fi : Ui → R be a function which extends to a small
neighborhood of the closure U i ⊂ X. The difference fi+1 − fi is a function on
the intersection Ui ∩ Ui+1 which extends to a small neighborhood of the closure
Ui ∩ U i+1 ⊂ X. Suppose the critical points of the extension of fi+1 − fi are nonde-
generate and lie in Ui ∩ Ui+1. Suppose that we have chosen a Riemannian metric
g on X such that each pair (fi+1 − fi, g) is directed. In other words, each gradient
vector field ∇fi+1 −∇fi points inward along the hypersurface ∂Ui+1 and outward
along the hypersurface ∂Ui.

With this set-up, a gradient tree is a pair ((T, i, v0, λ), τ ) consisting of a metric
ribbon tree (T, i, v0, λ) and a continuous map τ : T → X such that the following
holds:

(1) For each end vertex v ∈ T and the unique exterior edge eext ∈ T containing
it, we have

τ (v) ∈ Cr(Ur(eext) ∩ U�(eext), fr(eext) − f�(eext)).

(2) For each interior edge ein ⊂ T , after making the identification ein �
[0, λ(ein)], we have

τ ′|ein
= −∇(f�(ein) − fr(ein)).

(3) For each exterior edge eext ⊂ T , after making the identification eext �
(−∞, 0], we have

τ ′|eext
= −∇(f�(eext) − fr(eext)).
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Note that a single gradient tree alone contains the information of the images of the
vertices and the oriented gradient lines which are the images of the edges.

For each i ∈ Z/(d + 1)Z, fix a critical point xi ∈ Cr(Ui ∩ Ui+1, fi+1 − fi). After
a small perturbation of the data, the moduli space of gradient trees

M(T ; f0, . . . , fd; x0, . . . , xd)

with specified critical points is a manifold of dimension∑
i∈Z/(d+1)Z

i(xi) − d dimX + d − 2.

Orientations of the stable manifolds of the differences fi+1 − fi induce a canonical
orientation of the moduli space. For example, for d = 1, a single edge is the only
based ribbon metric tree, and the moduli space M(T ; f0, f1; x0, x1) is the space of
trajectories from x0 to x1 with orientations.

4.6.3. Morse A∞-category. Following Fukaya-Oh [9], we define an A∞-category
Mor(X) as follows. As with Open(X), the objects of Mor(X) are pairs U = (U, m),
where U ⊂ X is an open set and m : X → R≥0 is a defining function for the com-
plement X \ U . To this data, we associate the function f : U → R defined by
f = log m.

To define the morphisms from an object U0 = (U0, m0) to an object U1 =
(U1, m1), we will associate to them a directed pair and assign its Morse complex. To
ensure that we may find a directed pair, we must refine the procedure summarized
in Section 4.5.

First, fix a Whitney stratification S0 of X compatible with the boundary ∂U0 ⊂
X, and let ΛS0 ⊂T ∗X be the conical conormal set associated to S0. By Lemma 3.2.4,
there is η1 > 0 such that there are no Λ0-critical values of m1 in the open interval
(0, η1).

Next, choose η1 ∈ (0, η1), fix the Whitney stratification Sη1 of X given by the
hypersurface Xm1=η1 and its complement, and let ΛSη1

⊂ T ∗X be the conical
conormal set associated to Sη1 . By Lemma 3.2.4, there is η0 > 0 such that there
are no ΛSη1

-critical values of m0 in the open interval (0, η0).
Now consider the critical points of the function m0×m1 : X → R2. By definition,

critical points of m0 × m1 are points x ∈ X such that dm0(x) and dm1(x) are
colinear. Note that for points of U0 ∩ U1, this is equivalent to df0 and df1 being
colinear. By construction, there are no critical values of m0 × m1 in the interval
(0, η0) × {η1} ⊂ R2. In other words, all critical points of m0 × m1 which lie on
the hypersurface Xm1=η1 lie in the compact region Xm0≥η0,m1=η1 . Thus we may
choose ε0 > 0 such that for any ε0 ∈ (0, ε0) and any point x ∈ Xm1=η1 , where dm0

and dm1 are colinear, we have

ε0

∣∣∣∣df0(x)
df1(x)

∣∣∣∣ < 1.

Here the fraction notation reflects the fact that the two covectors are colinear and
so differ by a scalar. Note in particular that df1(x) 
= 0 on Xm1=η1 . This bound will
guarantee that we may choose a Riemannian metric on X such that the gradient
∇f1 − ε0∇f0 is inward pointing along Xm1=η1 .

Next, we need to choose η0 > 0 small enough so that we may choose a Riemann-
ian metric on X such that the gradient ∇f1 − ε0∇f0 is outward pointing along
Xm0=η0 . Note that the values of df1 along the compact hypersurfaces Xm1=η1 are
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bounded. Furthermore, the values of df0 along the compact hypersurface Xm0=η0

tend uniformly to infinity as η0 tends to zero. Thus for any η0 > 0 small enough
and any point x ∈ Xm0=η0 where dm0 and dm1 are colinear, we have∣∣∣∣ df1(x)

ε0df0(x)

∣∣∣∣ < 1.

In conclusion, for a sequence of sufficiently small choices η1 > 0, then ε0 > 0,
and then η0 > 0, we have the following result.

Lemma 4.6.2. There is a Riemannian metric g on X such that (f1 − ε0f0, g) is a
directed pair on the manifold with corners Xm0≥η0,m1≥η1 . The set of such metrics
is open and convex.

Proof. The construction of the metric can be done locally using the bounds of the
above procedure. The conditions on the metric are open and convex. �

Finally, we choose small perturbations of our functions and metric, and define
the space of morphisms to be the graded vector space generated by critical points

homMor(X)(U0, U1) = C{Cr(Xm0>η0 ∩ Xm1>η1 , f1 − ε0f0)}.
The differential counts the oriented number of points in the moduli spaces of gra-
dient trees

m1
Mor(X)(x0) =

∑
T

∑
x1

degM(T ; ε0f0, f1; x0, x1) · x1

with T the interval [−1, 1].

Lemma 4.6.3. We have that m1
Mor(X) is well-defined and satisfies (m1

Mor(X))
2 =

0.

Proof. Fix critical points x0, x1. Both assertions are implied by the claim that any
sequence of gradient trajectories

τn : [−1, 1] → Xm0>η0,m1>η1

in the moduli space M([−1, 1]; ε0f0, f1; x0, x1) has a subsequence which converges
to a map

τ∞ : [−1, 1] → Xm0>η0,m1>η1 .

The claim with deg x1 = deg x0 + 1 proves the first assertion. The claim with
deg x1 = deg x0 + 2 implies that the boundary of the moduli space in this case is
precisely the usual moduli space of broken trajectories which calculates (m1

Mor(X))
2.

This proves the second assertion.
To prove the claim, observe that the image set τn([−1, 1]) can never approach

the boundary

∂Xm0≥η0,m1≥η1 = (Xm0=η0 ∩ Xm1≥η1) ∪ (Xm1≥η0 ∩ Xm1=η1).

This follows from our assumptions on the behavior of the gradient vector field of
f1 − εf0 along the boundary (inward and outward pointing). �

By construction, the morphism complex (homMor(X)(U0, U1), µ1
Mor(X)) calcu-

lates the relative cohomology

H∗(Xm0≥η0 ∩ Xm1>η1 , Xm0=η0 ∩ Xm1>η1).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



254 DAVID NADLER AND ERIC ZASLOW

To define the higher compositions, for a finite collection of objects we must follow
the above procedure sequentially. What we need is summarized in the following
definition.

Definition 4.6.4. Consider a collection of pairs (Ui, fi), where Ui ⊂ X is an open
subset with boundary ∂Ui a smooth hypersurface and fi : Ui → R is a function
indexed by i ∈ Z/(d + 1)Z. The collection is said to be transverse if there is a
Riemannian metric g on X such that the following holds. For i ∈ Z/(d + 1)Z, the
hypersurfaces ∂Ui and ∂Ui+1 are transverse, and (fi+1 − fi, g) is a directed pair on
Ui ∩ Ui+1.

In Section 6, we will carefully explain in the context of the Fukaya category of
T ∗X how to arrive at such a collection. The procedure described there is modestly
more complicated, but strictly contains what is needed here. Therefore we will not
pursue further details, but only mention the following salient points.

Given a collection of objects indexed by i ∈ Z/(d + 1)Z, for any sequence of suf-
ficiently small choices εi > 0 and ηi > 0, one may arrange for the perturbed bound-
aries Xmi=ηi

to form a transverse collection. Furthermore, one may sequentially
obtain bounds on the differentials dfi along the perturbed boundaries. Together
this allows one to find dilations and a Riemannian metric on X such that all dilated
pairs are directed. After performing small perturbations, the higher composition
maps count the oriented number of points in the moduli spaces of gradient trees

md
Mor(X)(x0, . . . , xd−1) =

∑
T

∑
xd

degM(T ; ε0f0, . . . , εd−1fd−1, fd; x0, . . . , xd) · xd.

In the following section, we will apply homological perturbation theory to verify
the following.

Proposition 4.6.5. The maps µd
Mor(X) are well defined and satisfy the A∞-quad-

ratic composition rule.

In conclusion, it is worth commenting about the choices involved in the con-
struction of Mor(X). For a collection of objects indexed by i ∈ Z/(d + 1)Z, there
are the small choices of constants ηi > 0 to obtain smooth boundaries and εi > 0
to dilate functions. These may be organized into a contractible “fringed set” as
discussed in Section 5.2. In addition, there is the choice of a Riemannian metric to
obtain directed pairs. While not a perturbation in any sense, such metrics form a
convex set. Finally, there are the small perturbations of the functions and metric.
This is no different from the standard context.

4.6.4. From differential forms to Morse theory. Following Kontsevich-Soibelman
[25], here we apply the formalism of homological perturbation theory to prove
Proposition 4.6.5 and obtain an A∞-functor

M : Open(X) → Mor(X)

which is a quasi-equivalence. We will apply the formalism in the special case of an
idempotent. The construction of the idempotent and the homotopy is completely
analogous to that of Kontsevich-Soibelman: one composes the limit operators of
Harvey-Lawson [15] with a smoothing operator. To explain this, we return to the
general context of a submanifold with corners W ⊂ X and boundary hypersurfaces
H0, H1 ⊂ ∂W with which we began this section.
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Let D′(W, H0) denote the space of currents dual to the space of differential forms
Ω(W, H1). There are two simple ways to obtain elements of D′(W, H0). First, we
have the inclusion

i : Ω(W, H0) → D′(W, H0)
defined by taking the wedge product of forms and integrating. Second, any oriented
closed submanifold V ⊂ W satisfying V ∩ H0 = ∅ defines an element

[V ] ∈ D′(W, H0)

by integration. In particular, for each x ∈ Cr(f), the unstable manifold W+
x with a

given orientation defines a current [W+
x ] ∈ D′(W, H0). Similarly, the stable manifold

W−
x with a given orientation defines a current [W−

x ] ∈ D′(W, H1).
In this context, the main result of Harvey-Lawson takes the following form.

Define the linear operator p : Ω(W, H0) → D′(W, H0) by the kernel

P =
∑

x∈Cr(f)

[W−
x ] × [W+

x ],

where the stable and unstable manifolds are given compatible orientations. Define
the homotopy operator h : Ω(W, H0) → D′(W, H0) by the kernel

H =
⋃

0≤t<+∞
[Γψt

],

where Γψt
⊂ X × X denotes the graph of the gradient flow ψt. Then we have the

equation of operators
p − i = dh + hd.

Now to obtain an honest idempotent π and homotopy operator T on Ω(W, H0),
we need only compose with a smoothing operator D′(W, H0) → Ω(W, H0). The
details of this are no different from the case considered by Kontsevich-Soibelman.

By applying the formalism of homological perturbation theory and recognizing
that it coincides with counting gradient trees, we see that Proposition 4.6.5 must
hold and obtain an A∞-functor

M : Open(X) → Mor(X)

which is a quasi-equivalence.

5. The Fukaya category

The Fukaya A∞-category Fuk(M) of a symplectic manifold M is a quantization
of the Lagrangian intersection theory of M . Roughly speaking, its objects are
Lagrangian submanifolds and its morphisms are generated by intersection points
of the Lagrangians. Its composition maps are defined by choosing a compatible
almost complex structure and by counting holomorphic polygons with boundary
lying on the Lagrangians.2 For example, for intersection points p0 ∈ L0 ∩ L1 and
p1 ∈ L1 ∩L2, the coefficient of p2 ∈ L2 ∩L0 in the product p0 · p1 is the number of
holomorphic maps to M from a disk with three marked boundary points mapping to
the intersection points and with the arcs between them mapping to the Lagrangians.

To this coarse description there are many details, refinements, and specializations
for various settings. In this paper, we will use a composite picture of the treatments
from Eliashberg-Givental-Hofer [7], Fukaya-Oh-Ohta-Ono [10], and Seidel [33]. Our

2Properly, we should say “pseudoholomorphic,” but we omit the prefix throughout.
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symplectic manifold is the cotangent bundle M = T ∗X of a compact real analytic
manifold X. We equip T ∗X with the exact symplectic form ω = dθ, where θ is the
canonical one-form

θ(v)|(x,ξ) = ξ(π∗v),

with π : T ∗X → X the standard projection. For any choice of Riemannian metric
on X, the associated Levi-Civita connection provides a compatible almost complex
structure on T ∗X, along with a canonical Riemannian (Sasaki) metric on T ∗X. We
will also consider a mild variation of these structures as described in Section 5.1.3
below.

In what follows, we focus on the aspects of our situation which deviate from
what is by now standard in the subject. All of these differences stem from the fact
that we will allow closed but noncompact Lagrangians.

We often use the following notation: given a space Y , a function g : Y → R, and
r ∈ R, we write Yg=r for the subset {y ∈ Y |g(y) = r}, and similarly for inequalities.

5.1. Basics of T ∗X.

5.1.1. Compactification. Consider the bundle J1
≥0(X) = T ∗X×R≥0 of 1-jets of non-

negative functions on X, and let J1
≥0(X)′ = J1

≥0(X)\ (X×{0}) be the complement
of the zero section. The multiplicative group R+ acts freely on J1

≥0(X)′ by dilations.
The quotient

T
∗
X = J1

≥0(X)′/R+,

equipped with the obvious projection π : T
∗
X → X, provides a relative compact-

ification of π : T ∗X → X. We have the canonical inclusion T ∗X ↪→ T
∗
X which

sends a covector ξ to the class of 1-jets [ξ, 1], and we refer to this inclusion implicitly
whenever we consider T ∗X as a subset of T

∗
X. The divisor at infinity

T∞X = T
∗
X \ T ∗X

consists of the class of 1-jets of the form [ξ, 0] with ξ a nonzero covector.
Let O(−1) denote the tautological R+-principal bundle J1

≥0(X)′ → T
∗
X with

fiber R+ · (ξ, r) at the point [ξ, r]. The restriction of O(−1) to the open subset
T ∗X is canonically trivialized by the section [ξ, r] �→ (ξ/r, 1). Let O(−1)∞ denote
the restriction of O(−1) to the divisor at infinity T∞X. A choice of trivialization
of O(−1)∞ is equivalent to a choice of (co-)sphere subbundle S∗X ⊂ T ∗X and
provides a canonical identification

T∞X � S∗X.

In fact, it is always possible to trivialize O(−1) itself over all of T
∗
X. For example,

if we choose a Riemannian metric on X, then we have the section

[ξ, r] �→ (ξ̂, r̂), where |ξ̂|2 + r̂2 = 1.

This identifies T
∗
X with the closed unit disk bundle and T∞X with its unit sphere

bundle. Note that such a trivialization cannot be made equal to the canonical
trivialization of O(−1) over the open subset T ∗X.

By working with a spherical compactification rather than a projective compacti-
fication, we pay the price for dealing with a manifold with boundary. But we choose
this approach because we will encounter objects on T∞X which are not invariant
under the antipodal involution.
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The pull-back of θ to J1
≥0(X) descends to a one-form θ on T

∗
X with values in

the R-line bundle L(1) associated to the R+-principal bundle dual to O(−1). The
restriction θ∞ = θ|T∞X is an L(1)-valued contact form on T∞X. The canonical
trivialization of O(−1) over the open subset T ∗X identifies the restriction θ|T∗X

with the original one-form θ. By choosing a trivialization of O(−1)∞, we may
consider θ∞ as an honest contact form. Equivalently, by choosing a sphere bundle
S∗X ⊂ T ∗X, we may identify θ∞ with the restriction of θ to S∗X. If we do not fix
such identifications, we still have a well-defined contact structure ker(θ∞) ⊂ TT∞X
and a well-defined notion of positive normal direction. This positive direction is an
example of a structure on T∞X which is not invariant under the antipodal map.

5.1.2. Geodesic flow. Given a function H : T ∗X → R, we have the Hamiltonian
vector field vH defined by

dH(v) = ω(v, vH).

When possible, integrating vH provides a Hamiltonian isotopy ϕH,t : T ∗X → T ∗X.
A Riemannian metric on X defines a Riemannian (Sasaki) metric on T ∗X, and

thus an identification T ∗(T ∗X) � T (T ∗X). The canonical one-form θ on T ∗X
corresponds to the geodesic vector field vθ. On the complement of the zero section
T ∗X \X, we have the normalized geodesic vector field v̂θ = vθ/|vθ|. It is the Hamil-
tonian vector field for the length function H : T ∗X \X → R given by H(x, ξ) = |ξ|.
We write γt : T ∗X \ X → T ∗X \ X for the normalized geodesic flow for time t
associated to v̂θ. By definition, if we identify a covector (x, ξ) ∈ T ∗X with a vector
(x, v) ∈ TX, then we have the identity

γt(x, v) = expx,t(v̂)∗(v),

where v̂ = v/|v|, the map expx,t : TxX → X denotes the exponential flow from
the point x for time t, and the asterisk subscript indicates the derivative (push-
forward). Since vθ grows at infinity, its flow does not have a well-defined limit. But
v̂θ extends to give a Reeb flow on the contact manifold at infinity T∞X.

A function H : T ∗X → R is said to be controlled if there is a compact set
K ⊂ T ∗X such that outside of K we have H(x, ξ) = |ξ|. The corresponding
Hamiltonian isotopy ϕH,t : T ∗X → T ∗X equals the normalized geodesic flow γt

outside of K. Note that for any controlled function H, the vector field vH may
be integrated to a Hamiltonian isotopy ϕH,t, for all times t. Note as well that
Hamiltonian flow by |ξ| depends on the metric on X, but is independent of any
choice of metric on T ∗X.

5.1.3. Almost complex structures. To better control holomorphic disks in T ∗X, it is
useful to introduce an almost complex structure Jcon which near infinity is invariant
under dilations.

Recall that a Riemannian metric on X provides a canonical splitting

T (T ∗X) � Tb ⊕ Tf ,

where Tb denotes the horizontal base directions and Tf the vertical fiber directions,
along with a canonical isomorphism j0 : Tb

∼→ Tf of vector bundles. Thus we can
define a compatible almost complex structure JSas by the matrix

JSas =
(

0 j−1
0

−j0 0

)
.
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We refer to JSas as the Sasaki almost complex structure, since by construction, the
Sasaki metric is given by gSas(U, V ) = ω(U, JSasV ).

Fix a positive function w : T ∗X → R>0, and define a new compatible almost
complex structure Jw by the matrix

Jw =
(

0 w−1j−1
0

−wj0 0

)
.

Fix a local orthonormal frame {bi, fi}dim X
i=1 for Tb ⊕ Tf with respect to the Sasaki

metric. Then with respect to the new metric gw(U, V ) = ω(U, JwV ), the lengths of
the Sasaki frame take the form

|bi|gw
= w1/2, |fi|gw

= w−1/2.

For concreteness, we specialize the construction by making a specific choice of
the function w. Namely, fix positive constants r0, r1 > 0, and a bump function
b : R → R such that b(r) = 0 for r < r0 and b(r) = 1 for r > r1. Fix a constant
β ∈ R, and set

w(x, ξ) = |ξ|βb(|ξ|),

where as usual |ξ| denotes the length of a covector with respect to the original
metric on X. In particular, when β = 0, we recover the original Sasaki almost
complex structure JSas and Sasaki metric gSas.

In what follows, we will restrict our attention to the choice β = 1 and denote the
almost complex structure by Jcon and corresponding metric by gcon. We will refer
to Jcon as the conical almost complex structure, since near infinity Jcon is invariant
under dilations and the lengths of our Sasaki frame take the form

|bi|gcon
= |ξ|1/2, |fi|gcon

= |ξ|−1/2.

Thus near infinity, we have replaced the Sasaki geometry with a cone over the unit
(co-)sphere bundle S∗X. To be precise, if ds2 is the restriction of the Sasaki metric
to S∗X, and for clarity we write r for the length |ξ|, then near infinity we have

gcon = r−1dr2 + rds2.

(Substituting r̃ = r1/2, one sees the familiar presentation of the metric of a cone.) It
is straightforward to check that gcon is complete and that the normalized geodesic
flow γt is an isometry.

We will confirm in Section 5.4.3 that the almost complex structure Jcon provides
compact moduli spaces of holomorphic disks in the circumstances under considera-
tion. One can view the metric gcon as being compatible with the compactification
T

∗
X in the sense that near infinity, it treats base and angular fiber directions on

equal footing: near infinity, the metrics on the level sets of |ξ| are simply scaled by
the factor |ξ|1/2.

5.2. Lagrangians. Fix an analytic-geometric category C.

Lemma 5.2.1. For any C-subset V ⊂ T
∗
X, there exists r > 0 such that |ξ| has no

critical points on V ∩ T ∗X for |ξ| ≥ r.

Proof. The critical values of 1/|ξ| are a discrete C-subset of R. �

Lemma 5.2.2. Let W be a compact space, and let V ⊂ T ∗X be a subset such that
|ξ| has no critical points on V for |ξ| ≥ r. Then any map W → V is homotopic in
V to a map W → V|ξ|<r.
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Proof. By the Thom isotopy lemma, we may use the gradient of |ξ| to flow the
image of the map W → V . �

A subset V ⊂ T ∗X is said to be conical if it is invariant under the action of R+

by fiberwise dilations.

Lemma 5.2.3. If V is a conical ω-isotropic subset of T ∗X, then V ∩ T∞X is a
θ∞-isotropic subset of T∞X.

Proof. The one-form θ may be obtained from the symplectic form ω by contracting
with the Liouville vector field vθ. The action of R+ by dilations is generated by
vθ. �

As long as we assume that V ⊂ T
∗
X is a C-subset, we have the following very

general result.

Lemma 5.2.4. If V ⊂ T
∗
X is a C-subset such that V ∩ T ∗X is an ω-isotropic

subset of T ∗X, then V ∩ T∞X is a θ∞-isotropic subset of T∞X.

Proof. Let N∞X be the family with general fiber T
∗
X and special fiber the normal

cone N∞X of T
∗
X along the divisor T∞X. Let C ⊂ N∞X be the limit of V under

specialization in the family N∞X. (See [20], pp. 185–187, for an exposition of the
normal cone and the specialization of subsets.) By construction, C is a conical
subset satisfying C ∩ T∞X = V ∩ T∞X.

We claim that C is ω-isotropic. (The normal cone N∞X inherits a well-defined
ω-isotropic distribution.) If we can show this, then we are done by the previous
lemma. To see this, choose a Whitney stratification of N∞X compatible with C;
this is possible since V is a C-subset. Then the Whitney condition and the fact that
being ω-isotropic is a closed condition together imply the assertion: the tangent
spaces of the limit C are contained in the limits of the ω-isotropic tangent spaces
of V . �

We will need to separate θ∞-isotropic subsets of T∞X using the normalized
geodesic flow (Reeb flow). To organize this, we use a variant of the notion of a
fringed set from [12]. To define what a fringed set Rd+1 ⊂ R

d+1
+ is, we proceed

inductively. A fringed set R1 ⊂ R+ is any interval of the form (0, r) for some r > 0.
A fringed set Rd+1 ⊂ R

d+1
+ is a subset satisfying the following:

(1) Rd+1 is open in R
d+1
+ .

(2) Under the projection π : R
d+1 → R

d, the image π(Rd+1) is a fringed set.
(3) If (r1, . . . , rd, rd+1) ∈ Rd+1, then (r1, . . . , rd, r

′
d+1) ∈ Rd+1 for all 0 <

r′d+1 < rd+1.

It is easy to check that fringed sets as defined here are contractible.

Lemma 5.2.5. For i = 0, . . . , d, let V ∞
i ⊂ T∞X be θ∞-isotropic compact subsets.

Then there is a fringed set Rd+1 ⊂ R
d+1 such that for (δ0, . . . , δd) ∈ Rd+1, the

normalized geodesic flow (Reeb flow) separates the subsets:

γδi
(V ∞

i ) ∩ γδj
(V ∞

j ) = ∅, for i 
= j.

Proof. We prove the assertion by induction. For d = 0, there is nothing to prove.
Suppose we know the assertion for d − 1 and seek to establish it for d. For
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(δ0, . . . , δd−1) ∈ Rd, consider the θ∞-isotropic subset

V ∞
<d =

⋃
i<d

γδi
(V ∞

i ).

It suffices to show that there is δd = δd(δ0, . . . , δd−1) > 0 such that for all 0 < δ′d <
δd, we have

γδ′
d
(V ∞

d ) ∩ V ∞
<d = ∅.

Suppose this were not true. Then by the curve selection lemma (Proposition 3.2.5),
there is a C1 map α : [0, 1) → V ∞

d such that for all t ∈ (0, 1),

γt(α(t)) ∈ γt(V ∞
d ) ∩ V ∞

<d.

In particular, γt(α(t)) lies in the θ∞-isotropic subset V ∞
<d. But we calculate

d

dt
γt(α(t))

∣∣∣∣
t=0

= γ′
0(α(0)) + (γ0)∗α′(0).

Since α(t) lies in the θ∞-isotropic subset V ∞
d , α′(t) is in the kernel of θ∞ and we

arrive at the conclusion
θ∞(γ′(α(0))) = 0.

But this quantity is nonzero since γ′ is the Reeb vector field on T∞X. �
5.2.1. Exact Lagrangians. A Lagrangian i : L ↪→ T ∗X is said to be exact if the
restriction i∗θ is an exact differential form.

Lemma 5.2.6. Let L ⊂ T ∗X be a Lagrangian, Σ a compact Riemann surface with
boundary ∂Σ, and u : (Σ, ∂Σ) → (T ∗X, L) a differentiable map. Let A(u) =

∫
Σ

u∗ω
denote its symplectic area. Then we have

(1) A(u) depends only on the homotopy class in L of u|∂Σ.
(2) A(uε) = εA(u), where uε : (Σ, ∂Σ) → (T ∗X, εL) is the composition of u

with the dilation (x, ξ) �→ (x, εξ).
(3) If L is exact, u is constant.
(4) If u is holomorphic, then Area(u) = A(u).

Proof. For the first assertion, note that if γ1 and γ2 are homotopic loops in L and
S ⊂ L satisfies ∂S = [γ1] − [γ2], then

∮
γ1

θ −
∮

γ2
θ =

∫
S

dθ =
∫

S
ω = 0, since

S ⊂ L is ω-isotropic. To prove the second, for p = (x, ξ) ∈ T ∗X, let εp denote the
point (x, εξ) and note that θ|εp(εv) = εθ|pv. The third claim follows from exactness:∫
Σ

u∗ω =
∮

∂Σ
u∗θ =

∮
∂Σ

u∗(dψ) = 0. The fourth statement expresses the fact
that when J is a compatible almost complex structure, J-holomorphic maps are
calibrations for ω. �
5.2.2. Standard Lagrangians. Let Y ⊂ X be a submanifold. The conormal bundle
T ∗

Y X ⊂ T ∗X is homotopic to its zero section Y , and thus is an exact Lagrangian,
since θ is identically zero on the zero section X.

Given a defining function m : X → R≥0 for the boundary ∂Y ⊂ X, we define
f : X \∂Y → R by f = log m and define the standard Lagrangian LY,f ⊂ T ∗X|Y ⊂
T ∗X to be the fiberwise sum

LY,f = T ∗
Y X + Γdf |Y ,

where Γdf ⊂ T ∗X|X\∂Y denotes the graph of df and the sum is taken fiberwise
in T ∗X|Y . By construction, LY,f depends only on the restriction of m to Y : if
two functions agree on Y , then over Y their differentials differ by a section of the
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conormal T ∗
Y X. For this reason, in the sequel we will often refer to m and f as

functions on Y. Note that if Y is an open submanifold, we could equivalently take
m to be a defining function for the complement X \ Y .

Lemma 5.2.7. LY,f is canonically Hamiltonian isotopic to T ∗
Y X. In particular,

LY,f is exact.

Proof. To avert potential confusion, it is worth pointing out that T ∗
Y X is not nec-

essarily closed in T ∗X, and we will move LY,f through a family of Lagrangian
submanifolds which are not necessarily closed. In the subset T ∗X|Y ⊂ T ∗X, con-
sider the function H = f ◦π and the associated Hamiltonian flow ϕH,t. One checks
that ϕH,t applied to the Lagrangian LY,f takes it to its dilation (1 − t) · LY,f . In
particular, when t = 1, one arrives at the conormal Lagrangian T ∗

Y X. �
5.3. Brane structures. In order to define a Fukaya category of a symplectic man-
ifold M , one needs a grading on the Lagrangian intersections and orientations of the
relevant moduli spaces of holomorphic disks. (Alternatively, one could be satisfied
with an ungraded version of the Fukaya category with characteristic 2 coefficients.)
Topological obstructions to gradings come from the bicanonical bundle of M and
the Maslov class of Lagrangians. Orientation of the moduli spaces requires a rela-
tive pin structure on the Lagrangians, so that their second Stiefel-Whitney classes
must be restrictions of a (common) class on M.3 In this section, we show that all
obstructions to these structures vanish for M = T ∗X and the Lagrangians of inter-
est. In what follows, we always work with the canonical exact symplectic structure
on T ∗X, and the compatible almost complex structure induced by a Riemannian
metric on X.

5.3.1. Bicanonical line. The almost complex structure on T ∗X allows us to define
the holomorphic canonical bundle

κ = (∧dim XTholT ∗X)−1.

In order to compare the squared phase of Lagrangian subspaces at different points
of T ∗X, we need a homotopy class of trivializations of the bicanonical bundle κ⊗2.

Proposition 5.3.1. The bicanonical bundle κ⊗2 of T ∗X is canonically trivial.

Proof. Since the zero section X is a deformation retract of T ∗X, it suffices to
see that κ⊗2|X is canonically trivial. At the zero section, TT ∗X has a canonical
splitting into vertical and horizontal spaces,

TT ∗X|X = T ∗X ⊕ TX|X ∼= TX ⊗ C|X ,

where we have identified the cotangent bundle with the tangent bundle using the
metric, and identified the normal directions with the imaginary directions using the
compatible almost complex structure. As a result,

Thol(T ∗X)|X ∼= TX ⊗ C,

and we see
κ|X � π∗(orX) ⊗ C,

3Some authors have proven orientability under more restrictive conditions. In [33], Lagrangians
are assumed to be pin, while in [10] they are taken to be oriented and relatively spin. Our
more general condition follows Wehrheim and Woodward’s work in progress. We note that the
Lagrangians of interest for us will be canonically pin when X is pin, and canonically oriented and
relatively spin when X is oriented.
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where orX is the orientation line bundle. Thus κ is trivializable if and only if X is
orientable, and κ⊗2 is canonically trivial for any X. �

Remark 5.3.2. In general, trivializations of a complex line bundle over a space X
form a torsor over the group of maps X → C∗. Homotopy classes of trivializations
form a torsor over the group H1(X, Z).

5.3.2. Grading. Let η2 be the canonical trivialization of κ⊗2, and let LagT∗X →
T ∗X be the bundle of Lagrangian planes. We have the squared phase map

α : LagT∗X → U(1),

α(L) = η(∧dim XL)2/|η(∧dim XL)|2.
For a Lagrangian L ⊂ T ∗X and a point x ∈ L, we obtain a map α : L → U(1)

by setting α(x) = α(TxL). The Maslov class µ(L) ∈ H1(L) is the obstruction class

µ = α∗(dt),

where dt is the standard one-form on U(1). Thus α has a lift to a map α̃ : L → R

if and only if µ = 0. Such a lift is called a grading of the Lagrangian.

Remark 5.3.3. Choices of gradings of a Lagrangian L form a torsor over the group
H0(L, Z).

Next we check that our standard Lagrangians have canonical gradings. Recall
that to a submanifold Y ⊂ X and a defining function m : X → R≥0 for the
boundary ∂Y ⊂ X, we have the standard Lagrangian

LY,f = T ∗
Y X + Γdf ⊂ T ∗X,

where f : Y → R is given by f = log m.

Proposition 5.3.4. The Maslov class µ(LY,f ) ∈ H1(LY,f ) vanishes. In fact, there
is a canonical grading of LY,f .

Proof. Since LY,f is canonically Hamiltonian isotopic to T ∗
Y X, it suffices to check

the assertions for T ∗
Y X. Furthermore, since T ∗

Y X is a vector bundle over Y , it
suffices to check the assertions along Y . Let {ej}dim X

j=1 be an orthonormal frame
field for X along Y extending an orthonormal frame field {ej}dim Y

j=1 for Y . Note
that the zero section, and in particular the frame field {ej}dim X

j=1 , has a constant
squared phase equal to the identity of U(1). Thus we can equip it with the canonical
constant grading given by 0 in R. Then the frame field along Y given by {ej}dim Y

j=1 ∪
{Jej}n

j=dim Y +1 has a constant squared phase (−1)codimX Y in U(1). Thus we can
equip it with the canonical constant grading given by −(codimY X)π in R. �

We will see later that with the canonical grading on LY,f , the Fukaya morphism
complex homFuk(T∗X)(LX , LY,f ) has cohomology equal to the cohomology H∗(Y )
with its usual grading. Here we have written LX for the zero section T ∗

XX with its
canonical grading.

5.3.3. Relative pin structure. Recall first that the group Pin+(n) is the double cover
of O(n) with center Z/2Z × Z/2Z.4 A pin structure on a Riemannian manifold
L is a lift of the structure group of TL to Pin+(n). The obstruction to a pin

4There is another double cover Pin−(n) with center Z/4Z.
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structure is the second Stiefel-Whitney class w2(L) ∈ H2(L, Z/2Z), and choices of
pin structures form a torsor over the group H1(L, Z/2Z).

A relative pin structure on a submanifold L ↪→ M with background class [w] ∈
H2(M, Z/2Z) can be defined as follows. Fix a Čech cocycle w representing [w],
and let w|L be its restriction to L. Then a pin structure on L relative to [w]
can be defined to be an w|L-twisted pin structure on TL. Concretely, this can be
represented by a Pin+(n)-valued Čech 1-cochain on L whose coboundary is w|L.
Such structures are canonically independent of the choice of Čech representatives.

Remark 5.3.5. For a given background class [w], choices of relative pin structures
on L form a torsor over the group H1(L, Z/2Z).

We check that our standard Lagrangians have canonical relative pin structures
with respect to a canonical universal background class. Recall that to a submanifold
Y ⊂ X, and a defining function m : X → R≥0 for the boundary ∂Y ⊂ X, we have
the standard Lagrangian

LY,f = T ∗
Y X + Γdf ⊂ T ∗X,

where f : Y → R is given by f = log m.

Proposition 5.3.6. The second Stiefel-Whitney class w2(LY,f ) ∈ H2(LY,f , Z/2Z)
is the restriction of π∗(w2(X)). In fact, there is a canonical relative pin structure
on LY,f with background class π∗(w2(X)).

Proof. Since there is a canonical homotopy class of isotopies between LY,f ↪→ T ∗X
and T ∗

Y X ↪→ T ∗X, it suffices to check the assertion for the latter. The metric pro-
vides a canonical isomorphism between the restriction TT ∗

Y X|Y and the restriction
TX|Y . By functoriality, we have the desired relative pin structure. �

5.3.4. Definition of brane structures. Finally, we have the definition of a brane
structure on a Lagrangian.

Definition 5.3.7 ([33]). A brane structure b on a Lagrangian submanifold L ⊂
T ∗X is a pair b = (α̃, P ), where α̃ : L → R is a lift of the squared phase map and
P is a relative pin structure on L.

We have seen in the above discussion that our standard Lagrangians come
equipped with canonical brane structures. We refer to a standard Lagrangian
equipped with its canonical brane structure as a standard brane.

5.4. Definition of Fukaya category. In this section, we define the Fukaya A∞-
category Fuk(T ∗X). General foundations are taken largely from [33], and we re-
strict the discussion here to issues arising from noncompact Lagrangians. We as-
sume X is a compact, Riemannian, real analytic manifold, and equip T ∗X with its
canonical exact symplectic structure. Throughout what follows, we fix an analytic-
geometric category C and assume all subsets are C-subsets unless otherwise noted.

5.4.1. Objects. Fix once and for all the canonical trivialization η2 of the bicanonical
bundle κ2 and the background relative pin class π∗(w2(X)). All brane structures
will be with reference to these fixed structures. The following should be considered
a preliminary definition until we discuss perturbations.
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Definition 5.4.1. Objects of Fuk(T ∗X) are quadruples (L, E , b, Φ), where L ⊂
T ∗X is an exact Lagrangian submanifold such that L ⊂ T

∗
X is a C-subset, E → L

is a vector bundle with flat connection, b = (α̃, P ) is a brane structure on L, and
Φ is a collection of perturbations to be explained below.

When circumstances are clear, we often refer to an object of Fuk(T ∗X) by its
corresponding support Lagrangian. Given a submanifold Y ⊂ X equipped with a
local system LY , we refer to a standard Lagrangian LY,f equipped with the flat
bundle E = π∗(LY ⊗ orX ⊗ or−1

Y ), and its canonical brane structure b as a standard
object.

We have defined the objects from the point of view of the compactified cotangent
bundle T

∗
X in order to give a cleaner definition of the Lagrangians of interest.

Requiring L to be a C-subset of T
∗
X excludes various types of behavior near infinity

T∞X. For example, with our definition, we cannot have infinitely many intersection
points (as might occur for a helix on T ∗S1). Although we rule this out from the
beginning, certain theories of the Fukaya category on T ∗X allow such behavior.
Note that we use T

∗
X as a topological compactification, but not as a symplectic

compactification. From the point of view of constructing moduli spaces (see below),
our Lagrangians are noncompact.

5.4.2. Morphisms. To define the morphisms between two objects, we need to choose
Hamiltonian isotopies to move their underlying Lagrangians so that they do not
intersect at infinity, and have transverse intersections in finite space. As usual, the
intersections will depend on the choice of isotopies, but in a homotopically man-
ageable way. First, we explain a broad class of isotopies which provide a consistent
topological form for the intersections of our Lagrangians. In the next section, we
assume the existence of a more restricted class of isotopies which guarantee that
we may use moduli spaces of holomorphic disks to define composition maps.

Recall that a Hamiltonian function H : T ∗X → R is said to be controlled if
there is a compact set K ⊂ T ∗X such that outside of K we have H(x, ξ) = |ξ|.
The corresponding Hamiltonian isotopy ϕH,t : T ∗X → T ∗X equals the normalized
geodesic flow γt outside of K. By Lemma 5.2.5, for Lagrangians L0, L1 ⊂ T ∗X,
we may choose controlled Hamiltonian functions H0, H1 and a fringed set R ⊂ R

2

such that for (δ0, δ1) ∈ R, there is r > 0 such that

ϕH0,δ0(L0) ∩ ϕH1,δ1(L1) ⊂ T ∗X|ξ|<r,

and the intersection is transverse. Suppose that we consider objects of Fuk(T ∗X)
to come equipped with such data and that the brane structures and bundles are
transported via the perturbations. Then we may make the following definition.

Definition 5.4.2. For objects L0, L1 of Fuk(T ∗X), the space of morphisms is
defined to be

homFuk(T∗X)(L0, L1) =
⊕

p∈ϕH0,δ0 (L0)∩ϕH1,δ1 (L1)

Hom(E0|p, E1|p)[− deg(p)].

The integer deg(p) denotes the Maslov grading, or index, of the linear Lagrangian
subspaces at the intersection; see Sections 11e-11g of [33].

The differential on the complex of morphisms will be defined in Section 5.4.4
below along with all of the higher composition maps.
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5.4.3. Holomorphic disks. The composition maps of the Fukaya A∞-category are
defined by counting points (with orientations) in appropriate moduli spaces of holo-
morphic maps with respect to a compatible almost complex structure. To ensure
that the moduli spaces are well behaved, one must consider further perturbations,
as described by Seidel [33]. One must choose Floer perturbation data consisting of
a time-dependent Hamiltonian function and almost complex structure deformation.
One must also choose perturbation data on the Riemann surfaces to be mapped.

At the same time, we must check that the moduli spaces are compact. This
is delicate due to the fact that our Lagrangians are not necessarily compact. For
the case of closed Riemann surfaces and no Lagrangians, if we consider surfaces
intersecting a fixed compact set and with area less than a uniform upper bound, then
tameness of the target in the sense of [35, 2] ensures compact moduli spaces. It is a
standard fact that T ∗X, with its canonical symplectic form and the Sasaki almost
complex structure JSas associated to a Riemannian metric on X, is tame. To deal
with the boundary case with standard Lagrangians as boundary, it will be useful
to consider the conical almost complex structure Jcon introduced in Section 5.1.3.
Recall that near infinity, the conical metric gcon presents T ∗X as a cone over the
unit (co-)sphere bundle S∗X. It is straightforward to calculate explicitly that such
a metric has sectional curvature bounded from above and injectivity radius bounded
away from zero. Thus T ∗X equipped with the conical almost complex structure
Jcon is tame.

For the Lagrangian boundary case, one typically imposes additional conditions
on the Lagrangian submanifolds themselves. The fact that our Lagrangians are
exact means that none of the complications from the bubbling of spheres will be
present, but compactness still must be ensured. To achieve compact moduli spaces,
there are many possible strategies involving assumptions adapted to different sit-
uations. The situation for standard branes is robust: one can successfully apply a
diverse host of techniques including convexity statements, dilation arguments, and
energy bounds. Thus in the context of this paper, our choice of a specific uniform
definition of Fuk(T ∗X) is largely aesthetic. As with our use of Lagrangians lying
in some analytic-geometric category, we have decided upon the approach described
below since it is particularly easy to work with in applications to mirror symme-
try and representation theory. We will apply the sufficient tameness conditions for
compact moduli spaces derived in [35, 2]. They require that (1) there exists ρL > 0
such that for every x ∈ L, the set of points y ∈ L with d(x, y) ≤ ρL is contractible,
and that (2) there exists CL giving a two-point condition dL(x, y) ≤ CLd(x, y)
whenever x, y ∈ L with d(x, y) < ρL.

As the following example shows, standard Lagrangians do not necessarily satisfy
the above conditions with respect to the Sasaki metric gSas.

Example 5.4.3. Consider any smooth curve C ⊂ R2 and its conormal bundle
T ∗

CR2 ⊂ T ∗R2. If C has an inflection point, then T ∗
CR2 is not tame with respect

to the Sasaki metric gSas. Note that having an inflection point is a generic circum-
stance.

The reason for the above phenomenon is that the Sasaki metric gSas is very
asymmetric: vertical directions along co-sphere bundles grow with the radius, while
horizontal directions remain a fixed length. We have introduced the conical metric
gcon to remedy the situation. It is straightforward to check that for any compact
submanifold Y ⊂ X, the conormal bundle T ∗

Y X ⊂ T ∗X is tame with respect to
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the conical metric gcon (near infinity, the conormal is nothing more than a smooth
subcone of the ambient cone). While this fact is crucial, it is not the end of the story.
As the following example shows, standard Lagrangians associated to submanifolds
with singular boundaries are not necessarily tame with respect to gcon.

Example 5.4.4. Fix a point p ∈ R
2 and a smooth closed curve c : [0,∞) → R

2

with c(0) = p. Consider the complement U = R2 \ c and a standard Lagrangian
LU ⊂ T ∗R2 associated to U . If c has nonvanishing curvature in a neighborhood
of p, then LU will not be tame with respect to the conical metric gcon. Note that
nonvanishing curvature is a generic circumstance.

Now to ensure that we have compact moduli spaces, we will give ourselves some
added flexibility and assume that our Lagrangains come equipped with perturba-
tions Φ making them tame near infinity with respect to the conical metric gcon.
For our intended applications, this assumption is easily verified and poses no fur-
ther restrictions. (Furthermore, if one is willing to work with immersed but not
necessarily embedded Lagrangians, one could expect that there is no obstruction
to finding such perturbations. Since the foundations of the Fukaya category of im-
mersed Lagrangians are still not available in the literature, we will not pursue this
direction and insist for now that the perturbations exist.)

To make this precise, for a brane L to define an object of Fuk(T ∗X), we require
the existence of the following further perturbation data. First, by a perturbation of
L, we mean a one-parameter family of branes Lt ⊂ T ∗X ×R such that L0 = L and
for |ξ| > r > 0 sufficiently large, the product map Lt → R × (r,∞) given by the
parameter t and the length |ξ| is a proper submersion. (This guarantees that the
family of branes has constant topology near infinity.) Now fix a defining function
n : T

∗
X → R≥0 for the closure L ⊂ T

∗
X, and for ε > 0, let Nε(L) ⊂ T

∗
X be

the open neighborhood T
∗
Xn<ε. Given a brane L, we require the existence of a

smooth perturbation Lt such that for all ε > 0, the brane Lε is tame with respect
to the conical metric gcon and lies in Nε(L). It is worth pointing out that we do
not insist that the family Lt is uniformly tame with respect to t. (In fact, if the
original brane L is not tame, then of course it is impossible to find a uniformly tame
perturbation.) Similarly, we do not insist that the family Lt extends to infinity.
Neither circumstance causes any harm.

Lemma 5.4.5. Standard Lagrangians admit perturbations to Lagrangians tame
with respect to the conical metric gcon.

Proof. We will provide a concrete perturbation for standard branes. The interested
reader will note that the underlying construction is quite general and could be
applied to many branes. We will move our brane to a new brane L ⊂ T ∗X such
that in a neighborhood of infinity, its closure L ⊂ T

∗
X is diffeomorphic to the

product L∞ × (r,∞] of the boundary L∞ ⊂ T∞X with an interval. Moreover,
near infinity the new brane L will be uniformly close to the cone over its boundary
L∞. Since cones over compact submanifolds are tame with respect to the conical
metric gcon, this will immediately imply that L is also tame. In fact, though it is
unnecessary, we could go one step further and move L so that near infinity it is
equal to the cone over its boundary L∞.

With these general remarks in mind, let us turn to the case at hand of standard
branes. Fix a submanifold Y ⊂ X and a defining function m : X → R≥0 for the
boundary ∂Y ⊂ X, and consider the standard Lagrangian LY,f = Γdf |Y + T ∗

Y X ⊂
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T ∗X|Y ⊂ T ∗X where as usual f = log m. Our first step will be to move LY,f to a
standard Lagrangian associated to a submanifold with smooth boundary. For small
η > 0, choose an increasing function bη : R → R satisfying bη(s) = s for s ≥ η and
bη(s) = 0 for s ≤ 0. Consider the composition mη = b ◦ m and the submanifold
Yη = Ymη>0 ⊂ Y . Then for all sufficiently small η > 0, the boundary ∂Yη ⊂ X is a
smooth submanifold. Our first step is to perturb LY,f to the standard Lagrangian
LYη,fη

= Γdfη
|Yη + T ∗

Yη
X ⊂ T ∗X|Yη

⊂ T ∗X where we have set fη = log mη.
Let us assess what we have accomplished so far. If Y is open, then we claim that

LYη,fη
is tame. To see this, observe that ∂Yη is a smooth hypersurface with normal

coordinate m. Thus one can check directly in local coordinates that the conormal
bundle T ∗

∂Yη
X uniformly approximates LYη,fη

near infinity. If Y is not open, then
we must add a second step to our perturbation. In this case, observe that Y η is a
smooth submanifold with boundary ∂Yη with normal coordinate m. Thus one can
check directly in local coordinates that in a neighborhood of infinity, the closure
LYη,fη

⊂ T
∗
X is homeomorphic to the product L∞

Yη,fη
× (r,∞] of the boundary

L∞
Yη,fη

⊂ T∞X with an interval. Moreover, the boundary L∞
Yη,fη

is a piecewise
smooth Legendrian (if Y is closed, then it is in fact smooth; if Y is not closed, it
is a union of two submanifolds glued along their boundaries). Therefore we can
perturb L∞

Yη,fη
to a smooth nearby Legendrian L∞, and hence perturb LYη,fη

to a
nearby Lagrangian which near infinity is uniformly approximated by the cone over
L∞. �

Before continuing, let us make a couple of remarks. First, a comment about the
application of the above perturbations in the next section: given a brane L admit-
ting such a perturbation, it follows that its image under a controlled Hamiltonian
isotopy does so as well. Namely, we can simply conjugate the perturbation by the
isotopy since normalized geodesic flow is an isometry of the conical metric. It is
in this form that we will use the discussion of this section. Second, although it
is not necessary for the aim of this paper, it is worth pointing out that one could
allow the flexibility of any compatible almost complex structure as long as some
C0-bounds were obtained. What we have described is a simple concrete framework
to deal with standard branes and objects which arise in our intended applications.

5.4.4. Composition maps. Now we are ready to define the composition maps of the
Fukaya A∞-category Fuk(T ∗X).

Let L0, . . . , Ld be a finite collection of objects of Fuk(T ∗X). By Lemma 5.2.5,
we may choose controlled Hamiltonian functions Hi : T ∗X → R, for i = 0, . . . , d,
and a fringed set R ⊂ Rd+1 such that for (δ0, . . . , δd) ∈ R, there is r > 0 such that

ϕHi,δi
(Li) ∩ ϕHj ,δj

(Lj) ⊂ T ∗X|ξ|<r, for i 
= j,

and the intersections are transverse. Then as discussed in the previous section, by
assumption, we may apply further small perturbations so that the resulting branes
are tame with respect to the conical almost complex structure.

We consider objects of Fuk(T ∗X) to come equipped with such data. Then
by the results of [35], the moduli spaces of holomorphic maps from a disk with a
fixed number of marked boundary points taken to intersection points and boundary
arcs taken to individual branes is compact. In fact, by [35], we have an explicit
diameter bound on the image of any such holomorphic map. From this, one can
verify that our perturbation framework can be handled by standard techniques:
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the fringed set at infinity adds only a contractible space of data to the usual Floer
theory perturbations with compact support, and one checks that the remaining
noncompact perturbations lead to canonical isomorphisms. (See [28] for a discussion
of setting up the relevant continuation maps.) In summary, the usual methods of
organizing the perturbation data to obtain a well-defined A∞-category apply (we
refer the reader to the careful account in [33], Chapters 9 and 12). For example,
for a compactly supported time-dependent Hamiltonian Ht, moduli spaces with
moving boundary conditions provide isomorphisms between the identity functor
and the family of functors ϕHt,T . (See [28] for a discussion of which noncompactly
supported Hamiltonian isotopies provide isomorphisms.)

With the preceding in hand, we define the A∞-composition maps of Fuk(T ∗X)
as usual by their structure constants: they count the signed number of holomorphic
maps from a disk with d+1 marked boundary points with the appropriate boundary
conditions.

Definition 5.4.6. For L0, . . . , Ld objects of Fuk(T ∗X), one defines

md
Fuk(T∗X) : homFuk(T∗X)(L0, L1) ⊗ · · · ⊗ homFuk(T∗X)(Ld−1, Ld)

→ homFuk(T∗X)(L0, Ld)

as follows. Consider elements pi ∈ homFuk(T∗X)(Li, Li+1), for i = 0, . . . , d− 1, and
pd ∈ homFuk(T∗X)(L0, Ld). Then the coefficient of pd in md

Fuk(T∗X)(p0, . . . , pd−1)
is the signed sum over holomorphic maps from a disk with d + 1 counterclockwise
cyclically ordered marked points mapping to pi and corresponding boundary arcs
mapping to Li+1. Each map contributes according to the holonomy of its boundary,
where adjacent components Li and Li+1 are glued with pi.

By Lemma 5.2.6, there is no bubbling of spheres in the Fukaya category of an
exact symplectic manifold. As a result, the Novikov coefficient rings employed to
account for all possible areas of maps are unnecessary, and we content ourselves
with simply counting the maps, with no weighting by areas. This simplifies the
isomorphism of different perturbation data, since we need not keep track of the
changes in the areas of disks as the intersection points move.

6. Embedding of standard objects

In this section we will construct an embedding of the Morse A∞-category Mor(X)
into the Fukaya A∞-category Fuk(T ∗X). The embedding relies on rather delicate
and detailed perturbations of a collection of standard Lagrangians. After the neces-
sary preparations, we will be able to understand the moduli spaces of holomorphic
polygons bounding our perturbed Lagrangians in terms of Morse theory via the
theorem of Fukaya and Oh [9].

6.1. Preliminaries. Here we recall some of our conventions and notation concern-
ing the geometry of the cotangent bundle π : T ∗X → X. Throughout what follows,
we identify X with the zero section in T ∗X. We fix a Riemannian metric on X,
and write dX(x, y) for the distance between points x, y ∈ X.

Under the metric identification T (T ∗X) � T (TX), the canonical one-form θ on
T ∗X corresponds to the geodesic vector field vθ. On the complement of the zero
section T ∗X \ X, we have the normalized geodesic vector field v̂θ = vθ/|vθ|. It is
the Hamiltonian vector field for the length function H : T ∗X \ X → R given by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONSTRUCTIBLE SHEAVES AND THE FUKAYA CATEGORY 269

H(x, ξ) = |ξ|. We write γt : T ∗X \ X → T ∗X \ X for the normalized geodesic flow
for time t associated to v̂θ. By definition, if we identify a covector (x, ξ) ∈ T ∗X
with a vector (x, v) ∈ TX, then we have the identity

γt(x, v) = expx,t(v̂)∗(v),

where v̂ = v/|v|, the map expx,t : TxX → X denotes the exponential flow from the
point x for time t, and the asterisk subscript indicates the derivative (push-forward).
Note that for t sufficiently small – for example, less than half the injectivity radius
of X – we have dX(π(x, ξ), π(γt(x, ξ)) = t.

Given a stratification S = {Sα} of X, we define the associated conical Lagrangian
ΛS ⊂ T ∗X to be the union of conormals

ΛS =
⋃
α

T ∗
Sα

X.

Given a second stratification S ′ refining S, note the corresponding inclusion ΛS ⊂
ΛS′ .

Some usual notation: given a space Y , a function g : Y → R, and r ∈ R, we
write Yg=r for the subset {y ∈ Y |g(y) = r}, and similarly for inequalities.

6.2. Variable dilation. We will need to dilate a standard Lagrangian so that it
is as close as we would like to its associated conical Lagrangian. To achieve this in
a controlled fashion, we must consider two regions: (1) a neighborhood of infinity
where the Lagrangian is already close to its associated conical Lagrangian, and
(2) a compact region where dilation of the standard Lagrangian is a Hamiltonian
isotopy.

Let U ⊂ X be an open submanifold, with closure U ⊂ X and boundary ∂U =
U \ U . Fix a defining function m : X → R≥0 for the closed subset X \ U , and let
f : U → R be the function f = log m. Let L ⊂ T ∗X be the standard Lagrangian
given by the differential of f .

Lemma 6.2.1. For any � > 0, there is η > 0 such that Lm<η ⊂ L|ξ|>�. For any
η > 0, there is � > 0 such that Lm>η ⊂ L|ξ|<�.

Proof. Immediate from the definitions. �

Choose a stratification of X which refines the boundary ∂U ⊂ X, and let Λ ⊂
T ∗X denote the associated conical Lagrangian. Choose a defining function n :
T

∗
X → R≥0 for the closure Λ, and for any ε ≥ 0, let Nε(Λ) ⊂ T ∗X denote the

open neighborhood T ∗Xn<ε of Λ.

Lemma 6.2.2. For any ε > 0, there is � > 0 such that

L|ξ|≥� ⊂ Nε(Λ).

Proof. Recall that for a subset Y ⊂ T ∗X, we write Y ∞ for the intersection of the
closure Y ⊂ T

∗
X with the divisor at infinity T∞X ⊂ T

∗
X. The assertion follows

immediately from the inclusion L∞ ⊂ Λ∞. �

Fix positive numbers a < b ∈ (0,∞), and choose an increasing function da,b :
R → R satisfying the following:

da,b(r) =
{

r, for r ≥ log b,
log

√
ab, for r ≤ log a.
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In order to dilate the Lagrangian L, we consider the Hamiltonian flow ϕDa,b,t :
T ∗X → T ∗X generated by the function Da,b : T ∗X → R defined by

Da,b(x, ξ) =
{

−da,b(log m(x)), for (x, ξ) with m(x) 
= 0,
− log

√
ab, otherwise.

The motion of the Lagrangian L under the flow ϕDa,b,t is given by the variable
dilation

ϕDa,b,t(L) = (1 − td′a,b(log m(x))) · L.

In particular, the Lagrangian ϕDa,b,t(L) continues to be a graph over U , and coin-
cides with L over m ≤ a and with (1 − t) · L over m ≥ b.

Lemma 6.2.3. For any ε > 0, there is b > 0 and δ > 0 such that for all a′, b′ ∈
(0, b), a′ < b′, and δ′ > δ, we have

ϕDa′,b′ ,δ
′(L) ⊂ Nε(Λ).

Proof. By the previous lemmas, we may choose b > 0 so that

Lm≤b ⊂ Nε(Λ).

Since Λ is conical, ϕDa,b,t preserves Nε(Λ). Thus we need only choose δ > 0 so that

ϕDa,b,δ(Lm≥b) ⊂ Nε(Λ).

But Lm≥b is a compact set, and Λ contains the zero section of T ∗X. �

6.3. Separation. Here we discuss how to perturb a standard Lagrangian near
infinity. Namely, we show that near infinity we may separate it from a conical
Lagrangian without disturbing its structure elsewhere.

Let U ⊂ X be an open submanifold with closure U ⊂ X and boundary ∂U =
U \ U . Fix a defining function m : X → R≥0 for X \ U , and let f : U → R be the
function f = log m. Let L ⊂ T ∗X be the standard Lagrangian given by the graph
of df .

Let S = {Sα} be any stratification of X, and let ΛS ⊂ T ∗X be the corresponding
conical Lagrangian

ΛS =
⋃
α

T ∗
Sα

X.

Note that we do not assume that S has any relation to U or its boundary ∂U .
We say that x ∈ X is a ΛS-critical point of m if we have dm(x) ∈ ΛS . Note that

for x ∈ U this is the same as df(x) ∈ ΛS since df = dm/m and ΛS is conical. We
say that r ∈ R is a ΛS-critical value of m if there is a ΛS-critical point x ∈ X such
that r = m(x).

Lemma 6.3.1. There is η > 0 so that there are no ΛS-critical values of m : X →
R≥0 in the interval (0, η].

Proof. The ΛS-critical values of m form a discrete subset of R. �

The following strengthening of Lemma 5.2.5 will simplify our perturbations, as
we can choose the parameter η > 0 to be independent of sufficiently small δ > 0.

Lemma 6.3.2. There exist η > 0 and δ > 0 such that for all δ′ ∈ (0, δ], the
normalized geodesic flow satisfies

γδ′(Lm≤η) ∩ ΛS = ∅.
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Proof. We prove the assertion by contradiction. So suppose it were false.
First, recall that for all sufficiently small δ > 0, we have seen in Lemma 5.2.5

that
γδ(L∞) ∩ Λ∞

S = ∅.
Thus by the previous lemma, if the assertion were false, then by the curve selection
lemma there exists a δ > 0 and a subanalytic curve

�(t) = (x(t), ξ(t)) : [0, δ) → L

such that m(x(t)) → 0 as t → 0, and (after a possible reparametrization) we have

γt(�(t)) ∈ T ∗
Sα

X, for all t ∈ (0, δ),

for some fixed stratum Sα (we may fix α since there are finitely many strata).
Let κ(t) = (y(t), ζ(t)) ∈ ΛS denote the image curve γt(�(t)). Again by definition,

if we identify the covector (x(t), ξ(t)) ∈ T ∗X with a vector (x(t), v(t)) ∈ TX, then
we have

ζ(t)(w) = 〈expx(t),t v̂(t), w〉 = 0, for all t ∈ (0, δ), and w ∈ Ty(t)Sα.

Let x′(t) denote the tangent vector to the curve x(t). Since m(x(t)) → 0+ as
t → 0+, we have the inequality

ξ(t)(x′(t)) = 〈v(t), x′(t)〉 = 〈∇f(x(t)), x′(t)〉 =
d

dt
f(x(t)) =

1
m(x(t))

d

dt
m(x(t)) > 0

for t sufficiently small.
On the other hand, observe that dX(x(t), y(t)) = t, so that

d

dt
dX(x(t), y(t)) = 1.

But in general, consider x, y ∈ X connected by a geodesic with tangent vector vx

at x and vy at y. Then for any curves x(t), y(t) in X, with x(t0) = x, y(t0) = y, we
have

d

dt
dX(x(t), y(t))|t=t0 = 〈y′(t0), vy〉 − 〈x′(t0), vx〉.

In the case at hand, vx = v̂(t) and vy is its image under expx(t),t. But we have seen
that 〈y′(t0), vq〉 = 0, since y′(t0) ∈ T ∗

Sα
X, and also that 〈x′(t0), vx〉 > 0. Thus we

have
d

dt
dX(x(t), y(t))|t=t0 < 0,

and we have arrived at a contradiction. �

Fix positive numbers k < � ∈ (0,∞), and choose an increasing function gk,� :
R → R satisfying the following

gk,�(r) =
{

r, for r ≥ �,
(k + �)/2, for r ≤ k.

Consider the Hamiltonian flow ϕGk,�,t : T ∗X → T ∗X generated by the function
Gk,� : T ∗X → R defined by

Gk,�(x, ξ) = gk,�(|ξ|).
The flow ϕGk,�,t is related to the normalized geodesic flow γt by the formula

ϕGk,�,t = γg′
k,�(|ξ|)t
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(recall |ξ| is constant under γt). In particular, ϕGk,�,t is the identity when |ξ| ≤ k,
and is equal to γt when |ξ| ≥ �.

We have the following reformulation of the previous lemma.

Lemma 6.3.3. There is k > 0 and δ > 0 such that for all �′ > k′ > k and
δ′ ∈ (0, δ], we have

ϕGk′,�′ ,δ
′(L) ∩ ΛS = L|ξ|<k′ ∩ ΛS .

Proof. Immediate from the previous lemma and Lemma 6.2.1. �

6.4. Perturbations. We are now ready to describe how to perturb a collection of
standard Lagrangians. In what follows, let i denote an element of the index set
Z/(d + 1)Z.

Let Ui ⊂ X be an open submanifold with closure U i ⊂ X and boundary ∂Ui =
U i \ Ui. Fix a defining function mi : X → R for the closed subset X \ Ui, and
let fi : Ui → R be the function fi = log mi. Let Li ⊂ T ∗X be the standard
Lagrangian given by the graph of the differential of fi. Choose a stratification of
X which refines the boundary ∂Ui ⊂ X, and let Λi ⊂ T ∗X denote the associated
conical Lagrangian.

We will apply a sequence of Hamiltonian perturbations to the Lagrangians Li

to put them in a good position. In order to satisfy the definition of the Fukaya
category, the perturbations must be a positive normalized geodesic flow near infin-
ity. Furthermore, the amounts δi > 0 of a normalized geodesic flow with which we
move the Li near infinity must satisfy

(δ0, . . . , δd) ∈ R ⊂ R
d+1,

where R is some fringed set. Because of this requirement, we will work backwards
through the collection perturbing the Lagrangians in the order Ld, . . . , L0.

At the ith stage, each of our perturbations will consist of two steps. (1) We
will first variably dilate Li so that it becomes arbitrarily close to its associated
conical Lagrangian Λi. (2) We will then gently perturb it near infinity in the
direction of a positive geodesic flow. The first step will have three effects: (a)
all of the intersections of the resulting Lagrangian with the previously perturbed
Lagrangians will be near the zero section; (b) the height of the resulting Lagrangian
will be less than that of the previously perturbed Lagrangians along certain critical
contours; (c) intersections of the resulting Lagrangian with the associated conical
Lagrangian of yet-to-be perturbed Lagrangians will be near the zero section. The
second step will ensure that the first step is effective.

For each Lagrangian Li, we organize the discussion of its perturbation into four
parts:

• (Intersections) We first collect the other Lagrangians whose intersections
with Li must be either dilated close to the zero section or perturbed away
near infinity.

• (Dilation) The variable dilation to the zero section.
• (Separation) The small perturbation near infinity.
• (Conclusion) We finally organize the result so that we may proceed to the

next Lagrangian.
Throughout, we fix a positive number h > 0. We begin with the last Lagrangian

in the collection.
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Ld : (Intersections) Since there are no previously perturbed Lagrangians, our
aim here is simpler than in general. Let Λ≤d ⊂ T ∗X be the conical Lagrangian

Λ≤d =
⋃
j≤d

Λj .

To guarantee that intersections with the yet-to-be perturbed Lagrangians Lj , for
j < d, can be dilated close to the zero section T ∗

XX, we must dilate the intersection
Ld ∩ Λ≤d close to T ∗

XX.
(Dilation) By Lemma 6.3.1, the intersection Ld ∩ Λ≤d is compact.
Therefore we may choose σd > 0 such that the standard dilation satisfies

(σd · Ld) ∩ Λ≤d ⊂ Nh/2(T ∗
XX).

By compactness of the intersection and Lemma 6.2.1, we may choose ηd > 0 so that

(σd · Ld) ∩ Λ≤d ⊂ T ∗Xmd>ηd
.

To truncate this dilation near infinity, choose positive numbers ad < bd ∈ (0, ηd) and
a Hamiltonian function Dad,bd

as in Lemma 6.2.3. The resulting variably dilated
Lagrangian satisfies

ϕDad,bd
,δd

(Ld) ∩ Λ≤d ⊂ T ∗Xmd>ηd,|ξ|<h/2.

(Separation) Next, apply Lemma 6.3.3 to the dilated Lagrangian ϕDad,bd
,δd

(Ld)
and the conical Lagrangian Λ≤d. Let Md be the maximum of the length |σd ·Ld| in
the region md ≥ ηd. We may choose kd > max{h, Md} and a Hamiltonian function
Gkd,�d

such that for some εd > 0 the corresponding perturbation satisfies

ϕGkd,�d
,δd

(ϕDad,bd
,δd

(Ld)) ∩ Λ≤d = (ϕDad,bd
,δd

(Ld))|ξ|<kd
∩ Λ≤d.

(Conclusion) We set

L̃d = ϕGkd,�d
,δd

(ϕDad,bd
,δd

(Ld)) ⊂ T ∗X,

Ũd = Xmd>ηd
⊂ X,

Γ̃d = (L̃d)md>ηd,|ξ|<kd
⊂ L̃d.

Note that Γ̃d is a graph over Ũd. By construction, we have

Γ̃d = σd · (Ld)md>ηd
,

L̃d ∩ Λ≤d = Γ̃d ∩ Λ≤d ⊂ Nh/2(T ∗
XX).

At an arbitrary step, we proceed as follows.
Li: (Intersections) Let L̃>i ⊂ T ∗X be the union of the previously perturbed

Lagrangians
L̃>i =

⋃
j>i

L̃j .

We would like to dilate the intersection with L̃>i close to the zero section T ∗
XX.

We will not be able to move this intersection closer than the intersection L̃>i ∩Λi,
but at least this intersection is already close by induction.

Let Λ≤i ⊂ T ∗X be the conical Lagrangian

Λ≤i =
⋃
j≤i

Λj .
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To guarantee that intersections with the yet-to-be perturbed Lagrangians Lj , for
j < i, can be dilated close to T ∗

XX, we must dilate the intersection Li ∩ Λ≤i close
to T ∗

XX.
Let Λ>i ⊂ T ∗X be the union of conormals

Λ>i =
⋃
j>i

T ∗
∂Ũj

X.

To guarantee that there is not unmanageable behavior along the boundaries of the
previously defined open sets Ũj , for j > i, we must dilate the intersection Li ∩Λ>i

close to T ∗
XX.

We set
Λ[i] = Λ≤i ∪ Λ>i.

(Dilation) By induction, we have

L̃>i ∩ Λi ⊂ Nh/2(T ∗
XX).

Since L∞
i ⊂ Λ∞

i , it follows that

L∞
i ∩ L̃∞

>i = ∅,

and so the intersection Li ∩ L̃>i is also bounded. In addition, by Lemma 6.3.1, the
intersection Li ∩ Λ[i] is compact.

Therefore we may choose σi > 0 such that the standard dilation satisfies

(σi · Li) ∩ L̃>i ⊂ Nh(T ∗
XX),

(σi · Li) ∩ Λ[i] ⊂ Nh/2(T ∗
XX).

Furthermore, for σi > 0 sufficently small, we may arrange for

|σi · Li| < min
j>i

Mj , above the compact set (σi · Li) ∩ Λ>i,

where Mj denotes the maximum of the length |σi · Li| in the region mi ≥ ηi. By
compactness of the intersections and Lemma 6.2.1, we may choose ηi > 0 so that

(σi · Li) ∩ (L̃>i ∪ Λ[i]) ⊂ T ∗Xmi>ηi
.

To truncate this dilation near infinity, choose positive numbers ai < bi ∈ (0, ηi)
and a Hamiltonian function Dai,bi

as in Lemma 6.2.3. The resulting variably di-
lated Lagrangian ϕDai,bi

,δi
(Li) satisfies all of the properties derived above for the

standard dilated Lagrangian σi · Li.
(Separation) Recall that we have

L∞
i ∩ L̃∞

>i = ∅.
We apply Lemma 6.3.3 to the dilated Lagrangian ϕDai,bi

,δi
(Li) and the conical

Lagrangian Λ[i]. Let Mi be as above. We may choose ki > max{h, Mi} and a
function Gki,�i

and an εi > 0 such that

ϕGki,�i
,δi

(ϕDai,bi
,δi

(Li)) ∩ Λ[i] = (ϕDai,bi
,δi

(Li))|ξ|<ki
∩ Λ[i].

(Conclusion) We set

L̃i = ϕGki,�i
,δi

(ϕDai,bi
,δi

(Li)) ⊂ T ∗X,

Ũi = Xmi>ηi
⊂ X,

Γ̃i = (L̃i)mi>ηi,|ξ|<ki
⊂ L̃i.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONSTRUCTIBLE SHEAVES AND THE FUKAYA CATEGORY 275

Note that Γ̃i is a graph over Ũi. By construction,

Γ̃i = σi · (Li)mi>ηi
,

L̃i ∩ L̃j = Γ̃i ∩ Γ̃j ⊂ Nh(T ∗
XX), for all j > i,

L̃i ∩ Λ[i] = Γ̃i ∩ Λ[i] ⊂ Nh/2(T ∗
XX),

|Γ̃i| < |Γ̃j | wherever Γ̃i ∩ T ∗
∂Ũj

X, for all j > i.

By following this procedure, we arrive at the following.

Proposition 6.4.1. The collection of Lagrangians L̃i, graphs Γ̃i, and open sets Ũi

satisfies the following:

(1) L̃i ∩ L̃j = Γ̃i ∩ Γ̃j, for i 
= j.
(2) |ξ|2 has no critical points on L̃i \ Γ̃i.
(3) (Ũi, Γ̃i) form a transverse collection in Mor(X); see Definition 4.6.4.

Proof. The last assertion is the only part left to check. By construction, the collec-
tion of boundaries ∂Ũi are transverse. To see if (Ũi, Γ̃i) is transverse, we need only
check that there is a metric for which the corresponding difference vector fields
point in the appropriate inward and outward directions. Such a metric may be
constructed locally wherever the level sets of the defining functions are transverse.
By construction, at any places where transversality fails the relative sizes of the
vector fields have been arranged to allow for a metric to be constructed. �
6.5. Relation to Morse theory. The PSS isomorphism refers to an equivalence
between Floer homology and singular homology, and appears in both Hamilton-
ian and Lagrangian Floer theory; see Section 3 of [1] for a recent discussion. In
the context of Lagrangian graphs in the cotangent bundle of a compact manifold,
Fukaya and Oh [9] extended this to an identification of the Morse and Fukaya
A∞-categories by establishing an oriented diffeomorphism of the moduli spaces of
gradient trees and holomorphic polygons involved in the definition of the higher
composition maps. In the local setting of graphs over open sets with transverse
boundaries, Kasturirangan and Oh [21, 22] prove an equivalence of the Morse and
Floer chain complexes. In this section, we adapt the approach of Fukaya and Oh
to prove an A∞-equivalence of Morse and Fukaya A∞-categories which include all
standard objects. To do this, we first recall the theorem of Fukaya and Oh in
its original form (with notation modified to agree with ours), and then adapt our
situation to be able to apply their constructions.

Fukaya-Oh Theorem ([9]). Let (X, g) be a Riemannian manifold, and let JSas

be the canonical (Sasaki) almost complex structure on T ∗X. Let f = (f0, ..., fd) be
a generic collection of functions on X, and let Γ = (Γdf0 , ..., Γdfd

) be the graphs of
their differentials. For sufficiently small ε > 0, there is an oriented diffeomorphism
between the Morse moduli space of gradient trees of f and the Fukaya moduli space
of pseudoholomorphic disks (with respect to JSas) bounding the Lagrangians εΓ.

Recall that Proposition 6.4.1 of the preceding section provides, starting from a
collection L = (L0, . . . , Ld) of standard objects of Fuk(T ∗X), a perturbed collection
L̃ = (L̃0, . . . , L̃d). Above the open set Ũi = Xmi>ηi

, the perturbed object L̃i results
from dilating the original object Li, and thus in particular remains a graph

Γ̃i = (L̃i)mi>ηi
= σi · (Li)mi>ηi

.
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Furthermore, all intersection points of the compactifications L̃i occur among the Γ̃i,
and |ξ|2 has no critical points on the complements L̃i \ Γ̃i. Finally, in the category
Mor(X), we have a transverse collection of objects

Ũ = ((Ũ0, f̃0), . . . , (Ũd, f̃d)),

where the graph of the differential df̃i is precisely Γ̃i. In what follows, we write Γ̃
for the collection of partial graphs (Γ̃0, . . . , Γd).

We cannot apply the Fukaya-Oh theorem directly to the above situation for
several reasons. First, the perturbed Lagrangians L̃i are noncompact and are no
longer graphs. Moreover, as described in the previous section, we need to consider
the conical almost complex structure Jcon which is only equal to the Sasaki almost
complex structure JSas near the zero section. Finally, the functions f̃i and corre-
sponding graphs Γ̃i are defined only over the open sets Ũi. Instead, we pursue the
following strategy. Let us restrict our attention to the collection of bounded but
partial graphs Γ̃. For small enough ε > 0, the local nature of the Fukaya-Oh theo-
rem will give an identification of Fukaya and Morse moduli spaces for the dilated
collection εΓ̃. Here we are using the fact that the conical almost complex structure
Jcon is equal to the Sasaki almost complex structure JSas near to the zero section.
With this understood, we need only show that the Fukaya moduli spaces for εΓ̃
continue to calculate an A∞-structure quasi-isomorphic to that of the original un-
bounded but complete collection L̃. This comes down to showing compactness of
the moduli spaces for εΓ̃ (and similarly, compactness of the moduli spaces providing
continuation maps) as we vary the dilation parameter ε.

Details of this approach follow below. Throughout we work with the conical
almost complex structure Jcon and corresponding conical metric gcon associated to
a Riemannian metric on X. Our constructions will take place near the zero section
where these structures agree with the respective Sasaki structures.

(1) (Area bounds) First, choose a small η′
i > ηi, and consider the level-set

Xmi=η′
i
⊂ X.

Choose a small δi,h > 0, and define the annulus-like open set

Si ⊂ X

to consist of all points whose distance to the level-set Xmi=η′
i

is less than δi,h.
Consider the annulus-like partial graph

Gi = Γ̃i ∩ π−1(Si).

Finally, choose a very small δi,v > 0, and define the tube-like open set

Ti ⊂ T ∗X

to be the union of the vertical balls Bv
δi,v

⊂ T ∗X of radius δi,v centered at points
of Gi. Here by the vertical ball Bv

δi,v
around a covector (x, ξ) ∈ T ∗X, we mean the

ball in the fiber T ∗
x X centered at ξ.

By construction, for small enough δi,h > 0, the boundary of the partial graphs
Gi decomposes as a disjoint union of manfolds

∂Gi = Hin
i ∪ Hout

i ,
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where mi|Hin
i

> η′
i and mi|Hout

i
< η′

i. Furthermore, for small enough δi,v > 0, there
will be no interaction among the tubes:

Ti ∩ Tj = ∅, for i 
= j.

Our aim is to use the relatively compact region Ti to construct an area bound on
holomorphic disks. An important wrinkle is that we would like the bound to behave
well with respect to dilations of L̃i together with Ti towards the zero section. The
precise statement we need is contained in the following monotonicity bound from
[35].

Lemma 6.5.1. There exist constants Ri, ai > 0 such that the following holds for
any 0 < ε ≤ 1.

Consider a holomorphic map u : (D, ∂D) → (εTi, εGi). Then for any ball Br ⊂
εTi of radius r < εRi such that u(D) contains the center of Br, we have

Area(u(D) ∩ Br) > air
2.

Proof. For fixed 0 < ε ≤ 1, the assertion follows from Proposition 4.7.2 of [35] (note
that Sikorav’s proofs of 4.3.1(ii) and 4.7.2(ii) are entirely local – only the bounding
constants are global in nature).

What remains is the assertion that the bound can be achieved uniformly with
respect to dilation by ε. But the family of graphs εGi extends to a compact family
including ε = 0, where we simply take the zero section itself. Thus all of the
controls on the geometric complexity required to apply the area bound of [35] can
be achieved uniformly with respect to ε. �

The above bounds for ε = 1 allow us to control where disks with boundary along
L̃ can go. More precisely, we can fix a small radius 0 < ri < Ri such that any ball
Bri

of radius ri centered at a point of (Gi)mi=η′ fits inside Ti. Then by variably
dilating each L̃i while fixing Ti, we can arrange that any disk along the resulting
collection with a fixed number d of marked points has area less than the minimum
of the above bounds air

2
i . Thus the boundaries of the disks cannot pass through

the regions Gi and so must lie on the variably dilated Γ̃i.
(2) (Uniform dilation) Next, we take advantage of the homogeneity of the above

area bounds to see that we need not restrict ourselves to variable dilations of the L̃i,
but can in fact dilate the entire L̃i uniformly. The main point is that the argument
of the preceeding paragraph, which applies to ε = 1, is robust enough to allow the
Ti to be dilated to εTi as well.

To begin, we refine some of the choices made in the previous step. First, fix any
0 < δ′i,h < δi,h, and consider the smaller annulus-like region

S′
i ⊂ X

consisting of all points whose distance to the level-set Xmi=η′
i

is less than δ′i,h.
Similarly, consider the annulus-like partial graph

G′
i = Γ̃i ∩ π−1(S′

i).

For any such δ′i,h, we can find 0 < ri < Ri such that for any ball Bri
⊂ T ∗X of

radius ri centered at any point of G′
i, we have

Bri
⊂ Ti.
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Fix such a radius ri and also fix the area bound ai given by Lemma 6.5.1. As
explained above, after variably dilating each L̃i while fixing the Ti, we may assume
that the area of any disk along the resulting collection satisfies

Area(u(D)) < air
2
i .

Now, consider the absolute dilation εL̃ for any 0 < ε ≤ 1. We claim that for any
holomorphic map u : (D, ∂D) → (T ∗X, εL̃) with a fixed number of marked points
d, the boundary u(∂D) must in fact lie in εΓ̃. Suppose otherwise, and consider
a boundary path u(C) in εGi traversing from εHin

i to εHout
i . By construction,

through subdividing S′
i and considering the induced subdivision of εTi, we can find

1/ε disjoint balls Bεri
⊂ εTi of radius εri such that the path contains the centers of

the Bεri
. Thus the lemma gives the area bound

Area(u(D) ∩ εTi) > εair
2
i .

Since the possible area of disks with boundary on the collection also scales linearly
with the dilation paramter ε (cf. Lemma 5.2.6), we conclude that the initial area
bound for ε = 1 implies that the boundary u(∂D) must lie in εΓ̃.

(3) (Application of the Fukaya-Oh theorem) Finally, we apply the Fukaya-Oh
theorem. The key observation to make is that the proof of Fukaya-Oh given in [9]
is local in the following sense. Given a gradient tree in X for the functions f , the
corresponding holomorphic disk in T ∗X for the graphs εΓ will be in a neighborhood
of the gradient tree such that the size of the neighborhood goes to zero as ε goes
to zero. Conversely, any such holomorphic disk will arise in this way.

More precisely, starting from a gradient tree, Fukaya and Oh first construct an
approximate holomorphic disk wε. The distance between the gradient tree and wε

goes to zero as ε → 0. Next, an actual solution is proven to exist nearby in the
L∞-topology. The actual solution (in the notation of [9]) has the form expwε

(Qη).
The point is that by Theorem 9.1 of [9], for all δ > 0 there exists an ε > 0 such
that for all 0 < ε′ < ε, one has ‖Qη‖L∞ < δ. In other words, the distance between
the actual solution and the gradient tree can be made arbitrarily small as long as
ε goes to zero.

We conclude that by dilating our partial graphs Γ̃i over the open sets Ũi uni-
formly close to the zero section, any gradient tree for the collection f̃ will corre-
spond to a holomorphic disk with boundary on the Γ̃i. Finally, the area bounds
from the previous step implies that such holomorphic disks are the only ones to be
considered. We thus have arrived at our desired result.

Theorem 6.5.2. There is an A∞-quasi-equivalence between Mor(X) and the full
subcategory of Fuk(T ∗X) generated by the standard objects L = Γdf over open sets
U ⊂ X, where f : U → R is given by f = log m, and m : X → R≥0 is a defining
function for the complement X \ U .

7. Arbitrary standard objects

For future applications, it is useful to know where the embedding takes other
objects and morphisms. In particular, we would like to know not only where it takes
standard sheaves on open submanifolds, but also standard sheaves on arbitrary
submanifolds. As discussed in the Introduction, one approach to this problem is to
express standard sheaves on arbitrary submanifolds in terms of standard sheaves
on open submanifolds, and then to check what the relevant distinguished triangles
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of constructible sheaves look like under the embedding. This requires identifying
certain cones in the Fukaya category with symplectic surgeries. Rather than taking
this route, we will instead show in this section that we may explicitly extend the
domain of the embedding to include standard sheaves on arbitrary submanifolds
and morphisms between them.

We will follow very closely the steps used to define the embedding in the pre-
ceding sections. First, we will interpret the dg category Sh(X) of constructible
sheaves in terms of a category Sub(X) whose objects are submanifolds (equipped
with certain defining functions) and whose morphisms are complexes of relative de
Rham forms (on certain open submanifolds with hypercorners). Next, we will inter-
pret the category Sub(X) in terms of an extended version of the category Mor(X)
built out of Morse theory. Finally, we will explain how the work of Fukaya-Oh
may be adapted to identify Mor(X) with a full subcategory of the Fukaya category
Fuk(T ∗X). Because of the amount of overlap with the preceding sections, we will
only explain the new wrinkles which arise and not repeat all details.

Before continuing, we state where the embedding takes the standard sheaf i∗LY

associated to a local system LY on an arbitrary submanifold i : Y ↪→ X. Suppose
that we are given a defining function m : X → R≥0 for the boundary ∂Y ⊂ X.
Recall that we define the standard Lagrangian LY,m ⊂ T ∗X to be the fiberwise
sum

LY,m = T ∗
Y X + Γd log m,

where T ∗
Y X ⊂ T ∗X is the conormal bundle to Y and Γd log m ⊂ T ∗X is the graph

of the differential of log m. As explained in Section 5.3, it comes equipped with a
canonical brane structure b, along with a flat bundle E = π∗(LY ⊗orX ⊗or−1

Y ). We
write LY,m,LY

for the corresponding object of Fuk(T ∗X). The main consequence
of this section is the following.

Theorem 7.0.3. Under the quasi-embedding Sh(X) ↪→ TwFuk(T ∗X), the image
of the standard sheaf i∗LY is canonically isomorphic to the standard brane LY,m,LY

.

In what follows, we limit the discussion to the case of trivial local systems since
the arbitrary case is no more difficult. This will help streamline the exposition –
for example, we write LY,m for the object LY,m,LY

when LY is trivial.

7.1. Submanifold category. In Sections 4.4 and 4.5, we introduced the dg cate-
gory Open(X). The results of this section generalize that discussion.

We define a dg category Sub(X) as follows. The objects of Sub(X) are triples
(Y, m, n), where Y ⊂ X is a submanifold, m : X → R≥0 is a defining function
for its boundary ∂Y ⊂ X, and n : X → R≥0 is a defining function for its closure
Y ⊂ X. To define the complex of morphisms from an object Y0 = (Y0, m0, n0) to
an object Y1 = (Y1, m1, n1), we introduce some perturbations. It will be clear that
the choices range over a contractible set, and that they can be made compatible
for any finite collection of objects. We will use the following general statement
repeatedly.

Lemma 7.1.1. Let Y = (Y, m, n) be an object of Sub(X), and let Λ ⊂ T ∗X be
an arbitrary conical Lagrangian. There is a fringed set R ⊂ R

2 such that for all
(η, κ) ∈ R, we have

(1) η is not a Λ-critical value of m,
(2) κ is not a Λ-critical value of n,
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(3) (η, κ) is not a Λ-critical value of m × n.

Proof. Critical values form a closed C-subset, and their complement is dense. �

First, fix a Whitney stratification S0 of X compatible with Y0 ⊂ X, and let
ΛS0 ⊂ T ∗X be the conical conormal set associated to S0. Apply the preceding
lemma to Y1 = (Y1, m1, n1) and ΛS0 to obtain a fringed set R1 ⊂ R2. For any
(η1, κ1) ∈ R1, let T1 ⊂ X be the open submanifold with corners

T1 = {x ∈ X|m1(x) > η1, n1(x) < κ1}.

We think of T1 as a tube around Y1. We refer to the codimension one boundary
piece

E1 = {x ∈ X|m1(x) = η1, n1(x) < κ1}
as the end of T1, and the codimension one boundary piece

S1 = {x ∈ X|m1(x) > η1, n1(x) = κ1}

as the side of T1.
Next, for any (η1, κ1) ∈ R1, fix the Whitney stratification S(η1,κ1) of X given by

T1, the codimension one pieces of its boundary, the corners of its boundary, and the
complement of its closure. Now let ΛS(η1,κ1) be the conical conormal set associated
to S(η1,κ1). Apply the lemma to Y0 = (Y0, m0, n0) and ΛS1 to obtain a fringed set
R0 ⊂ R2. For any (η0, κ0) ∈ R0, let T0 ⊂ X be the open tube

T0 = {x ∈ X|m0(x) > η0, n0(x) < κ0},

with end
E0 = {x ∈ X|m0(x) = η0, n0(x) < κ0}

and side
S0 = {x ∈ X|m0(x) > η0, n0(x) = κ0}.

We will also need the relative dualizing objects ωT0/Y0 , ωT1/Y1 . To construct
these, choose retracting fibrations of pairs

π0 : (T0 ∪ E0, E0) → ((T0 ∪ E0) ∩ Y0, E0 ∩ Y0),

π1 : (T1 ∪ E1, E1) → ((T1 ∪ E1) ∩ Y1, E1 ∩ Y1),

consider the restrictions π0 = π0|T0 , π1 = π1|T1 , and define

ωT0/Y0 = π!
0CY0 , ωT1/Y1 = π!

1CY1 .

Concretely, ωT0/Y0 , ωT1/Y1 are canonically isomorphic to the local systems (placed
in degrees − codimY0, − codimY1) on T0, T1 of relative orientations along the fibers
of π0, π1 respectively.

Finally, we define the morphisms in the dg category Sub(X) to be given by the
relative de Rham complex

homSub(X)(Y0, Y1) = (Ω(T0 ∩ T1, E0 ∪ S1; ω−1
T0/Y0

⊗ ωT1/Y1), d).

Given a finite collection of objects of Sub(X), we may generalize the above per-
turbation procedure in order to define the composition of morphisms as the wedge
product of differential forms.
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Proposition 7.1.2. For submanifolds i0 : Y0 ↪→ X, i1 : Y1 ↪→ X, we have a
canonical quasi-isomorphism

homSh(X)(i0∗CY0 , i1∗CY1) � (Ω(T0 ∩ T1, E0 ∪ S1; ω−1
T0/Y0

⊗ ωT1/Y1), d).

The composition of morphisms coincides with the wedge product of differential
forms.

Proof. The proof is similar to the proofs of Sections 4.4 and 4.5.
Consider the inclusions

T0
s0
↪→ T0 ∪ S0

e0
↪→ X, T1

s1
↪→ T1 ∪ S1

e1
↪→ X.

Then by de Rham’s theorem, we have a quasi-isomorphism

homSh(X)(e0∗s0!ωT0/Y0 , e1∗s1!ωT1/Y1) � (Ω(T0 ∩ T1, E0 ∪ S1; ω−1
T0/Y0

⊗ ωT1/Y1), d).

One may identify the left hand side of this quasi-isomorphism with that of the
proposition using standard identities as in Lemma 4.4.1, and repeated applications
of the Thom isotopy lemma as in Lemmas 4.5.1 and 4.5.2. We leave the details
including the last assertion to the interested reader. �

By the preceding proposition, we may define a dg functor

P : Sub(X) → Sh(X)

by sending an object Y = (Y, m, n) to the standard sheaf i∗CY , where i : Y ↪→ X is
the inclusion. The induced dg functor on twisted complexes TwP : TwSub(X) →
Sh(X) is a quasi-equivalence.

7.2. Morse theory interpretation. In Section 4.6, we introduced the A∞-cate-
gory Mor(X) and showed it is quasi-equivalent to Open(X). The results of this
section generalize that discussion.

We extend the definition of Mor(X) as follows. As with Sub(X), we take the
objects of Mor(X) to be triples (Y, m, n), where Y ⊂ X is a submanifold, m : X →
R≥0 is a defining function for its boundary ∂Y ⊂ X, and n : X → R≥0 is a defining
function for its closure Y ⊂ X. To define the complex of morphisms from an object
Y0 = (Y0, m0, n0) to an object Y1 = (Y1, m1, n1), we introduce some constructions
refining those of the previous section.

To refine the procedure of the preceding section, we first fix (η1, κ1) ∈ R1 and
consider the function

f1 = log m1 − log(κ1 − n1).
For any positive κ1 < κ1, we have the open tube

T1 = {x ∈ X|m1(x) > η1, n1(x) < κ1}.
If κ1 is sufficiently close to κ1, then there is a convex open set of Riemannian
metrics on X for which the gradient ∇f1 is inward pointing along the end E1 and
outward pointing along the side S1.

We next proceed similarly and choose (η0, κ0) ∈ R0 and consider the function

f0 = log m0 − log(κ0 − n0).

For any positive κ0 < κ0, we have the open tube

T0 = {x ∈ X|m0(x) > η0, n0(x) < κ0}.
For sufficiently small positive η0, and κ0 sufficiently close to κ0, there is a convex
open set of Riemannian metrics on X for which the gradient ∇f1 −∇f0 is inward
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pointing along the end E0 ∩ T1 and outward pointing along the side S0 ∩ T1. To
ensure analogous but opposite behavior along the end T0 ∩E1 and the side T0 ∩S1,
we proceed as follows. By moving f0 to a new function f̃0, we may arrange it so
that there is an open convex set of Riemannian metrics on X for which the gradient
∇f1 − ∇f̃0 is outward pointing along the end T0 ∩ E1 and inward pointing along
the side T0 ∩ S1. Furthermore, for an open convex set of Riemannian metrics on
X, we continue to have that ∇f1 −∇f̃0 is inward pointing along the end E0 ∩ T1

and outward pointing along the side S0 ∩ T1.
Finally, we choose small perturbations of our functions and metric, and define

the morphisms of Mor(X) to be the Morse complex

homMor(X)(Y0, Y1) = (
⊕

p∈Cr(T0∩T1,f1−f̃0)

Hom(ωT0/Y0 |p, ωT1/Y1 |p), m1
Mor(X)).

The verification that this is a well-defined complex is similar to Lemma 4.6.3. As
usual, to define the higher compositions, one generalizes the above procedure se-
quentially for a finite collection of objects. The details of this are no more compli-
cated than in other contexts considered earlier. Similarly, the fact that we obtain
an A∞-category follows from homological perturbation theory along the same lines
as the arguments of Section 4.6.4. In addition, as in Section 4.6.4, homological
perturbation theory also provides an A∞-quasi-equivalence

M : Sub(X) → Mor(X).

7.3. Identification with standard branes. In Sections 6.4 and 6.5, we explained
how to calculate morphisms in the Fukaya category among standard branes asso-
ciated to open submanifolds. In this section, we adapt that discussion to the case
of standard branes associated to arbitrary submanifolds.

Recall that given a defining function m : X → R≥0 for the boundary ∂Y ⊂ X,
we define the standard Lagrangian LY,m ⊂ T ∗X to be the fiberwise sum

LY,m = T ∗
Y X + Γd log m,

where T ∗XY ⊂ T ∗X is the conormal bundle to Y and Γd log m ⊂ T ∗X is the graph
of the differential of log m. It comes equipped with a canonical flat bundle and
brane structure and thus may be considered as an object of Fuk(T ∗X).

7.3.1. Perturbations. We first explain the necessary modifications to the pertur-
bation procedure of Section 6.4. Recall that our perturbations were made up of
two steps: a variable dilation followed by a separation at infinity. In our current
setting, this may not be enough to guarantee that the height of our Lagrangians
will be small enough along certain critical contours. Namely, it may not hold that
the pairwise differences of our Lagrangians provide vector fields with prescribed
inward and outward behavior along the codimension one boundary components
of the intersections of certain open tubes. Thus we will add a third independent
step: a final variable dilation. Before explaining this, we first comment on the only
substantive change in the first two steps.

The first step involving a variable dilation remains the same. But we will change
the second step as follows. Rather than using it solely to separate Lagrangians near
infinity, we will also use it to tilt our standard branes so that they become very
close to being graphs over open subsets. We will explain this in the setting of a
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single standard brane LY,m and leave it to the reader to repeat the arguments of
Section 6.4 using this version of the separation step.

We reinterpret the separation flow as follows. Fix large positive numbers k <
� ∈ (0,∞), and choose a decreasing function bk,� : R → R satisfying the following:

bk,�(r) =
{

1, for r ≤ k,
0, for r ≥ �.

It will be convenient to consider the translation of the cotangent bundle T ∗X where
the zero section is given by the scaled Lagrangian

Z = bk,�(|ξ|) · Γd log m.

Note that though Γd log m is a singular graph, the function bk,�(|ξ|) is constructed
to be zero near the singularities. Thus the section Z is a well-defined graph over
all of X. Observe that fiberwise addition by Z is a symplectomorphism.

Fix κ > 0, and consider the function h : R → R defined by

h(r) =
∫ r

0

−1 +
√

1 + 4r2κ

2r

for r 
= 0, and h(0) = 0. Note that h is differentiable. Consider the Hamiltonian

H(x, ξ) = h(|ξ − Z|),
where we take the length of the fiberwise difference. The associated vector field vH

is in the direction vθ with length h′(|ξ − Z|). Thus the flow ϕH,t associated to vH

is nothing more than a rescaled version of the geodesic flow.
The point of choosing h as we have is the following. Applying ϕH,t to the

standard Lagrangian Γd log m leads to a perturbation with similar characteristics as
that considered in Section 6.3. Applying ϕH,t to the standard Lagrangian LY,m

produces a perturbed Lagrangian which is a graph over an open tube T around Y .
To be more precise, recall from the preceding sections the construction of the tube
T associated to an object Y = (Y, m, n). Namely, we fix (η, κ) in the fringed set R,
and then for any positive κ < κ, we form the open tube

T = {x ∈ X|m(x) > η, n(x) < κ}.
Now assume that within the region m ≥ η the defining function n is equal to half
the squared-distance from Y . (Note that this is not a significant constraint, since
we may choose m and η independently beforehand.) Then over the tube T , the unit
time perturbation ϕH,1(LY,m) will be the graph of the differential of the function

f = log m − log(κ − n).

In the next section, we will use this compatibility with the previously defined Morse
category Mor(X) in order to see that calculations in Mor(X) agree with those in
the Fukaya category Fuk(T ∗X). Note that although the above perturbation is
only an asymptotically normalized geodesic flow, it may easily be modified to be
precisely normalized geodesic flow near infinity without changing any of its other
properties.

Finally, we add a third step to our perturbation procedure to ensure that the
height of our Lagrangians will be small enough along certain critical contours.
Namely, we must further move our perturbed Lagrangian to guarantee that in anal-
ogy with Proposition 6.4.1, when we consider multiple standard Lagrangians, their
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pairwise differences will have the correct behavior (inward and outward pointing)
along the boundaries of the intersections of the corresponding tubes.

7.3.2. Relation to Morse theory. The arguments of Section 6.5 extend directly to
this setting. To simplify things, we may work with objects Y = (Y, m, n) such
that n is equal to half the squared-distance from the closure Y ⊂ X away from
the boundary ∂Y ⊂ Y . More precisely, we may assume n is equal to half the
squared-distance from Y within the region m ≥ η, where (η, κ) is in the fringed set
R for small enough κ. Then as we have seen, our Morse perturbations and Fukaya
perturbations are compatible. To control the possible holomorphic polygons, we
proceed similarly as in Section 6.5. The only amendment is that here for each object
Y = (Y, m, n), when we show that polygons do not escape as in Lemma 6.5.1,
we begin the arguments with a region S which is a small neighborhood of the
hypersurface with corners

Xm=η′,n≤κ′ ∪ Xm≥η′,n=κ′ .

Then as before, applying the theorem of Fukaya and Oh provides the desired
identification of moduli spaces. In conclusion, we obtain an A∞-quasi-embedding
Mor(X) ↪→ Fuk(T ∗X) extending that of Section 6.5, and that takes the standard
object Y = (Y, m, n) to the standard brane LY,m.

7.4. Other objects. Here we informally mention another class of objects of Sh(X)
which also go to Lagrangians under our quasi-embedding: the so-called tilting per-
verse sheaves. These may be thought of as extensions of flat vector bundles on
submanifolds with boundary conditions somewhere between the standard and co-
standard extensions. While the intersection cohomology or intermediate extension
is cohomologically between the standard and costandard extensions, the tilting ex-
tension (if it exists) is geometrically between the two. To understand this, note
that one can view the standard Lagrangian LY,m as giving a vector field on Y
which is everywhere inward pointing along ∂Y , and similarly, the costandard La-
grangian −LY,m as giving a vector field which is everywhere outward pointing.
The Lagrangians associated to tilting perverse sheaves give vector fields which are
sometimes inward and sometimes outward pointing over prescribed parts of the
boundary.

Rather than further developing this picture here, we content ourselves with giving
an example and picking up the discussion elsewhere. Consider the complex line
C � R2 with coordinate z, and let i : U ↪→ X be the open subset U = {z ∈ C|z 
=
0}. Given the defining function m(z) = |z|2/2 for the point 0 ∈ C, the standard
Lagrangian corresponding to the standard sheaf i∗CU is given by the graph of
the real part of dz/z. Similarly, the costandard Lagrangian corresponding to the
costandard sheaf i!CU is given by the graph of the real part of −dz/z. The graph
of the real part of dz/zn, for n ≥ 2, is a Lagrangian corresponding to a tilting
perverse sheaf. In particular, for n = 2, it corresponds to the indecomposable
tilting extension of the constant sheaf on U .
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