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Abstract

Current peer-to-peer (P2P) file sharing applications
are remarkably simple and robust, but their inefficiency
can produce very high network loads. The use of super-
peers has been proposed to improve the performance of
unstructured P2P systems. These have the potential to
approach the performance and scalability of structured
systems, while retaining the benefits of unstructured
P2P systems. There has, however, been little consensus
on the best topology for connecting these super-peers,
or how to construct the topology in a distributed, robust
way.

In this paper we propose a Scalable Unstructured
P2P System (SUPS). The unique aspect of SUPS is a
protocol for the distributed construction of a super-
peer topology that has highly desirable performance
characteristics. The protocol is inspired by the theory
of random graphs. We describe the protocol, and
demonstrate experimentally that it produces a balanced
and low-diameter super-peer topology at low cost. We
show that the method is very robust to super-peer
failures and inconsistent information, and compare it
with other approaches.

1. Introduction

Peer-to-peer (P2P) file sharing, where files are
searched and downloaded between hosts or peers with-
out the need for central servers, has emerged as a
major component of Internet traffic over the last few
years, The growth rate of P2P has been phenomenal.
As a consequence, P2P systems have reached their
limit on the performance as their traffic overwhelms
the available bandwidth capacity of the underlying
Internet [11].

P2P systems generally form, at the application level,
a decentralized overlay network with its own routing
mechanism. Due to its decentralized nature, the topol-
ogy of the overlay network and it’s routing mechanism

determine such system properties as performance, ro-
bustness, and scalability. So far, two major categories
of P2P systems have been introduced.

The most common P2P systems are the simple
and practical unstructured P2P systems where data
are shared among peers in a naive fashion. In these
systems, data are stored anywhere in the system and
are located by broadcasting queries to all peers within a
specified distance. These methods are simple, practical,
and highly robust to changes in the overlay network
topology. However, the inefficiency of broadcasting
raises doubts about their scalability.

For Internet-scale applications, scalability is a pri-
mary issue, perhaps the primary issue. Many ways
have been proposed to address this problem of un-
structured P2P methods. A particularly important class
of proposals for improving scalability is structured
P2P systems. In a structured P2P system, network
topology and data placement are carefully designed
in order to support efficient and scalable searching.
The drawbacks of such methods are their additional
complexity, lower robustness and adaptability, and lim-
ited search capabilities (e.g., for range and keyword
matching queries). For these reasons, structured P2P
systems are not considered further in this paper.

Another proposal for unstructured methods has been
the addition of super-peers. Super-peers are selected
for their larger capacity and greater capabilities from
among the set of peers. This approach essentially
creates a hierarchical overlay network, where the top
layer consists of the super-peers, and the bottom layer
consists of the peers. While retaining most of the
simplicity and flexibility of unstructured systems, the
addition of super-peers has the potential to substan-
tially improve their efficiency and scalability. To date,
however, there has not been a thorough examination
of how to organize the super-peers (i.e., what topology
they should have) to maximize their benefits to the
fullest extent.



In this paper we propose a new P2P system enti-
tled the “Scalable Unstructured P2P System” (SUPS).
SUPS is an unstructured P2P system in which the
interconnections between super-peers are selected to
approximate a random graph. The super-peers organize
in a fully distributed way, such that the resulting over-
lay network will have a balanced load and a logarithmic
diameter, with minimum node degree. Attention is paid
to recovery from super-peer failure, and the method
rapidly adapts to changes in the set of peers and
super-peers. The super-peer topology construction and
maintenance protocols are described. We investigate
the performance by means of simulation, and conclude
by comparing with two other approaches.

2. P2P Systems

In this section we briefly review some previously-
proposed P2P systems.

In P2P systems, file locations are stored in a dis-
tributed index. The major design issues are the topol-
ogy of the P2P network, the organization of the dis-
tributed index, and the strategy for querying that index.

Unstructured P2P systems have little or no re-
lationship between the network topology and index
placement. Generally, these peers self-configure into
an overlay network with no particular intended topol-
ogy. Since these systems have no coupling between
the network topology and data placement, locating a
desired file is not easy. A blind search that probes
the whole network (i.e., flooding) is the typical query
method ([14], [12]). In many unstructured P2P systems,
files are replicated at multiple peers. The result is that
excessive bandwidth is consumed both for flooding the
queries and for receiving the responses. To mitigate
the waste of bandwidth, most unstructured systems
sacrifice data availability by bounding the scope of
the flooding process. The appeal of such methods is
their simplicity, their flexibility, their robustness, the
scalability of searching (which is conducted in parallel
by many peers), and their adaptability to frequent
changes in the set of available peers and files. Be-
cause of these attractive qualities and the undoubted
success of such approaches, considerable research has
been conducted to analyze these systems ([11], [17],
[19], [8]), and to propose methods of reducing their
bandwidth requirements ([20], [12], [16], [15], [10]).

A popular example of an unstructured P2P system is
Gnutella ([2], [5]). Each Gnutella peer independently
creates connections to a set of neighbors known from
past experience (i.e., cached), or learned from a well-
known server. The actual selection process is random.
Once connected, peers use “ping” and “pong” mes-
sages to maintain the overlay network. Querying in

Gnutella is handled by flooding; any peer having a
matching index responds by routing the response back
on the reverse path to that taken by the query. Gnutella
bounds the scope of flooding to a maximum path length
of 7 peers.

To make unstructured systems more scalable, the
concept of super-peers has been suggested. The use
of super-peers creates a two-layer hierarchy in the P2P
system. Popular examples include KaZaA [6] (based
on the proprietary Fasttrack [1] technology), and a new
version of Gnutella [3]. In these systems, super-peers
are specially designated nodes with higher bandwidth
connectivity. The super-peers connect to each other,
forming the upper level in the overlay network hier-
archy. Each super-peer acts as a server on behalf of
a set of client peers, who form the lower level of the
network hierarchy. The super-peers normally construct
a topology and propagate queries in the same fashion
as unstructured P2P systems. Super-peer systems thus
represent a balance between the inherent efficiency of
centralized search and the autonomy, load balancing,
and robustness of distributed search methods [21]. In
addition, they exploit the heterogeneous peer capabili-
ties (e.g., bandwidth and processing power) which are
normal in most P2P systems ([19], [15], [10]).

In Gnutella v0.6 [3], super-peers are termed ultra-
peers, and were introduced to overcome scalability
problems. The specification of the ultrapeer topology
has not been described in detail, and there is little ex-
perience yet with deployment, so the impact on actual
performance has not been reported. It is recommended
that client peers connect to two or three ultrapeers for
reliability purposes. The proposed number of connec-
tions each ultrapeer should maintain is 32 (normally
6), while the proposed maximum number of clients in
a cluster is 30 [7], without detailed justification. We
believe the addition of super-peers can substantially
improve the scalability of P2P systems. A question that
remains unanswered, however, is what the optimum
topology for the super-peer network is, and how that
topology can be constructed. In the next section we
present the basis of our approach for constructing this
topology, and in the section following that, we present
the method itself.

3. Basis For The Method

We believe the most important requirement for a
scalable P2P network should be to construct a topology
with a low diameter. We focus on the topology of
the super-peers, since they are responsible for storing
and searching the index. One consequence of a low
diameter is that every query can be flooded to all super-
peers over relatively short paths, ensuring that data will



be found if it exists. In addition to low diameter, it is
desirable to construct a topology that is mostly regular,
for load balancing purposes and avoidance of hot spots.
Finally, minimizing the number of links or connections
in the network is important for efficiency.

3.1. Random Graph Theory

Random graphs were originally investigated by
Erdös and Rényi ([13], [9]), and shown to have a
number of highly desirable properties. We summarize
below some of the theory of random graphs for the
model proposed by Erdös and Rényi, which we call
the ER model. This theory inspired our method for
dynamically constructing the super-peer network.

G (n,M), denoted as GM , is an ER model that con-
sists of all graphs with vertex set V = {1, 2, · · · , n}
having M edges, in which the graphs have the same
probability, and M is a function of n. A random graph
GM is generated by a random graph process (or simply
graph process); a Markov chain G̃ = (Gt)∞0 , whose
states are graphs on V . The process starts with the
empty graph and for 1 ≤ t ≤ (

n
2

)
the graph Gt is

obtained from Gt−1 by the addition of a single edge, all
new edges being equiprobable. Then Gt has exactly t
edges and maps to GM at time M . During the process,
most of the properties of the random graphs appear
rather suddenly, that is, for M below a certain value
almost no GM has the properties, while for M above
this value, almost every GM has the property.1 Suppose
Q is a certain property of graphs, then the value of M
at which Q suddenly appears is called the hitting time
or threshold of Q.

Among many properties of the random graphs, some
properties are closely relevant to our objective. The
first of them is the property of strong homogeneity.
That is, a GM is an almost regular graph such that its
vertices have about the same degrees. This property is
relevant to the load balancing of our objective. While
random, totally regular graphs are too complicated to
be generated, simple random graphs which are almost
regular are quite simple to generate.

The second property of concern is graph connec-
tivity, which is certainly desired for P2P systems.
Erdös and Rényi showed that (n/2) ln n is a sharp
threshold function for connectedness. That is, as long
as at least (n/2) ln n edges are maintained, the network
will be connected with high probability. In addition, it
can also be proved that almost every graph becomes
k-connected at the same time its minimum degree
becomes k.

1Note that the term ‘almost every’ in this context means that the
probability tends to 1 as n → ∞.

The most important property for our purposes is the
diameter of random graphs (the diameter of a graph
G, denoted diam(G), is the maximal shortest distance
between any pair of vertices of G). We are especially
interested in the diameter of the sparsest connected
random graphs GM , which is the diameter at the hitting
time of connectedness in a graph process. If the hitting
time of connectedness is τ , then Erdös and Rényi
proved that almost every graph process G̃ is such that⌊

ln n − ln 2
ln lnn

⌋
+ 1 ≤ diam(Gτ ) ≤

⌈
ln n + 6
ln lnn

⌉
+ 3.

In other words, almost every random graph GM with
M ≥ (n/2) ln n has a diameter of Θ(lnn/ ln lnn).

These properties of the ER model are very attractive
for P2P systems. Unfortunately, it is not possible to
directly apply the ER model to P2P systems due to their
dynamic nature. In particular, the ER model assumes
the graph has a fixed set of vertices; only edges are
added by the random graph process. In unstructured
P2P systems, in contrast, the set of peers and super-
peers may be continually changing, and their number
may grow and shrink in unpredictable ways. It is
not possible, therefore, to directly construct a random
graph in a way consistent with the ER model.

3.2. A Random δ-Process

We now present a method of approximating the
ER model for graphs where the number of vertices is
allowed to change, as will be the case for P2P systems.

As discussed above, for the ER model the hitting
time of connectedness is (n/2) ln n, where n is the
number of vertices. This means the average vertex
degree is ln n. While the ER model does not guarantee
a non-trivial bound on vertex degree, in our method
we require that the minimum vertex degree be �ln n�.
The motivation for this is to produce networks that
are connected and almost regular. We will denote the
minimum required vertex degree as δ(n) (when n is
understood, we will simply refer to this as δ).

For a graph with a fixed set of n vertices, we
propose to modify the random graph process in the
following way. Rather than add edges between all
vertices equiprobably, at each step we add an edge
between a vertex with degree less than δ and a vertex of
minimum degree. These vertices are selected randomly
from among the vertices that qualify. The process
terminates when all vertices have degree at least equal
to δ. We call this a random δ-process. It is somewhat
similar to the random d-process of [18], where the
degree is bounded above by a maximum value. It
is a simple and fast way to generate random graphs
with degree restrictions. The resulting graphs are not



guaranteed, however, to have the properties of the ER
model.

We now extend the δ-process to the case of graphs
with varying numbers of vertices. Suppose a graph has
been constructed as above, for a fixed set of vertices
of size n, and a new vertex is added to this set. The
process of adding this vertex is just as above: add
edges, one at a time, between a vertex with degree
less than δ(n + 1) and a vertex of minimum degree,
until the degree of all vertices is at least δ(n + 1).
Conversely, when a vertex is removed from a graph of
size n that has been constructed as above, of course all
edges connected to this vertex are also removed. From
among the remaining vertices, the process is as before:
add edges, one at a time, between a vertex with degree
less than δ(n − 1) and a vertex of minimum degree,
until the degree of all vertices is at least δ(n − 1).

While the size of the graph may thus vary, the
desired minimum degree, which is a function of the
graph size, is maintained by the above process. Each
time the graph size changes, given sufficient time the
δ-process will terminate with the required minimum
degree.

Figure 1 shows an example of the δ-process, starting
with 6 vertices and δ = 2. When a new vertex 7
joins in (step a), δ is still 2, 2 edges must be added
to the graph. First an edge is added to a randomly
selected vertex with minimal degree, which is vertex
6, followed by an edge to randomly-selected minimal-
degree vertex 4. When a new vertex 8 joins (step b),
δ becomes 3; 3 edges between vertex 8 and other
vertices must be added. Vertex 7 is first selected (since
it has minimum degree), and then two more vertices are
randomly selected. When a new vertex 9 joins (step c),
several candidates with the same minimal degree are
randomly selected to have an edge with vertex 9. When
an existing vertex 6 leaves (step d), its neighbors 1,5,7,
and 8 lose one edge each. However, only vertex 8 now
has a degree less then δ = 3 and must add an edge to
a random vertex with minimal degree.

3.3. Comparison of Random δ-Process and ER
model

The key factor in the graph process of the ER model
lies in its pure randomness in creating edges, with all
new edges equiprobable and independent. The problem
introduced when the number of vertices changes over
time is that the vertices have different durations. Ignor-
ing this when adding edges would produce a bias such
that vertices with longer durations would tend to have
higher degree than vertices with shorter durations.

Our random δ-process restricts the vertex degree to
correct this bias. Although it can not be claimed that

the result is a random graph consistent with the ER
model, our experimental results (section 5) indicate the
δ-process produces graphs with properties very similar
to random graphs. Even under highly dynamic condi-
tions, with unreliable peers, and using approximations
required for distributed execution, the graphs produced
are always connected, have logarithmic diameters, are
almost regular, and have low degree. The next section
describes a protocol based on the δ-process described
above.

4. Implementation

In this section, we present a “Scalable Unstruc-
tured P2P System” (abbreviated SUPS), which is a
protocol for constructing the super-peer topology of
an unstructured P2P system. The concept of super-
peers and a two-level hierarchy is a natural way to
exploit the heterogeneity of peers. The goal of SUPS
is to significantly improve the performance of super-
peer overlay networks at low cost. We substitute the
terms “networks” and “nodes” (super-peers) in this
discussion of implementation, in place of the terms
“graphs” and “vertices” from the previous discussion
of the basic algorithm.

SUPS is designed for dynamic P2P systems in
which peers join and leave the network at a very high
rate, which is normally the case. The disruption rate
(number of nodes affected) by a node joining or leaving
is very low, and the method of accomplishing joins and
leaves is fully distributed.

The protocol implements the random δ-process de-
scribed in the previous section. With a simple degree-
bounded process, the resulting topology provides the
most efficient underlying structure for systems requir-
ing scalability and high performance. This process
relies on a single invariant, which is the minimum
degree of the system, δ. SUPS estimates δ in a dis-
tributed manner, eliminating the need for super-peers to
have knowledge of the global topology. The estimation
mechanism provides not only the correct value to the δ-
process, but also tolerates failures and concurrent joins
and leaves, an important consideration for P2P systems.

The SUPS protocol is intended only to create the
super-peer topology. We assume that normal (non-
super) peers are each connected to 2 super-peers for
reliability. We also assume that super-peers are selected
from normal peers that have high bandwidth, high
computing power, a long residence time, and a low
likelihood of failure, as suggested in [4]. The detailed
choice of super-peers remains as a separate research
topic not addressed in this paper.

Control messages required for topology construction
are “piggybacked” onto normal query messages, which



Figure 1. An example of δ-process, starting with 6 vertices (δ=2): (a) after a vertex 7 joins (δ=2),
(b) after a vertex 8 joins (δ=3), (c) after a vertex 9 joins (δ=3), (d) after a vertex 6 leaves (δ=3).
[white circle=existing vertex, grey circle=minimal degree vertex, black circle=vertex requiring more
neighbors, dashed line=existing edge, solid line=new edge]

are flooded throughout the network. Since each super-
peer forwards requests on behalf of a large number of
peers, intervals when there are no queries to be sent
are likely to be quite short.2

4.1. Distributed Random δ-Process

SUPS uses the random δ-process that we presented
in section 3.2 for generating its super-peer topology. It
is therefore important to have an accurate estimate of
the network size N , so that the appropriate value for δ
is used. The estimation method is fully distributed, and
each node i computes its estimate Ni independently, as
described in section 4.3.

Using the local estimate Ni, the local value of δi

is computed as �ln Ni� + 1. This value for δi is one
greater than that explained in the previous section, to
provide a greater degree of fault tolerance in the face
of inaccuracies in the estimates Ni.

A node computing a new value for Ni invokes the
δi-process whenever its number of neighbors (d(i))
becomes less than δi. This can occur as the network
size grows, or as connections are terminated when
previous neighbors leave the system. The δi-process
adds connections to new neighbors until the node has
δi neighbors.

A node wishing to connect to a new neighbor at-
tempts to choose the super-peer with the lowest degree
among all super-peers. Each query message originated
by node i includes its ID, its current local estimate
of the system size Ni, and its current number of
neighbors d(i). Since queries are flooded to all super-
peers, every node has an estimate of the degree of
every other node in the system at all times. Each node
i maintains a sorted list, called MinList(i), of the
ln Ni lowest-degree nodes in the system, according to

2In the unlikely event this occurs, each super-peer can maintain
a timer to generate an empty query, just for the purposes of
transmitting a control message throughout the network.

its estimates.3 Neighbors are added in increasing order
of their estimated degree, with ties broken randomly (as
required by the δ-process). Maintaining these lists at
each node provides robustness in the event of failures,
and/or a high degree of concurrency (rapid changes in
the number of nodes and connections in the network).
For each node in the list, the node ID, current degree,
and its most recent estimate of N is stored by i.

4.2. Node Joins and Leaves

In a dynamic P2P system, new nodes will join and
need to establish connections with existing nodes, and
existing nodes will leave, requiring other existing nodes
to establish new connections. The challenge for SUPS
is to maintain a nearly-correct estimate Ni of the
current size of the network at all nodes.

As stated above, a normal peer is connected to two
super-peers. A normal peer selected by some process
to be promoted to a super-peer inherits the MinLists
and estimated values of N from each of its parents, for
purposes of reliability. It computes its estimate of Ni

as the ceiling of the mean of the estimates it gets from
its parents. Node i also creates its own MinList(i)
from the ln Ni lowest-degree nodes from either of
its parents’ MinLists (ties broken randomly). It then
creates connections to other super-peers in increasing
order of their estimated degree, as described previously.

When a new node joins, some of the existing nodes
may have to invoke the δ-process, if their new values of
δ become greater than their degrees. Our experimental
results (in section 5) shows that only a constant number
of nodes are affected by a join in this way. The reason
is that the function �ln N� + 1 changes only if N
increases or decreases by a factor of e from the value
it had when δ was last revised.

In case of a node leave or failure, its neighbors learn
of this event through the query timeout method; if a

3Before connecting to this node, i confirms that its estimate of
the node’s degree is correct by contacting that node.



node has not generated any queries for a time interval
of T , it is automatically removed from the system.
Some of the former neighbors may have to invoke
the δ-process as their degrees decrease, possibly below
their estimated value for δ. As explained above (and
shown by the experiments), this tends to affect only a
small number of nodes.

4.3. Local Estimation

Proper function of the δ-process requires an accurate
estimate of the global system size. This estimation
consists of two separate procedures. First, an update
procedure explicitly increments/decrements the local
Ni of each node i in response to join/leave events.
Second, an implicit synchronize procedure is used to
diminish the variance of these estimates between the
nodes.

We define the primary neighbors of a node j, noted
as Prim(j), as neighbors of j with an additional
function used for estimation purposes. Prim(j) is
chosen when node j joins the network. Specifically, the
first 3 neighbors to which node j connects when it joins
the network are designated as the primary neighbors of
j. If one of these 3 primary neighbors fails or leaves
the system, an existing non-primary neighbor of j is
randomly selected to replace it in Prim(j).

The purpose of these 3 primary neighbors is to notify
other nodes when node j joins or leaves the network.
Each broadcasts a Join(j) or Leave(j) message in such
an event; the triple redundancy provides resilience to
faults in the network. A node i performs an update
procedure, which increments or decrements its local
estimate Ni, upon receiving at least 2 out of these
3 Join(j)/Leave(j) messages within a time interval of
length T .

Although the update procedure would produce a
correct estimate, it may not work in an unreliable
network where node failures occur. That is, messages
may be received from less than 2 of the primary
neighbors for a variety of reasons. To enhance the
accuracy of estimation, after performing an update,
node i collects information from queries received from
the nodes on MinList(i) (as described above) for a
period of time of length T . Node i then replaces its
estimate Ni with the median of these values. The use
of the median will tend to exclude estimates that are
skewed by transient or local failures.

4.4. Costs

In some respects, SUPS has lower cost than other
approaches to constructing super-peer topology. This
is because fewer connections need to be established
and maintained to achieve a low diameter network.

The main overhead that is necessary is the additional
information that has to be distributed with each query,
i.e., the estimate of current system size, and the current
number of neighbors. This requires no more than 3-
4 bytes of overhead per query, which seems very
reasonable given that Gnutella message headers are 23
bytes in length.

5. Experimental Results

In this section, we use simulation to evaluate the
actual performance of the SUPS protocol. We inves-
tigate whether the protocol produces a topology with
properties similar to that of random graphs, as well as
some other important properties for P2P systems.

5.1. System Model for Simulation

Our simulation of SUPS focuses on the properties
of the super-peer topology as it is being generated and
maintained by the SUPS protocol. Note that all queries
are flooded to all super-peers, and path lengths are
fixed and almost regular. It is therefore not necessary to
simulate the actual propagation of queries to determine
network or processing load. The only effect of queries
that is simulated is their affect on the maintainence
of MinList at each node. For the sake of simplicity,
we also assumed that sufficient time elapses after each
join or leave for all super-peers to be informed, before
another join or leave occurs. In most experiments the
system was assumed to be reliable (i.e., no super-peer
or connection failures); in one experiment, however,
we measured the effect of failures on the protocol.

Our model of super-peer joins follows an M/M/∞
system with Poisson arrivals, exponential service time,
and no waiting time, assuming an unlimited system
size. Each simulation began with 4 fully-connected
nodes. The arrival rate of super-peers is chosen to
produce a desired average system size. This allows us
to measure the performance of SUPS as a function
of the system size. Simulation data are collected in
steady state only after processing 10,000 join/leave
events. Each data point is the average of 30 runs, using
different initial random number seeds. In most of the
simulations, we do not show the confidence intervals
because they are less than 1% of the value measured.

5.2. Metrics

To evaluate the properties of the topology generated
by the SUPS protocol, we measured the following four
values:

• The diameter of the topology at any point of
system duration is the longest shortest-path length
between any pair of nodes in the system. This rep-
resents an upper bound on the search path length,



which is the primary factor for the scalability.4 A
small diameter means that query responses will
be received quickly.

• The eccentricity of a node n is the longest
shortest-path from n to any other node in the
system; the maximum eccentricity over all nodes
is the same as the network diameter. We measure
the average eccentricity of the nodes to observe
the possible variation in the search path length.
Low eccentricity means that response times to
queries due to path lengths will not vary greatly.

• The node degree represents the number of con-
nections that must be maintained by that node.
A small average degree results in a low network
load, since each query message is flooded over
each connection. A low degree variance results
in better load balancing and an almost regular
topology. That is, no super-peer or connection in
the network will be significantly more congested
than another.

• The disruption rate of the system is the number
of nodes that are affected by a node leaving or
joining. This reflects the maintenance cost caused
by the dynamic behavior of the system.

• Finally, the fault resilience is measured by observ-
ing the difference between estimated values and
actual values of N and δ. The estimation error of
N and the estimation error of δ shows how well
the system tolerates any failures.

5.3. Results
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Figure 2. Diameter of the SUPS topology and
the theoretical bounds of ER.

Figure 2 depicts the results of an experiment in-
vestigating the diameter of the topologies produced
by SUPS, as a function of the system size.5 These
results are bracketed by the theoretical bounds of the

4In some other work, this distance would be called the maximum
hop-count.

5Since this experiment investigated very large system sizes, there
is only one measurement for each data point, and no confidence
intervals are available.

ER model. The measured performance of SUPS is well
within the bounds of the ER random graph model, and
approaches the lower of those bounds. The network
diameter grows sub-logarithmically as a function of
system size. The topologies produced by SUPS are
clearly very scalable, since the network diameter is
an upper bound on the search path length to reach
all nodes in the system. In addition, all topologies
produced were always connected, which is essential
for correct function.
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Figure 3. Max. eccentricity (Diameter) and avg.
eccentricity of nodes in SUPS.

Figure 3 shows the average node eccentricity and
maximum eccentricity (diameter) as a function of sys-
tem size, for a much smaller range of sizes. This ex-
periment demonstrates the difference between average
and maximum eccentricity is always less than 1. As a
result, search path length from anywhere in the system
is highly uniform.
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Figure 4. Degree distribution of SUPS.

Figure 4 shows the minimum, average, and maxi-
mum node degree, as a function of system size. The
variance is also shown by the error bars. The very
small variance implies that the topologies produced
were very regular, as for random graphs in the ER
model, and therefore network loads should be very
evenly distributed. The logarithmic growth in degree
means the topologies constructed attain a low diameter
very efficiently.



0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

100 300 500 700 900 1100 1300 1500 1700 1900

Number of Nodes

D
is

tr
up

tio
n 

R
at

e

Figure 5. Disruption rate of SUPS. % of nodes
affected by a node join/leave.

Figure 5 shows the disruption rate as a function of
system size. The disruption rate is a measure of the cost
of maintaining the network topology (i.e., the fraction
of nodes that have to adjust their connections) as nodes
join and leave the P2P system. The resulting rate is
approximately equal to 1.14/N . That is, an average
of 1.14 nodes are affected by each node joining or
leaving, regardless of the system size. This constant
maintenance cost is extremely favorable for highly
dynamic systems like P2P; scalable, efficient search
performance is achieved with a low maintenance cost,
rather than the high cost associated with structured P2P
approaches.
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Figure 6. Fault resilience of SUPS. Max. esti-
mation error of N and δ with varying fault rate
of nodes.

The final experiment investigated the fault tolerance
of the SUPS protocol; the results are shown in Figure 6.
In this experiment, the primary nodes responsible for
broadcasting information about node joins and leaves
fail independently with probability FR, for FR =
.05, .1, and .5 (5%, 10%, and 50%, respectively). The
results show that the maximum error in the estimated
value of N is low; more importantly, the maximum
error in the estimated value of δ never exceeds 1. These
results confirm that distributed estimation of N and
δ works very well despite conditions that are highly
challenging.

6. Comparison with Other Approaches

In this section we compare the performance of
SUPS with two other P2P systems: Gnutella v0.6 and
Gia. Each represents a different tradeoff of scalability,
efficiency, simplicity, and robustness.

Gnutella v0.6 ([3], [4]) is a widely used unstructured
P2P system with support for super-peers (termed “ul-
trapeers” in Gnutella). We compared with two versions
of the Gnutella ultrapeer topology, one with 6 connec-
tions per ultrapeer, and one with 32 connections per ul-
trapeer, as proposed in [7]. The topology is constructed
by a joining ultrapeer filling up 1/3 of the maximum
connections with the outgoing connections and the rest
with the incoming connections. Each node then main-
tains the given number of connections using ping/pong
when necessary. The difference in the diameter of
these two choices, compared with SUPS, is shown in
Figure 7 for varying network sizes. This figure shows
that SUPS for a 10,000-node network has a diameter
that is 50% smaller than Gnutella with 6 connections
per ultrapeer, and with approximately twice number
of connections. Compared with the Gnutella with 32
connections per ultrapeer, the diameter of SUPS is
about the same, but with 33% fewer connection.
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Figure 7. A comparison of SUPS and Gnutella.

Gia [10] is another recent approach to improve the
performance of unstructured P2P systems. Gia advo-
cates multiple levels of hierarchy, topology adaptation,
flow control, index replication, and a biased random
walk search procedure. It is an elegant and well-
reasoned proposal. Gia was compared with a randomly-
connected unstructured super-peer network, and shown
to support a higher query load (by several orders of
magnitude under some conditions). This is accomlished
primarily due to the use of random walks (rather than
flooding), and by exploiting the capacity differences of
different nodes.

The advantages of SUPS versus GIA, however, in-
clude the following:

• Gia is much more complex than SUPS.



• SUPS is a proposal for a small change to existing
P2P systems, affecting only the super-peer topol-
ogy construction. Gia is much less compatible
with existing systems and is therefore less likely
to be adopted.

• Gia’s performance depends on whether the match-
ing data is found quickly. In the worst case,
the random walk either (a) will give up without
finding a match, or (b) may have to traverse a
very long path (1-2 orders of magnitude longer
than SUPS). Searches for data that don’t exist
will always trigger this behavior. SUPS guarantees
data will be found if it exists, with very low
maximum search path length (diameter) whether
the data exists or not.

7. Conclusion

We presented a novel protocol for constructing a
super-peer topology for unstructured P2P systems. This
protocol is based upon randomly adding edges between
super-peers in a way that maintains a nearly-uniform
low node degree. We evaluated the performance of
the method and showed that it approximates well
the behavior of ER model random graphs. The re-
sulting topology has the lowest diameter (maximum
search path length) of any method presented to date
(Θ(lnN/ ln lnN)). At the same time, the topologies
produced are low cost and almost regular. SUPS has
a low maintenance cost for super-peers who join or
leave the network. Our protocol is fully distributed and
was shown to be robust to (a) rapid changes in the
set of super-peers, and (b) failures in the super-peers.6

Perhaps most importantly, our approach is relatively
simple, compatible with currently-deployed P2P sys-
tems, and has all of the advantages of unstructured
P2P systems.

Many ideas have been proposed to improve the per-
formance and scalability of unstructured P2P systems.
Some of these ideas are orthogonal to our approach
and could be combined with the approach of SUPS.

We speculate that our method of constructing
“random-like” graphs when the set of vertices is con-
stantly changing may be useful for other applications
that depend upon the properties of random graphs. We
are investigating the generalization of our method for
any such self-organized distributed systems.

6While it is desirable and normal to select super-peers that are
highly reliable, we believe attention to robustness and fault tolerance
in the face of failures or changes in network size will continue to
be an important requirement for P2P systems, including super-peer
overlays.
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[13] P. Erdös and A. Rényi. On Random Graphs I. Publ.
Math. Debrecen, 6:290–297, 1959.

[14] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and Replication in Unstructured Peer-to-Peer Networks.
In Proceedings of the 16th International Conference on
Supercomputing, 2002.

[15] Q. Lv, S. Ratnasamy, and S. Shenker. Can Hetero-
geneity Make Gnutella Scalable? In Proceedings of the
First International Workshop on Peer-to-Peer Systems
(IPTPS’02), 2002.

[16] G. Pandurangan, P. Raghavan, and E. Upfal. Building
Low-Diameter P2P Networks. In Proceedings of the
IEEE Symposium on Foundations of Computer Science,
2001.

[17] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping
the Gnutella Network: Properties of Large-Scale Peer-
to-Peer Systems and Implications for System Design.
IEEE Internet Computing Journal, 6(1), 2002.
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