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In this paper, we propose a new method of constructing a two-parameter random field W7, (s, t),
x € M, with values in a compact Riemannian manifold M possessing the property that the random
processes W7,(-,t) and W%,(s, -) are Brownian motions on the manifold M with parameters ¢
and s, respectively, issuing from the point . (By a Brownian motion on a manifold M with
parameter ¢ we mean the diffusion process generated by the operator —(t/2)Ajs, where Ay is
the Laplace operator on the manifold M .) For the case in which the manifold is a compact Lie
group, the two-parameter random field constructed in the paper coincides with the Brownian sheet
defined by Malliavin [1] in 1991. (Malliavin called this random field a Brownian motion with values
in C([0, 1], M), which is the set of continuous functions defined on the closed interval [0, 1] and
taking values in M .) Nevertheless, for the case in which the manifold is a compact Lie group, the
method proposed in the present paper essentially differs from that used in Malliavin’s paper.

1. FIRST STEP IN THE CONSTRUCTION OF THE RANDOM FIELD W73,

Suppose that M is a d-dimensional compact Riemannian manifold without boundary isomet-
rically embedded in R™. By a Brownian sheet with values in R™ we mean the family of m
independent standard Brownian sheets. Suppose that W, ¢ is an n-dimensional Brownian sheet.
Consider W, ¢ as a process taking values in the space C([0, 1], R™). We denote this process by the
symbol W, . We introduce the following notation: if F is a locally convex space, then E! denotes
C([0,t], E); if y € C([0,1],R™) is a continuous function, then WY denotes the distribution of
the process W{ = y+W,. If 1) € C([0, 1], R™), then we define the process (W7,); = 1 (t) + WY.
Suppose that WZ is the distribution of this process and E, . is the expectation with respect to the
measure WZ Further, U (M) denotes the e-neighborhood of the manifold M. We consider W7,
for functions y and v satisfying the conditions: y(0) € M, (0) = 0. The goal of this section
is to prove the existence of a limit (given below) with respect to the family of bounded continu-
ous cylindrical functions, where by a cylindrical function C([0, 1] x [0, 1], R™) — R we mean a

function f for which there exists a finite collection of points 71,..., 7, &1, ..., § and a function
f: R™ — R such that

Fw) = Flwlr, &), wlr, &), vy w(Tn, &)

This limit defines the measure Wﬁ/f bos b

_ R I00) PR
/ F)WY, o (dw) = lim —2 (W) ()ev- (M)}
C([0,s],Rm)* 5> e=0 WY{(WY)i(s) € Us(M)}
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Before proving the existence of such a limit, we consider the process
(qup,s)t = w(t) + Bf7

where : [0, 1] — R™ is a continuous function satisfying the condition ¥(0) = 0 and Bj is a
Brownian motion with parameter s issuing from the point z. The results obtained for this process
will be used for a subsequent construction.

Some results for the process (W7, );. Suppose that W7 _ denotes the distribution of the
process (W¢ s)¢ and E. ¢ is the expectation with respect to thls distribution.

Lemma 1. The limit

F@)Wiy 5,4 (dw) = lim Wz {(WZ, )i e U(M)}

/ z,w,s{f(w)l{(wz,S)tGUe(M)}}
C(l0,t],Rm™)

with respect to the family of continuous bounded cylindrical functions, exists and defines the mea-
sure Wi, , o, in the integral on the left.

Sketch of the proof. Let us find a function ]7: Rkt — R and a finite set of points 7, ..., T
such that

fw) = fw(m), ..., w(m),w@).
We have

/ F Wiy o o(d) =ty 20005 T -ty W, ()
o([o,4],’R™) Mot e=0 W7 fw:rw(t) € Us(M)}

: 1 W / W
= lim P"(m,0,dz P (o — 11,21, dxo) -
e=0 Pw(ta 07 UE(IM -z = @Z)(t))) /m ( ! 1) m ( 2 ! 1 2)

X/ Pw(t—Tk,ﬁjk,da?k_,_l)
UE(M_w(t)_Z)

X flzy+ 2+ 0T, .. an+ 2 +0(T), Tog1 + 2 + (1)),

where

1 |z — z|?
pY = - :
(1,2,dz) Grar)l? exp{ Ser } dz

Since the function in the integrand is bounded, it suffices, by Lebesgue’s theorem, to prove that
the following limit exists:

f(UE(M—z/z(t)—z)) f(xl +z+U(11), .. 41+ 2+ ¢(t))PW(t — Tk, Tk, ATh41)

lim W
e—0 P™(t,0,Uc(M — 2z —1(t)))
i fUE(M_¢(t)_z_xk) f(:vl 4249, g +ap+ 2+ V)PV (=75, 0, dapys)
= 111im .
e=0 PY(t,0,U(M — z — (1))

By M; we denote the manifold M —(t) —z—x and by My the manifold M —(t) — z. Further,
suppose that
1

[—— 1
Volm,d(ﬁ)

Ae = R
VOlm,d(ﬁ)

)’ Me =

)7
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where [ is the Lebesgue measure on R . We can easily see that the proof of the existence of this
limit can be reduced to that of the existence of the limit

e coy exp{ - % }/\s (dzpy1)
11m

= 2

=0 Jam eXP{—ilm';tl‘ }Me(dl‘kﬂ)
where g: R — R is another symbol for the function f introduced to indicate the dependence on
the last variable solely. We can easily show that, as € — 0, the measures A\, and p. converge
weakly to the surface measures on M; and My, respectively. [

)

Lemma 2. The limit (1) with respect to the family of continuous bounded cylindrical functions
exists.

Sketch of the proof. Suppose that Pw(t, y,T) = W¥(w : w(t) € T) is the transition probability
for the measure WY | where y € C([0, 1], R™). Further, suppose that the function

fo(o, s, R™F R
and the finite set of points 7, 75, ..., 7, satisfy the relation

fw) = Flw(n), w(m), ..., w(m), w(t)).

Let the symbol 7; denote the coordinate mapping. The proof is carried out by using the following
formula from [2, p. 204]:

/ F(@) WO (dw) = / P (r1, 0, dwy) / P¥(ry — 1, w1, dig)- -
c([0,s],Rm)t c([0,s],Rm) c([o,s],R™)

X / f(wl,...,wk+1)PW(t—Tk,wk,dwk+1)
75 (Ue(M—=9(t)—y(s)))

and applying Lemma 1 to the measure in the last integral. [J
2. ASYMPTOTICS IN ¢t FOR AN INTEGRAL OF SPECIFIC FORM

Proposition 1. Let i be an isometric embedding of the manifold M in R™ and g € C*(M).
Then

g |, 9) exp{— S }AM<dz> = 9lo) + 5 9) (c(0) ~seal(0)) — 5 Dasgly) + PR( ),

where |R(t,y)| < Kt'/?, K is a constant independent of y, scal(y) is the scalar curvature at the
point y, and the function c(y) is of the form

) = ZZ(aZW)w)

where the x* are the normal coordinates in a neighborhood Uy of the point y which are specified by
the homeomorphism of the neighborhood U, onto a neighborhood of zero U in R? . Independently
of the local coordinates, c(y) can be written as

1
\Q‘y — - scal(y)

1
= Ay Ayl — -
c(y) 5 Am Mmly 3

and, therefore, c(y) depends only on the embedding i .
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Sketch of the proof. We have obtained a more exact asymptotic expression in comparison with
that obtained for an integral of similar form in [3]. The idea of the proof is the same. [

Corollary 1. Suppose that g € C2(M). Then the following asymptotics is valid:
S 9() exp{ =52 b (a2)
S exp{—%})\M(dz)

where |Ry(t,y)| < Kit'/?, and K is a constant independent of y.

= 9(y) — 5 Dwgly) + tRa(t, ),

Corollary 2. Suppose that g € C*(M), y € M, and v is a Hélder function of Hélder order o,
1/3 < o < 1/2, such that (0) = 0. Suppose that Pry; is the projection mapping onto the
manifold M along the subspaces normal to the manifold and defined in a suitable neighborhood of
the manifold ¥y (t,y) = Pra(y +(t)). Then the following asymptotics is valid:

S 9(2) exp{ = O Ly (d2)

o[- e
where |Ra(t,y)| < Kot3*~1 and Ky is a constant.

= gly+var(t) — 5 Marg(y) + tRalt,v),

3. SECOND STEP IN THE CONSTRUCTION OF THE RANDOM FIELD Wf¢,

Suppose that f is a continuous bounded cylindrical function on C([0, s], R™)* and ¢: R — M
is a function which is the trajectory of the Brownian motion on M such that ¢(0) = x. Suppose
that P1 = {0 =tg < t; <--- <t, = 1} is a partition of the interval [0,1]. If E is a locally
convex space, then to each w € E' we can assign a finite sequence of n elements

(Wi, wa, ... wy) € B x B270 x oo x BinTin-1,

where w; is defined on the interval [0,¢; —t;_1] by the formula w;(t) = w(t;—1 +t). We define
the function ¢, ,;, on the interval [0, ¢; —t;—1] as follows:

Ot (0) = izt + 1) — (ti—1).

Let us define the measure W’}\’/‘,’%s’pl by the formula

/C([O | Ryt f(w) ?\4,%’,8,771(61(4)) :/;,([O | Ryt ?\4’900)51’3’751((1(&)1)
78 s m 78 7 mat

wywi (t1)
. WM ©tqty,S,ta—1t1 (dw2)' t
C([0,s] Rmyta—tr P
wn—1(tn—1—tn—2)
X Wop a2 (dwy) flwr, wa, .y why).
C([O 8] Rm)tn —tn—1 » Pty _1tn>S:tn n—1

It is readily verified that w;(t; — tZ 1)(0) € M, so that the measure WM o.s5,p, is well defined.
Further, let P, ={0=s59p <s1 <--- < s, =1} be a partition of the interval [0 1]. Now, suppose
that s is a time parameter. Instead of the symbol WM “o.s,p, » We shall write Wf/[ s.p, - Let us
define the measure W3, » p by the formula

/ F@WE . (dw) = / Wi, o p, (dn)
C([0,1],R™)1t C([0,1],R™)*1

C([071}7Rm)32,51 1y S2 1,P1

<[ T o5 () fon, ).
C([0,1],Rm)*n 01
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Theorem 1. For each x € M, if the meshes of the partitions P1 and Py tend to zero, then
the sequence of measures Wi, p p, is weakly convergent to the measure W3, with respect to the
family of continuous bounded cylindrical functions. The measure W9, regarded as the distribution
of a process with values in C([0, 1], M), possesses a transition probability at time t coinciding
with the distribution of the Brownian motion with parameter t on the manifold issuing from the
point x .

Sketch of the proof. Suppose that

B (=0 Wirp ) = [ R ()
— T (dwl)/ Ww1(t1) B (dWQ)
/C([O,tl],Rm) M ,poty ,8,t1 C([0,ta—t1] R™) M, otity,8,t2—11
X / W(}J\/}l;;t(tj;lnj?:;j)—tnfl (dwn)h(wl , W2, ..., wn).
C([0,tn—tn—1],R™) "

Suppose that there exists a function f: C([0, 1], R™) — R such that f(w) = f(w(¢)). Then

/ F@)WE, o p (dw) = / Fw)W$, , o oms (dw)
c([0,s],Rm)1 C([0,1],R™)

- / Fw)We, . (duw).
C([0,1],R™)

This yields

/ F(@)WE 5, . (dw) = / 2 o (duwn)
C([0,1],Rm)1 C([0,1],R™)

X/ Wu]\?,SQ—Sl,Pl(dMQ).”/ Wmn,;i—l—Sn—27P1(dwn_1)
¢([0,1],R™) c([o,1],R™)
X/ W?&i;i_sn—lvlpl (dwn)f(w”)

c([0,1],R™)

Consider the integral

/ g(@)W3; 4 (dw),
c([o,t],R™)

where the function g € C([0,¢], R™) is such that there exists a function g € C(R) for which
g(w) = g(w(t)). As a result of simple calculations, we obtain

C(0.4.2m) Mt =0 W2 fw:w(t) € U.(M)}

fM exp{—%}ﬁ(ml) A (dy)
fM exp{—%}&w(dm)

First, suppose that the function f is such that there exists a function p: R™ — R and numbers
t,s €10, 1] for which f(w) = p(w(t,s)). The integral

/ F@)WE o (de)
C([0,1],Rm)1
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is of the form

|Zn—2n—1|?
_ n n dxn

_ \Il—I\2 _|In71_$n—2‘2
fM exp{ 2As AL [ 401 fM exp 2As1 Aty_1 dn—1 fM exp 2As1 AL,

_ ‘il_z‘z = o _|3_7n—1_xn—2‘2 = _‘in_wn—1|2 =
Jar exp{ prvryvol KRN YEC S R vovry vl KU IVECS o) vy vl K210

Ju eXp{_ ‘2'72;21? } dyr [y exp{— ‘y”‘lfy;A—gA””tz—illﬂan—zIQ
S eXp{_ ‘2sz15_2321|5 } dyy [y exp{— ‘@7"*1_yz"gjgzténf_llﬂn—QIQ
fM eXp{_ ‘@/n_ynz—&;zlttxn71 ‘2 } dyn
fyexp{—ske=ihn fu fyew{-Pemggargennat e,
el =iz pdin fyexp{ =gt i
fM eXp{— ‘U"_ZNA—Slk_j"A";j"—l - } d’LL
S exp{ itz A g,
Ju exp{— ‘2UA1;UAIE } dvy fM exp{
fM exp{_ ‘217A1;MAIE } dT)l fM x { S U;AjkAutnn 11+un = } d’anl
e

|Un —Vn—1—Un+Un—1]>
Ju eXp{ 2Dsp AL, dvn

X

X

[V —1—Un—2—Up—1FUp_ 2|
2ASkAtn 1 d’Un_l

X

dvn

where At; =t; —t;_1, As; =s; —sj_1, and, to simplify the notation, instead of Ap/(dz) we use
dz. We have also assumed that ¢, =¢ and s = s. Let us denote this integral by I(Py, P2, p).

Lemma 3. The integral I(Py, P2, p) converges to exp{—3tAp }p if the meshes of |P1| and |Pa|
tend to zero.

Sketch of the proof. Using Corollaries 1 and 2 of Proposition 1, we obtain the following asymp-
totics for the integral I(Py, P2, p):

st
I(Py, P2, p)(z) = p(z) = 5 Aup(@) + O(s*%) + O(|Pal, [P1])-
Hence we see that the following limit exists:

o lim PP @) = pl@) = 5 Aup(a) + O(2) (= (Qup)(a).

Further, we verify that Qryar = Q-Qa,. Let s and ¢ satisfy 7 = st. Let us find a As and
At such that 7+ A7 = (s + As)(t + At), and consider the integral I(P[O AT 73 0,5+ As) , D)
for partitions of the closed intervals [0, s + As] and [0, ¢ + At] resulting from supplementmg the
corresponding partitions of the closed intervals [0, s] and [0, ¢] by points of partitions of the closed
intervals [t, ¢+ At], [s, s+ As|. We can easily see from the structure of the integral I(P;, P2, p)
that

(,P[O Jt+AL] P2[0,3+As] ) _ I(,P[O ,t] 7)2[0,3] , I(,Pl[t,tJrAt} : ,Pz[s,erAs] 7 p))
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Passing to the limit in this expression and taking A7m = sAt + tAs + AsAt into account, we find
that @, is a semigroup which, by the proof above, satisfies

(Qep)(@) = pla) = 5 Anip(x) + O(7).

Thus, we find that
Qr = exp{—% AM}. O

For a function f depending on w at several points, such as at points & € [0, s] and 7; € [0, ¢],
the integral I(Py, P2, p) will be of the same form. The convergence examined above occurs on
each square [§;_1, &;] % [Tj_1, 7;]. Each of operators of the form

acts on the corresponding variable of the function p defined as

fw) =pwii(&, ), wal(&, 7)),
where w;; is defined on [0, & — &—1] x [0, 7; — 7;_1] by the formula
wij(s,t):w(fi_1+8,7j_1+t). O

Corollary 3. Suppose that M is a compact Lie group. Then the random field WF, regarded as
a process with values in C([0, 1], M), coincides with the Brownian motion constructed in [1].

Sketch of the proof. The proof follows from Theorem 1 and Theorem 2.15 from [4] (Theorem 2.15
from [4] was also proved in Lemma 3.3 from [5]). O
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