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In this paper, we propose a new method of constructing a two-parameter random field Wx
M (s, t) ,

x ∈ M , with values in a compact Riemannian manifold M possessing the property that the random
processes Wx

M ( · , t) and Wx
M (s, · ) are Brownian motions on the manifold M with parameters t

and s , respectively, issuing from the point x . (By a Brownian motion on a manifold M with
parameter t we mean the diffusion process generated by the operator −(t/2)∆M , where ∆M is
the Laplace operator on the manifold M .) For the case in which the manifold is a compact Lie
group, the two-parameter random field constructed in the paper coincides with the Brownian sheet
defined by Malliavin [1] in 1991. (Malliavin called this random field a Brownian motion with values
in C([0, 1], M) , which is the set of continuous functions defined on the closed interval [0, 1] and
taking values in M .) Nevertheless, for the case in which the manifold is a compact Lie group, the
method proposed in the present paper essentially differs from that used in Malliavin’s paper.

1. FIRST STEP IN THE CONSTRUCTION OF THE RANDOM FIELD Wx
M

Suppose that M is a d-dimensional compact Riemannian manifold without boundary isomet-
rically embedded in R

m . By a Brownian sheet with values in R
m we mean the family of m

independent standard Brownian sheets. Suppose that Wt,s is an n-dimensional Brownian sheet.
Consider Wt,s as a process taking values in the space C([0, 1], R

m) . We denote this process by the
symbol Wt . We introduce the following notation: if E is a locally convex space, then Et denotes
C([0, t], E) ; if y ∈ C([0, 1], R

m) is a continuous function, then W
y denotes the distribution of

the process Wy
t = y +Wt . If ψ ∈ C([0, 1], R

m) , then we define the process (Wy
ψ)t = ψ(t)+Wy

t .

Suppose that ˜W
y
ψ is the distribution of this process and Ey,ψ is the expectation with respect to the

measure ˜W
y
ψ . Further, Uε(M) denotes the ε -neighborhood of the manifold M . We consider Wy

ψ

for functions y and ψ satisfying the conditions: y(0) ∈ M , ψ(0) = 0. The goal of this section
is to prove the existence of a limit (given below) with respect to the family of bounded continu-
ous cylindrical functions, where by a cylindrical function C([0, 1] × [0, 1], R

m) → R we mean a
function f for which there exists a finite collection of points τ1 , . . . , τn , ξ1 , . . . , ξk and a function
˜f : R

nk → R such that

f(ω) = ˜f(ω(τ1 , ξ1), ω(τ1 , ξ2), . . . , ω(τn , ξk)).

This limit defines the measure ˜W
y
M ,ψ,s,t:

∫

C([0,s],Rm)t

f(ω)˜Wy
M ,ψ,s,t(dω) = lim

ε→0

Ey,ψ{f(ω)I{(Wy
ψ)t(s)∈Uε(M)}}

˜W
y
ψ{(Wy

ψ)t(s) ∈ Uε(M)}
. (1)
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Before proving the existence of such a limit, we consider the process

(Wz
ψ,s)t = ψ(t) + Bs

t ,

where ψ : [0, 1] → R
m is a continuous function satisfying the condition ψ(0) = 0 and Bs

t is a
Brownian motion with parameter s issuing from the point z . The results obtained for this process
will be used for a subsequent construction.

Some results for the process (Wz
ψ,s)t . Suppose that W

z
ψ,s denotes the distribution of the

process (Wz
ψ,s)t and Ez,ψ,s is the expectation with respect to this distribution.

Lemma 1. The limit

∫

C([0,t],Rm)

f(ω)Wz
M ,ψ,s,t(dω) = lim

ε→0

Ez,ψ,s{f(ω)I{(Wz
ψ,s)t∈Uε(M)}}

W
z
ψ,s{(Wz

ψ,s)t ∈ Uε(M)} ,

with respect to the family of continuous bounded cylindrical functions, exists and defines the mea-
sure W

z
M ,ψ,s,t in the integral on the left.

Sketch of the proof. Let us find a function ˜f : R
k+1 → R and a finite set of points τ1 , . . . , τk

such that
f(ω) = ˜f(ω(τ1), . . . , ω(τk), ω(t)).

We have

∫

C([0,t],Rm)

f(ω)Wz
M ,ψ,s,t(dω) = lim

ε→0

∫

C([0,t],Rm)
f(ω)I{ω : ω(t)∈Uε(M)}Wz

ψ,s(dω)

W
z
ψ,s{ω : ω(t) ∈ Uε(M)}

= lim
ε→0

1
PW(t, 0, Uε(M − z − ψ(t)))

∫

Rm

PW(τ1 , 0, dx1)
∫

Rm

PW(τ2 − τ1 , x1 , dx2)· · ·

×
∫

Uε(M−ψ(t)−z)

PW(t − τk , xk , dxk+1)

× ˜f(x1 + z + ψ(τ1), . . . , xk + z + ψ(τk), xk+1 + z + ψ(t)),

where

PW(τ , x, dz) =
1

(2πsτ)m/2
exp

{

−|z − x|2
2sτ

}

dz.

Since the function in the integrand is bounded, it suffices, by Lebesgue’s theorem, to prove that
the following limit exists:

lim
ε→0

∫

(Uε(M−ψ(t)−z))
˜f(x1 + z + ψ(τ1), . . . , xk+1 + z + ψ(t))PW(t − τk , xk , dxk+1)

PW(t, 0, Uε(M − z − ψ(t)))

= lim
ε→0

∫

Uε(M−ψ(t)−z−xk)
˜f(x1 + z + ψ(τ1), . . . , xk+1 + xk + z + ψ(t))PW(t − τk , 0, dxk+1)

PW(t, 0, Uε(M − z − ψ(t))
.

By M1 we denote the manifold M −ψ(t)−z−xk and by M2 the manifold M −ψ(t)−z . Further,
suppose that

λε =
1

volm−d(ε)
l
∣

∣

Uε(M1)
, µε =

1
volm−d(ε)

l
∣

∣

Uε(M2)
,
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where l is the Lebesgue measure on R
m . We can easily see that the proof of the existence of this

limit can be reduced to that of the existence of the limit

lim
ε→0

∫

Rm g(xk+1) exp
{

− |xk+1−xk|2
2s(t−τk)

}

λε(dxk+1)
∫

Rm exp
{

− |xk+1|2
2st

}

µε(dxk+1)
,

where g : R → R is another symbol for the function ˜f introduced to indicate the dependence on
the last variable solely. We can easily show that, as ε → 0 , the measures λε and µε converge
weakly to the surface measures on M1 and M2 , respectively. �
Lemma 2. The limit (1) with respect to the family of continuous bounded cylindrical functions
exists.

Sketch of the proof. Suppose that P
˜W(t, y, Γ) = ˜W

y(ω : ω(t) ∈ Γ) is the transition probability
for the measure ˜W

y , where y ∈ C([0, 1], R
m) . Further, suppose that the function

˜f : C([0, s], R
m)k+1 → R

and the finite set of points τ1 , τ2 , . . . , τk satisfy the relation

f(ω) = ˜f(ω(τ1), ω(τ2), . . . , ω(τk), ω(t)).

Let the symbol πs denote the coordinate mapping. The proof is carried out by using the following
formula from [2, p. 204]:

∫

C([0,s],Rm)t

f(ω)˜W0(dω) =
∫

C([0,s],Rm)

P
˜W(τ1 , 0, dw1)

∫

C([0,s],Rm)

P
˜W(τ2 − τ1 , w1 , dw2)· · ·

×
∫

π−1
s (Uε(M−ψ(t)−y(s)))

˜f(w1 , . . . , wk+1)P
˜W(t − τk , wk , dwk+1)

and applying Lemma 1 to the measure in the last integral. �

2. ASYMPTOTICS IN t FOR AN INTEGRAL OF SPECIFIC FORM

Proposition 1. Let i be an isometric embedding of the manifold M in R
m and g ∈ C2(M) .

Then

1
(2πt)d/2

∫

M

g(z) exp
{

−|z − y|2
2t

}

λM (dz) = g(y) +
t

8
g(y)

(

c(y) − scal(y)
) − t

2
∆Mg(y) + tR(t, y),

where |R(t, y)| < Kt1/2 , K is a constant independent of y , scal(y) is the scalar curvature at the
point y , and the function c(y) is of the form

c(y) =
∑

k,l

∑

α

(

∂2iα

∂xk∂xl

)2

(0),

where the xk are the normal coordinates in a neighborhood Uy of the point y which are specified by
the homeomorphism of the neighborhood Uy onto a neighborhood of zero U in R

d . Independently
of the local coordinates, c(y) can be written as

c(y) = −1
2

∆M∆M |y − · |2∣∣
y
− 1

3
scal(y)

and, therefore, c(y) depends only on the embedding i .
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Sketch of the proof. We have obtained a more exact asymptotic expression in comparison with
that obtained for an integral of similar form in [3]. The idea of the proof is the same. �
Corollary 1. Suppose that g ∈ C2(M) . Then the following asymptotics is valid :

∫

M
g(z) exp

{

− |z−y|2
2t

}

λM (dz)
∫

M
exp

{

− |z−y|2
2t

}

λM (dz)
= g(y) − t

2
∆Mg(y) + tR1(t, y),

where |R1(t, y)| < K1t
1/2 , and K1 is a constant independent of y .

Corollary 2. Suppose that g ∈ C2(M) , y ∈ M , and ψ is a Hölder function of Hölder order α ,
1/3 < α < 1/2 , such that ψ(0) = 0 . Suppose that PrM is the projection mapping onto the
manifold M along the subspaces normal to the manifold and defined in a suitable neighborhood of
the manifold ψM (t, y) = PrM (y + ψ(t)) . Then the following asymptotics is valid :

∫

M
g(z) exp

{

− |z−y−ψ(t)|2
2t

}

λM (dz)
∫

M
exp

{

− |z−y−ψ(t)|2
2t

}

λM (dz)
= g(y + ψM (t)) − t

2
∆Mg(y) + tR2(t, y),

where |R2(t, y)| < K2t
3α−1 and K2 is a constant.

3. SECOND STEP IN THE CONSTRUCTION OF THE RANDOM FIELD Wx
M

Suppose that f is a continuous bounded cylindrical function on C([0, s], R
m)1 and ϕ : R → M

is a function which is the trajectory of the Brownian motion on M such that ϕ(0) = x . Suppose
that P1 = {0 = t0 ≤ t1 ≤ · · · ≤ tn = 1} is a partition of the interval [0, 1] . If E is a locally
convex space, then to each ω ∈ E1 we can assign a finite sequence of n elements

(ω1 , ω2 , . . . , ωn) ∈ Et1 × Et2−t1 × · · · × Etn−tn−1 ,

where ωj is defined on the interval [0, tj − tj−1] by the formula ωj(t) = ω(tj−1 + t) . We define
the function ϕti−1ti on the interval [0, ti − ti−1] as follows:

ϕti−1ti(t) = ϕ(ti−1 + t) − ϕ(ti−1).

Let us define the measure ˜W
x
M ,ϕ,s,P1

by the formula
∫

C([0,s],Rm)1
f(ω)˜Wx

M ,ϕ,s,P1
(dω) =

∫

C([0,s],Rm)t1

˜W
x
M ,ϕ0t1 ,s,t1(dω1)

×
∫

C([0,s],Rm)t2−t1

˜W
ω1(t1)
M ,ϕt1t2 ,s,t2−t1

(dω2)· · ·

×
∫

C([0,s],Rm)tn−tn−1

˜W
ωn−1(tn−1−tn−2)
M ,ϕtn−1tn ,s,tn−tn−1

(dωn)f(ω1 , ω2 , . . . , ωn).

It is readily verified that ωi(ti − ti−1)(0) ∈ M , so that the measure ˜W
x
M ,ϕ,s,P1

is well defined.
Further, let P2 = {0 = s0 ≤ s1 ≤ · · · ≤ sk = 1} be a partition of the interval [0, 1] . Now, suppose
that s is a time parameter. Instead of the symbol ˜W

x
M ,ϕ,s,P1

, we shall write ˜W
ϕ
M ,s,P1

. Let us
define the measure W

x
M ,P1 ,P2

by the formula
∫

C([0,1],Rm)1
f(ω)Wx

M ,P1 ,P2
(dω) =

∫

C([0,1],Rm)s1

˜W
x
M ,s1 ,P1

(dω1)

×
∫

C([0,1],Rm)s2−s1

˜W
ω1(s1)
M ,s2−s1 ,P1

(dω2)· · ·

×
∫

C([0,1],Rm)sn−sn−1

˜W
ωn−1(sn−1−sn−2)
M ,sn−sn−1 ,P1

(dωn)f(ω1 , . . . , ωn).
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Theorem 1. For each x ∈ M , if the meshes of the partitions P1 and P2 tend to zero, then
the sequence of measures W

x
M ,P1 ,P2

is weakly convergent to the measure W
x
M with respect to the

family of continuous bounded cylindrical functions. The measure W
x
M regarded as the distribution

of a process with values in C([0, 1], M) , possesses a transition probability at time t coinciding
with the distribution of the Brownian motion with parameter t on the manifold issuing from the
point x .

Sketch of the proof. Suppose that

h · Wx
M ,ϕ,s,P1

(

= h · Wϕ
M ,s,P1

)

=
∫

C([0,1],Rm)

h(ω)Wx
M ,ϕ,s,P1

(dω)

=
∫

C([0,t1],Rm)

W
x
M ,ϕ0t1 ,s,t1(dω1)

∫

C([0,t2−t1],Rm)

W
ω1(t1)
M ,ϕt1t2 ,s,t2−t1

(dω2)· · ·

×
∫

C([0,tn−tn−1],Rm)

W
ωn−1(tn−1−tn−2)
M ,ϕtn−1tn ,s,tn−tn−1

(dωn)h(ω1 , ω2 , . . . , ωn).

Suppose that there exists a function ˜f : C([0, 1], R
m) → R such that f(ω) = ˜f(ω(t)) . Then

∫

C([0,s],Rm)1
f(ω)˜Wϕ

M ,s,P1
(dω) =

∫

C([0,1],Rm)

˜f(w)˜Wϕ
M ,s,P1

◦ π−1
s (dw)

=
∫

C([0,1],Rm)

˜f(w)Wϕ
M ,s,P1

(dw).

This yields
∫

C([0,1],Rm)1
f(ω)Wx

M ,P1 ,P2
(dω) =

∫

C([0,1],Rm)

W
x
M ,s1 ,P1

(dw1)

×
∫

C([0,1],Rm)

W
w1
M ,s2−s1 ,P1

(dw2)· · ·
∫

C([0,1],Rm)

W
wn−2
M ,sn−1−sn−2 ,P1

(dwn−1)

×
∫

C([0,1],Rm)

W
wn−1
M ,sn−sn−1 ,P1

(dwn) ˜f(wn).

Consider the integral
∫

C([0,t],Rm)

g(ω)Wz
M ,ψ,s,t(dω),

where the function g ∈ C([0, t], R
m) is such that there exists a function g̃ ∈ C(R) for which

g(ω) = g̃(ω(t)) . As a result of simple calculations, we obtain

∫

C([0,t],Rm)

g(ω)Wz
M ,ψ,s,t(dω) = lim

ε→0

∫

C([0,t],Rm)
g(ω)I{ω : ω(t)∈Uε(M)}(ω) W

z
ψ,s(dω)

W
z
ψ,s{ω : ω(t) ∈ Uε(M)}

=

∫

M
exp

{

− |x1−z−ψ(t)|2
2ts

}

g̃(x1) λM (dx1)
∫

M
exp

{

− |x1−z−ψ(t)|2
2ts

}

λM (dx1)
.

First, suppose that the function f is such that there exists a function p : R
m → R and numbers

t, s ∈ [0, 1] for which f(ω) = p(ω(t, s)) . The integral
∫

C([0,1],Rm)1
f(ω)Wx

M ,P1 ,P2
(dω)
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is of the form

∫

M
exp

{

− |x1−x|2
2∆s1∆t1

}

dx1

∫

M
exp

{

− |x̄1−x|2
2∆s1∆t1

}

dx̄1

· · ·
∫

M
exp

{

− |xn−1−xn−2|2
2∆s1∆tn−1

}

dxn−1

∫

M
exp

{

− |x̄n−1−xn−2|2
2∆s1∆tn−1

}

dx̄n−1

∫

M
exp

{

− |xn−xn−1|2
2∆s1∆tn

}

dxn

∫

M
exp

{

− |x̄n−xn−1|2
2∆s1∆tn

}

dx̄n

×
∫

M
exp

{

− |y1−x1|2
2∆s2∆t1

}

dy1

∫

M
exp

{

− |ȳ1−x1|2
2∆s2∆t1

}

dȳ1

· · ·
∫

M
exp

{

− |yn−1−yn−2−xn−1+xn−2|2
2∆s2∆tn−1

}

dyn−1

∫

M
exp

{

− |ȳn−1−yn−2−xn−1+xn−2|2
2∆s2∆tn−1

}

dȳn−1

×
∫

M
exp

{

− |yn−yn−1−xn+xn−1|2
2∆s2∆tn

}

dyn

∫

M
exp

{

− |ȳn−yn−1−xn+xn−1|2
2∆s2∆tn

}

dȳn

· · ·

×
∫

M
exp

{

− |u1−z1|2
2∆sk−1∆t1

}

du1

∫

M
exp

{

− |ū1−z1|2
2∆sk−1∆t1

}

dū1

· · ·
∫

M
exp

{

− |un−1−un−2−zn−1+zn−2|2
2∆sk−1∆tn−1

}

dun−1

∫

M
exp

{

− |ūn−1−un−2−zn−1+zn−2|2
2∆sk−1∆tn−1

}

dūn−1

×
∫

M
exp

{

− |un−un−1−zn+zn−1|2
2∆sk−1∆tn

}

dun

∫

M
exp

{

− |ūn−un−1−zn+zn−1|2
2∆sk−1∆tn

}

dūn

×
∫

M
exp

{

− |v1−u1|2
2∆sk∆t1

}

dv1

∫

M
exp

{

− |v̄1−u1|2
2∆sk∆t1

}

dv̄1

· · ·
∫

M
exp

{

− |vn−1−vn−2−un−1+un−2|2
2∆sk∆tn−1

}

dvn−1

∫

M
exp

{

− |v̄n−1−vn−2−un−1+un−2|2
2∆sk∆tn−1

}

dv̄n−1

×
∫

M
exp

{

− |vn−vn−1−un+un−1|2
2∆sk∆tn

}

p(vn) dvn

∫

M
exp

{

− |v̄n−vn−1−un+un−1|2
2∆sk∆tn

}

dv̄n

,

where ∆ti = ti − ti−1 , ∆sj = sj − sj−1 , and, to simplify the notation, instead of λM (dz) we use
dz . We have also assumed that tn = t and sk = s . Let us denote this integral by I(P1 , P2 , p) .

Lemma 3. The integral I(P1 , P2 , p) converges to exp
{− st

2 ∆M

}

p if the meshes of |P1| and |P2|
tend to zero.

Sketch of the proof. Using Corollaries 1 and 2 of Proposition 1, we obtain the following asymp-
totics for the integral I(P1 , P2 , p):

I(P1 , P2 , p)(x) = p(x) − st

2
∆Mp(x) + O(s2t2) + O

(|P2|, |P1|
)

.

Hence we see that the following limit exists:

lim
|P1|→0, |P2|→0

I(P1 , P2 , p)(x) = p(x) − st

2
∆Mp(x) + O(s2t2)

(

= (Qstp)(x)
)

.

Further, we verify that Qτ+∆τ = QτQ∆τ . Let s and t satisfy τ = st . Let us find a ∆s and
∆t such that τ + ∆τ = (s + ∆s)(t + ∆t) , and consider the integral I(P [0,t+∆t]

1 , P [0,s+∆s]
2 , p)

for partitions of the closed intervals [0, s + ∆s] and [0, t + ∆t] resulting from supplementing the
corresponding partitions of the closed intervals [0, s] and [0, t] by points of partitions of the closed
intervals [t, t + ∆t] , [s, s + ∆s] . We can easily see from the structure of the integral I(P1 , P2 , p)
that

I(P [0,t+∆t]
1 , P [0,s+∆s]

2 , p) = I
(P [0,t]

1 , P [0,s]
2 , I(P [t,t+∆t]

1 , P [s,s+∆s]
2 , p)

)

.
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Passing to the limit in this expression and taking ∆τ = s∆t + t∆s + ∆s∆t into account, we find
that Qτ is a semigroup which, by the proof above, satisfies

(Qτp)(x) = p(x) − τ

2
∆Mp(x) + O(τ2).

Thus, we find that
Qτ = exp

{

−τ

2
∆M

}

. �

For a function f depending on ω at several points, such as at points ξi ∈ [0, s] and τj ∈ [0, t] ,
the integral I(P1 , P2 , p) will be of the same form. The convergence examined above occurs on
each square [ξi−1 , ξi] × [τj−1 , τj ] . Each of operators of the form

exp
{

−∆ξi∆τj

2
∆M

}

acts on the corresponding variable of the function p defined as

f(ω) = p(ω11(ξ1 , τ1), . . . , ωkl(ξl , τl)),

where ωij is defined on [0, ξi − ξi−1] × [0, τj − τj−1] by the formula

ωij(s, t) = ω(ξi−1 + s, τj−1 + t). �

Corollary 3. Suppose that M is a compact Lie group. Then the random field Wx
M regarded as

a process with values in C([0, 1], M) , coincides with the Brownian motion constructed in [1].

Sketch of the proof. The proof follows from Theorem 1 and Theorem 2.15 from [4] (Theorem 2.15
from [4] was also proved in Lemma 3.3 from [5]). �
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