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Abstract. The interactions between organic and inorganic
aerosol chemical components are integral to understanding
and modelling climate and health-relevant aerosol physico-
chemical properties, such as volatility, hygroscopicity, light
scattering and toxicity. This study presents a synthesis anal-
ysis for eight data sets, of non-refractory aerosol composi-
tion, measured at a boreal forest site. The measurements,
performed with an aerosol mass spectrometer, cover in to-
tal around 9 months over the course of 3 years. In our sta-
tistical analysis, we use the complete organic and inorganic
unit-resolution mass spectra, as opposed to the more com-
mon approach of only including the organic fraction. The
analysis is based on iterative, combined use of (1) data re-
duction, (2) classification and (3) scaling tools, producing
a data-driven chemical mass balance type of model capable
of describing site-specific aerosol composition. The recep-
tor model we constructed was able to explain 83 ± 8 % of
variation in data, which increased to 96 ± 3 % when signals
from low signal-to-noise variables were not considered. The
resulting interpretation of an extensive set of aerosol mass
spectrometric data infers seven distinct aerosol chemical
components for a rural boreal forest site: ammonium sulfate
(35 ± 7 % of mass), low and semi-volatile oxidised organic
aerosols (27 ± 8 % and 12 ± 7 %), biomass burning organic
aerosol (11 ± 7 %), a nitrate-containing organic aerosol type
(7±2 %), ammonium nitrate (5±2 %), and hydrocarbon-like
organic aerosol (3±1 %). Some of the additionally observed,
rare outlier aerosol types likely emerge due to surface ioni-
sation effects and likely represent amine compounds from

an unknown source and alkaline metals from emissions of a
nearby district heating plant. Compared to traditional, ion-
balance-based inorganics apportionment schemes for aerosol
mass spectrometer data, our statistics-based method provides
an improved, more robust approach, yielding readily use-
ful information for the modelling of submicron atmospheric
aerosols physical and chemical properties. The results also
shed light on the division between organic and inorganic
aerosol types and dynamics of salt formation in aerosol.
Equally importantly, the combined methodology exempli-
fies an iterative analysis, using consequent analysis steps by
a combination of statistical methods. Such an approach of-
fers new ways to home in on physicochemically sensible so-
lutions with minimal need for a priori information or ana-
lyst interference. We therefore suggest that similar statistics-
based approaches offer significant potential for un- or semi-
supervised machine-learning applications in future analyses
of aerosol mass spectrometric data.

1 Introduction

Along with particle size, aerosol chemical composition is
fundamental in understanding aerosol physicochemical prop-
erties such as hygroscopicity, volatility, optics and toxicity
(Bilde et al., 2015; Swietlicki et al., 2008; Zimmermann,
2015). In the past decade aerosol mass spectrometry has pro-
vided a way to quantitatively resolve basic chemical com-
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position of aerosol in near real time. This not only enables
basic chemical speciation into organic and common inor-
ganic ion species, but also produces a wealth of complex
mass spectrometric data. It has since become clear that these
data sets, although superficially hard to interpret, are rich
in chemical information and their statistical analysis yields
considerable new knowledge. However, tapping into this in-
formation source requires use of advanced analysis tools
and chemometric methods (i.e. “using mathematical and
statistical methods to provide maximum chemical informa-
tion by analysing chemical data”; Kowalski, 1975). Conse-
quently, advanced statistical methods for data reduction have
quickly gained traction in aerosol mass spectrometry, and are
presently widely used for deconvolution of complex organic
mass spectra into their underlying components. Specifically,
the positive matrix factorisation algorithm (PMF; Paatero
and Tapper, 1994) has achieved a predominant status as the
state-of-the-art analysis tool for deconvolving aerosol mass
spectrometric data. Factorisation methods such as PMF no-
tably allow for the condensation of information found in
high-dimension data matrices into a manageable number of
factors, corresponding to aerosol chemical species, sources
or processes, for example. Data reduction often additionally
allows for improved visualisation, aiding in interpretation of
the underlying aerosol chemical phenomena.

In exploratory factor analysis, the principal difficulties of-
ten relate to deciding the optimal number of factors, choosing
between multiple solutions of mathematically similar quality,
and estimating the reliability and uncertainty of the results.
Lacking robust but easy-to-use mathematical tools, the se-
lection and interpretation of factorisation solutions remains
prone to subjective bias by the analyst. Specifically, while
analyst-imposed additional constraints in factorisation may
sometimes be required to reduce rotational uncertainty and
extract minor factors in data (e.g. Canonaco et al., 2013;
Crippa et al., 2014) such procedures are especially prone to
analyst-subjective decisions. Evaluation and verification of
a factorisation solution thus generally requires meticulous
study and understanding of, for example, correlations with
auxiliary data, temporal changes and cycles and spectral ref-
erences. While statistics-driven methods for spectra compar-
ison and classification as of yet remain marginal in aerosol
mass spectrometry, they do show promise in their capability
to automatically group similar spectra based on their chemi-
cally relevant features, producing comparable classifications
to those performed manually by expert analysts (Äijälä et al.,
2017; Rebotier and Prather, 2007; Freutel et al., 2013).

The overwhelming majority of PMF analyses to date from
aerosol mass spectrometer (AMS) have been performed on
the organic fraction alone (Zhang et al., 2011). Contrary to
popular belief, there exists no tenable reasons to limit chemo-
metric analysis to organic signals, as exemplified by the anal-
yses of Sun et al. (2012) and Hao et al. (2014). Although
it requires some additional data preparation and processing,
inclusion of inorganics provides additional insight into, for

example, salt formation in aerosol. In this work, we apply
data reduction and classification methods for analysing or-
ganic and inorganic aerosol mass spectral data from several
measurement campaigns in the boreal forest. We then de-
rive a comprehensive receptor model resolving the dominant
aerosol categories at the site. In addition, by presenting an
example of a semi-supervised, statistics-driven analysis of
large mass spectral data sets, we hope to pave the way for
machine-learning-based data analysis approaches, reducing
the need for expert analyst input and subjective judgement at
each step.

2 Methods

Our instrumentation, data processing, measurement site and
analysis algorithms have been comprehensively described in
previous literature, to which we refer in the corresponding
sections. Thus, we focus on the new aspects of this work,
showing how the individual methods can be connected to
form an analysis chain, and to exemplify how chemomet-
ric information can be propagated through it. In short, we
will first cover the measurement site, SMEAR II (Station for
Measuring Ecosystem–Atmosphere Relations) and the sets
of data available to us (Sect. 2.1). We then describe our mass
spectrometer instrument and preparation of data (Sect. 2.2).
In Sect. 2.3, we will briefly go through the various statistical
tools and algorithms, covering the basics of data factorisa-
tion, classification of spectra using a clustering algorithm and
clustering solution evaluation, and detail the pre- and post-
weighting involved. Section 2.4 describes typical reference
methods for inorganics and nitrate apportionment: an ion bal-
ance scheme and a separate parameterisation for estimating
organonitrate loading, to provide a comparison for the in-
organic speciation from our statistics-based receptor model.
Finally, in Sect. 2.5, we present a summarised, step-by-step
description of how the methods were combined to produce a
receptor model for aerosol composition at the measurement
site.

2.1 Measurement site and collection of data

2.1.1 The SMEAR II site

The AMS data of this study were collected at the
SMEAR II site in Hyytiälä, southern Finland (61◦50′40′′ N,
24◦17′013′′ E). The site is a well-known and well-equipped
atmospheric research station, representing rural, background
atmosphere in the boreal forest biome. The site and ear-
lier measurements therein have been extensively described
and reported in the literature (e.g. Hari and Kulmala, 2005;
Williams et al., 2011; Äijälä et al., 2017).

The environment consists mostly of forests dominated by
Scots pine (Pinus Sylvestris) – 90 % of land in the nearest
50 km, and 94 % in the nearest 5 km is forested (Williams et
al., 2011).
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A large part of the aerosol loading at SMEAR II is at-
tributable to regional biogenic secondary organic aerosol
(SOA; Corrigan et al., 2013; Crippa et al., 2014; Allan
et al., 2006) and long-range transport from industrial re-
gions in southern Finland, western Russia and central Eu-
rope (Kulmala et al., 2000; Patokoski et al., 2015; Niemi et
al., 2009; Sogacheva et al., 2005). Regional anthropogenic
aerosol sources include the towns Orivesi (pop. 9500; 19 km
south) and Tampere (pop. 213 000; 48 km south-west), as
well as two sawmills and a pellet factory in the village
of Korkeakoski, Juupajoki (7 km east-south-east of the sta-
tion). The surrounding countryside is sparsely populated (5–
10 inhabitants km−2), and although emissions from agricul-
ture, traffic, domestic heating, cooking and other combustion
sources (saunas, barbecues, agricultural machinery etc.) are
limited, they are clearly observable at the station and may in-
crease aerosol loading in often plume-type pollution events.
The anthropogenic organic aerosols were further analysed
previously (Äijälä et al., 2017).

2.1.2 Data sets

In this study, the aerosol composition was monitored by an
AMS between 2008 and 2011, during several short measure-
ment campaigns. Notable larger, intensive campaigns at the
time were the EUCAARI project (2008–2009; Kulmala et
al., 2009, 2011) and HUMPPA-COPEC (2010; Williams et
al., 2011; Corrigan et al., 2013). The sets of data used along
with their time frames are shown in Table 1. Data availability
by year and month is presented in Table 2.

2.2 Instrumentation, data processing and preparation

2.2.1 The aerosol mass spectrometer (AMS)
instrument and basic data processing

The mass spectrometric data for this study were acquired
with a Time-of-Flight Aerosol Mass Spectrometer (ToF-
AMS), developed by Aerodyne Research Inc. (Billerica, MA,
US). AMS instruments in general have been described by
Canagaratna et al. (2007), and the compact ToF analyser ver-
sion (CToF) used in this study by Drewnick et al. (2005).
Additional, more specific details related to the specific in-
strument we used are available in our previous study (Äijälä
et al., 2017).

In brief, the AMS instrument sucks sample aerosol from
atmospheric pressure to vacuum conditions through an in-
let system consisting of a critical orifice and a particle con-
centrating aerodynamic lens (Liu et al., 2007). The sample
aerosol beam is directed at a vaporiser operated at 600 ◦C,
whereby flash vaporisation of non-refractory aerosol com-
ponents occurs. The resulting vapour is ionised using 70 eV
electron impact ionisation – a well-characterised hard ioni-
sation technique, resulting in rather universal and predictable
but highly fragmenting ionisation. Finally, the ions are led to

an orthogonal extraction reflectron time-of-flight mass anal-
yser, where the ions’ mass-to-charge (m/z) ratios are mea-
sured.

The per-amu (atomic mass unit) analyser signal is sub-
sequently quantified based on instrument response calibra-
tions and corrections (among others the correction for rel-
ative ionisation efficiency between the species, RIE; Allan
et al., 2004; Supplement Sect. S4). Individual, unit-mass-
resolution amu signals are then chemically speciated, based
on chemical information on fragmentation and air composi-
tion (see Allan et al., 2003b, for details). Additional, specific
minor modifications to our instrument have been discussed
in our previous work (Äijälä et al., 2017).

2.2.2 Data preparation and down-weighting

After basic processing, the data were further prepared,
to serve as input for factorisation (described in following
Sect. 2.3). The organic and inorganic data and related un-
certainties were extracted, and down-weighting of signals
performed. The procedure for extraction and preparation of
AMS organic signal and related error matrices has been de-
scribed by Allan et al. (2003b) and Ulbrich et al. (2009).

In short, measurement points or variables with missing
data were omitted and error matrices calculated, based on a
function accounting for both counting-statistics-induced un-
certainty as well as background noise from the detector and
electronics. The signals were then down-weighted by multi-
plying the error-matrix-conveyed uncertainty values for low
signal-to-noise ratio (SNR) variables with a scalar: “weak”
variables (SNR < 3) were down-weighted by a factor of 2
and “bad” variables (SNR < 1) by 10. The procedure for in-
organics (SO4, NO3, NH4, Chl, i.e. sulfates, nitrates, ammo-
nia and chloride species) was similar to that used for the or-
ganics (“org”), including for the down-weighting of signals
derived from fragmentation calculations. Analogous to the
basic procedure of down-weighting “duplicate information”
organic signals, e.g. those derived from m/z 44 Th (mainly
CO+

2 ), similarly derived inorganic signal weights were nor-
malised so that their weight of the original plus “duplicate”
signals equalled that of the original signal. Finally, the ma-
trices for all the ion species (org, SO4, NO3, NH4, Chl, in
nitrate equivalent mass) were combined to form the final in-
put matrices for factorisation, while retaining speciation in-
formation in the ion indexing.

2.3 Statistical methods and algorithms

2.3.1 Positive matrix factorisation

For factorisation, we used the PMF model developed by
Pentti Paatero and colleagues (Paatero, 1997, 1999; Paatero
and Tapper, 1994) and widely used for analysis of AMS data
since 2007 (Lanz et al., 2007b; Zhang et al., 2011). In brief,
PMF is a statistical model, typically resolving a bilinear lin-

www.atmos-chem-phys.net/19/3645/2019/ Atmos. Chem. Phys., 19, 3645–3672, 2019



3648 M. Äijälä et al.: Constructing a data-driven receptor model for organic and inorganic aerosol

Table 1. Data sets used in this study and their time frames (dd.mm.yyyy).

Data set Data set Campaign Start time End time
number name

I “May 2008” EUCAARI 29.04.2008 08.06.2008
II “Sep 2008” EUCAARI 10.09.2008 15.10.2008
III “Mar 2009” EUCAARI 04.03.2009 06.04.2009
IV “May 2009” 29.04.2009 28.05.2009
V “Jun 2009” 12.06.2009 08.08.2009
VI “Aug 2009” 13.08.2009 19.09.2009
VII “Summer 2010” HUMPPA-COPEC 09.07.2010 07.08.2010
VIII “Winter 2010” 10.11.2010 07.01.2011

Table 2. For months when AMS data were available, percentages indicate the fraction of days with at least one data point.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2008 – – – – 65 % 20 % – – 70 % 48 % – –
2009 – – 94 % 23 % 90 % 63 % 81 % 87 % 63 % – – –
2010 – – – – – – 74 % 68 % – – 47 % 100 %
2011 23 % – – – – – – – – – – –

ear combination of factor profiles (G) and time series (F) best
describing the measured data matrix (X; Eq. 1). The residual
matrix E then denotes the portion of data left unexplained by
the model (i.e. residual). The PMF model is thus formulated:

X(t×v) = G(t×f ) × F(f ×v) + E(t×v). (1)

The brackets indicate matrix dimensions, with v denoting
number of variables, t the number of time points and f the
number of factors. As shown in Eq. (1), the model can be
solved for any f (< v, t), requiring it to be selected by the
analyst.

The main features setting PMF apart from other similar
factorisation models, and making it particularly suitable for
atmospheric aerosol models, are on the one hand the limita-
tion of factor profiles and time series to positive values, hence
drastically reducing the amount of rotational ambiguity, and
on the other hand the improved error model where the quan-
tity to minimise is the weighted (typically the measurement
uncertainty) residual, resulting in higher weight for the vari-
ables with better SNR. In PMF, the minimum weighted resid-
ual is solved using one of the related algorithms, i.e. PMF2 or
Multilinear Engine 2 (ME-2; Paatero, 1999). Of the two al-
gorithms, ME-2 can take in additional equations defined by
the user, i.e. constraints the solutions need to adhere to. In
this study, when ME-2 constraints were applied to the factor
profiles, we set upper and lower bounds for the allowed pro-
file solutions. The bounds were based on variability estimates
obtained from earlier analysis, as explained later, in Sect. 2.5.
Variability estimate of the final model is available in the Sup-
plement (Fig. S13). For running the PMF and ME-2 algo-
rithms, we used the Igor Pro (Wavemetrics Inc.) based SoFi
(v. 4.8) user interface developed by Francesco Canonaco and

co-workers at Paul Scherrer Institute (PSI). The interface al-
lows input of the pre-processed data and user-selected pa-
rameters, and calls on the solver algorithms (PMF2 or ME-2,
depending on assignment) to return a solution to be displayed
and analysed in SoFi (Canonaco et al., 2013).

When PMF is used as a standalone method for source at-
tribution, the selection of solution needs to be carefully val-
idated. Sensitivities towards a different number of factors,
rotations and initialisation seeds are meticulously analysed,
and correlations with auxiliary data are computed. A case is
then made for why the selection is the best possible. Con-
trarily, in our analysis approach, we do not claim to arrive at
optimum solutions for individual PMF–ME-2 runs. Instead,
we rely on a multitude of data de-convolution runs to un-
cover the main structures in the ensemble of all data sets,
and use statistical classification methods to evaluate the gen-
eral outlook and commonalities between PMF–ME-2 factors
at each analysis phase. As discussed in Sect. 2.5, this trade-
off instead enables us to concentrate on best modelling the
entirety of all data sets.

2.3.2 Relaxed chemical mass balance model

To harmonise the description of aerosol components, we con-
structed a constrained receptor model, where all the profile
components were constrained. For this purpose we applied a
ME-2-based chemical mass balance (CMB) type of model.
CMB models are typically used as receptor models for cases
where source profiles are known, and only the mass load-
ing information needs resolving (Friedlander, 1973; Gordon,
1988; Hopke, 1991, 2016; Miller et al., 1972). In such mass-
conservation-based models, the observed loadings are mod-
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elled as a sum of multiple individual sources. Although CMB
is often presented mathematically as the sum of loadings
(Supplement; Sect. S1, Eq. S1), it can also be thought of as
a special case of the bi-linear model described in Eq. (1).
Only now the profile matrix (F) is assumed fixed, simplify-
ing the problem to resolving the loading matrix (G) which
minimises the residual (E). CMB can be run using the SoFi
interface, using the same ME-2 solver as for PMF and ME-2
applications (Canonaco et al., 2013).

In this work, we use a relaxed CMB-like bilinear model
(henceforth abbreviated as r-CMB), where all the source pro-
files are constrained but allowed to vary within narrow lim-
its (derived from variability estimates; see Sect. 2.5; Supple-
ment Fig. S13). In strict technical terms this approach could
be labelled “an extremely constrained ME-2 model”, but we
choose to use the term “relaxed CMB” to differentiate be-
tween the typical use of ME-2 or constraining only part of
the profiles, which allows the model considerably more free-
dom. We regard our use of the model as much closer to the
idea of constraining all profiles than (semi-)exploratory fac-
torisation typical for ME-2. The naming also serves to better
highlight the conceptual differences between models in the
different analysis phases.

Generally, the biggest problems of the CMB models relate
to the selection of source profiles, typically from spectral li-
braries, and handling of their uncertainty. In our use, the an-
chor spectra as well as the limits for their allowed variabil-
ities are experimentally derived from data, alleviating some
of these typical concerns.

2.3.3 k-means clustering

For spectra classification, we selected the k-means algorithm,
specifically because in our previous tests it was successful in
classifying similar spectral data. The earlier tests additionally
yielded useful information on the selection of the dissimilar-
ity metric, as well as algorithm initialisation types and data
weighting (Äijälä et al., 2017). The k-means algorithm (e.g.
Ball and Hall, 1965; MacQueen, 1967; Steinhaus, 1956; Jain,
2010) is a rather simple, iterative algorithm that partitions
a group of objects to a predesignated number of groups or
“clusters” based on their relative distances (i.e. dissimilari-
ties). For each iteration, the algorithm assigns all objects to
their closest centroids, which are then re-calculated from the
mean variable values of the objects in the updated cluster.
The aim is to minimise the within-cluster sum of distance
(variance) (J ) between the objects’ (Cn) locations (xi) and
the cluster centroid µn they are assigned to (Eq. 2):

J (Cn) =
∑

x∈Cn

‖xi − µn‖
2. (2)

The k-means algorithm iteratively converges on (any) mini-
mum of total J (C) obtained by summing over all objects Cn.
To increase chances of finding a global minimum, repetitions
using different initialisations are used. Specifically, we used

the improved stepwise initialisation “kmeans++” (Arthur
and Vassilvitskii, 2007; available in MATLAB v. 2017a for
example, Math Works Inc., Natick, MA, USA).

2.3.4 Spectral similarity and mass scaling

Based on our earlier metric comparison (Äijälä et al., 2017),
we used (Pearson) correlation as a metric for spectral dis-
similarity (or “distance”, d; Fortier and Solomon, 1966; Mc-
quitty, 1966):

d (u,v) = 1 −

∑n
i=1 (ui − u)(vi − v)

√

(∑n
i=1 (ui − u)

)2
√

(∑n
i=1 (vi − v)

)2
, (3)

where u and v are the spectra in vector form, with m/z vari-
ables as vector components, and u and v are the arithmetic
mean values of u and v.

In clustering mass spectra, data weighting is often applied.
Based on previous tests (Äijälä et al., 2017), we applied mass
scaling of variables, advocated by Stein and Scott and others
(Stein and Scott, 1994; Kim et al., 2012; Horai et al., 2010),
giving additional emphasis to higher mass signals. This com-
mon practice is based on the idea that higher mass fragment
ions are more indicative of their parent ions, and thus the
original characteristic composition, while smaller fragments
can be produced from a wider variety of molecular fragmen-
tation events. In mass scaling the weighted variables (x̂) are
calculated by multiplying the original variables (x) by mass-
to-charge-specific weights (w), as presented in Eq. (4).

x̂m/z = xm/z × wm/z; wm/z = (m/z)sm , (4)

where the scaling factor sm was optimised for each classifi-
cation separately (Supplement; Sect. S2).

2.3.5 Silhouette metric and post-weighting

The optimisation of mass scaling was based on the silhouette
metric (later also abbreviated as “silh”; Rousseeuw, 1987),
ranging between −1 to 1 and providing a straightforward,
quantitative way to evaluate performance of the classification
algorithm. The object-specific silhouette value si , defined as

si =



















1 −
ai

bi

; for ai < bi

0; for ai = bi

b (i)

a (i)
− 1; for ai > bi

, (5)

where ai corresponds to the mean distance to other objects in
the same cluster, and bi similarly to the mean distance to ob-
jects in the nearest neighbouring cluster. A silhouette value
close to unity indicates the object is well clustered, while a
value close to zero indicates the classification is uncertain,
and the point is likely situated in-between two possible cen-
troids. A negative cluster value is indicatory of possible mis-
classification. Silhouette values can be calculated for any sin-
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gle cluster as the arithmetic mean of the cluster members’ sil-
houettes, or similarly as a mean over all objects, to evaluate
the quality of the clustering solution as a whole.

In order to mitigate the k-means algorithm’s known sensi-
tivity to outliers, and to improve handling of between-cluster
samples, we applied a simple post-processing to all cluster
centroids and variability calculations: the centroid spectra
and variabilities were calculated as weighted averages (µ̂),
and weighted standard deviations (σ̂ 2; Eq. 6) respectively,
instead of the normal unweighted values (similar to Äijälä et
al., 2017). As weights, we used the object specific silhouette
values si > 0 (Eq. 5):

µ̂ =

∑N
i=1sivi

N
∑

i=1
si

; σ̂ 2 =

∑N
i=1s(v − µ)2

N
∑

i=1
si

;

si = max(si,0), (6)

where vi are the cluster member objects (spectra) This pro-
cedure down-weights likely misclassified objects (silhouette
< 0) to zero, and penalises the more uncertain or question-
able assignations (low silhouette) compared to the decidedly
well-clustered objects (silhouette close to unity). Singleton
clusters were omitted from this calculation, and their vari-
ability was thus left undefined.

2.4 Standard approximations for aerosol inorganic
speciation and organonitrate

2.4.1 Ion balance model for inorganics

Aerosol inorganic chemical speciation is better understood
than the organic speciation, due to much lower diversity of
the chemical compounds involved. A variety of aerosol in-
organic equilibrium models exist and are typically used as
modules in atmospheric meteorological and air quality mod-
els. However, performing thermodynamic equilibrium calcu-
lations is computationally demanding (e.g. Fountoukis and
Nenes, 2007) and requires a good deal of auxiliary data on
thermodynamic conditions and chemical activities. Due to
the complexity of the models and increased data needs, sim-
pler approximations are often used in connection with AMS
inorganic speciation. In the following ion-balance-scheme
description, we denote the respective AMS ion species mo-
lar concentrations in square brackets (e.g. [NH+

4 ], [NO−
3 ],

[SO2−
4 ]).

A typical salt formation approximation used for AMS re-
sults is the Hong et al. (2017) ion pairing scheme, used
in aerosol volatility and light scattering models, for exam-
ple (Hong et al., 2017; Zieger et al., 2015). The Hong et
al. (2017) scheme is based on similar approximation of Gysel
et al. (2007), which in turn is a simplification of the more ex-
tensive model by Reilly and Wood (1969). We modified the
Hong et al. (2017) scheme to additionally allow organonitrate
(orgNO3) and speciate any leftover [NH+

4 ] as its own class

Figure 1. Schematic representation of the inorganic apportionment
scheme. The scheme is divided into three cases according to the
ratio of [NH+

4 ] to [SO2−
4 ]. [NH+

4 ] first combines with [SO4] to form
NH4HSO4 (Case 1), then further to (NH4)2SO4 (Case 2). In these
cases, any nitrate observed is considered organic. In Case 3 leftover
[NH+

4 ] then associates with [NO−
3 ] until all the inorganic anions are

neutralised. Any leftover [NH+
4 ] is labelled as “excess NH+

4 ”. A full
description of the scheme is given in the Supplement (Sect. S3).

(“excess NH+
4 ”). The full scheme is available in the Supple-

ment (Sect. S3), and a schematic description is presented in
Fig. 1.

Briefly, in the scheme we apply, NH+
4 is first combined

with SO2−
4 to form ammonium bisulfate and/or ammonium

sulfate depending on the relative concentrations of [NH+
4 ]

and [SO2−
4 ]. Any leftover [NH+

4 ] then combines with [NO−
3 ],

until all [SO2−
4 ] and [NO−

3 ] is fully consumed in form-
ing (NH4)2SO4 and NH4NO3. After this point, any leftover
[NH+

4 ] is considered “excess” and assigned to a separate
class. For comparability with other models, any nitrate not
in NH4NO3 is labelled organic. Despite the label, we note
this class not only encompasses organonitrates, but also any
NO+ fragment signal from amines and N-containing organ-
ics and may even contain influences of other inorganic ni-
trate species, such as KNO3, which are not considered sepa-
rately in this simple model. Finally, since chloride loadings at
the measurement site are generally negligible, neutralisation
of hydrochloric acid (H2O : HCl) was not included to keep
this scheme rather simple. We note that ion balance schemes
depending on relative ion abundances, such as the one de-
scribed here, can be sensitive to measurement uncertainties
(e.g. errors in RIE values) of these ratios. The topic is further
discussed in the Supplement (Sect. S4)
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2.4.2 Kiendler-Scharr parameterisation for
organonitrate

The organic nitrate estimate in the above model is very sen-
sitive to calibration parameters (see Supplement Sect. S4).
Therefore, in addition to the ion-balance-based scheme
above, we additionally calculated a particulate organoni-
trate mass estimate (orgNO3 mass), based on the nitrate frag-
mentation ratio-based parameterisation of Kiendler-Scharr et
al. (2016; Farmer et al., 2010):

orgNO3mass =

NO3total

(

1 + RorgNO3

)

x (Rmeasured − Rcalib)

(1 + Rmeasured)x
(

RorgNO3
− Rcalib

) , (7)

where R refers to the ratio of nitrate signals at 46 and 30 Th,
i.e. R = NO3 (m/z 46 Th) : NO3 (m/z 30 Th), for organoni-
trate (“orgNO3”), NH4NO3 calibration (“calib”) and ambient
measurement (“measured”), respectively. For the parameter-
isation, we applied an ion ratio Rcalib = 0.42, taken as the av-
erage of mass-spectrum-based AN calibrations (Supplement
Sect. S6). An RorgNO3

value of 0.1 was used, based on the
estimate by Kiendler-Scharr and co-workers for their obser-
vations on organonitrate spectral properties (Kiendler-Scharr
et al., 2016).

2.5 Constructing a data-driven r-CMB receptor model

As stated in the Introduction, one of the aims of our work was
to derive a robust, harmonised receptor model for the mea-
surement site via explorative analysis. Considering the large
amount of campaigns during different seasons, resulting in
changing aerosol source contributions and mass spectral pro-
files, factorisation needed to be performed on a per-campaign
(data set) basis. However, instead of performing traditional
PMF complete with correlation analysis, source validation
and the various sensitivity analyses separately, which would
be an arduous task even for a single measurement set, we
used the large amount of data sets to our advantage. Instead
of optimising individual factorisations, we constructed an r-
CMB model applicable to all data sets. A similar task of con-
structing a semi-exploratory synthesis aerosol model, albeit
one applying a different methodology, was undertaken and
reported by Sofowote et al. (2015).

To derive the anchors and constraints for a synthesis r-
CMB model, we analysed the data in three phases (P-I to
P-III; Fig. 2), each consisting of factorisation, classifica-
tion and silhouette-based post-weighting of anchor spectra
and their allowed variabilities. The allowed variabilities were
constrained by setting upper and lower bounds (the estimated
variability ranges from the previous phase) for factor pro-
files. In Phases I and II, a fixed number of 10 factors were
resolved. This amount of factors was semi-arbitrarily cho-
sen, and in our case likely to be somewhat above the optimal
amount for most data sets, leading to over-resolved factor

solutions. However, unlike in traditional PMF analysis, we
can use additional statistical diagnostics and post-processing
options available to deal with potential fallout of unrealis-
tic factor splitting (i.e. classification for identifying outliers
and post-processing down-weighting or nullifying their in-
fluence). Sensitivity to initialisation seed was examined by
performing all runs using 10 initialisation seeds, and gener-
ally selecting the solution with lowest normalised residual. In
rare cases of a physically unrealistic solutions such as the one
with the lowest residual (e.g. only NH4 species in a factor), a
higher residual solution was chosen instead. We conclude the
solutions were generally insensitive to seed selection, espe-
cially for the factors with non-negligible mass contribution.

2.5.1 Phase I: anthropogenic aerosols

In phase I (P-I), we performed unconstrained factorisation
for all the eight data sets. With 10 factors this resulted in a
total of 80 factors of mass spectra. We then determined the
dominant spectra classes using k-means clustering. To that
purpose, we applied optimised mass scaling for improved
data structure, and used silhouette diagnostics to evaluate
the optimal number of clusters. We identified the known,
common anthropogenic aerosol classes from the silhouette-
weighted cluster centroids. This is also an approach advo-
cated by Crippa et al. (2014) in their similar work on a syn-
thesis analysis of several data sets.

For a cluster centroid to qualify as an anchor for further
phases of our analysis, we applied the following two criteria:
(1) the spectra forming the cluster were present in multiple
(≥ 3) data sets, and (2) the spectra were interpretable chem-
ically and had adequate support from previous studies in the
form of literature and/or calibrations. We note that defining
what constitutes ”interpretable” or “adequate support” is in-
evitably an analyst (subjective) decision, so we endeavour to
make our reasoning transparent in the respective discussion
sections. Adhering to criterion (1) also means that factors
showing up only for one to two campaigns, due to special
conditions (emission, meteorology etc.), are omitted from
the final r-CMB model. We will briefly cover some of the
more interesting “outlier observations” in Sect. 3.4. At the
end of phase I, a number of constrained anchor spectra and
within-cluster-variabilities were obtained. In this case, these
corresponded to four anthropogenic classes, which will be
discussed in more detail in the results section.

2.5.2 Phase II: biogenic, secondary organic aerosols

Using the anchors and within-cluster variabilities, we re-ran
factorisation as in P-I, except now partly constrained (ME-2;
4 of 10 factors constrained using anchors from P-I). In phase
II, we focused on analysing the remaining free factors, likely
corresponding to the biogenic and assumedly more variable
factors (Canonaco et al., 2015; Crippa et al., 2014). The pro-
cedure for classification and the selection criteria for the (as-
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Figure 2. A flowchart illustrating the analysis using combined methodology. After initial data collection and preparation, statistical analysis
is performed in three phases (P-I to P-III). Each phase limits the freedom given to factorisation from completely free (PMF) to nearly fully
constrained (r-CMB). Finally, we evaluate and interpret the r-CMB model from an aerosol chemical perspective.

sumedly) biogenic SOA in this phase were the same as in
phase I.

Due to the data-driven analysis approach, specifically the
constrained factors being selected from phase I, we do not
expect major changes between phase I and phase II (P-II) re-
sults. While arguably the methodology could be further de-
veloped to constrain the r-CMB components directly from
the phase I result, phase II of our analysis currently serves
several purposes: (1) it should narrow down the solution
space for improved description of the various SOA types, by
constraining the anthropogenic, assumedly primary aerosols.
(2) Compared to P-I, the allowed solutions are more similar
for all data sets in P-II, which reduces the scatter of the fac-
torisation solutions. This reduces the spectral variability (un-
certainty) arising from the analysis process itself, allowing
us to iteratively converge on more realistic limit values for
the constraints. Ultimately, the limits should reflect the ac-
tual, natural chemical variabilities within the aerosol types.
(3) Similarity of results between successive, un- or semi-
constrained phases allows evaluation of stability, reliability
and repeatability of the method, so that it is not e.g. overly
sensitive to rotational ambiguity or initialisation parameters
of algorithms. This is important since the method described
here is new, and its robustness needs to be demonstrated, but
less so in potential later use.

2.5.3 Phase III: final, constrained receptor model

In phase III (P-III), we constructed the r-CMB receptor
model. In this phase, all the factors were constrained us-
ing anchors and variabilities from the previous phase result.
The number of components in the final r-CMB model, in our

case 7, was equal to the total number of selected aerosol types
in phase II. With these model constraints, we performed runs
for each of the eight data sets separately. Using the resulting
8 × 7 factor profiles, we determined the likely range of vari-
ability for the aerosol types, and calculated final, silhouette-
weighted reference spectra for the components by perform-
ing a final round of clustering.

3 Results and discussion

In Sect. 3.1, we briefly describe the results from analysis
phases I to III (P-I to P-III; corresponding to Sect. 3.1.1
to 3.1.3) but concentrate more on the receptor model re-
sults and their interpretation (Sect. 3.2). Finally we will com-
pare our results with reference methods (Sect. 3.3). Compar-
ison results are available in the literature for organic aerosol
components (Sect. 3.3.1), and in Sect. 3.2 we will compare
inorganic speciation with the alternative inorganic attribu-
tion methods, described in Methods (Sect. 2.4). Finally, we
briefly describe some of the outlier observations which con-
tain potentially interesting chemical information (Sect. 3.4).

When interpreting and identifying aerosol components, we
evaluate spectral similarity using the same similarity metric
(mass scaled correlation) as for the clustering (Eqs. 3 and 4).
We thus report mass scaled squared correlation coefficients
(r2

s ) between reference spectra and our corresponding final
spectrum for the class (P-III silhouette-weighted centroids;
sm = 1.81). For easier comparability, all ratios and fractions
of signals presented in the following sections are similarly
calculated from the corresponding final spectra (P-III).
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3.1 Receptor model construction steps

3.1.1 Phase I: identification of anthropogenic aerosol
components

In phase I, we performed unconstrained PMF runs using
10 factors for all 8 data sets separately. The resulting 80-
factor spectra were subsequently clustered. Maximal data
structure (silhouette 0.56) was achieved at mass scaling sm =

2.12 for 17 clusters (for details on silhouette analysis, see
Supplement, Sect. S2). The eight clusters with largest popu-
lation for the phase I solution are shown in Fig. 3, and the rest
in Sect. 3.4, where outlier observations are further discussed.
Generally, the solutions agreed closely on the largest clusters,
lending credibility to the robustness of the approach. The so-
lutions differed mainly regarding outlier classification, which
is of secondary importance for our r-CMB model, since out-
liers are discarded from the model.

Unsurprisingly, the classification returns two large clusters
of organic aerosol resembling the ubiquitous low-volatile ox-
idised organic aerosols (no. 1; LV-OOA) and semi-volatile
oxidised organic aerosol (SV-OOA; e.g. Aiken et al., 2007;
Jimenez et al., 2009; Zhang et al., 2011). Comparing to li-
brary spectra, the aerosol type dominated by m/z 44 Th
(CO+

2 ) (no. 1) best matches with LV-OOA and OOA-I (oxi-
dised organic aerosol, a historical label corresponding to LV-
OOA; Aiken et al., 2008; Zhang et al., 2011) spectra from
Paris (r2

s = 0.97; Crippa et al., 2013), Zurich (0.96; Lanz et
al., 2007a; Crippa et al., 2013) and Borneo rainforest (0.99;
Robinson et al., 2011) as well as the average LV-OOA cal-
culated from 15 Northern Hemisphere data sets (0.94; Ng et
al., 2010). Cluster no. 3 is characterised by a high m/z 43 Th
signal (C2H3O+; Aiken et al., 2008) and correlates with SV-
OOA and OOA-II (Aiken et al., 2008) spectra from Pasadena
(0.74; Hersey et al., 2011), Borneo (0.86; Robinson et al.,
2011) and the 15-data-set average (0.76; Ng et al., 2010)
as well as the laboratory-generated SOA spectra generated
from typical pine forest emitted volatile organic compounds
(e.g. α-pinene, 0.81; α-terpinene, 0.83; terpinolene, 0.84;
Bahreini et al., 2005). Abiding by the typical naming con-
vention of AMS-derived aerosol types, we label these species
LV-OOA (cluster no. 1) and SV-OOA (no. 3).

The solution also contains a large cluster (no. 2) with
spectra dominated by ammonium and sulfate ion species.
This is in agreement with ammonium sulfate being a main
component of ambient aerosols. Although it also contains
trace amounts of other species, we name the (NH4)2SO4-
dominated aerosol class (no. 2) ammonium sulfate (AS) for
brevity.

The main nitrate-containing spectra are divided into two
clusters (no. 6 and no. 8). The divisive feature seems to be
the ratio of m/z 46 to 30 Th signals (i.e. Rmeasured in Eq. 7),
which is much higher in cluster type no. 8 (0.44 ± 0.11) ver-
sus for no. 6 (0.08 ± 0.07; P-III; see Supplement Sect. S5
for error estimate). We note once more that these charac-

teristic values for clusters are from the final model (P-III;
Fig. 4), as outlined before. Based on the literature we inter-
pret the split to correspond to the division between nitrogen
in the form of inorganic (ammonium) nitrate (AN) and or-
ganic nitrogen, matching with previous AMS observations
(Hao et al., 2014; Farmer et al., 2010; Kiendler-Scharr et
al., 2016). The interpretation of cluster no. 8 as AN is ad-
ditionally corroborated by its similarity to spectra from pure
ammonium nitrate calibration for the instrument, available
in the Supplement (Sect. S6). On average, the brute-force
single-particle (BFSP; Drewnick et al., 2015) AN calibra-
tions performed for the instrument yielded an Rcalib (Eq. 7)
ratio of 0.49 ± 0.05 (mean ± standard deviation), while an
MS mode calibration returned an Rcalib of 0.42. Similarly
to naming of the AS class, we use labels organic nitrogen
(ON; cluster no. 6) and AN (cluster no. 8) for the nitrate-
dominated aerosol types. The ON cluster is further discussed
in Sect. 3.3.2. The label ON was chosen to differentiate be-
tween the (presumably) organic-nitrogen-dominated aerosol
class (ON), and the part of NO3 ion species deemed likely to
be organonitrate (orgNO3).

A fraction of the organic signal observed at m/z 44 Th for
inorganic salt classes (AS and AN) may be explained by an
CO+

2 artefact induced by thermal decomposition of inorganic
salts (Pieber et al., 2016). For ammonium nitrate, the propor-
tion of organic signal at m/z 44 Th to total nitrate signal is
2.9 % (P-III). Pieber et al. (2016) estimate a contribution of
3.4 %, suggesting most of the organic signal observed in AN
may arise from this artefact. This proposition is further dis-
cussed in the Supplement (Sect. S6).

Two of the clusters (no. 4 and no. 5) seem related to anthro-
pogenic (primary) organic aerosol types. Cluster no. 4 has
a similar spectrum as the hydrocarbon-like-organic aerosol
(HOA) spectra from the AMS spectral database (Ulbrich et
al., 2009) and closely matches, among others, HOA reported
by Zhang et al. (2005) for Pittsburgh (r2

s = 0.91) and the av-
erage of 15 de-convolved HOA spectra reported by Ng et
al. (2010; r2

s = 0.89). The spectra also exhibits high sim-
ilarity with traffic emission spectra of diesel bus exhaust
(0.86), lubricating oil (0.82) and fuel (0.75), reported by
Canagaratna et al. (2004).

Cluster no. 5 features high signals for ions typical of
biomass burning organic aerosol (BBOA, e.g. Alfarra et al.,
2007) and cooking organic aerosol (COA, e.g. Mohr et al.,
2012). The spectra features the marker signals of levoglu-
cosan (Cubison et al., 2011; Schneider et al., 2006) at m/z 60
(C2H4O+

2 ) and 73 Th (C3H5O+
2 ) along with chloride ions (at

m/z 35 and 36 Th) and a high fraction of signal at m/z 55 Th
(C3H3O+; Mohr et al., 2012), pointing to cooking and/or
biomass burning emissions. The highest similarities to li-
brary spectra (de-convolved via PMF) are found with COA
(Mohr et al., 2012, for Barcelona, r2

s = 0.70; Crippa et al.,
2013 for Paris, r2

s = 0.59) and BBOA (e.g. 15-data-set aver-
age reported by Ng et al., 2010, r2

s = 0.51) and BBOA de-
convolved by Crippa et al. (2013, for Paris, r2

s = 0.50). Sim-
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Figure 3. The eight largest clusters for P-I classification of factorisation results. Cluster centroids (coloured bars) and variabilities (error bars)
are silhouette-weighted averages and standard deviations for the cluster members. The main anthropogenic aerosol types were identified as
clusters no. 2 (“Ammonium sulfate”, AS), no. 4 (“Hydrocarbon-like organic aerosol”, HOA), no. 5 (“Biomass burning organic aerosol”,
BBOA) and no. 8 (“Ammonium nitrate”, AN). Cluster number, silhouette and population (n) are shown in panel titles.

ilarity to SV-OOA library samples are also moderately high
(e.g. Ng et al., 2010, 15-data-set average, r2

s = 0.59).
The differentiation between HOA versus BBOA or COA

can often be resolved even from unit resolution spectra, using
the f55-to-f57 ratio (Mohr et al., 2012), and the differences in
mass spectral fingerprints higher up on the m/z axis (resolv-
able using mass scaling; Äijälä et al., 2017). However, the
distinction between COA and BBOA aerosol types is much
more delicate due to very high unit mass resolution spectral
similarity for higher m/z variables, (e.g. r2

s = 0.79 for COA
and BBOA reported by Mohr et al., 2012). The main differ-
ence between the COA and BBOA aerosol types is the ab-
solute level signals from levoglocosan fragments, the quan-
titative interpretation of which is difficult due to (1) levoglu-
cosan production being determined by combustion temper-
ature (Shafizadeh, 1984), (2) levoglucosan originating both
from BBOA and COA (Mohr et al., 2012), and (3) levoglu-
cosan sinks being potentially considerable in the atmosphere
(Hoffmann et al., 2009), which affects transported aerosol
in particular. Due to the remote location of the measure-
ment site and general prevalence of BBOA over COA in ur-
ban aerosol loadings (e.g. Daellenbach et al., 2017) we con-
clude that BBOA is more likely the dominant component for

this aerosol type, so we will use the class label “BBOA” for
brevity. Due to high spectral similarity, we find it extremely
likely that any COA contribution would be apportioned to
this class, but without the benefit of high-mass-resolution
data, the convolution seems insolvable at this time.

Cluster 7 spectrum offers little in terms of unique spectral
features, and it appears as though it could be represented as a
combination of the more distinct AS (no. 2), LV-OOA (no. 1)
and ON (no. 6) aerosol types. It is unclear whether this class
represents an actual aerosol chemical type, or whether it is
due to incomplete resolving of the aforementioned species in
the PMF model. We note that the organics part of AS, LV-
OOA and ON are all highly oxidised, which may imply sim-
ilar levels of aging and thus similar origins for these species.
Organic spectral components are further analysed and dis-
cussed in Sect. 3.2.2.

Based on this interpretation and evaluation of criteria out-
lined in Sect. 2.5, we decided to select the following as the
main representative anthropogenic aerosol types: ammonium
sulfate (cluster no. 2, n = 10, silhouette = 0.91) ammonium
nitrate (no. 8, n = 5, silh = 0.48), hydrocarbon-like organic
aerosol (no. 2, n = 6, silh = 0.65) and biomass burning or-
ganic aerosol (no. 5, n = 6, silh = 0.36). The silhouette val-
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Figure 4. Final silhouette-weighted reference spectra (coloured bars) and variabilities (error bars) for the r-CMB model components.

ues can be taken to represent separation distance from neigh-
bouring aerosol types. For comparison, silhouette values for
some of the anthropogenic organic aerosol types are available
in Äijälä et al. (2017), but to our knowledge no precedent
exists for mixed or inorganic aerosols. Generally, the more
“unique” the spectra of a group and the higher the within-
cluster cohesion, the higher the silhouette.

3.1.2 Phase II: classification of biogenic secondary
organic aerosols

In the second phase of our analysis, ME-2 factorisations were
run for 10 factors for all the data sets. We constrained 4 out
of the 10 factors with the anchors and variabilities for an-
thropogenic aerosol types, derived from the previous phase
(AS, AN, HOA, BBOA). The resulting 80-factor profiles
were again extracted and classified. The classification solu-
tions featured generally higher silhouette values than in the
first phase, which is at least partly explained by constrained
spectra being forced to conform to their set limits. The high-
est total silhouette (0.66) was obtained for 15 clusters (at
sm = 2.41). Again, the inter-solution variability for the so-
lutions inspected was low for the main classes. The phase
II solution is available in the Supplement (Fig. S4). Overall,
the solution very closely resembles the result from phase I
(Fig. 3).

The expected LV-OOA (no. 1; n = 14; silh 0.64) and SV-
OOA (no. 3; n = 9; silh 0.44) aerosol types again rank among
the most typical classifications. Their moderate silhouettes
reflect higher variability within these classes, corresponding
to results from earlier studies (e.g. Canonaco et al., 2015),
and/or closer proximity to neighbouring aerosol types, than
for the AN, AS or HOA types. The result may suggest sea-
sonal or other data-set-specific variability for SOA, which
supports partitioning the data on a per-campaign basis. In
accordance with typical AMS organic aerosol classification
conventions laid out by Aiken et al. (2008) for example, we
opt for two classes of oxidised aerosols. We thus select clus-
ters no. 1 and no. 3 (P-II) to represent LV-OOA and SV-OOA
(Aiken et al., 2008; Jimenez et al., 2009) respectively.

For P-III of our analysis, we additionally fix the organic
nitrogen class, (ON, P-II cluster no. 8). Irrespective of the
exact chemical composition and label of this aerosol com-
ponent, we assess that there is enough literature support
(among others Kiendler-Scharr et al., 2016; Farmer et al.,
2010; Drewnick et al., 2015; Murphy et al., 2007; Hao et
al., 2014) for inclusion of nitrogen-containing aerosol types
other than AN to warrant the inclusion of this class. In any
case, the classification of nitrate signal at m/z 30 Th to a
distinct class seems statistically robust, as exhibited by its
emergence as a free factor in both P-I and P-II solutions.
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Due to the importance of nitrogen-containing species in SOA
composition and formation (e.g. Kiendler-Scharr et al., 2016;
Berkemeier et al., 2016) we find it an important aerosol class
to include, examine and further interpret. The mixed clus-
ter no. 7 also emerges for four data sets, but with notably
low silhouette (0.18), suggestive of low within-cluster cohe-
sion. As we still lack a distinct chemical interpretation for
this class, beyond the hypothesis of incomplete resolution of
aged aerosol species in factorisation, we will not include the
mixed class (no. 7) in our final receptor model.

3.1.3 Phase III: final r-CMB receptor model

In the final phase (P-III) of constructing our r-CMB receptor
model, we used seven factors which were all constrained with
the profiles and allowed variabilities from the previous phase
(P-II, AS, LV-OOA, SV-OOA, BBOA, ON, HOA, AN). The
ME-2 algorithm was tasked with resolving the factors’ tem-
poral behaviour.

To derive final characteristic spectra for the model com-
ponents, as well as to study the variability of spectra in the
solutions, we once more applied the same clustering proce-
dure and silhouette analysis as for previous phases. The max-
imal structure (silh 0.85) was achieved for the seven-cluster
solution (sm = 1.81), which was to be expected considering
ME-2 was run with seven rather strictly constrained factors
in this phase. With silhouette weighting applied, we obtain
the final spectra and variabilities (Fig. 4). We note that this
final clustering and weighting step mainly serves to provide
an estimate of variability within each aerosol type but also
yields final spectra to be used as library references for the
outcome of this work. Details of the solution of the r-CMB
model are discussed in following sections, from the perspec-
tive of mass attribution (Sect. 3.2.1) and spectral character-
istics (Sect. 3.2.2). Diurnal cycles of the components for the
entirety of data are available in the Supplement (Fig. S12).
Due to the rural setting of the site and the generally long
transport times of aerosol before reaching the site, diurnal
cycles for the various aerosol types are not as characteris-
tic as they would be for urban measurements (for example
temporal trends of HOA and BBOA). Also due to seasonal
differences, the variability between data sets is considerable,
resulting in high uncertainty in interpretation. The daily cy-
cles are likely a mixed product of source emissions, boundary
layer dynamics and aerosol temperature response. While of
interest, disentangling these processes is beyond the topic of
this study.

3.2 Overview of r-CMB model results

3.2.1 Mass attribution and “default” AMS chemical
speciation for r-CMB components

Tabulation of final explained variations (EVs; Paatero, 2000;
Canonaco et al., 2013) for the r-CMB model is shown in Ta-

ble 3. The seven-component r-CMB model explains 83±8 %
of the variation in loadings, when variation from low-SNR
variables is included, and 97 ± 3 % when only residuals of
variables with SNR > 2 are considered. The components
with lowest loadings (ON, HOA, AN) explain around 4 % to
5 % of variation, which seems to roughly match the general
rule of thumb of PMF–ME-2 being able to extract compo-
nents of around 5 % of contribution (Ulbrich et al., 2009).

Model results for campaign VIII, especially regarding
BBOA, are very different from other data sets, including the
other cold season results available in data set III, for exam-
ple (Fig. S5). Upon closer examination, we attribute the VIII
anomaly at least partly to pronounced surface ionisation ef-
fects, discussed more in Sect. 3.4. While we consider the r-
CMB results for campaign VIII too unreliable for use in mod-
els or further studies, we decided not to omit data set VIII,
since other AMS data are likely also affected by the same
processes, albeit to a lesser degree. The attribution of anoma-
lies to exact processes is very difficult, and surface ionisation
effects remain hard to quantify. We hope that reporting our
results in full also furthers the discussion of surface ionisa-
tion in the AMS, and potentially helps other AMS users ob-
serving similar observations.

The composition of our r-CMB components is shown in
Fig. 5b, and the same in absolute mass units in panel (a).
The opposite visualisation, i.e. attribution of default species
into r-CMB components, is similarly given for absolute mass
concentration and relative units in Fig. 5c and d. Unlike mass
spectral variables and estimated EV, where signals at m/z are
in units “nitrate equivalent mass” (RIE not applied), all mass
concentrations reported are corrected for relative ionisation
efficiency (see Supplement, Sect. S4).

Generally, the separation between the inorganic r-CMB
components (AS, AN) and organics (LV-OOA, SV-OOA,
BBOA, HOA) seems clear (Fig. 5). Ammonium nitrate and
sulfate components consist primarily of inorganic ion species
(81 % to 84 %), while for organic components the inorganic
ion species contribution is small (LV-OOA: 8 %, SV-OOA:
8 %, BBOA: 6 %, HOA: 3 %). However, extensive oxidation
of organics in aerosol typically results in the formation of
organic acids (Yatavelli et al., 2015; Vogel et al., 2013; Du-
plissy et al., 2011), and we hypothesise that organic salt for-
mation with [NH+

4 ] could account for the notable 5 % mass
contribution of ammonium to this aerosol type.

Explanations for the observed mixing of ion species can
include (1) mixed emission profiles at sources, variabili-
ties within a source type, as well as collocation of sources;
(2) atmospheric processes, such as mass transfer between the
species by evaporation, condensation (e.g. Ye et al., 2016) or
coagulation; and (3) PMF or r-CMB modelling uncertainties.
We will discuss the relative ratios and neutralisation balances
of inorganic ion species in Sect. 3.3.2, in relation to inorganic
salt formation scheme. The interesting exception to the rather
clear-cut ion species separation is the ON component, which
contains 40 % of NO3 species ions, and 41 % of ions defined
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Table 3. Explained variations (EV, in percent) for the r-CMB model.

Figure 5. “Default” chemical speciation for r-CMB components: mass loadings (a) and relative contributions (b) of default species in
components. Apportionment of default species to r-CMB components by mass (c) and relative contribution (d).
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Figure 6. Mass attribution in the default AMS speciation scheme (a) and by r-CMB components (b) for all eight data sets combined. Values
are (data set length-weighted) averages for all data combined. Absolute mass concentrations are in units (µg m−3).

as organic. The possible interpretations for this distribution
are further discussed in Sect. 3.3.2

As for the organics–inorganics division, the two specia-
tions (default vs. r-CMB) give similar results (Fig. 6). For
all the data sets combined, the default organic ion species
(“org”) explains an average 57 % of total aerosol mass at the
site. Similarly, combining the mass of all organic-dominated
components (LV-OOA, SV-OOA, BBOA, HOA and ON) re-
sults in 60 % mass fraction versus 40 % explained by ammo-
nium nitrate (5 %) and ammonium sulfate (35 %) salts. The
per-data-set mass apportionment is presented in the Supple-
ment (Fig. S9).

3.2.2 Spectral characteristics of organic components

As discussed above, despite the mixing observed, the inor-
ganic aerosol classes generally seem separate from organic
aerosols. The scaled correlation values between inorganic
and organic spectra are extremely low (Supplement Sect. S8,
Tables S1 and S2), indicating near-zero similarity and clear-
cut separation between the inorganic and organic aerosol
types by the clustering algorithm. For inter-correlations be-
tween the organics-dominated aerosol classes, the picture is
somewhat more complex.

To understand the drivers for the separation of the organic
aerosol types, we visualised the phase I (unconstrained PMF)
and phase III (r-CMB) classification results with a projection
of the clustering solutions onto a plane defined by an axis
corresponding to estimated oxidation level and another con-
nected to source type (P-III in Fig. 7; P-I available in the Sup-
plement, Fig. S6). Similar to Äijälä et al. (2017), we describe
the oxidation level of the organic fraction of each component
using the oxygen-to-carbon ratio (O : C) parameterisation of
Aiken et al. (2008), and use the ratio of f57 : f57 to imply
source type. The O : C generally separates LV-OOA and SV-
OOA species from each other and from the fresher aerosol
classes. The f55 : f57 ratio is typically used for differentia-
tion between HOA and COA or BBOA (Mohr et al., 2012)

but equally seems to set apart the biogenic SOA types from
the anthropogenic aerosols (Äijälä et al., 2017). This is due
to the low signal of m/z 57 Th, a typical anthropogenic spec-
tral marker, originating from C4H+

9 and C3H5O+ compounds
(Mohr et al., 2012; Zhang et al., 2005).

The LV-OOA aerosol type, characterised by the dominant
m/z 44 and 28 Th signals, is usually considered a highly oxi-
dised aerosol type that results from the oxidation of SV-OOA
and various fresh emissions (among others Canonaco et al.,
2015). The f55 : f57 ratio of LV-OOA is considerably lower
than for SV-OOA in both solutions, indicating the inclusion
of other sources beyond the f57-poor biogenic SOA contri-
bution. SV-OOA, on the other hand, has the highest f55 : f57

ratio of the classes, hinting at the predominantly biogenic
origin of the SV-OOA at the site. The difference is further
amplified for phase II and III solutions compared to the un-
constrained PMF. We hypothesise that this change can re-
sult from improved differentiation between SV-OOA and the
BBOA species (in P-II), as these aerosol types may be dif-
ficult to separate initially due to similar oxidation level and
features of the spectra (r2

s = 0.34; Table S3). The SV-OOA is
characterised by the non-oxygen-containing ions at m/z 29,
43 and 55 Th (Mohr et al., 2009), as well as mass-to-charge
m/z 53 Th signal (C4H+

5 ) typical of boreal forest biogenic
backgrounds (e.g. Corrigan et al., 2013). The NO+

2 /NO+ ra-
tio of 0.10 for nitrate-containing SV-OOA reported by Hao
et al. (2014) matches our observations for the nitrates in SV-
OOA (NO+

2 /NO+ of 0.11 ± 0.15; Eqs. 7 and S5). This may
indicate the presence of organonitrate species in the SV-OOA
factor.

We also projected the P-I and P-III solutions to the (f44–
f43) plane (P-III in Fig. 7; P-I in the Supplement, Fig. S6),
to produce a result comparable to the triangle plot by Ng et
al. (2010). The result indicates a clear separation between the
low and semi-volatile aerosol types, as well as the primary
combustion aerosols (HOA, BBOA), and the spectral shifts
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Figure 7. (a) P-III (r-CMB) solution – cluster projections onto a f55/f57 (Mohr et al., 2012), O : C (estimated, Aiken et al., 2008) plane.
Circles correspond to the members of the cluster and the cross markers to cluster centroids. The text markers indicate respective positions
of anthropogenic organic aerosol types from Äijälä et al. (2017). Marker size indicates organic mass fraction in spectra. Axes are truncated.
(b) P-III solution, projected onto the f44–f43 plane (i.e. the “Sally’s triangle” plot; Ng et al., 2011). Circles correspond to objects in clusters
and the cross markers to cluster centroids. Marker size indicates organic mass fraction in spectra. A dotted line marks the area where most
laboratory data for organic aerosol falls (Ng et al., 2010).

from phase 1 “bulk PMF” results to those of the final r-CMB
model.

As stated in Sect. 3.1, the spectra of BBOA and HOA
aerosol types match the previously published observations.
The HOA spectrum is characterised by the ion series
CnH2n+1 (m/z 29, 43, 57, 71, 85, 99 Th etc.) and CnH2n−1

(m/z 41, 55, 69, 83, 97 Th etc.) resulting from alkanes and
aromatics from traffic emissions (diesel exhaust, lubricating
oil; Chirico et al., 2010; Mohr et al., 2009; Canagaratna et
al., 2004). The biomass burning organic aerosol levoglucosan
marker signals at m/z 60 (C2H4O+

2 ) and 73 Th (C3H5O+
2 )

(Cubison et al., 2011; Schneider et al., 2006; Elsasser et al.,
2012) are clearly identifiable in the BBOA spectra (Figs. 3,
4) and set this class apart from HOA and SV-OOA with
some similar features. The contribution of often biogenic sig-
nals at m/z 53 Th is also lower for BBOA than for the bio-
genic, semi-volatile SOA. The pronounced signal from aro-
matic rings (tropyllium cation C7H+

7 ) at m/z 91 Th is a typ-
ical result of fragmentation of aromatic hydrocarbon com-
pounds (Lindon et al., 2016). As stated previously, we pre-
sume the BBOA class also encompasses any COA contribu-
tions, which are likely unresolvable as a separate class due to
high spectral similarity (0.79; Sect. 3.1.1).

In terms of spectral characteristics, the organic contribu-
tions of AS and AN classes fall somewhere between the
distinct organic classes and offer little in terms of signifi-
cant organic markers. Notably, the organics in the ON class
exhibit some of the characteristics of LV-OOA and feature
generally high f44. This may indicate a high degree of ox-
idation of the organics for this aerosol type (Aiken et al.,
2008). However, alternative plausible interpretations exist:

AMS response from oxidation products of amine compounds
and amine-nitrate salts feature similarly high f44 (Murphy
et al., 2007) as does a typical amine fragment ion C2H6N+

(McLafferty and Turecek, 1993). Furthermore, as discussed
in Sect. 3.3.2, an equally plausible explanation would be in-
organic nitrate salts such as KNO3 (from biomass burning
for example; Li et al., 2003) contributing to this class in the
form of the Pieber et al. (2016) thermal decomposition arte-
fact. The contribution of m/z 55 and 57 Th signals to the ON
species are both low and the ratio 1.37 of f55 : f57 is much
lower than for the biogenic aerosol species. Without more de-
tailed analysis, and due to the uncertainties surrounding the
origins of this aerosol type (Sect. 3.3.2), it is difficult to say
with any certainty if this is due to anthropogenic nature of
this aerosol, or for example due to fragmentation pattern of
characteristic organic compounds in this aerosol type.

3.3 Comparisons with reference methods

3.3.1 Comparison with “traditional” ME-2 analysis for
aerosol organic component

In order to evaluate the performance of the source apportion-
ment approach presented in this study for organic aerosol,
we compare our results to results only relying on the or-
ganic mass spectral fingerprints. Specifically, two data sets
covered in this study (data sets II and III; Table 1) were
also included in the Crippa et al. (2014) analysis, which al-
lows us to compare factorisation results directly. We chose
to compare the Crippa et al. (2014) results to ours from data
set II. We note that while there are minor differences in the
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pre-processing and corrections for data covered in Crippa
et al. (2014), the factorisation input is very similar in both
cases. The ME-2 model used by Crippa and co-workers in-
cluded only the organic spectra and apportioned its mass to
four factors: LV-OOA, SV-OOA, BBOA and HOA. The latter
two components were constrained using a HOA profile from
an urban aerosol study in Paris (Crippa et al., 2013) and an
average BBOA of those extracted for Mexico City, Mexico,
and Houston, USA (Ng et al., 2011). The allowed variability
around these anchors for all variables (m/z) was 5 % (HOA)
and 30 % (BBOA).

We compared the solutions for Crippa et al. (2014) fac-
torisation to our r-CMB model solution data set II, both for
loadings (Fig. 8) and profiles (Fig. 9). Generally the solu-
tions correlated highly – the loadings (F) and profiles (G)
for LV-OOA (F: r2 = 0.92; G: r2

s = 0.96) and SV-OOA (F:
0.94; G: 0.99) agreed the closest, whilst the HOA also had
high similarities (F: 0.85; G: 88). The BBOA factor or com-
ponent correlated markedly less (F: 0.63; G: 0.42), which
we hypothesise to be due to differences in the anchors used,
COA likely attributed to this class, high spectral similarity
between SV-OOA and BBOA, and the generally low load-
ings of BBOA observed at SMEAR II.

The discrepancy in distribution of absolute mass for the
LV-OOA and SV-OOA components, indicated by the sub-
unity slope, suggests the r-CMB model attributes a part of the
organic mass from the SOA factors into BBOA, AS, AN and
ON components, while HOA is represented rather identically
in both models. A difference in mass distribution between
the results is to be expected, considering the r-CMB model
allows for organics in seven components, while the model
of Crippa et al. (2014) model only comprises four compo-
nents. Generally, we take the similar results of the methods,
as shown by the high correlation values, to indicate that in-
clusion of inorganics in the model does not significantly per-
turb modelling of the organics. We also note the r-CMB com-
ponents included (HOA BBOA, LV-OOA, SV-OOA) are pre-
dominantly composed of organics (92 % to 97 %; Fig. 5), and
the four components presented comprise 82 % of total organ-
ics.

3.3.2 Comparison of inorganic salt and organic
nitrogen results with reference methods

To evaluate the inorganic mass apportionment result, we
compared the loadings from the r-CMB solution against
the result from the inorganics apportionment scheme
(Sect. 2.4.1). The comparison, again performed for data
set II, is presented in Fig. 10. We additionally compared
the r-CMB ON component loadings with orgNO3 mass es-
timate from the Kiendler-Scharr parameterisation (Eq. 7;
Sect. 2.4.2).

The loadings for the (r-CMB) AS component compare
well with the combined NH4HSO4 + (NH4)2SO4 + H2SO4

loading, indicating ammonium(bi)sulfate is described sim-

ilarly by both models (r2 = 0.92). We assume the r-CMB
AS component to be comprised of both NH4HSO4 and
(NH4)2SO4, which would very likely be classified together
due to their high spectral similarity. For ammonium nitrate
the correlation between loadings is very low (r2 = 0.16).
Looking at the time series, the reason seems to be that the
speciation scheme-based model often predicts a total absence
of AN, due to a high amount of sulfate in aerosol. While the r-
CMB model also generally estimates loadings to be low, they
are clearly non-zero in the r-CMB model. We take the result
to reflect the assumption of complete and instantaneous inter-
nal and external mixing of aerosol in the speciation scheme
(Sect. 2.4.1).

The loading prediction for organic nitrogen by the speci-
ation scheme model is similarly event-driven and the model
results do not correlate. This is caused by the nitrate assign-
ment to organonitrate class when not explained by NH4NO3.
Same can be said for the excess NH4 class, which cor-
responds to the NH4 species in the other, mostly organic
r-CMB factors, principally the LV-OOA; the ion balance
scheme predicts zero concentration for many of the data
points, an estimate not matching with the r-CMB-based re-
sult.

On these differences between the models, we note that
the ion-balance-based apportionment scheme is sensitive to
small changes in NH4 concentrations, especially for data
with generally low NH4 concentrations, such as ours. A
simple sensitivity estimate, available in the Supplement
(Sect. S4), was performed for data set III. The result indi-
cates that a 33 % change in RIENH4 changes the component
mass concentrations on average 5 % for AS, 56 % for AN,
66 % for orgNO3 and 164 % for excess_NH4 components.
On the other hand, the r-CMB model is rather insensitive to
error in RIE estimates, since (1) the spectra in factorisation
and clustering have the variables’ signals in “NO3 equivalent
mass concentration” units, which is not (yet) corrected for
RIE of different species; (2) mass scaling causes low mass
signals such as NH4 fragments (m/z 15 to 17 Th) to weight
less (relative to higher m/z variables) for determining the so-
lution; and (3) NH4 seems not to be an unique marker of
any of the classes. We therefore suggest a factorisation-based
model such as the r-CMB model presented here is much more
robust for resolving speciation of inorganic aerosol compo-
nents. The sensitivity test (Supplement, Sect. S4) also in-
dicates that the temporal differences between the ion bal-
ance scheme and r-CMB are not explained by a difference
in RIENH4 . Thus, the reasons for the discrepancies are more
likely related to the unrealistic assumptions of the inorganics
apportionment model.

In addition to deriving organic nitrogen mass from the
ion balance scheme, we compared the r-CMB-derived ON
loading with the Kiendler-Scharr method for estimating the
orgNO3 mass loading (Eq. 6). The comparison, shown in
Fig. 11, indicates that the two methods produce a very simi-
lar result for organic nitrogen mass (r2 = 0.94). The discrep-
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Figure 8. Time series comparison of aerosol organic component with Crippa et al. (2014) for the September 2008 campaign (data set II). For
comparability, only the organic part of r-CMB model components are considered. Data from this work have been averaged to 1 h resolution.
Organics in other r-CMB components (AS, AN, ON) are taken into account for the total amount but not shown separately. Discrepancy in
total organics loading is due to differences in pre-processing values (e.g. ionisation efficiency, collection efficiency).
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Figure 9. Comparison of organic part of spectra with Crippa et al. (2014) for data set II. The r-CMB model results from this study are shown
in colour, and the Crippa et al. (2014) spectra in black. For comparability, the Crippa et al. (2014) spectra were corrected for a difference
in fragmentation tables used (included m/z 28 Th, updated to modern calculation of m/z 16, 17 and 18 Th organic signals) and total signal
subsequently re-normalised to unity. Spectra similarity is evaluated using Pearson’s squared correlation coefficients: unscaled (r2) and with
mass scaling (r2

s ).

ancy in absolute mass is likely explained by the difference
in the ratio values (R) used for Eq. (6) parameterisation,
and those featured in the r-CMB AN and ON components
(RAN = 0.44 ± 0.11; RON = 0.08 ± 0.07; P-III, Eq. S5).

The similarity to Kiendler-Scharr parameterisation result
does seem to support the interpretation of a nitrogen com-
ponent in ON as organonitrate (orgNO3). Some similarities
in temporal behaviour between the ON component and (non-
quantitative) K+ ions were observed, potentially suggesting
thermal ionisation of Potassium salts (e.g. KNO3) might con-
tribute an unknown fraction to ON (Supplement, Sect. S11).
Also, 63 % of chloride ions species associate with the ON
component. The reason is unclear, and although chloride sig-
nals were very low in general, we cannot rule out that some
of the ON component could still be explained by other chem-
ical compositions than organonitrate.

The NO3 : org ratio of our ON factor is close to unity
(Fig. 5), while for example Farmer et al. (2010) report a
nitrogen-to-carbon ratio of 0.04, and oxygen-to-carbon of
0.25 for AMS spectra of organonitrate standards. However,
several factors are likely to affect the NO3 : org ratio observ-
able in atmospheric ON factorisations. Firstly, two different
pathways for organonitrates exist: (i) the primarily daytime
reactions of organic peroxy radicals with NO (Orlando and
Tyndall, 2012), and (ii) the NO3-radical-initiated oxidation
of unsaturated compounds during night-time (Peräkylä et al.,
2014). While the nitrate functionality in all these reactions is
identical, the organic part can be vastly different, as peroxy
radicals are formed in almost all atmospheric oxidation re-
actions, irrespective of oxidant (e.g. OH or ozone) or VOC
(biogenic or anthropogenic). Therefore, it is not to be ex-
pected that a specific organic spectrum should be linked to
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Figure 10. Comparison of Inorganics apportionment methods (r-CMB and ion balance scheme. The estimates from the ion balance scheme
(Sect. 2.4.1) are shown in black, and the r-CMB model results in colour. The linear fits (right panels) represent the data poorly due to high
amount of zero-value points and outliers.
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Figure 11. Comparison of Kiendler-Scharr parameterisation (Kiendler-Scharr et al., 2016; black line; moving median filter for 11 points
window applied; Rcalib = 0.42, RorgNO3

= 0.1) for organonitrate with NO3 ion species in ON factor from our r-CMB model (in colour).

the organic nitrate functionality. Secondly, as described by
Lee et al. (2016) for example, the particle-phase lifetime of
organonitrates is of the order of hours with respect to hy-
drolysis. This reaction will convert the nitrate functionality
to nitric acid, while the organic part remains intact, except
for the conversion of the -ONO2 group to -OH. This con-
version will only have a small impact on the volatility of
the organic molecule (e.g. Kroll and Seinfeld, 2008), while
the nitric acid may well evaporate in the fairly low-ammonia
boreal forest environment. Taken together, the diverse for-
mation pathways as well as the atmospheric processing are
likely to cause ON spectra retrieved from ambient air factori-
sations to look different from, for example, freshly formed
organic aerosol from organonitrate standards, such as those
used by Farmer et al. (2010). We therefore avoid putting too
much emphasis on the organic parts observed in our ON fac-
tor.

3.4 Outlier observations

During the course of our analysis we encountered some
anomalous observations likely stemming from surface ion-
isation effects, i.e. molecules being thermally ionised at the
heater surface rather than at the ionisation region by elec-
tron impact. A thorough review and discussion of AMS-
related surface ionisation effects was recently published by
Drewnick et al. (2015). Drewnick et al. (2015) emphasise that
the division between refractory and non-refractory aerosol is
not binary, and there exist a number of semi-refractory com-
pounds that the AMS can measure, albeit non-quantitatively.

Our observations on extracted “outlier” PMF factors from
the different phases of analysis match well with the finding
and calculations of Drewnick et al. (2015), as well as other
similar AMS observations published. In Fig. 12, we present
the outlier clusters from phase I classification solution that
were excluded from further analysis due to a low number of
occurrences or/and questionable interpretability. The emer-
gence of most of these spectra are likely attributable to over-

resolution or questionable separation of the main PMF fac-
tors, due to setting the number of PMF factors to 10. Despite
their questionable value for the main analysis, we find they
contain many potentially interesting mass spectral features
and seem not to emerge by chance. Below we will present
some hypotheses on their possible interpretation.

3.4.1 Surface ionisation and data correction artefacts

Drewnick et al. (2015) note that the main semi-refractory
elements eligible for ionisation in the AMS are Cd
(m/z 112 Th), Cs (132 Th), Hg (200 Th), K (39 Th), Na
(23 Th), Rb (85 Th) and Se (79 Th). The proneness of potas-
sium (K) and sodium (Na) for non-quantitative thermal ion-
isation effects in the AMS is well known (e.g. Allan et al.,
2003a), which is also why they are excluded from AMS
(quantitative) data analysis. Although the main potassium
isotope is omitted, the 41K isotope (with 6.7 % relative abun-
dance; Haynes, 2014) is not, and a correction is applied in
fragmentation table instead. The K-derived signals were es-
pecially prominent in data set VIII (see Supplement Fig. S7),
with contributions of 1 to 2 order of magnitudes higher than
the highest well-behaving signals such as m/z 44 Th or
48 Th. We hypothesise the strong signals at m/z 41 Th ob-
servable in many of the outlier spectra (clusters no. 10, no. 15
and no. 17) may be due to insufficient accuracy of the 41K
isotope correction.

A similar data processing/correction artefact is likely seen
in cluster no. 12 with a lone, dominant signal at m/z 29 Th.
This mass-to-charge ratio is a problematic one for lower-
resolution AMS data due to the contribution of a 29N2 iso-
topic peak, and location on the slope of the enormous N2

peak at m/z 28 Th. Although the signal at m/z 29 Th is cor-
rected for the (measured) isotope contribution, even a slight
mismatch in the correction results in notable error in the es-
timation of the organic signal fraction at m/z 29 Th. We at-
tribute this problem specifically to the scarce availability of
filters for the earliest sets of data.
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Figure 12. Spectra of outlier clusters (no. 9 to no. 17) for P-I. The spectra for these outlier classes were omitted from our analysis due to
not meeting the criteria of (1) occurrence and/or (2) interpretability (on an acceptable level). Despite their mostly speculative value, many of
them feature some chemically interesting characteristics, potentially pointing to the presence of amines (signals at m/z 58, 86 and 100 Th;
clusters no. 9, no. 11 and no. 17), alkali metals (85Rb, 87Rb; no. 10), cycloalkanes (signals at series m/z 69, 79, 81, 95, 107 and 109 Th;
no. 16) and organic sulfate (signal at m/z 80, 81 Th; no. 13, no. 17), as well as effects of surface ionisation (41K+; 39K+++; no. 10, no. 17)
and a likely artefact from poor air-beam correction (signal at m/z 29 Th; no. 12).

3.4.2 Alkali metals

The prominent signals at m/z 85 and 87 Th for cluster no. 10
correspond to rubidium alkali metal ions, and their respective
ratios (m/z 85 Th signal : m/z 87 Th signal = 73.2 : 26.8) to
what we would expect based on isotopic distribution of Rb
observed in nature (85Rb : 87Rb = 72.2 % : 27.8 %; Haynes,
2014). Examination of the raw mass spectrum, available in
Sect. S12, also supports rubidium as a likely candidate. Un-
like for the potassium signal, the temporal behaviour of the
factors corresponding to cluster no. 10 is highly plume-like.
Preliminary analysis of wind direction shows the plume di-
rection to correspond to the arrival direction from the district
heating plant (co-located with a sawmill and a pellet factory)
at Juupajoki, 5 km due south-east (Supplement, Sect. S12).
Similar observations of rubidium from coal burning were
previously published by Irei et al. (2014). It seems likely that
this aerosol class would originate from the heating plant.

3.4.3 Organic nitrogen and sulfur

As for the signals often attributed to amines at 86 and 100 Th,
(Mclafferty, 1959), featured in cluster no. 11, in the absence
of alternative explanation for the 100 and 86 signals, we
are inclined to believe they actually represent atmospheric
amines. The cluster spectrum corresponds also to the spec-
tra of pollution plumes, extracted for data sets I to III in
our previous study on pollution events (Äijälä et al., 2017).
We note that amines are also reported to be prone to sur-
face ionisation, and for example trimethylamine is thermally
ionised above temperatures 300 ◦C, with high thermal ioni-
sation efficiency at 600 ◦C (50 % of the maximum efficiency
observed at around 350 ◦C; Rasulev and Zandberg, 1988).
It thus seems plausible that surface ionisation effects could
contribute to the amine observations as well. In our earlier
work (Äijälä et al., 2017), we also attributed a similar spec-
tral signal at m/z 58 Th to amines (C3H8N+). However, in
light of the recent results of Drewnick et al. (2015) on surface
ionisation of NaCl, and the detachment of the m/z 58 Th sig-
nal from the class of other amine-attributed signals at 86 and
100 Th, another plausible explanation for the m/z 58 Th sig-
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nal observed in clusters no. 9, no. 11, no. 16 and no. 17 exists.
Namely, we find it plausible that such a spectrum would arise
from surface ionisation of sodium chloride and thus represent
atmospheric NaCl+.

Clusters no. 13, no. 15 and no. 16 are interesting from
the viewpoint of organonitrates and sulfates. Nitrate signal in
clusters no. 15 and no. 16 is composed mostly of m/z 30 Th
signal, with negligible m/z 46 Th contribution. With the
high organic contribution, this would make these classes po-
tential candidates for containing organonitrates. However,
an equally plausible explanation is the surface ionisation
of KNO3, discussed previously. The pronounced signals at
m/z 80 and/or 81 Th featured in clusters no. 13, no. 14 and
no. 17 are likely explained by humidity-induced fragmenta-
tion changes in the ionisation of sulfate species, (particularly
H2SO4 and SO3; Drewnick et al., 2015). We do note that
organosulfur-containing samples characterised by Farmer at
al. (2010) also feature an increased ratio of m/z 80 and 81 Th
signals compared to (NH4)2SO4, so we cannot rule out or-
ganic sulfate contribution.

3.4.4 Cycloalkanes

Finally, we wish to draw attention to the ion series of clus-
ter no. 16, with prominent organic signals at 69, 79, 81,
95, 107 and 109 Th, which have been connected to cycloalka-
nes (McLafferty and Turecek, 1993; Alfarra et al., 2004).
Cycloalkanes are common in lubricating oils for example
(Liang et al., 2018), which are an important, even domi-
nant, component in traffic emissions (Worton et al., 2014).
The closest literature match on ambient observations we
found was the study of Takami et al. (2007), where they ob-
served similar high concentrations of mass-to-charge 95, 107
and 109 Th, as well as 58 and 85 Th, but were unable to at-
tribute the observation to a specific source.

4 Conclusions

We performed a synthesis analysis on eight AMS data sets
from a boreal forest site and constructed a data-driven chem-
ical mass balance type of receptor model, with relaxed con-
straints on the component profiles (r-CMB). Notably, the data
comprised both inorganic and organic aerosol components.
The resulting seven-component model explained 83 ± 8 %
of variability in data (96 ± 3 % with low-SNR variables ex-
cluded). The model components for the SMEAR II boreal
forest site were as follows, in order of average aerosol mass
contribution: ammonium sulfate (35 ± 7 %; mean mass frac-
tion ± standard deviation over data sets), LV-OOA (27 ±

8 %), SV-OOA (12 ± 7 %), BBOA (11 ± 7 %), organic ni-
trogen (7 ± 2 %), ammonium nitrate (5 ± 2 %) and HOA
(3 ± 1 %).

Remarkably, organic nitrogen seems to be a larger com-
ponent than ammonium nitrate for the site. However, am-

biguity remains in the interpretation of the organic nitrogen
class as organonitrate, prompting caution against casual use
of the NO+

2 : NO+ fragmentation ratio as a sole organoni-
trate proxy. COA was not resolved separately, presumably
due to high spectral similarity with BBOA and low mass con-
tribution to SMEAR II aerosol and is most likely included
to the BBOA component. Other minor aerosol groups that
were not included in the model feature characteristics po-
tentially indicative of amine-dominated aerosols, coal com-
bustion aerosol with alkali metals (rubidium, cesium), and
hints of cycloalkanes and organosulfates. We presume many
of these observations may arise from surface ionisation pro-
cesses, and as such they may not be currently quantifiable in
mass. Their corroboration, quantification and connection to
emission sources or thermal ionisation effects require further
study.

We suggest inorganics should be routinely included in fac-
torisation of AMS data due to the high demand of such
data in aerosol models. We wish specifically to point out
that adding the inorganic information is easy and only re-
quires application of the same tried-and-tested data process-
ing and uses the same error model as for organics. While
inclusion of inorganics does diminish the relative weight or-
ganics carry in the analysis and thus may hinder extraction
organic factors comprising very low fraction (< 5 %) of total
mass (Ulbrich et al., 2009), we argue that the added informa-
tion value of inorganic speciation makes up for this. Com-
pared to organics-only analyses, inclusion of inorganic data
increases direct usability of AMS data for physicochemical
aerosol models. We also demonstrate that factorisation-based
speciation provides a speciation that is more realistic, robust,
and less assumption-dependant and calibration-sensitive than
simplistic ion balance schemes.

The classification methods presented here for evaluating
factor analysis output can also be useful in applications that
produce large quantities of discrete aerosol spectral data,
such as deriving factorisation error estimates via bootstrap-
ping analysis (Osborne et al., 2014; Brown et al., 2015). With
further development, we find it likely that a two-step anal-
ysis (exploratory factorisation + classification → r-CMB)
would be a viable option for increasingly unsupervised and
less analyst-biased AMS data analysis.

We would also encourage further development of com-
bined statistical methods for improved mass spectral fea-
ture extraction and parameterisation for mass spectra, as
they will enable future machine-learning applications for
data analysis. Drawing from the comprehensive information
available on current size-resolved aerosol mass spectrometric
data, it seems likely that advanced machine-learning meth-
ods (such as data reduction combined with predictive neu-
ral networking, e.g. Burns and Whitesides, 1993; Gasteiger
and Zupan, 1993) will likely provide new, improved ways to
model aerosol physicochemical properties like hygroscopic-
ity, volatility and optics in the near future.
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