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Abstract

The COVID-19 pandemic caused by the SARS-CoV-2 virus has resulted in millions of

deaths worldwide. The disease presents with various manifestations that can vary in sever-

ity and long-term outcomes. Previous efforts have contributed to the development of effec-

tive strategies for treatment and prevention by uncovering the mechanism of viral infection.

We now know all the direct protein–protein interactions that occur during the lifecycle of

SARS-CoV-2 infection, but it is critical to move beyond these known interactions to a com-

prehensive understanding of the "full interactome" of SARS-CoV-2 infection, which incorpo-

rates human microRNAs (miRNAs), additional human protein-coding genes, and

exogenous microbes. Potentially, this will help in developing new drugs to treat COVID-19,

differentiating the nuances of long COVID, and identifying histopathological signatures in

SARS-CoV-2-infected organs. To construct the full interactome, we developed a statistical

modeling approach called MLCrosstalk (multiple-layer crosstalk) based on latent

Dirichlet allocation. MLCrosstalk integrates data from multiple sources, including microbes,

human protein-coding genes, miRNAs, and human protein–protein interactions. It con-

structs "topics" that group SARS-CoV-2 with genes and microbes based on similar patterns

of co-occurrence across patient samples. We use these topics to infer linkages between

SARS-CoV-2 and protein-coding genes, miRNAs, and microbes. We then refine these initial

linkages using network propagation to contextualize them within a larger framework of net-

work and pathway structures. Using MLCrosstalk, we identified genes in the IL1-processing

and VEGFA–VEGFR2 pathways that are linked to SARS-CoV-2. We also found that Rothia
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mucilaginosa and Prevotella melaninogenica are positively and negatively correlated with

SARS-CoV-2 abundance, a finding corroborated by analysis of single-cell sequencing data.

Author summary

Our research aimed to understand the full interactome of SARS-CoV-2 infection and

develop new treatments for COVID-19. Using a statistical modeling approach called

MLCrosstalk, we identified linkages between SARS-CoV-2, human genes, miRNAs, and

microbes. Our findings suggest that certain human genes in the IL1-processing and

VEGFA–VEGFR2 pathways are linked to SARS-CoV-2, and that the abundance of Rothia

mucilaginosa and Prevotella melaninogenica is positively and negatively correlated with

SARS-CoV-2 abundance, respectively. Our work offers a unique approach to analyzing

the interactions between the virus and various components, with the potential to improve

our strategies for treating and preventing COVID-19.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused one of the deadli-

est pandemics in human history, infecting more than 600 million people and resulting in more

than 6.6 million deaths (WHO, December 2022). While vaccines and antiviral therapies have

shown efficacy in reducing the severity of infection, there is still an urgent need to understand

the complex interactions between SARS-CoV-2 and human hosts to develop effective methods

for diagnosis and treatment, both during infection and its aftermath.

The complete SARS-CoV-2 genome and transcriptome have been studied in-depth [1,2]

and combined with mechanistic studies to define the SARS-CoV-2 infection pathway [3,4].

Researchers now have a solid understanding of how SARS-CoV-2 infects cells and which

infection-related pathways it activates [5]. This work underpins further analyses on the larger

network of interactions and biosignatures in SARS-CoV-2 infection. High-throughput meth-

ods have also elucidated interactions between SARS-CoV-2 and the host, shedding light on the

host protein/virus protein interaction network [6–8], perturbations in the host gene and cellu-

lar networks during the initial stages of SARS-CoV-2 infection (similar to the triggering of

cytokine storms) [9], and interactions between host proteins and SARS-CoV-2 RNA during

active infection [10]. Single-cell RNA sequencing (scRNA-seq) has provided valuable informa-

tion regarding biological pathways and biosignatures [11,12] and has revealed the large-scale

cellular and molecular landscape of immune responses during SARS-CoV-2 infection in mul-

tiple tissues [11,13,14].

Similarly, many independent studies have verified the interaction between microbes and

host genes [15], including microRNAs (miRNAs) [16]. Researchers have shown that miRNAs

play an important role in antiviral immune responses [17] and participate in the host response

to SARS-CoV-2 [18,19], with potential miRNA binding sites in the SARS-CoV-2 genome [19].

Large-scale approaches, as well as computational analyses and modeling with integrated sin-

gle-cell datasets, have been applied to identify the interactions between host genes and

microbes [20,21]. The most general method to identify microbe-associated host genes is to

perform a differential expression gene analysis comparing samples with versus without

microbes [22]. Some host-responsive genes have been found to associate with certain microbes

[23,24]. Correlation analyses can help to further filter microbiota-associated genes from up-

and down-regulated differentially expressed genes (DEGs) [23].
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Despite these advances in our understanding of SARS-CoV-2 interactions, we lack a holistic

model incorporating multiple biological datasets to examine the overall virus–host interaction

pattern, with different areas of interest including miRNAs and the microbiome. The examina-

tion of the microbiome in the presence of SARS-CoV-2 is one of the most interesting avenues

for further study. Previous research has identified the importance of the respiratory micro-

biome in regulating the immune response to infection [25]. Changes in microbial composition

in both the gut and respiratory microbiomes have been observed in COVID-19 patients rela-

tive to healthy controls [26–28], with particularly marked decreases in gut bacterial diversity

observed in patients with post-acute COVID-19 syndrome (PACS) [29,30]. These findings

suggest that microbes play an indispensable role in shaping the host immune response, but

their relationship to SARS-CoV-2 infection remains largely unknown. Developing a full inter-

actome will further our knowledge of how SARS-CoV-2 propagates in the body, how it might

interact with or alter the prevalence of microbes, and what additional pathways might be acti-

vated in PACS. For example, research is currently underway to examine how the reactivation

of the Epstein–Barr virus and other pathogens might contribute to PACS [31,32]. These

insights warrant further mechanistic study and highlight the need for a comprehensive interac-

tome to explore the relationship between SARS-CoV-2 and the host microbiome.

To date, the challenge in constructing a full interactome has been the integration of multi-

ple layers of information and the identification of inter-layer associations relevant to the host

response in SARS-CoV-2 infection. We developed MLCrosstalk to overcome these challenges

for defining host–pathogen interactions. MLCrosstalk incorporates multiple data sources and

data types (e.g., miRNA, microbes, protein-coding genes, and protein–protein interactions) to

identify COVID-19-specific host gene–microbiome interactomes in different tissues across

patient samples, which we term the "full interactome". With network propagation analysis, we

further refined the interactome based on signaling pathways. For this paper, we applied

MLCrosstalk to achieve two main objectives: 1) to identify interaction patterns between

SARS-CoV-2 and microbes and 2) to discover microbe-linked gene pathways differentially

activated in COVID-19 patients compared with community acquired pneumonia (CAP)

patients and healthy individuals.

Results

MLCrosstalk model

We briefly describe MLCrosstalk here for clarity, but a detailed description can be found in the

Methods section.

The input of MLCrosstalk is a matrix of 105 patient samples with dimensions describing

features such as gene and miRNA expression and microbe abundance (shown in Fig 1).

Although superficial correlations across patients can be identified between two parts of the

matrix such as gene and microbes (i.e., rows in Fig 1), the overall dataset is too noisy to pro-

duce meaningful results. To address this, MLCrosstalk uses the latent Dirichlet allocation pro-

cedure to create topics that group genes, microbes, and miRNAs with similar co-occurrence

patterns across patient samples. The resulting topic matrix (φ in Fig 1 with k topics) is similar

to the derivation of gene expression signatures in non-negative matrix factorization. Within

each patient, the weights for each topic are specified by a vector θ (in Fig 1). For a given gene i
and microbe j, we can determine the level of correlation of their representation across the vari-

ous topics to obtain a raw linkage score. This score can be further normalized by comparison

to a background distribution of all possible scores and then individualized to a particular

patientm by considering only the relevant topics active in that patient (the final score is indi-

cated by Li,j:m in Fig 1 and represents a statistical significance value from the distribution).
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From this, we can link a particular microbe to a human gene or miRNA. These linkages are

further refined and related to known pathways using network propagation (also shown in Fig

1) to obtain a final set of linkages.

MLCrosstalk has four key advantages for integrating multiple data types. First, it takes

advantage of the Dirichlet distribution of hyperparameters to handle sparse and noisy data.

Second, it enforces a unitary topic distribution for each sample, allowing for easy comparison

across samples and facilitating linkage identification between different data types. Third, it can

be easily extended to multiple data types. Fourth, it can infer specific individual linkages. Fig 1

shows the MLCrosstalk workflow.

In our study of COVID-19 datasets (see data sources in S1 Fig), we applied MLCrosstalk to

extract dimensionally reduced patterns (topics) from the data matrix to infer comprehensive

Fig 1. MLCrosstalk workflow. Data include gene expression, microbe abundance, and (pre)miRNA expression matrices. These data are then inputted into

MLCrosstalk to infer linkages. After modeling, we apply network propagation to refine the linkages.

https://doi.org/10.1371/journal.pcbi.1011222.g001
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linkages among host protein-coding genes, noncoding genes (e.g., miRNA), and microbes.

Based on the topic distribution matrix, distinct clusters emerged for COVID-19 patients, com-

munity acquired pneumonia (CAP) patients, and healthy individuals (Fig 2A). By comparing

topic distribution to a random background, we identified topic 9 as the most biologically inter-

esting cluster, with top-weighted genes enriched in immune-related and SARS-CoV-2-related

pathways (Figs 2B, S2 and S3; for additional topics, see S1 Table) based on a similar approach

as in our previous work [33]. Fig 2C and 2D displays the top-weighted protein-coding genes,

miRNAs, and microbes associated with topic 9, with SARS-CoV-2 being one of the strongest

microbe contributors.

SARS-CoV-2 links to microbes

SARS-CoV-2 was one of the most detected microbes in the COVID-19 patient samples (Fig

3A). We associated the top 100 most abundant microbes with SARS-CoV-2 by comparing the

final network propagation linkages across individuals (Fig 3B). The progression in Fig 3C–3E

shows how linkages overlap using different methods, where Fig 3C shows the top SARS-CoV-

2-associated microbes based on consistent linkages (before propagation) across individuals,

Fig 3D shows the direct result of correlating topic representations for each microbe with

SARS-CoV-2, and Fig 3E shows the direct result of correlating microbe abundance.

According to the analysis (Fig 3B), SARS-CoV-2 is linked to the abundance of several well-

known pathogens, including Rothia mucilaginosa, Fusobacterium periodonticum, Prevotella
melaninogenica, and Haemophilus parainfluenzae [34, 35]. Although other microbes such as

Escherichia coli, Enterobacter cloacae complex, Klebsiella pneumoniae, Pseudomonas aerugi-
nosa, and Staphylococcus aureus are highly associated with COVID-19, they are commonly

found as hospital-acquired species and are therefore not the focus of our analysis [36,37].

SARS-CoV-2-associated microbes show distinct patterns

Microbes found to co-occur with SARS-CoV-2 exhibited varying interaction patterns in

bronchoalveolar lavage fluid (BALF) between 19 COVID-19 patients and 18 healthy individu-

als (Figs 4A, 4B and S4). In BALF, we observed significant changes in microbe abundance,

including an increased abundance of R.mucilaginosa and a decreased abundance of P.melani-
nogenica (Fig 4C), which is linked with different sets of miRNAs (S4 Fig). These findings sug-

gest that the microbes may have distinct roles in response to SARS-CoV-2 infection.

R.mucilaginosa, which is a gram-positive coccus found in the oropharynx and upper respi-

ratory tract, plays an anti-inflammatory role in the respiratory microbiome [38,39]. The signif-

icantly high abundance of R.mucilaginosa in COVID-19 patients (Fig 4C) led us to study

specific linked genes in COVID-19 versus healthy groups. This analysis revealed that the

enriched gene sets for COVID-19 are more related to immune response, host-pathogen inter-

action, and SARS-CoV-2-associated genes (Fig 4D).

In contrast to R.mucilaginosa, F. periodonticum, P.melaninogenica, andH. parainfluenzae
exhibited significantly reduced relative abundance in COVID-19 patients. Research has shown

that P.melaninogenica andH. influenzae can induce general respiratory inflammation accom-

panied by lung neutrophilia [40]. We found that P.melaninogenica-linked genes are enriched

in NLRP3 activation and NF-κβ pathways in healthy individuals (Fig 4E; see detailed pathway

information in S2 Table), suggesting that these microbes in the respiratory microbiome may

cause modest inflammatory effects that can be controlled by the host. However, in COVID-19

patients, the stronger inflammatory response triggered by SARS-CoV-2 may require a more

drastic host immune response that includes the suppression or removal of these inflammatory

microbes, leading to their decreased abundance.
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Fig 2. Model evaluation and functional analysis. (A) Heatmap of the topic distribution across all 105 samples. (B) Functional enrichment analysis of topic

9. (C–D) Top-weighted protein-coding genes, pre-miRNAs, and microbes for topic 9.

https://doi.org/10.1371/journal.pcbi.1011222.g002
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SARS-CoV-2 associations with tissues, genes, and pathways

The linkages among host protein-coding genes, miRNAs, and microbes can lead to extensive

changes and connections following SARS-CoV-2 infection. To investigate these linkages, we

examined gene–microbe and miRNA–microbe connections in 10 different tissues and sample

types from COVID-19 patients, including BALF, bowel, heart, jejunum, kidney, liver, lung,

marrow, peripheral blood mononuclear cells, and placenta. The resulting clusters of genes,

microbes, and miRNAs displayed tissue-specific patterns, particularly for BALF and lung tis-

sue (Figs 5A and S5; Also, S4 Table connects these genes to known human variants from

HGI).

We selected BALF to compare linkages across COVID-19, CAP, and healthy samples, as it

was the only sample type with available data for all three groups. Our analysis showed that the

Fig 3. SARS-CoV-2 and microbe association analysis. (A) Heatmap of the most abundant microbes, including SARS-CoV-2. (B-E) Microbes associated with

COVID-19 using a (B) two-step linkage-based approach with network propagation, (C) two-step linkage-based approach without network propagation, (D)

correlation based on latent microbe topic components, and (E) correlation based on abundance.

https://doi.org/10.1371/journal.pcbi.1011222.g003
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COVID-19 group had more microbe-linked genes than the healthy group. Further, the genes

associated with SARS-CoV-2 were significantly enriched in the IL1 processing pathway (Fig

5B) and in the VEGFA–VEGFR2 pathway (Fig 5C; the ribosome protein gene set was not

included due to potential experimental bias), highlighting the importance of the immune

response and viral entry in the SARS-CoV-2 and host interaction.

Cell-type-specific effect on host response

We utilized scRNA-seq data to investigate cell-type-specific responses of DEGs associated with

R.mucilaginosa in healthy and SARS-CoV-2-infected cells. Our analysis revealed that the

Fig 4. Microbe association patterns with SARS-CoV-2. (A) Heatmap of microbe clusters in the COVID-19 patient group. (B) Heatmap of microbe clusters in

healthy patients. (C) Abundance of top SARS-CoV-2-associated microbes between COVID-19 and healthy patients. (D) Functional enrichment of R.

mucilaginosa-linked, COVID-19-specific genes. (E) Functional enrichment of P.melaninogenica-linked healthy-specific genes.

https://doi.org/10.1371/journal.pcbi.1011222.g004
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major cell types in healthy samples were monocytes, M0 macrophages, and naïve T cells,

whereas in SARS-CoV-2-infected samples, the major cell types were Mast and T cells, which

are involved in active immune responses (Fig 6A).

We observed good consistency in gene expression changes between bulk RNA-seq and

scRNA-seq data, with over 50% of genes showing the same trend of up- or down-regulation in

all cell types. Moreover, considering only the DEGs (p-value < 0.05) from bulk RNA-seq, the

Fig 5. SARS-CoV-2-linked genes in multiple tissues. (A) Cluster of genes associated with SARS-CoV-2 in multiple tissues. (B) Enrichment analysis of

SARS-CoV-2-associated genes in KEGG. (C) Enrichment analysis of SARS-CoV-2-associated genes in Wikipathway.

https://doi.org/10.1371/journal.pcbi.1011222.g005
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ratio of consistent genes from the scRNA-seq analysis increased up to 100% for some cell types

such as memory-activated CD4 T cells, activated dendritic cells, and CD8 T cells (Fig 6B).

Additionally, the DEGs from R.mucilaginosa-linked genes in type II interferon signaling and

SARS-CoV-2-related pathways, showed significant up/down-regulation in both bulk RNA-seq

and scRNA-seq analysis. Notably, NCOR2 [41], ISG15 [42], CYBB [43], CXCL10 [41,44], and

Fig 6. Cell-type-specific host response. A) Cell-type fraction changes between the COVID-19 and healthy group. B) Gene

expression changes between bulk cell and single-cell for the COVID-19 versus healthy groups. C) R.mucilaginosa-linked DEGs

show cell-type-specific changes.

https://doi.org/10.1371/journal.pcbi.1011222.g006
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CCL20 [45], which are all known to be associated with SARS-CoV-2 infection, exhibited sig-

nificant expression changes (Fig 6C). Monocytes showed significantly high expression of

NCOR2, ISG15, CYBB, and CXCL10. T cells exhibited high expression of ISG15, which has

been reported to exacerbate inflammation during COVID-19 infection [46]. In addition, T

cells showed significantly down-regulated CYBB, which potentially triggers a higher immune

response, and up-regulation of genes enriched in the IL-18, NF-κβ, and type-1 interferon path-

ways [43]. These results provide evidence of cell-type-specific effects after SARS-CoV-2

infection.

Discussion

We developed MLCrosstalk to address three major challenges in integrative data mining:

noisy and heterogeneous data, unitary topic distribution, multiple-type data integration, and

personalized linkage identification. Using the SARS-CoV-2 dataset as an example, we demon-

strate that MLCrosstalk can capture latent patterns in multiple data types and infer sample-

specific linkages that are supported by biological evidence.

MLCrosstalk extends latent Dirichlet allocation and handles noisy and missing data by

enforcing a unified topic distribution. By doing so, MLCrosstalk controls the sparsity of topics

and components and builds a latent representation of multiple data types within the same

topic. Unlike alternative methods that can infer overall associations using large cohorts,

MLCrosstalk infers sample-based linkages by considering the effect of topic distribution in

each sample.

The COVID-19 pandemic is a critical public health crisis that demands a deeper under-

standing of the underlying biology to develop effective treatment strategies. Our MLCrosstalk

method can integrate various data types and uncover hidden patterns without supervision.

Through MLCrosstalk, we identified linkages between genes and microbes and refined the

identifications by integrating biological pathways via network propagation. Our findings show

distinct patterns of microbes in COVID-19 patients, such as a significantly increased and

decreased relative abundance of R.mucilaginosa and P.melaninogenica, respectively. Addi-

tionally, we discovered genes associated with SARS-CoV-2 and R.mucilaginosa and identified

gene-enriched pathways, including the VEGFA–VEGFR2, type II interferon, and SARS-CoV-

2 signaling pathways. Furthermore, our study integrated scRNA-seq data to reveal that the

host response to microbes is cell-type specific.

Methods

Data collection and processing

This study included 105 data samples from two studies by Desai and Shen and colleagues

[47,48]. See S1 Fig for details on the data sources. The dataset from Desai et al. includes

COVID-19 samples from multiple tissues, whereas the Shen et al. dataset includes COVID-19,

CAP, and healthy samples for comparison of lung function changes. These large-scale datasets

from multiple tissues enabled us to compare the different interactomes between lung disease

and SARS-CoV-2, as well as host responses in different tissues after SARS-CoV-2 infection.

The transcriptome data were analyzed using the exceRpt pipeline. Briefly, RNA-seq reads were

subjected to quality assessment using FastQC software v.0.10.1 both prior to and following 30

adapter clipping. Adapters were removed using FastX v.0.0.13. Identical reads were counted

and collapsed to a single entry and reads containing Ns were removed. Clipped and collapsed

reads were filtered through the Univec database of common laboratory contaminants and a

human ribosomal database before mapping to the human reference genome (hg19) and pre-

miRNA sequences using STAR [49]. Reads that did not align were mapped against a ribosomal
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reference library of bacteria, fungi, and archaea, compiled by the Ribosome Database Project

[50], and then mapped to genomes of bacteria, fungi, plants, and viruses, retrieved from Gen-

Bank [51]. In cases where RNA-seq reads aligned equally well to more than one microbe, a

“last common ancestor” approach was used, and the read was assigned to the next node up the

phylogenetic tree, as performed by similar algorithms [52,53].

Gene expression, pre-miRNA and exogenous genomic, and rRNA frequency were gener-

ated by exceRpt [52,53]. Exogenous content was filtered to remove the potential contaminants

and to keep only pathogenic microbes. The gene expression values of COVID-19, CAP, and

healthy individuals were quantile normalized and converted to integers with microbe and

miRNA frequency.

MLCrosstalk model

As shown in Fig 1, we extended a topic modeling algorithm that can integrate multiple data

types. To make the continuous data work on the topic model, all of the continuous values were

converted into integers and scaled down to reduce computational intensity.

For any patient group or sample, M denotes the number of individuals or samples (here it is

105), which is indexed bym; K is the number of topics (here it is 10), which is indexed by k; θ rep-

resents the document to topic distribution, or topics; φ denotes the word-to-topic distribution, or

topic component; and α, β are the hyper-parameters of the document-to-topic distribution. The

input matrices include gene, microbe, and (pre)-miRNA abundances, for which each row repre-

sents a corresponding sample, and each column is a gene, microbe, or miRNA, respectively.

In the MLCrosstalk model, the superscript (G), (R), and (B) represent gene, (pre)-miRNA,

and microbe data types, respectively, and g, r, and b are the index; N(G), N(R)N(B) is the total

number of words (genes, miRNAs, or microbes); Z,W (or z, w) are the assigned topic and

word, respectively. The joint distribution P(Z,W; α, β) can be derived as:

PðZ;W; a; bÞ ¼ PðZðGÞ;WðGÞ;ZðRÞ;WðRÞ;ZðBÞ;WðBÞ; a; bÞ

¼

Z

y

Z

φðgÞ

Z

φðrÞ

Z

φðbÞ
PðZðGÞ;WðGÞ;φðGÞ;ZðRÞ;WðRÞ;φðRÞ;ZðBÞ;WðBÞ;φðBÞ; y; a; bÞdydφðGÞdφðRÞdφðBÞ

¼

Z YM

m¼1

Pðym; aÞ
YNðGÞ

g¼1

pðZðGÞm;g jyÞ
YNðRÞ

r¼1

pðZðRÞm;rjyÞ
YNðBÞ

b¼1

pðZðBÞm;bjyÞdy�
Z YK

k¼1

PðφðGÞk ; bÞ

�
YM

m¼1

YNðGÞ

g¼1

pðWðGÞ
m;g jφ

ðGÞ
Zm;g Þdφ

ðGÞ �

Z YK

k¼1

PðφðRÞk ; bÞ
YM

m¼1

YNðRÞ

r¼1

pðWðRÞ
m;rφ

ðRÞ
Zm;r Þdφ

ðRÞ �

Z YK

k¼1

PðφðBÞk ; bÞ

�
YM

m¼1

YNðBÞ

b¼1

pðWðBÞ
m;bjφ

ðBÞ
Zm;bÞdφ

ðBÞ

¼
YM

m¼1

DðnðGÞm;ð:Þ;ð:Þ þ n
ðRÞ
m;ð:Þ;ð:Þ þ n

ðBÞ
m;ð:Þ;ð:Þ þ aÞ

DðaÞ

YK

k¼1

DðnðGÞð:Þ;ð:Þ;k þ bÞ
DðbÞ

YK

k¼1

DðnðRÞð:Þ;ð:Þ;k þ bÞ
DðbÞ

YK

k¼1

DðnðBÞð:Þ;ð:Þ;k þ bÞ
DðbÞ

IG,IB,IR is the matrix indicator for expression and abundance, where I ¼

1 if expr or abundance > 0

0 if expr or abundance > 0

(

and I is the matrix of #word(gene, microbe or miRNA) by

#sample (m).
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The raw link score li,j can be defined as

li;j;x;y;m ¼ l xi � yjjm
� �

¼

PK

k¼1
Ix;mIy;mym;kφ

ðxÞ
i;k φ

ðyÞ
j;k

kφðxÞi;� kkφ
ðyÞ
j;� k

, where x, y represent gene(G), microbe(B), and

miRNA (R). For example, φðgÞi;k is the topic component of gene i, φðbÞj;k is the topic component of

microbe j, and the raw link score li,j;m

¼ ð
XK

k¼1
ImIy;mym;kφ

ðgÞ
i;k φ

ðbÞ
j;k Þ=ðkφ

ðgÞ
i;k kkφ

ðbÞ
i;k kÞ

To infer a background l0 of li,j; x,y,m, we shuffle the φ(g), φ(b) for each topic k and then calcu-

late the l0ma;b for 1,000 times and use the mean and variance to infer the one-tailed p-value. We

then use the false discovery rate adjustment to get a q-value for the inference of linkages L for

each sample.

Pathway integration and curation

We used the Pathway Commons v12 all-database version as a base, and then integrated the lat-

est online version of KEGG (July 16, 2021) and Reactome (July 3, 2021) to output all the gene

pair lists. We also combined the pathway information from WikiPathways (May 10, 2021) and

gene symbols from the HUGO Gene Nomenclature Committee with the gene pair list. Finally,

we obtained the gene pair list with pathway information.

Network propagation

We generated a gene–gene interaction map based on the latest version of several protein–pro-

tein interaction databases (KEGG, Reactome, and WikiPathways), in which each node repre-

sents a gene, or a protein and each edge represents a gene–gene connection or protein–protein

interaction. Then, we applied the Random Walk with Restart (RWR) algorithm on the net-

work using the q-value (L.,j denoted by qj) of the microbe (j)–gene linkage restart as the node

value.W is adjacent matrix, and r is an arbitrary value (0.3).

qtþ1

j ¼ ð1 � rÞWq
t
j þ rq

0

j

After RWR convergence, we identified the top-ranked significant linked genes based on the

final propagated value q. Everything above the significance threshold is now linked back to

microbe, resulting in our final gene-to-microbe linkages after propagation.

Single-cell RNA-seq data analysis

We downloaded scRNA-seq BALF data from healthy controls and COVID-19 patients from a pub-

licly available resource (GSE145926). The scRNA-seq data were processed and mapped to a mixed

genome (human hg38 + SARS-CoV-2 ASM985889v3) by CellRanger (v7.0.1) with default parame-

ters. Then, we obtained dense expression matrices by the CellRanger mat2csv utility function.

COVID-associated cells were identified by at least one COVID gene count in each barcode.

Cell types of the scRNA-seq data were assigned by CIBERSORT with the LM22 signature

matrix. The cell type of each barcode was determined by the cell type in LM22 that had the

highest composition.

For gene significance comparison, all COVID cells in the three COVID patient samples

(SRR11537949, SRR11537950, SRR11537951) were used for analysis (S3 Table). For healthy

cells, we selected a corresponding number of healthy cells from SRR11537948 and ensured an

equal number of COVID cells and healthy cells for each cell type for comparison. We com-

pared the log2CPM of each gene in the pathway with the Wilcoxon test.
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Supporting information

S1 Fig. Summary of samples. Left, middle, and right pie charts represent composition of sam-

ples under different categories: BALF tissue, tissues in healthy individuals, and tissues in

COVID-19 patients. The number in the brackets represents the number of samples for that

group.

(TIF)

S2 Fig. Enrichment analysis for topic 9 in the virus–host protein–protein interactions gene

sets. Enrichment analysis of the top 100 genes of topic 9 in the virus–host protein–protein

interactions gene sets.

(TIF)

S3 Fig. Enrichment analysis for topic 9 in the COVID-19-related gene sets. Enrichment

analysis of the top 100 genes of topic 9 in the COVID-19-related gene sets.

(TIF)

S4 Fig. Microbe clusters in (A) COVID-19 and (B) healthy BALF tissue samples. The

SARS-CoV-2-associated microbes are labeled. (C) R.mucilaginosa- and (D) P.melaninogen-
ica-associated miRNA in COVID-19 patients. The miRNA in the pink circle is a known

miRNA associated with SARS-CoV-2.

(TIF)

S5 Fig. Heatmap of (A) miRNA and (B) microbe linkages across multiple tissues.

(TIF)

S1 Table. Biological annotation of topics based on the enrichment analysis of top-weighted

genes.

(XLSX)

S2 Table. Enrichment analysis results for clustergram in Fig 4E.

(XLSX)

S3 Table. Summary of scRNA-seq data analysis.

(XLSX)

S4 Table. Overlap between Host Genetics Initiative (HGI) associated genes with

SARS-CoV-2 linked gene lists inferred by MLCrosstalk.

(XLSX)
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