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Abstract

Motivation: The inference of genes that are truly associated with inherited human diseases from a set of

candidates resulting from genetic linkage studies has been one of the most challenging tasks in human genetics.

Although several computational approaches have been proposed to prioritize candidate genes relying on protein-

protein interaction (PPI) networks, these methods can usually cover less than half of known human genes.

Results: We propose to rely on the biological process domain of the gene ontology to construct a gene semantic

similarity network and then use the network to infer disease genes. We show that the constructed network covers

about 50% more genes than a typical PPI network. By analyzing the gene semantic similarity network with the PPI

network, we show that gene pairs tend to have higher semantic similarity scores if the corresponding proteins are

closer to each other in the PPI network. By analyzing the gene semantic similarity network with a phenotype

similarity network, we show that semantic similarity scores of genes associated with similar diseases are

significantly different from those of genes selected at random, and that genes with higher semantic similarity

scores tend to be associated with diseases with higher phenotype similarity scores. We further use the gene

semantic similarity network with a random walk with restart model to infer disease genes. Through a series of

large-scale leave-one-out cross-validation experiments, we show that the gene semantic similarity network can

achieve not only higher coverage but also higher accuracy than the PPI network in the inference of disease genes.
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Background
Not withstanding the remarkable success of such statisti-

cal methods as linkage analysis and association studies in

identifying genetic variants underlying inherited human

diseases in the past few decades [1], susceptibility geno-

mic regions obtained by these methods may contain doz-

ens or even hundreds of candidate genes, appealing for

the development of effective computational methods to

infer genes that are truly associated with a query disease

of interest from a long list of candidates [2].

In the face of this challenge, several methods have

been proposed to score genes in a candidate list accord-

ing to their functional relevance to the genes that are

already known to be associated with the query disease

(i.e., seed genes) and then prioritize the candidates

according to their scores. The basic assumption of these

methods, which is typically referred to as the “guilt-by-

direct-association” principle, is that genes associated

with a disease should have similar functions. It is there-

fore crucial for these methods to estimate functional

similarity between genes. For this purpose, a wide vari-

ety of genomic information has been adopted, with

examples including protein sequences [3], gene expres-

sion profiles [4], literature descriptions [5], protein-pro-

tein interactions (PPI) [6], gene ontology annotations

[7], and many others [8]. Methods using multiple geno-

mic data sources have also been proposed [9,10].

Depending on seed genes to prioritize candidate genes

will restrict the scope of application of the above meth-

ods, because genetic bases for about half of the known
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human diseases are completely unknown according to

the Online Mendelian Inheritance in Man (OMIM)

database [11]. To overcome this limitation, recent stu-

dies have suggested the “guilt-by-indirect-association”

principle, which relies on the modular nature of inher-

ited human diseases [8,12] and resorts to a phenotype

similarity network of diseases [13] to prioritize candidate

genes [14-17,20]. These methods successfully extend the

scope of prioritizing candidate genes to diseases whose

genetic bases are completely unknown.

However, all methods based on the “guilt-by-indirect-

association” principle thus far are designed to be used

with one or more protein-protein interaction networks.

For example, Wu et al. used a linear regression model

to explain phenotype similarity using protein network

proximity [15]. Zhang et al. extend the regression model

to include multiple protein-protein interaction networks

[19]. Li and Patra utilized a random walk model to

simulate the steady-state probability of a random walker

staying at a gene [17]. Although a protein-protein inter-

action network could provide a simplified yet systematic

view of functional relationships between genes, the cov-

erage of available protein-protein interaction networks is

typically low, and the reliability of different protein-pro-

tein interaction networks is quite different [19], making

the selection of a suitable network far from trivial.

Moreover, focusing on common interactions in multiple

networks to improve the confidence of edges will sacri-

fice the coverage of the resulting network, while focus-

ing on the union of interactions to improve the

coverage will result in a network of low reliability [19].

Motivated by these observations, we propose to con-

struct a gene semantic similarity network using the bio-

logical process domain of gene ontology and GO

annotations of human genes. We show that the gene

semantic similarity network covers 14,085 genes, about

50% more genes than the widely used Human Protein

Reference Database (HPRD) [21] protein-protein inter-

action network. Via a comprehensive analysis of the

gene semantic similarity network with the HPRD net-

work, we show that gene pairs tend to have higher

semantic similarity scores if the corresponding proteins

are closer to each other in the HPRD network. Through

a detailed analysis of the gene semantic similarity net-

work with a phenotype similarity network, we show that

semantic similarity scores of genes associated with simi-

lar diseases are significantly different from those of

genes selected at random, and that genes with higher

semantic similarity scores tend to be associated with dis-

eases with higher phenotype similarity scores. We

further use the gene semantic similarity network with a

random walk with restart model [17] to infer disease

genes. Through a series of large-scale leave-one-out

cross-validation experiments, we show that the gene

semantic similarity network can achieve not only higher

coverage but also higher accuracy than the HPRD net-

work in the inference of disease genes. With these

results, we conjecture that the gene semantic similarity

network can serve as a better assessment of functional

relationship between genes and then be used in a large

number of applications in systems biology.

Results
Data sources

We propose to prioritize candidate genes using 1) a

gene semantic similarity network that is constructed

using the biological process (BP) domain of the gene

ontology (GO) and known GO annotations of human

proteins, 2) a phenotype similarity network of human

diseases, and 3) known associations between diseases

and genes.

First, we extract 18, 850 GO terms in the biological

process domain from the gene ontology (released on

April 18, 2010) and extract 186, 080 annotations of

human proteins from the UniProtKB GO annotations of

human proteins (released on April 18, 2010). Focusing

on proteins with corresponding gene identifiers in the

Ensembl database, we obtain 59,681 annotations that

involve 14,085 human genes and 5,596 GO terms.

Second, we obtain a phenotype similarity profile,

represented as a matrix of similarity scores between

5,080 human diseases, from the literature [13]. Since

most small similarity scores in this profile are likely to

be noise and only high scores have clear biological

meanings [13], we follow the literature [17] to keep the

first five nearest neighbors for each disease and obtain a

phenotype similarity network, in which vertices are

human diseases and weighted edges indicate similarity

scores between diseases.

Third, we use the tool BioMart [22] to extract 4, 368

known associations that involve 2,593 human genes

with Ensembl gene identifier and 3, 111 human diseases

in the OMIM database [11].

Finally, we use the high quality Human Protein Refer-

ence Database (HPRD) [21] to demonstrate the relation-

ship between a gene semantic similarity network and a

protein-protein interaction network. After removing

duplications and self-linked interactions, we extract

from release 9 (release on April 13, 2010) of this data-

base 37, 067 interactions between 9,518 human genes.

Construction of gene semantic similarity networks

The procedure of constructing a gene semantic similarity

network is illustrated in Figure 1. First, we calculate pair-

wise semantic similarity scores for GO terms in the biolo-

gical process domain, obtaining a matrix that contains

semantic similarity scores between GO terms. Next, we

calculate pairwise semantic similarity scores for human
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genes using similarity scores of GO terms and annotations

of genes, obtaining a matrix that contains semantic simi-

larity scores between genes. Then, we filter out low simi-

larity values in this matrix by keeping only the first �

nearest neighbors for each gene and assigning zeros to all

other elements. Finally, we obtain a gene semantic similar-

ity network by treating non-zero elements in the resulting

matrix as weights of edges between corresponding genes.

We adopt three methods based on information con-

tents of GO terms (Resnik [23], Schlicker et al. [24] and

Lin [25]) and one method based on the structure of gene

ontology (Wang et al. [26]) to calculate similarity scores

for GO terms, and we use a method in the literature [26]

to calculate similarity scores for genes (see Methods for

details). Hence, we obtain four semantic similarity net-

works, each containing 14,085 human genes.

Gene semantic similarity correlates with protein network

proximity

There have been a few methods relying on protein-pro-

tein interaction networks to infer disease genes [17].

The basic assumption of these methods is that interact-

ing proteins are usually related in their functions, and

thus the proximity of two proteins in a protein-protein

interaction network can be used as an estimation of the

functional relationship between the corresponding

genes. Therefore, we first show that the similarity score

between two genes in a gene semantic similarity net-

work correlates with the proximity score of the corre-

sponding proteins in a protein-protein interaction

network.

We use the length of the shortest path between two

proteins in the HPRD network to measure their proxi-

mity, and we draw box plots to demonstrate the rela-

tionship between gene semantic similarity scores and

protein network proximity scores in Figure 2. From the

figure, we can clearly see that gene pairs tend to have

higher semantic similarity scores if the corresponding

proteins are closer in the protein-protein interaction

network. Taking gene semantic similarity scores calcu-

lated using the method of Resnik as an example (Figure

2:A), the median semantic similarity score is 0.1760 for

Figure 1 Illustration of the procedure for constructing a gene semantic similarity network.

Figure 2 Relationship of gene similarity scores and protein network proximity scores. A: results for the method of Resnik. B: results for the

method of Schlicker et al. C: results for the method of Lin. D: results for the method of Wang et al.
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gene pairs whose products have direct interaction in

HPRD, 0.1322 for gene pairs intermediated by another

gene in HPRD, 0.1028 for gene pairs intermediated by

two other genes, 0.0830 for gene pairs intermediated by

three other genes, and 0.0698 for gene pairs interme-

diated by four or more other genes. Similar results are

observed for gene semantic similarity scores calculated

using the other methods.

These results suggest that gene semantic similarity

scores are correlated with protein proximity scores.

Hence, given the successful applications of [14-20], it is

reasonable to use gene semantic similarity networks for

the inference of disease genes.

Gene semantic similarity implies disease phenotype

similarity

The phenotype similarity profile of diseases has been

successfully used for prioritizing candidate genes in

recent studies [14-20]. In general, methods relying on

the phenotype similarity profile assume that similar dis-

eases are associated by genes with similar functions. It is

therefore necessary to assess whether semantic similarity

scores between genes associated with similar diseases

are significantly different from those between genes that

are selected at random. For this purpose, we partition

genes into 7 groups according to the similarity scores of

diseases that the genes are associated, and we draw the

box plot of pairwise similarity scores of genes in each

group in Figure 3.

We use gene semantic similarity scores calculated

using the method of Resnik as an example to demon-

strate the relationship between gene semantic similarity

and disease phenotype similarity (Figure 3:A). In group

1, we look at each disease separately. We collect genes

that are associated with a disease, plot pairwise semantic

similarity scores of these genes, and obtain a median

semantic similarity score of 0.1945 for this group of

genes. In group 2, we look at the nearest neighbor (the

disease with the highest similarity score) of each disease

in the disease similarity network. We collect genes asso-

ciated with a disease and genes associated with the near-

est neighbor of the disease, and we obtain a median

pairwise semantic similarity score of 0.1635 for this

group of genes. In group 3, we look at the second near-

est neighbor of each disease in the disease similarity net-

work. We collect genes that are associated with a

disease and its second nearest neighbor, and we obtain a

median pairwise semantic similarity score of 0.1486 for

this group of genes. Similarly, in groups 4, 5 and 6, we

look at the third, fourth and fifth nearest neighbor of

each disease, respectively, and we obtain median pair-

wise semantic similarity scores of 0.1441, 0.1394 and

0.1383 for the corresponding groups of genes, respec-

tively. Finally, in group 7, we look at 10,000 pairs of

genes that are selected at random, and we obtain a med-

ian pairwise semantic similarity score of 0.0649.

These results demonstrate that semantic similarity

scores of genes associated with similar diseases are sig-

nificantly different from those of genes selected at ran-

dom, and that genes with higher semantic similarity

scores tend to be associated with diseases with higher

phenotype similarity scores. In other words, semantic

similarity of genes implies phenotype similarity of dis-

eases that the genes are associated.

Figure 3 Pairwise semantic similarity scores of genes in different groups. A: results for the method of Resnik. B: results for the method of

Schlicker et al. C: results for the method of Lin. D: results for the method of Wang et al.
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Gene semantic similarity networks improve the accuracy

in prioritizing candidate genes

We propose to prioritize candidate genes using a gene

semantic similarity network, the phenotype similarity

network, and known associations between diseases and

genes. This is done by applying a random walk with

restart model to a heterogeneous network that is com-

posed of both diseases and genes (see Methods). We

adopt two large-scale leave-one-out cross-validation

experiments with two comprehensive evaluation criteria

to assess the performance of this approach (see Meth-

ods), and we present results in Table 1 and Figure 4.

We use the gene semantic similarity network con-

structed using the method of Resnik as an example to

demonstrate the performance of the proposed approach.

At the threshold � = 100, we obtain a network com-

posed of 14, 085 genes and 2,112, 750 edges. Taking the

overlap of genes in this network and those in the HPRD

database, we obtain 8, 286 genes. Focusing on these

genes, we obtain 2,397 associations between 1,572 dis-

eases and 1,391 genes. We then perform the leave-one-

out cross-validation experiment against a linkage inter-

val and obtain the Mean Rank Ratio of disease genes

(MRR) as 10.60% and the Area Under the rank receiver

characteristic Curve (AUC) as 90.30%. We further per-

form the validation experiment against random genes

and obtain an MRR of 10.65% and an AUC of 90.25%.

Since a random guess will yield an MRR of 50% and an

AUC of 50%, these results clearly suggest the effective-

ness of relying on the semantic similarity network to

uncover disease genes. For gene semantic similarity net-

works constructed using the other methods, we obtain

similar results (Table 1).

We replace the gene semantic similarity network with

the HPRD network and repeat the experiments. In the

validation of a linkage interval, we obtain an MRR of

14.21% and an AUC of 86.65%. In the validation of ran-

dom genes, we obtain an MRR of 14.40% and an AUC

of 86.46%. We further plot the ROC curves of the vali-

dation results in Figure 4, from which we observe that

the curves for the gene semantic similarity networks

climb much faster towards the top left corner of the

plot than that for the HPRD network. From these

results, we conclude that the gene semantic similarity

networks are superior to the HPRD network in the

prioritization of candidate genes.

We assess the influence of the threshold � on the per-

formance of the random walk model. We vary this para-

meter from 10 to 300 with step 10, perform the

validation against a linkage interval at each value, and

present the results in Figure 5. First, we observe that a

relatively small � for filtering out low semantic similarity

scores will improve the performance of the prioritization

method. For example, with the use of the semantic simi-

larity network constructed using the method of Resnik,

we obtain an MRR of 13.36% and an AUC of 87.51%

when using all similarity scores without filtration (corre-

sponding to � ≥ 14, 085). However, when using � =

100, we obtain an MRR of 10.60% and an AUC of

90.30%, indicating a significant improvement against the

results without filtration. Second, we observe that the

prioritization method is not sensitive to this parameter

when it is relatively small (compared with the number

of genes in the network). For example, when using the

method of Resnik, both the MRR and the AUC are

stable when 100 ≤ � ≤ 300. The optimal value of � in

this interval is 180, at which we obtain an MRR of

10.45% and an AUC of 90.46%, only slightly better than

the results at � = 100. This property is important to the

selection of the parameter �. More specifically, since the

performance of the prioritization method is only slightly

affected by � when it is relatively small, we can roughly

select a � value to obtain near optimal performance.

Hence, we default � to 100 in the rest of this paper

unless declaring explicitly.

Gene semantic similarity networks improve the coverage

in prioritizing candidate genes

The reliability and coverage of existing protein-protein

interaction data sets are quite different. Focusing on

common interactions in these data sets to improve the

confidence will sacrifice the coverage; considering the

union of interactions to improve the coverage will result

in a network of low reliability. A gene semantic similar-

ity network, however, can cover a large proportion of

human genes while providing high accurate inference of

disease genes.

We focus on the network constructed using the

method of Resnik to demonstrate the effectiveness of

relying on gene semantic similarity networks to infer

disease genes. At the threshold � = 100, we obtain a

network composed of 14,085 genes and 2,112,750 edges.

Focusing on these genes, we obtain 3,047 associations

between 1,984 diseases and 1,877 genes. We then

Table 1 Performance of the semantic similarity networks

and the HPRD network in the validation experiments.

Candidate genes are selected from the overlap of the

semantic similarity and the HPRD networks

Resnik
(%)

Schlicker
(%)

Lin
(%)

Wang
(%)

HPRD
(%)

Linkage
interval

MRR 10.60 10.86 10.97 11.05 14.21

AUC 90.30 90.04 89.93 89.85 86.65

Random genes

MRR 10.65 10.92 11.06 11.20 14.40

AUC 90.25 89.98 89.84 89.70 86.46
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perform cross-validation experiments against random

genes and a linkage interval and present the results in

Table 2. In the validation against a linkage interval, we

obtain an MRR of 10.41% and an AUC of 90.50%. In

the validation against random genes, we obtain an MRR

of 10.19% and an AUC of 90.72%. These results clearly

suggest the high accuracy of relying on the gene seman-

tic similarity network to infer disease genes.

We further increase the number of random genes in

each validation run to 999 and find the AUC only drop

slightly to 90.36%, suggesting that the prioritization

method is not sensitive to the number of control genes

in validation. With this understanding, we pursue a

more ambitious goal of genome-wide scan for disease

genes and obtain an MRR of 10.16% and an AUC of

90.10% in uncovering the disease genes from all 14,085

genes in the gene semantic similarity network.

We then look at in detail the distribution of disease

genes ranked within top 100 of the 14, 085 genes and

present the results in Figure 6. We observe that 1, 602

(52.58%) diseases genes are ranked in top 100 when

relying on the network constructed using the method of

Resnik. Within these disease genes, 974 (31.97%) are

ranked in top 10, 182 (5.97%) ranked between 11 and

20, 114 (3.74%) ranked between 21 and 30, 85 (2.79%)

ranked between 31 and 40, and 72 (2.36%) ranked

between 41 and 50. In the zoomed-in plot of Figure 6,

we observe 192 (6.30%) disease genes ranked first, 295

(9.68%) ranked second, 120 (3.94%) genes ranked third,

95 (3.12%) genes ranked fourth, and 77 (2.53%) genes

ranked fifth. Furthermore, we find that the logarithm of

the number of genes at a rank fits a linear model with

the rank (log(#{genes}) = 5.72 – 0.26 × rank), and the

model is statistically significant with a r2 of 0.9383 and a

p-value of 4.059 × 10–6. These results suggest the effec-

tiveness of relying on the gene semantic similarity net-

work to scan genes potentially associated with a query

disease from the whole genome. Particularly, for query

diseases whose genetic bases completely unknown (and

thus no linkage information is available), researchers can

relying on the semantic similarity network to perform a

genome-wide scan and then focus on top ranked genes

to narrow down the scope of searching for disease

genes.

We also notice that relying on semantic similarity net-

works constructed using the other methods (with default

threshold values) yields similar results as we analyzed

above (Table 2).

Conclusions and discussion
In this paper, we have proposed to rely on the biological

process domain of gene ontology and GO annotations

Figure 4 ROC curves of the proposed approach. A: results for the validation of a linkage-interval. B: results for the validation of random genes.

Figure 5 Influence of the parameter � to the performance of the random walk model in the validation of a linkage interval. Solid lines represent

criteria obtained at different � values. Dot-dash lines represent baseline values of the criteria.
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of human genes to construct a semantic similarity net-

work of genes, and then use the network with pheno-

type similarity network of diseases to infer genes that

are associated with a query disease of interest.

The main objective of this research is to overcome

one of the shortcomings of existing protein-protein

interaction networks, i.e., the low coverage. The con-

structed gene semantic similarity network covers 14,085

genes, about 50% more than the widely used HPRD net-

work. More importantly, as demonstrated in our com-

prehensive analysis, the improvement in coverage is

accompanied by the gain in accuracy in the inference of

disease genes. Hence, the gene semantic similarity net-

work can serve as a better assessment of functional rela-

tionship between genes and then be used in a large

number of applications in systems biology.

The filtration of low semantic similarity scores is

important to the success of the proposed approach. We

currently achieve this goal by keeping the first � nearest

neighbors of each gene. Alternatively, we can introduce

a threshold and discard all edges whose weight (similar-

ity score) is less than the threshold. According to our

experiments, this alternative strategy is likely to yield a

disconnected network and thus adversely affect the per-

formance of a prioritization method relying on the

network. Therefore, we resort to the nearest neighbor

strategy to filter out low semantic similarity scores.

Certainly, our research can further be improved from

the following aspects. First, although we have focused

on the biological process domain in this paper, it is

conceptually straightforward to use the molecular

function and the cellular component domains to con-

struct gene semantic similarity networks. According to

our experiments, semantic similarity networks relying

on these two gene ontology domains have similar cov-

erage as that of the biological process domain and can

achieve comparable performance as the HPRD network

in the inference of disease genes (data not shown).

Therefore, a possible improvement of our approach is

to construct a gene semantic similarity network with

the integration of all three domains in the gene

ontology.

Second, the semantic similarity network and the pro-

tein-protein interaction network assess the functional

relationship between genes from different points of

view. Therefore, the inference of disease genes may be

benefit from the integrated use of these two types of

networks. Furthermore, as the effectiveness of relying on

the “guilt-by-association” principle (without using the

phenotype similarity profile) and multiple genomic data

to infer disease genes has been demonstrated in pre-

vious studies. It is reasonable to pursue the goal of

using the phenotype similarity profile with multiple

genomic data to achieve more accurate inferences of

disease genes.

Methods
Calculation of semantic similarity scores

We adopt three methods based on information contents

of GO terms (Resnik [23], Schlicker et al. [24] and Lin

[25]) and one method based on the structure of gene

ontology (Wang et al. [26]) to calculate semantic simi-

larity scores between GO terms.

Given the gene ontology and annotations of human

genes, the probability of occurrence of a GO term t in

annotations, p(t), is estimated as the number that the

term or its descendants are used in annotations divided

by the total number of annotations, as

Table 2 Performance of the semantic similarity networks

in the validation experiments. Candidate genes are

selected from the semantic similarity networks.

Resnik (%) Schlicker (%) Lin (%) Wang (%)

Linkage interval

MRR 10.41 10.70 10.84 10.95

AUC 90.50 90.20 90.06 89.95

Random genes

MRR 10.19 10.48 10.62 10.79

AUC 90.72 90.42 90.68 90.11

Random genes (999)

MRR 10.14 10.49 10.60 10.81

AUC 90.36 90.01 89.91 89.69

Genome-wide scan

MRR 10.16 10.49 10.60 10.81

AUC 90.10 89.77 89.66 89.45

Figure 6 The distribution of genes ranked in top 100 in the genome-wide scan of disease genes.
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In general, more specific terms are less frequently

used in annotations and thus have lower probability of

occurrence. A pair of terms a and b usually has more

than one common ancestor in the ontology. Let ( , )a b

be the set of all common ancestors of a and b, the prob-

ability of occurrence of the most concrete common

ancestor of a and b is then calculated as

p a b p x
x a b

( , ) min { ( )}.
( , )

=
∈

With these definitions, the method of Resnik [23] cal-

culates the semantic similarity score between two terms

a and b as the information content (negative logarithm

of the probability) of the most concrete common ances-

tor of the two terms, as

SimResnik( , ) log ( , ).a b p a b= −

The method of Lin [25] normalizes the above infor-

mation content with the average information content of

the two terms, as
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log ( , )
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p a b

p a p b
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2

The method of Schlicker et al. [24] further weights

the above quantity with the probability of occurrence

of the most concrete common ancestor of the two

terms, as
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( ( , )).a b

p a b

p a p b
p a b=

+
−
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1

Different from the above methods that rely on anno-

tations of genes, the method of Wang et al. [26]

depends only on the structure of gene ontology to cal-

culate semantic similarity scores between GO terms.

Let t be a GO term, ( )t the set of its ancestors and
( )t the set of its children in the GO structure. Wang

et al. iteratively calculate an s-value for every term
a t∈( ) to measure the contribution of a to the

semantics of t, as

s a
a t

w s x a tt
x a e t

( )
;
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where the weight factor we = 0.8 if x and a have the

“is_a” relationship and we = 0.6 if x and a have the “par-

t_of” relationship. Then, a semantic value for a term t is

calculated as

v t s xt

x t

( ) ( ).

( )

=

∈
∑


Finally, the semantic similarity score between two

terms a and b is calculated as

Sim Wang( , )
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.
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a b
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v a v b
a b

x a b

=
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∈ ∩

∑
 

With the semantic similarity scores between GO

terms calculated by either of the above methods, we cal-

culate the semantic similarity between two genes as fol-

lows. The semantic similarity score between a GO term

t and a set of GO terms  is calculated as

Sim( , ) max Sim( , ).t t t
t




= ′
′∈

The semantic similarity score between two sets of GO

terms  and  is calculated as

Sim
Sim Sim

( , )
( , ) ( , )

| | | |
.S T

s T t S

S T
ts=

+

+
∈∈ ∑∑ 

Let g and g′ be two genes. Let ( )g and ( )′g be the

two sets of GO terms with which g and g′ are annotated,

respectively. The semantic similarity between g and g′ is

then calculated as

Sim Sim( , ) ( ( ), ( )).g g g g′ = ′ 

Applying the above method to every pair of genes, we

obtain a pairwise semantic similarity matrix of genes.

Certainly, this matrix can be thought of as the weight

matrix of a fully connected network, whose vertices are

genes and whose edges represent semantic similarity

scores between genes. However, such a fully connected

network may contain a large number of low confident

edges between gene pairs with low semantic similarity

scores. We therefore further filter out edges with low

weights (similarity scores) in the fully connected net-

work by introducing a threshold � (defaulting to 100 in

this paper) and keeping only the first � nearest neigh-

bors for each gene. By doing this, we obtain a gene

semantic similarity network.

Prioritization of candidate genes

The random walk with restart on the heterogeneous

network model [17] is one of the state-of-the-art meth-

ods that utilize a disease similarity network with a pro-

tein-protein interaction network to prioritize candidate

genes. This model simulates the process that a random

walker wanders on a heterogeneous network composed
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of a phenotype similarity network, a protein-protein

interaction network, and known associations between

diseases and genes. In each step of the process, the ran-

dom walker may start on a new journey with probability

g or move on with probability 1 – g. When starting on,

the walker may choose the query disease of interest as

the starting point with probability h or choose a seed

gene known to be associated with the query disease

with probability 1 – h. When moving on, the walker

may choose to jump from the disease similarity network

to the protein-protein interaction network or vice versa

with probability l or choose to wander in either the dis-

ease network or the protein-protein interaction network

with probability 1 – l. When wandering about, the

walker moves at random to one of its direct neighbors.

In this model, the protein-protein interaction network

serves as a simplified yet systematic view of functional

relationships among genes. Since a gene semantic simi-

larity network also provides a means of measuring func-

tional relationships among genes, conceptually we can

also use a gene semantic similarity network with the

phenotype similarity network to infer disease genes. Fol-

lowing the literature [17], we use the following random

walk with restart model on the heterogeneous network

that is composed of a phenotype similarity network, a

gene semantic similarity network, and known associa-

tions between diseases and genes.

We represent the phenotype similarity network using

a weight matrix D = (dij)m×m, where m denotes the

number of diseases and dij the similarity score between

the i-th disease and the j-th disease. By normalizing

each row of this matrix, we obtain a transition matrix U

= (uij)m×m, where u d dij ij ij
j

m
=

=∑ 1
, representing the

probability that a random walker moves from the i-th

disease to the j-th disease.

We represent the gene semantic similarity network

using a weight matrix G = (gij)n×n, where n denotes the

number of genes and gij the similarity score between the

i-th gene and the j-th gene. By normalizing each row of

this matrix, we obtain a transition matrix V = (vij)n×n,

where v g gij ij ij
j

n
=

=∑ 1
, representing the probability that

a random walker moves from the i-th gene to the j-th

gene.

We represent known associations between diseases

and genes using an adjacency matrix A = (aij)m×n, where

aij = 1 indicates that the j-th gene is known to be asso-

ciated with the i-th disease, and aij = 0 otherwise. By

normalizing each row of this matrix, we obtain a transi-

tion matrix R = (rij)m×n, where r a aij ij ij
j

n
=

=∑ 1
, repre-

senting the probability that a random walker jumps

from the i-th disease to the j-th gene. Note that we

define rij = 0 when aij
j

n

=∑ =
1

0 , i.e., when there is no

gene known as associated with the i-th disease.

Similarly, by normalizing each row of the transpose of

the matrix A, we obtain a transition matrix S = (sij)n×m,

where s a aij ji ji
j

m
=

=∑ 1
, representing the probability that

a random walker jumps from the i-th gene to the j-th

disease. We also define sij = 0 when a ji
j

m

=∑ =
1

0 i.e.,

when the i-th gene is not associated with any disease.

With the above four transition matrices, we define

T
U R

S V
=

−

−

⎡

⎣
⎢

⎤

⎦
⎥

( )

( )
,

1

1

l l

l l

and further normalize every row of this matrix to

obtain the transition matrix of the heterogeneous net-

work W = (wij), where w t tij ij ij
j

m n
=

=

+

∑ 1
. The parameter

l is the probability that the random walker jumps from

the disease similarity network to the gene semantic

similarity network or vice versa.

When the random walker starts in the disease similar-

ity network, we let it start from the query disease, there-

fore the initial probability is 1 for the query disease and

0 for other diseases. We use a vector u(0) to represent

these probabilities. When the random walker starts in

the gene similarity network, we let it start at random

from one of the genes known as associated with the

query disease, therefore the initial probability is 1/s for

every seed gene (suppose there are a total of s seed

genes) and 0 for other genes. We use a vector v(0) to

represent these probabilities. Let h be the probability

that the random walker starts from the disease similarity

network, we have the initial probability vector

p
u

v

( )
( )

( )( )
.0

0

01
=

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

h

h

Finally, let p(t) be the vector composed of probabilities

of finding the random walker at all vertices in the het-

erogeneous network at step t, we have

p W p p
( ) ( ) ( )( ) .t T t+ = − +1 01 g g

After a number of steps, the probability will reach a

steady state. This is obtained by performing the iteration

until the difference between p(t) and p(t+1) is sufficiently

small (i.e., the L1 norm of ∆p = p(t+1) – p(t) is less than

a small positive number ε). The steady-state probability

p(∞) then gives a measure of the strength of association

of each gene to the query disease of interest, and we

can then rank candidate genes according to their

steady-state probabilities.

It has been show that the random walk model is not

sensitive to the parameters involved in the model [17].

Hence, we follow the literature [17] and default the

parameters to l = 0.7, h = 0.5, g = 0.5 and ε = 10–4.
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Validation methods and evaluation criteria

We perform three large-scale leave-one-out cross-valida-

tion experiments to examine the performance of the

proposed method in prioritizing genes that are known

to be associated with certain diseases (i.e., disease genes)

from a set of candidates. First, in the validation against

a linkage interval, we take a known association between

a gene and a disease in each run, assume the association

is unknown, and prioritize the gene against a set of 99

control genes that locate nearest to the disease gene

according to their genomic distance on the same chro-

mosome. Second, in the validation against random

genes, we select control genes in each validation run as

99 (or 999) genes that are selected at random from all

genes in a gene semantic similarity network. Third, in

the genome-wide scan of disease genes, we select con-

trol genes in each validation run as all genes in a gene

semantic similarity network.

We use two measures to evaluate the performance of

the proposed method. Taking the cross-validation

against a linkage interval as an example, after each vali-

dation run, we obtain a score (the steady-state probabil-

ity) for each candidate gene and further rank genes

according to their scores (ties are broke by assigning

ranks to genes with equal scores at random) to obtain a

ranking list of candidate genes. We then calculate rank

ratios of candidate genes by dividing their ranks with

the number of candidate genes in the list. For a set of

validation runs, we calculate the following two measures.

First, we calculate the mean rank ratio (MRR) of all dis-

ease genes as the average of rank ratios of all disease

genes in the validation runs. Second, given a threshold

of rank ratio, we calculate the sensitivity as the fraction

of disease genes ranked above the threshold and the

specificity as the fraction of control genes ranked below

the threshold. Varying the threshold value from 0.0 to

1.0, we are able to draw a receiver operating characteris-

tic (ROC) curve and further calculate the area under

this curve (AUC). Obviously, smaller MRR and larger

AUC values indicate higher performance of a prioritiza-

tion method.
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