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Abstract—Selecting local similarity measures and weighting 

their contributions to construct a linearly combined similarity 

measure with high accuracy is a key problem in assessing the 

similarity between linguistic items. Focusing on this problem, a 

number of approaches have been presented during the past few 

decades. Each approach can construct a linearly combined 

measure with high accuracy in its specific case. However, 

constructing such a measure for arbitrary cases remains a 

challenge. In this paper, an approach for constructing different 

linearly combined measures with high accuracy in different 

cases is proposed. This approach uses the Pearson correlation 

coefficient between the computed and judged similarities to 

quantify the accuracy of a linearly combined measure. For 

different cases, different local measures are selected and 

different weights are assigned by maximizing this coefficient. 

Thus the approach can ensure high accuracy in arbitrary cases. 

The effectiveness of the approach is theoretically proved and a 

set of experiments are carried out to verify the result of this 

proof. The proof and experiment results show that the linearly 

combined measure constructed by the approach has high 

accuracy and the weight assignment and local measure selection 

ways are helpful to improve the accuracy of the linearly 

combined measure.  
 

Index Terms—Similarity Assessment; Linear Combination; 

Similarity Measure; Linguistic Item; Weight; Accuracy.  

 

I. INTRODUCTION 

The similarity of a pair of linguistic items refers to the 

degree of the nearness or proximity of them. It indicates how 

near the two linguistic items are since they share some aspects 

of their features [1]. Similarity is useful for many applications 

dealing with textual data such as data integration [2, 3], 

information retrieval [4, 5], knowledge extraction [6, 7], and 

ontology alignment [8, 9]. The core issue of using similarity in 

these applications is how to quantify the similarity between 

linguistic items. Focusing on this issue, a number of similarity 

measures have been proposed during the past few decades. 

These measures can be divided into sense-level, word-level, 

and sentence-level measures based on the linguistic levels 

they can be used to [10].  

Sense-level measures mostly work on lexical databases like 

WordNet [11] and BabelNet [12]. They often consider lexical 

databases as semantic networks and calculate similarities on 

the basis of the structural attributes like path length and depth 
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of these semantic networks. A comprehensive review about 

WordNet-based measures was presented in [13]. Word-level 

measures have attracted the most attention and gained the 

most popularity over the past decade among the three levels’ 
measures [10]. Various word-level measures have emerged 

and were comprehensively surveyed in [14]. Sentence-level 

measures can be grouped into string-based, knowledge-based, 

and corpus-based measures [15]. Among them, string-based 

measures assess the similarities based on string sequences and 

character compositions, and knowledge-based (corpus-based) 

measures firstly split sentence into words and then calculate 

the semantic similarities of word pairs according to specific 

knowledge bases (corpuses) and finally linearly combine the 

similarities of word pairs to obtain the similarity of sentences.  

In some practical applications of similarity measures, one 

may encounter the following case: Obtain the overall 

similarity of a pair of linguistic items by selecting two or more 

similarity measures at identical or different linguistic levels to 

respectively assess the similarities of each pair of the features 

of the two linguistic items and computing the weighted sum of 

the assessed similarities. As one example, the practical 

application in [16] defines the overall similarity of two words 

as a weighted sum of the similarities of their synonym sets, of 

their distinguishing features, and of their semantic 

neighborhoods, which are all calculated by word-level 

measures. As another example, in the practical application in 

[17], the overall similarity of two sentences is defined as a 

weighted sum of the similarities of their word semantics and 

of their word orders, which are assessed using a sense-level 

measure and a sentence-level measure, respectively. As can 

be seen from the two examples, two key questions in the 

assessment of the similarity between two linguistic items are: 

(1) How to select two or more similarity measures to 

respectively assess the similarities of each pair of their 

features? (2) How to assign weights to the selected measures 

to obtain an overall similarity measure? Since each selected 

measure is usually called a local similarity measure and the 

overall measure is often named linearly combined similarity 

measure in similarity assessment, the two questions can be 

summarized as one question: How to select local similarity 

measures and assign weights to the selected measures to 

construct a linearly combined similarity measure?  

For this question, a number of researchers have mentioned 

or attempted to solve it in their studies. For examples, 

Rodríguez and Egenhofer [16] listed the linearly combined 

similarity measures with three groups of fixed weights and 

chose the one with the highest accuracy as the final linearly 

combined measure. Their experimental result showed that the 

chose linearly combined measure can obtain high accuracy in 
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some specific cases. In [17], Li et al. designed a local 

similarity measure for word senses and a local measure for 

word orders and used fixed weights to aggregate these local 

measures to obtain a linearly combined similarity measure. In 

[18], Li et al. presented ten linearly combined similarity 

measures with ten groups of fixed weights and selected the 

one obtaining the highest accuracy as the ultimate linearly 

combined measure. Li et al. provide more candidate groups of 

weights and linearly combined measures to find out a linearly 

combined measure that obtains the highest accuracy. The 

found out measure however can hardly obtain high accuracy 

in any situations. Different from the studies of Rodríguez and 

Egenhofer [16] and Li et al. [17, 18], the study of Islam and 

Inkpen [19] used equal weights to construct a linearly 

combined similarity measure for calculating the similarity of 

sentences, which achieved high accuracy in specific cases. 

From the listed examples, it can be seen that existing solutions 

to the question can ensure high accuracy in specific situations 

but not in arbitrary situations. This is because the local 

measures and weights in these solutions are not 

simultaneously adjustable to maximize the accuracy.  

To address this limitation, this paper proposes an 

adjustable approach that is capable of constructing a linearly 

combined similarity measure with high accuracy for assessing 

the similarity between linguistic items. Like most of existing 

measure construction approaches (e.g. the approaches 

[16−19]), this approach also leverages the Pearson correlation 

coefficient between the similarities of a certain number of 

randomly selected samples computed by the linearly 

combined measure and the similarities of these samples 

judged by a certain number of domain experts (the similarity 

of each sample is the mean value of the similarities of this 

sample judged by a certain number of domain experts) to 

quantify the accuracy of the linearly combined measure. For 

arbitrary cases, the approach can select different local 

similarity measures and assign different weights to the 

selected local measures to maximize the Pearson correlation 

coefficient so that it is capable of constructing a linearly 

combined measure with high accuracy.  

The rest of the paper is organized as follows. An overview 

of related work is provided in Section II. The details of the 

proposed approach are explained in Section III. Section IV 

evaluates the effectiveness of the approach via theoretical 

proof and experimental verification. Conclusions are drawn in 

Section V.  

II. RELATED WORK 

Generally, a linearly combined similarity measure for two 

linguistic items is defined as a weighted sum of two or more 

local similarity measures for the features of these two 

linguistic items. So the construction of a linearly combined 

similarity measure mainly includes the design or selection of 

local similarity measures and the assignment of the weights of 

local similarity measures. During the past few decades, a 

number of approaches for constructing a linearly combined 

similarity measure have been presented. These approaches 

can be classified into four groups on the basis of the selection 

way of the local similarity measures and the assignment way 

of the weights.  

The first group consists of the approaches using fixed local 

measures and weights to construct a linearly combined 

measure. Representative examples for such approaches are 

the approaches presented by Rodríguez and Egenhofer [16], 

Li et al. [17, 18], and Islam and Inkpen [19]. By aggregating 

the local measures for words’ synonym sets, distinguishing 
features, and semantic neighborhoods, the approach of 

Rodríguez and Egenhofer [16] constructed the following 

linearly combined measure for two words:  

1 2 1 2 1 2

1 2

( , ) ( , ) ( , )

( , )

S F

N                                             

Sim W W Sim W W Sim W W

Sim W W
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where α, β, and γ ( 0 ≤ α, β, γ ≤ 1 and α+β+γ = 1) respectively 

weight the contributions of the local measures SimS(W1, W2), 

SimF(W1, W2), and SimN(W1, W2), which are respectively used 

to assess the similarities of the synonym sets, distinguishing 

features, and semantic neighborhoods of words and are all 

instantiated by Tversky’s measure [20]. In the experiment, 

Rodríguez and Egenhofer evaluated the accuracies of the 

linearly combined measures with three groups of fixed 

weights (α=β=γ=0.333), (α=γ=0.500; β=0), and (α=γ=0; β=1) 

and selected the linearly combined measure with the highest 

accuracy for a specific case. The experimental result 

suggested that the selected linearly combined measure can 

obtain high accuracy in each specific case. But the local 

measures and weights in this approach are not adjustable to 

maximize the accuracy. Similar to Rodríguez and Egenhofer’s 
approach [16], the approaches of Li et al. [17, 18] and Islam 

and Inkpen [19] evaluated the accuracies of the linearly 

combined measures with fixed local measures and weights 

and selected the linearly combined measure obtaining the 

highest accuracy to assess the similarity of two words or two 

sentences.  

In the second group of approaches, fixed local similarity 

measures and adjustable weights are used to establish a 

linearly combined similarity measure. Representative 

approaches in this group are the approaches of Petrakis et al. 

[21], Furlan et al. [22], and Li et al. [23]. The approach of 

Petrakis et al. [21] used a maximum function, which can be 

seen as a weight assignment function, to construct a linearly 

combined measure between words:  

 1 2 1 2 1 2( , ) max ( , ), ( , )N DSim W W Sim W W Sim W W  (2) 

where W1 and W2 are not synonyms, and SimN(W1, W2) and 

SimD(W1, W2) are two local measures used to compute the 

similarities of the semantic neighborhoods and descriptions of 

W1 and W2 and are all calculated using Maedche and Staab's 

measure [24]. As can be seen from Expression (2), Petrakis et 

al.’s approach is essentially a weight assignment approach, 
which can obtain high accuracy in some specific cases. As this 

expression does not aim to maximize the accuracy of the 

linearly combined measure, it cannot ensure high accuracy in 

arbitrary situations. In Furlan et al.’s approach [22], two fixed 

local similarity measures are used to compute the string and 

semantic similarities and two adjustable weights are assigned 

to the two local measures, respectively. Furlan et al. pointed 

out that the two weights can be determined by experiment, but 

the details of such experiment are not explained. Li et al.’s 
approach [23] presented some local measures and a weight 

assignment function to construct a linearly combined measure 
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for a pair of words. This function assigned either a weight 0 or 

1 to each local similarity measure according to some specific 

conditions. Their experiment result showed high accuracy and 

efficiency of the constructed linearly combined measure. 

However, no evidence has shown that the accuracy of the 

measure can remain high in different applications.  

The third group consists of the approaches using adjustable 

local measures and fixed weights to construct a linearly 

combined measure. A typical example of these approaches is 

proposed by Jiang et al. [25]. This approach combined 

weighting and maximum functions to construct a linearly 

combined measure of two words:  

1 2 1 2 1 2

1 2 1 2

( , ) ( ( , ), ( , ),

( , ), ( , ))

S G

A C                           

Sim W W f Sim W W Sim W W

Sim W W Sim W W


 (3) 

where f is a weighting or maximum function and SimS(W1, W2), 

SimG(W1, W2), SimA(W1, W2), and SimC(W1, W2) are four local 

measures used to assess the similarities of the synonyms, 

glosses, anchors, and categories of the two words W1 and W2 

and are all computed through making a selection from 

Rodríguez and Egenhofer’s measure [16] and Petrakis et al.’s 
measure [21]. It can be seen from Expression (3) that this 

approach is essentially a local measure adjustment approach, 

which chooses the local measures on the basis of the accuracy 

of the constructed linearly combined measure. The approach 

is capable of obtaining high accuracy in some specific cases, 

but it also cannot ensure high accuracy in arbitrary cases since 

the weights of the local measures do not aim to maximize the 

accuracy.  

In the fourth group of approaches, both local similarity 

measures and weights are adjustable when establishing a 

linearly combined similarity measure. A typical example is 

Akmal et al.’s approach [26]. In this approach, two local 

measures in a linearly combined measure for two words are 

selected from Wu and Palmer’s measure [27], Lin’s measure 
[28], Dice’s coefficient measure [29], Jaccard’s coefficient 
measure [30], confidence measure [30], overlap coefficient 

measure [30], van der Weken et al.’s measure [31], Cosine 

measure, and Tversky’s measure [20] based on the accuracy 

(the Pearson correlation coefficient between the computed 

and judged similarities) of the linearly combined measure. 

The weights of these two local measures were assigned by 

minimizing the residual sum of squares between the 

similarities of a certain number of randomly selected samples 

which are assessed by the linearly combined measure and the 

similarities of these samples judged by a certain number of 

domain experts:  

2
2

T
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 w L J  (4) 

where Sim(W1, W2) = w
T
L (where vector w = [w1, w2]

T
 is the 

weight vector and vector L = [Sim1(W1,W2), Sim2(W1,W2)]
T
 is 

the local similarity measure vector) is a linearly combined 

similarity measure for two words, J is a column vector whose 

elements are the judged similarities, (Wi,1, Wi,2) (i = 1, 2,…, N) 

are N samples, Simj(Wi,1, Wi,2) (j = 1, 2) is the j-th local 

similarity of (Wi,1, Wi,2), and J(Wi,1, Wi,2) is the judged 

similarity of (Wi,1, Wi,2). The approach offers a feasible way to 

adjust the local measures and the weights of local measures on 

the basis of the accuracy of the linearly combined measure. 

However, the residual sum of squares between the computed 

and judged similarities is not appropriate for quantifying the 

accuracy of a similarity measure since it just provides a sum 

of the differences. One cannot know if each difference is 

uniformly spread through the samples (the accuracy is high in 

this case) or if it is concentrated in a subset of the samples (the 

accuracy is low in this case). In practical applications, the 

Pearson (or Spearman) correlation coefficient between the 

computed and judged similarities is more appropriate than the 

residual sum of squares for quantifying the accuracy of a 

similarity measure. This is because a highly accurate 

similarity measure does not mean that the similarities 

computed by this measure have very small errors with the 

similarities judged by domain experts, but means that the 

computed similarities highly correlate with the judged 

similarities (if the judged similarities increase, the computed 

similarities increase in the same magnitude).  

This paper continues the line of research in the fourth group 

of approaches and proposes an approach for constructing a 

linearly combined similarity measure with high accuracy for 

assessing the similarity between linguistic items. Compared to 

the existing approaches, the most important characteristic of 

the proposed approach is that the linearly combined measure 

constructed by it can have high accuracy in arbitrary cases. 

This is because the approach can adjust the local measures 

and weights to maximize the Pearson correlation coefficient 

of the similarities assessed by the linearly combined measure 

and the similarities judged by domain experts, while there is 

yet no evidence that the local measures and their weights in 

the existing approaches can simultaneously be adjusted to 

maximize such correlation coefficient. 

III. MEASURE CONSTRUCTION APPROACH 

It is common practice for a linguistic item to be described 

by a limited number of features. With such description, a local 

similarity measure is designed for each feature and a linearly 

combined similarity measure is defined as a weighted sum of 

all local similarity measures. Formally, let I1 and I2 be two 

linguistic items, fi(I1) and fi(I2) be respectively the i-th features 

of I1 and I2, and Sim(fi(I1), fi(I2)) be a similarity measure for 

fi(I1) and fi(I2) (i.e. the i-th local similarity measure). Then an 

overall similarity measure (i.e. a linearly combined similarity 

measure) for I1 and I2 is defined as: 

1 2 1 2

1

( , ) ( ( ), ( ))
n

i i i

i

Sim I I w Sim f I f I


  (5) 

where w1, w2,…, wn are respectively the weights of the local 

measures Sim(f1(I1), f1(I2)), Sim(f2(I1), f2(I2)),…, Sim(fn(I1), 

fn(I2)) such that 0 ≤w1, w2,…, wn ≤ 1 and w1+ w2 +…+ wn = 1. 

As can be seen from Expression (5), the value of Sim(I1, I2) is 

determined by the values of w1, w2,…, wn and Sim(f1(I1), 

f1(I2)), Sim(f2(I1), f2(I2)),…, Sim(fn(I1), fn(I2)). That is, the 

assignment of the n weights w1, w2,…, wn and the selection of 

n local similarity measures to respectively assess Sim(f1(I1), 

f1(I2)), Sim(f2(I1), f2(I2)),…, Sim(fn(I1), fn(I2)) directly affect 

the accuracy of the linearly combined similarity measure 

Sim(I1, I2). Hence, How to assign the n weights and how to 

select the n local measures, where both the weights and 
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measures can ensure high accuracy of Sim(I1, I2), are two key 

questions in the construction of Sim(I1, I2). In this section, the 

details of the solutions to these two questions are firstly 

explained. Then an algorithm for constructing a linearly 

combined measure with high accuracy is designed based on 

the explanations. 

A. Assignment of Weights 

Generally, the accuracy of a measure is quantified by the 

Pearson correlation coefficient between the similarities of a 

certain number of randomly selected samples which are 

computed by this measure and the similarities of the selected 

samples which are judged by a certain number of domain 

experts (the similarity of each sample is the mean value of the 

similarities of this sample judged by a certain number of 

domain experts). The greater this Pearson correlation 

coefficient, the higher the accuracy of the measure is. As a 

result, the n weights w1, w2,…, wn can be assigned by 

maximizing the Pearson correlation coefficient between the 

similarities of a certain number of randomly selected samples 

computed by Sim(I1, I2) and the similarities of these samples 

judged by a certain number of domain experts.  

Formally, let N be the number of the randomly selected 

samples, J(Ii,1, Ii,2) (i = 1, 2,…, N) be the judged similarity of 

the i-th sample (Ii,1, Ii,2), X = [Sim(f1(Ii,1), f1(Ii,2)), Sim(f2(Ii,1), 

f2(Ii,2)),…, Sim(fn(Ii,1), fn(Ii,2))]
T
 be a matrix consisting of n×N 

local similarities, Y = [J(Ii,1, Ii,2)]
T
 be a vector consisting of the 

N judged similarities, and ω = [ω1, ω2,…, ωn]
T
 be a vector. 

The Pearson correlation coefficient between the computed 

similarities and the judged similarities is the Pearson 

correlation coefficient between ωT
X and Y: 

T
T

T

T

T

cov( , )
pcc( , )

cov( , ) cov( , )

                    






 
XY

XX YY

ω X Yω X Y
ω X X ω Y Y

ω
ω ω

 (6) 

where cov is a covariance function and 
XX

, 
XY

, and 
YY

are 

respectively the following n×n, n×1, and 1×1 matrices: 
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where Sj (j = 1, 2,…, n) are Sim(fj(Ii,1), fj(Ii,2)). To solve ω that 

can maximize pcc(ωT
X, Y), a canonical correlation analysis 

method [32] is used and the solving process is as follows.  

Firstly, let α = 
XX
ω and β = 

YY . Then Expression (6) 

can be converted to the following expression: 

T 1/2 1/2
T

T T T T
pcc( , )

   
 XX XY YY
α β γω X Y

α α β β α α β β
 (10) 

According to the Cauchy-Schwarz inequality, the following 

inequality is achieved:  

T 1/2 1 1/2 T       
XX XY YY YX XX

γ α α β β  (11) 

where 
YX

is the following 1×n matrix:   
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YX  (12) 

According to Expression (10) and Expression (11), the 

following inequality is obtained: 

T 1/2 1 1/2

T

T
pcc( , )

      
 XX XY YY YX XX
α α

ω X Y
α α

 (13) 

As can be seen from Expression (13), the maximum value 

of the correlation coefficient pcc(ωT
X, Y) is attained if and 

only if α is the eigenvector with the maximum eigenvalue for 

the matrix 1/2 1 1/2      
XX XY YY YX XX

. Therefore, the solution is: ω is 

an eigenvector with the maximum eigenvalue for the matrix 
1 1    

XX XY YY YX
.  

Now although the solving process of the vector ω ends, the 

elements in the solved ω are not the real weights. This is 

because some of these elements may be smaller than 0 and the 

sum of the elements that are not smaller than 0 is often not 

equal to 1. To solve the real weights, ω is normalized as 

follow: For all ωj < 0 (j = 1, 2,…, n), let wj = 0 (this indicates 

that Sim(fj(I1), fj(I2)) make no contribution to Sim(I1, I2) in this 

case, i.e. fj is a non-distinguishing feature of I1 and I2 in this 

case) and so a new linearly combined measure is obtained. 

Now re-solve the new vector ω until all ωj ≥ 0. Finally, let wj 

=ωj/(ω1+ω2+…+ωn). A vector w = [w1, w2,…, wn]
T
 whose 

elements are real weights obtained by such normalization is a 

vector that can maximize pcc(w
T
X, Y) because:  

   T T T
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B. Selection of Local Measures 

Naturally, the n local measures for respectively assessing 

Sim(f1(I1), f1(I2)), Sim(f2(I1), f2(I2)),…, Sim(fn(I1), fn(I2)) can be 

selected also through maximizing the Pearson correlation 

coefficient between the similarities of a certain number of 

randomly selected samples computed by Sim(I1, I2) and the 

similarities of these samples judged by a certain number of 

domain experts.  

Assume Sim1,1, Sim1,2,…,
11,mSim  are m1 measures which 

can be selected to assess Sim(f1(I1), f1(I2)), Sim2,1, 

Sim2,2,…,
22,mSim are m2 measures which can be selected to 

assess Sim(f2(I1), f2(I2)),…, Simn,1, Simn,2,…, , nn mSim are mn 

measures which can be selected to assess Sim(fn(I1), fn(I2)). 
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Then m1m2…mn linearly combined measures for assessing the 

similarity of I1 and I2 are obtained:  

1 2 1 2 1 1 2 2
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If N randomly selected samples (Ii,1, Ii,2) (i = 1, 2,…, N) and 

their judged similarities J(Ii,1, Ii,2) are given, the values of the 

weights wk,1, wk,2,…, wk,n (k = 1, 2,…, m1m2…mn) and the 

linearly combined similarities Simk(Ii,1, Ii,2) will be computed 

successively. Let U = [Simk(Ii,1, Ii,2)]
T
 be a vector which 

consists of the N linearly combined similarities and V = [J(Ii,1, 

Ii,2)]
T
 be a vector which consists of the N judged similarities. 

The Pearson correlation coefficients between the computed 

similarities of the N samples Simk(Ii,1, Ii,2) and the judged 

similarities of the N samples J(Ii,1, Ii,2) are calculated using the 

following expression:   

,1 ,2 ,1 ,2

cov( , )
pcc( , ( ))

cov( ,
, ,

) cov( ,
( )

)
k i i i iSim I I IJ I 

U V

U U V V
 (16) 

where cov is a covariance function. Now the n local similarity 

measures in one of the m1m2…mn linearly combined similarity 

measures that has the greatest Pearson correlation coefficient 

are selected. With these n local similarity measures and the 

assigned weights, a linearly combined similarity measure for 

I1 and I2 with high accuracy is constructed. 

C. Measure Construction Algorithm 

Based on the above explanations of how to assign weights 

and how to select local similarity measures, an algorithm for 

constructing a linearly combined similarity measure with high 

accuracy is designed as follow:  

 

Linearly combined measure construction algorithm 

Input: The number of the contribution components n 

N randomly selected samples (Ii,1, Ii,2) (i = 1, 2,…, N)  

The judged similarities of these N samples J(Ii,1, Ii,2)  

m1 measures Sim1,1, Sim1,2,…,
11,mSim for Sim(f1(I1), f1(I2))  

m2 measures Sim2,1, Sim2,2,…,
22,mSim for Sim(f2(I1), f2(I2))  

…… 

mn measures Simn,1, Simn,2,…,
, nn m

Sim for Sim(fn(I1), fn(I2)) 

Output: A linearly combined measure with high accuracy for (I1, I2) 

1 

 

 

 

 

 

2 

 

 

3 

 

 

 

for integer i ← 1 to N do  

Compute Sim(f1(Ii,1), f1(Ii,2)) using Sim1,1, Sim1,2,…,
11,mSim  

Compute Sim(f2(Ii,1), f2(Ii,2)) using Sim2,1, Sim2,2,…,
22,mSim
 

…… 

Compute Sim(fn(Ii,1), fn(Ii,2)) using Simn,1, Simn,2,…, , nn m
Sim

 
end for 

for integer i ← 1 to N do  

Compute all the elements of the matrix 1 1    
XX XY YY YX

 

end for 

Solve the vector ω = [ω1, ω2,…, ωn]
T
 

for integer j ← 1 to n do 

if ωj < 0 then  

wj ← 0 and return to 2 

 

 

4 

 

 

 

 

 

5 

 

 

 

 

 

 

 

 

6 

end if  

end for 

w ← ω/(ω1+ω2+…+ωn) 

for integer k ← 1 to m1m2…mn do 

for integer i ← 1 to N do  

Compute Simk(Ii,1, Ii,2) using Simk(I1, I2) 

end for  

end for  

double pcc_max ← 0  
integer p ← 0 

for integer k ← 1 to m1m2…mn do 

Compute pcc(Simk(Ii,1, Ii,2), J(Ii,1, Ii,2))  

if pcc(Simk(Ii,1, Ii,2), J(Ii,1, Ii,2)) > pcc_max then  

pcc_max ← pcc(Simk(Ii,1, Ii,2), J(Ii,1, Ii,2)) 

p ← k 

end if 

end for  

Output the linearly combined measure is Simp(I1, I2)  

 

The designed algorithm takes as input N randomly selected 

samples and their judged similarities and a certain number of 

candidate measures that can be chose to compute the local 

similarities Sim(fj(Ii,1), fj(Ii,2)) (i = 1, 2,…, N; j = 1, 2,…, n). It 

returns as output a linearly combined measure with high 

accuracy for the two linguistic items (I1, I2). The main ideas 

behind the algorithm are informally described as follows. The 

algorithm firstly uses the input measures to assess the local 

similarities Sim(fj(Ii,1), fj(Ii,2)). Then it successively computes 

the values of the elements of the matrix 1 1    
XX XY YY YX

, the 

intermediate vector ω, and the real weight vector w. After that, 

the algorithm uses each one of the m1m2…mn measures to 

assess the similarities of the N samples. Finally, the Pearson 

correlation coefficients between the assessed similarities 

Simk(Ii,1, Ii,2) (k = 1, 2,…, m1m2…mn) and the judged 

similarities J(Ii,1, Ii,2) are computed and the measure Simp(I1, 

I2), where pcc(Simp(Ii,1, Ii,2), J(Ii,1, Ii,2)) is the greatest one 

among the k correlation coefficients, is output as the 

constructed linearly combined measure with high accuracy.  

The time complexity of the designed algorithm is analyzed 

as follow. It appears that step 4 needs the largest computation 

amount among all six steps. Thus, the time complexity of the 

algorithm is O(m1m2…mnN), which contains three cases: (1) 

If m1m2…mn is far greater than N, the time complexity is 

O(m1m2…mn). (2) If m1m2…mn and N are in the same 

magnitude, the time complexity is O(N
2
). (3) If m1m2…mn is 

far less than N, the time complexity is O(N). 

IV. EVALUATION 

This section firstly provides a theoretical proof of the 

effectiveness of the proposed approach. It then verifies the 

proof result by a set of experiments. Finally, the results of the 

theoretical proof and experiments are analyzed.  

A. Theoretical Proof 

The following theoretical proof proves that the accuracy of 

the linearly combined similarity measure constructed by the 

designed algorithm is the highest one among the accuracies of 
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all possible linear combinations of the n local similarity 

measures in each of the m1m2…mn linearly combined 

measures in Expression (15). That is, the inequality 

pcc(Simp(Ii,1, Ii,2), J(Ii,1, Ii,2)) ≥ pcc(Simk,q,r(Ii,1, Ii,2), J(Ii,1, Ii,2)) 

holds for all k = 1, 2,…, m1m2…mn and q, r = 1, 2,…, n, where 

q stands for the number of the contribution components in a 

linear combination of the n local measures in one of the 

m1m2…mn linearly combined measures in Expression (15), 

and r denotes the sequence number of the linear combinations 

with the same number of contribution components. As an 

example, all possible linear combinations of the n local 

measures in the linearly combined measure Sim1(I1, I2) in 

Expression (15) are as follows:  

Sim1,1,1(Ii,1, Ii,2) = Sim1,1(f1(Ii,1), f1(Ii,2)) 

Sim1,1,2(Ii,1, Ii,2) = Sim2,1(f2(Ii,1), f2(Ii,2)) 

∙∙∙∙∙∙ 
Sim1,1,(n!)/[1!(n-1)!](Ii,1, Ii,2) = Simn,1(fn(Ii,1), fn(Ii,2)) 

Sim1,2,1(Ii,1, Ii,2) = w1,2,1,1Sim1,1(f1(Ii,1), f1(Ii,2)) +  

w1,2,1,2Sim2,1(f2(Ii,1), f2(Ii,2))  

Sim1,2,2(Ii,1, Ii,2) = w1,2,2,1Sim1,1(f1(Ii,1), f1(Ii,2)) +  

w1,2,2,2Sim3,1(f3(Ii,1), f3(Ii,2)) 

∙∙∙∙∙∙ 
Sim1,2,(n!)/[2!(n-2)!](Ii,1, Ii,2) = w1,2,(n!)/[2!(n-2)!],1Simn-1,1(fn-1(Ii,1), fn-1(Ii,2))  

+ w1,2,(n!)/[2!(n-2)!],2Simn,1(fn(Ii,1), fn(Ii,2)) 

∙∙∙∙∙∙ 
Sim1,n,(n!)/[n!(n-n)!](Ii,1, Ii,2) = w1,n,(n!)/[n!(n-n)!],1Sim(f1(Ii,1), f1(Ii,2)) +  

w1,n,(n!)/[n!(n-n)!],2Sim(f2(Ii,1), f2(Ii,2)) + …  
+ w1,n,(n!)/[n!(n-n)!],nSim(fn(Ii,1), fn(Ii,2))  

Proof. Let vectors J = [J(Ii,1, Ii,2)]
T
, X = [Simp(Ii,1, Ii,2)]

T
, Y1 

= [Sim1(Ii,1, Ii,2)]
T
, Y2 = [Sim2(Ii,1, Ii,2)]

T,…, Yt = [Simt(Ii,1, 

Ii,2)]
T
 (t = m1m2…mn). According to the designed algorithm, 

pcc(X, J) is the greatest Pearson correlation coefficient 

among all pcc(Yk, J) (k = 1, 2,…, m1m2…mn). Therefore, the 

inequality “pcc(X, J) ≥ pcc(Yk, J)” holds.  
For the linearly combined measure Sim1(I1, I2) in 

Expression (15), let vectors:  

Z1,1,1 = [Sim1,1,1(Ii,1, Ii,2)]
T
, Z1,1,2 = [Sim1,1,2(Ii,1, Ii,2)]

T,…,  
Z1,1,(n!)/[1!(n-1)!] = [Sim1,1,(n!)/[1!(n-1)!](Ii,1, Ii,2)]

T
,  

Z1,2,1 = [Sim1,2,1(Ii,1, Ii,2)]
T
, Z1,2,2 = [Sim1,2,2(Ii,1, Ii,2)]

T,…,  
Z1,2,(n!)/[2!(n-2)!] = [Sim1,2,(n!)/[2!(n-2)!](Ii,1, Ii,2)]

T,…,  
Z1,n,(n!)/[n!(n-n)!] = [Sim1,n,(n!)/ [n!(n-n)!](Ii,1, Ii,2)]

T
.  

Then Z1,n,(n!)/[n!(n-n)!] = Y1 because the linear combination is 

unique when the number of the contribution components is n. 

According to the designed algorithm, the weight vector w1 = 

[w1,1, w1,2,…, w1,n]
T
 in Sim1(I1, I2) is solved by maximizing 

pcc(Y1, J). So pcc(Y1, J) is the greatest Pearson correlation 

coefficient among all pcc(Z1,u,v, J) (u = 1, 2,…, n; v = 1, 2,…, 
(n!)/[1!(n-1)!]), which contains the following cases:  

If pcc(Y1, J) obtains the greatest value when w1,1 = 1 and 

w1,2 = w1,3 = … = w1,n = 0, then “pcc(Y1, J) = pcc(Z1,1,1, J)”;  
If pcc(Y1, J) obtains the greatest value when w1,2 = 1 and 

w1,1 = w1,3 = … = w1,n = 0, then “pcc(Y1, J) = pcc(Z1,1,2, J)”; 
∙∙∙∙∙∙ 
If pcc(Y1, J) obtains the greatest value when w1,n = 1 and 

w1,1 = w1,2 = … = w1,n-1 = 0, then “pcc(Y1, J) = 

pcc(Z1,1,(n!)/[1!(n-1)!], J)”;  
If pcc(Y1, J) obtains the greatest value when 0 < w1,1, w1,2 < 

1 and w1,3 = w1,4 = … = w1,n = 0, then “pcc(Y1, J) = pcc(Z1,2,1, 

J)”;  
If pcc(Y1, J) obtains the greatest value when 0 < w1,1, w1,3 < 

1 and w1,2 = w1,4 =… = w1,n = 0, then “pcc(Y1, J) = pcc(Z1,2,2, 

J)”;  
∙∙∙∙∙∙ 
If pcc(Y1, J) obtains the greatest value when 0 < w1,n-1, w1,n 

< 1 and w1,1 = w1,2 =… = w1,n-2 = 0, then “pcc(Y1, J) = pcc(Z1,2, 

(n!)/[2!(n-2)!], J)”;  
∙∙∙∙∙∙ 
If pcc(Y1, J) obtains the greatest value when 0 < w1,1,w1,2,…, 

w1,n < 1, then “pcc(Y1, J) = pcc(Z1,n,(n!)/[n!(n-n)!], J) > pcc(Z1,u,v, 

J)”.   
It can be concluded from the above cases that “pcc(Y1, J) ≥ 

pcc(Z1,u,v, J)”. For the remaining linearly combined measures 

in Expression (15), i.e. Sim2(I1, I2), Sim3(I1, I2),…, Simt(I1, I2) 

(t = m1m2…mn), it can be proved that “pcc(Y2, J), pcc(Y3, 

J),…, pcc(Yt, J) are greater than or equal to the Pearson 

correlation coefficients between the similarities computed by 

all possible linear combinations of their respective local 

similarity measures and the judged similarities”.   
Based on the proved conclusions “pcc(X, J) ≥ pcc(Yk, J)” 

and “pcc(Yk, J) ≥ pcc(Z1,u,v, J)”, the inequality “pcc(X, J) ≥ 
pcc(Yk, J) ≥ pcc(Z1,u,v, J)” holds.                                              □ 

B. Experimental Verification 

Generally, an experiment for evaluating the effectiveness of 

a similarity measure can be carried out using an identical 

benchmark consisting of a certain number of sense pairs, 

word pairs, or text pairs and their judged similarities. During 

the past few decades, various benchmarks at different 

linguistic levels (i.e. sense, word, and text levels) have been 

designed, where the most widely used benchmarks are 

SENSEVAL-2 (sense-level) [33], OntoNotes (sense-level) 

[34], RG-65 (word-level) [35], YP-130 (word-level) [36], 

WordSimilarity-353 (word-level) [37], and MSRvid, OnWN, 

MSRpar, SMTeuroparl, and SMTnews (text-level) in the 

SemEval-2012 task 6 [38]. Among these benchmarks, the 

benchmarks that contain the same number of linguistic item 

pairs are MSRvid, OnWN, and MSRpar (each of them 

contains 750 text pairs). Since OnWN is not provided with 

any training data, MSRpar is not generic (belongs to the 

newswire genre), and MSRvid is provided with training data 

and generic, MSRvid will be used to verify the theoretical 

proof result in the following 8 experiments.  

Based on the selected benchmark, it is assumed that the 

purpose of the 8 experiments is to construct a linearly 

combined measure Sim(I1, I2), which totally has three 

contribution components Sim(f1(I1), f1(I2)), Sim(f2(I1), f2(I2)), 

and Sim(f3(I1), f3(I2)), to assess the similarities of text pairs. 

Meanwhile, it is also assumed that Carrillo et al.’s 
BUAPRUN-1 measure (SimCAR) [39] and Yeh and Agirre’s 
System 2 measure (SimYEH) [40] are the candidate local 

measures that can be selected to compute Sim(f1(I1), f1(I2)), 

Croce et al.’s Sys2 measure (SimCRO) [41] and Malandrakis et 

al.’s Hierarchical measure (SimMAL) [42] are the candidate 

local measures that can be selected to compute Sim(f2(I1), 

f2(I2)), and Caputo et al.’s UNIBA-LSARI measure (SimCAP) 

[43] and Banea et al.’s IndividualRegression measure (SimBAN) 

[44] are the candidate local measures that can be selected to 

compute Sim(f3(I1), f3(I2)). According to these conditions and 

Expression (15), 2×2×2 = 8 linearly combined measures can 

be constructed as follows: 
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( , )

Sim w Sim

Sim I I w Sim w Sim w Sim

Sim I I w Sim w Sim w Sim

Sim I I w Sim w Sim w Sim







 
   

   


  

CRO CAP

YEH CRO BAN

YEH MAL CAP

YEH MAL BAN

 (17) 

In each of the 8 experiments, the weights in each linearly 

combined measure in Expression (17) and in all possible 

linear combinations of the three local measures in this linearly 

combined measure and the Pearson correlation coefficient 

between the similarities of the 750 text pairs computed by 

each linearly combined measure or each linear combination 

and the judged similarities of the 750 text pairs are calculated 

and listed in Table 1 according to the designed algorithm. As 

an example, the first experiment (Experiment 1) calculates the 

weights in Sim1(I1, I2) and in all possible linear combinations 

of SimCAR, SimCRO, and SimCAP (please see Table 2) and the 

Pearson correlation coefficient between the similarities of the 

750 text pairs computed by Sim1(I1, I2) or each linear 

combination and the judged similarities of the 750 text pairs 

(please see Table 1). 

 

Table 1. The calculated weights and Pearson correlation coefficients 

in the 8 experiments.  

Experiment Simk,u,v wk,u,v,1 wk,u,v,2 wk,u,v,3 pcck,u,v 

Experiment 1 Sim1,1,1 1.0000 — — 0.6532 

Sim1,1,2 1.0000 — — 0.8217 

Sim1,1,3 1.0000 — — 0.7908 

Sim1,2,1 0.2093 0.7907 — 0.8258 

Sim1,2,2 0.1275 0.8725 — 0.7918 

Sim1,2,3 0.6515 0.3485 — 0.8335 

Sim1,3,1 0.0544 0.6301 0.3155 0.8337 

Sim1(I1, I2) 0.0544 0.6301 0.3155 0.8337 

Experiment 2 Sim2,1,1 1.0000 — — 0.6532 

Sim2,1,2 1.0000 — — 0.8217 

Sim2,1,3 1.0000 — — 0.8750 

Sim2,2,1 0.2093 0.7907 — 0.8258 

Sim2,2,2 0.0931 0.9069 — 0.8757 

Sim2,2,3 0.2459 0.7541 — 0.8803 

Sim2,3,1 0.0237 0.2367 0.7396 0.8803 

Sim2(I1, I2) 0.0237 0.2367 0.7396 0.8803 

Experiment 3 Sim3,1,1 1.0000 — — 0.6532 

Sim3,1,2 1.0000 — — 0.7717 

Sim3,1,3 1.0000 — — 0.7908 

Sim3,2,1 0.1724 0.8276 — 0.7740 

Sim3,2,2 0.1275 0.8725 — 0.7918 

Sim3,2,3 0.3981 0.6019 — 0.8015 

Sim3,3,1 0.0000 0.3981 0.6019 0.8015 

Sim3(I1, I2) 0.0000 0.3981 0.6019 0.8015 

Experiment 4 Sim4,1,1 1.0000 — — 0.6532 

Sim4,1,2 1.0000 — — 0.7717 

Sim4,1,3 1.0000 — — 0.8750 

Sim4,2,1 0.1724 0.8276 — 0.7740 

Sim4,2,2 0.0931 0.9069 — 0.8757 

Sim4,2,3 0.1285 0.8715 — 0.8765 

Sim4,3,1 0.0282 0.1137 0.8581 0.8766 

Sim4(I1, I2) 0.0282 0.1137 0.8581 0.8766 

Experiment 5 Sim5,1,1 1.0000 — — 0.7939 

Sim5,1,2 1.0000 — — 0.8217 

Sim5,1,3 1.0000 — — 0.7908 

Sim5,2,1 0.4015 0.5985 — 0.8437 

Sim5,2,2 0.5102 0.4898 — 0.8230 

Sim5,2,3 0.6515 0.3485 — 0.8335 

Sim5,3,1 0.3346 0.5002 0.1652 0.8460 

Sim5(I1, I2) 0.3346 0.5002 0.1652 0.8460 

Experiment 6 Sim6,1,1 1.0000 — — 0.7939 

Sim6,1,2 1.0000 — — 0.8217 

Sim6,1,3 1.0000 — — 0.8750 

Sim6,2,1 0.4015 0.5985 — 0.8437 

Sim6,2,2 0.1800 0.8200 — 0.8784 

Sim6,2,3 0.2459 0.7541 — 0.8803 

Sim6,3,1 0.1186 0.2009 0.6805 0.8817 

Sim6(I1, I2) 0.1186 0.2009 0.6805 0.8817 

Experiment 7 Sim7,1,1 1.0000 — — 0.7939 

Sim7,1,2 1.0000 — — 0.7717 

Sim7,1,3 1.0000 — — 0.7908 

Sim7,2,1 0.5488 0.4512 — 0.8206 

Sim7,2,2 0.5102 0.4898 — 0.8230 

Sim7,2,3 0.3981 0.6019 — 0.8015 

Sim7,3,1 0.4508 0.2424 0.3068 0.8270 

Sim7(I1, I2) 0.4508 0.2424 0.3068 0.8270 

Experiment 8 Sim8,1,1 1.0000 — — 0.7939 

Sim8,1,2 1.0000 — — 0.7717 

Sim8,1,3 1.0000 — — 0.8750 

Sim8,2,1 0.5488 0.4512 — 0.8206 

Sim8,2,2 0.1800 0.8200 — 0.8784 

Sim8,2,3 0.1285 0.8715 — 0.8765 

Sim8,3,1 0.1546 0.0711 0.7743 0.8788 

Sim8(I1, I2) 0.1546 0.0711 0.7743 0.8788 

 

Table 2. All possible linear combinations of the three local measures 

in Sim1(I1, I2).  

Components Linear combination 

One Sim1,1,1(I1, I2) = SimCAR;  

Sim1,1,2(I1, I2) = SimCRO;  

Sim1,1,3(I1, I2) = SimCAP 

Two Sim1,2,1(I1, I2) = w1,2,1,1SimCAR + w1,2,1,2SimCRO 

Sim1,2,2(I1, I2) = w1,2,2,1SimCAR + w1,2,2,2SimCAP 

Sim1,2,3(I1, I2) = w1,2,3,1SimCRO + w1,2,3,2SimCAP 

Three Sim1,3,1(I1, I2) = w1,3,1,1SimCAR + w1,3,1,2SimCRO +  

                          w1,3,1,3SimCAP 

 

As shown in Table 1, the highest Pearson correlation 

coefficient is the one of Sim6(I1, I2). Thus, a linearly combined 

similarity measure for text pairs with high accuracy is 

constructed as: 

Sim(I1, I2) = 0.1186SimYEH + 0.2009SimCRO +  

                    0.6805SimBAN  
(18) 

C. Evaluation Results Analysis 

The theoretical proof has proved that the measure 

constructed the algorithm has the highest accuracy among all 

possible linear combinations of its local measures. It is 

actually a proof of the effectiveness of the weight assignment 

method in the algorithm since the objective of weight 

assignment is to maximize the accuracy of the measure. In the 

existing approaches for constructing a linearly combined 

similarity measure [16−19, 21−23, 25, 26], weights are fixed 
or adjusted to achieve certain purposes (which do not include 
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maximizing the accuracy of the measure). This does not 

necessarily obtain the highest accuracy. While in the weight 

assignment method, weights are adjusted to maximize the 

accuracy of the measure. Thus compared to the existing 

approaches [16−19, 21−23, 25, 26], the proposed approach 
has an advantage of constantly achieving the highest accuracy.  

In the experimental verification, 8 experiments have been 

carried out to verify the result of the theoretical proof. As can 

be seen from the results of these experiments (Table 1), the 

inequality “pcc(X, J) ≥ pcc(Yk, J) ≥ pcc(Z1,u,v, J)” holds in 

every experiment (e.g. in Experiment 1, 0.8817 ≥ {0.8337, 
0.8803, 0.8015, 0.8766, 0.8460, 0.8817, 0.8270, 0.8788} ≥ 
{0.6532, 0.8217, 0.7908, 0.8258, 0.7918, 0.8335, 0.8337}), 

which experimentally verifies the correctness of the 

theoretical proof and the effectiveness of the designed 

algorithm. Besides, careful readers may find that there are 

slight differences among all pcc(Yk, J) (k = 1, 2,…, 8). This is 
because pcc(Yk, J) are all the optimal values computed using 

the same method to optimize the Pearson correlation 

coefficients of the 8 linearly combined measures in 

Expression (17) that differentiate with each other in only one 

local measure. As can also be seen from the results, the 

accuracy of a linear combination with more contribution 

components is higher than the accuracy of a linear 

combination with less contribution components. As an 

example, pcc1,3,1 > {pcc1,2,1, pcc1,2,2, pcc1,2,3} > {pcc1,1,1, 

pcc1,1,2, pcc1,1,3} holds in Experiment 1. This laterally 

demonstrates the effectiveness of the weight assignment 

method in the algorithm. In addition, it can be seen from the 

results that the Pearson correlation coefficient of the 

constructed linearly combined measure with respect to the 

MSRvid benchmark [38] (i.e. 0.8817) is higher than the 

Pearson correlation coefficients of the six local measures 

SimCAR [39], SimYEH [40], SimCRO [41], SimMAL [42], SimCAP 

[43], and SimBAN [44] with respect to the same benchmark (i.e. 

0.6532, 0.7939, 0.8217, 0.7717, 0.7908, and 0.8750). This 

further signifies that the proposed linearly combined measure 

construction approach is indeed helpful to improve the 

accuracy of the linearly combined measure.  

In summary, the findings of the 8 experiments are: (1) The 

accuracy of the linearly combined measure constructed by the 

designed algorithm is higher than the accuracies of all 

possible linear combinations of its local measures. (2) The 

weight assignment and local measure selection methods in the 

algorithm are helpful to improve the accuracy of the linearly 

combined measure. 

V. CONCLUSIONS 

In this paper, an approach for constructing a linearly 

combined similarity measure with high accuracy for assessing 

the similarity between linguistic items has been proposed. 

This approach mainly consists of a weight assignment method 

and a local measure selection method. The two methods 

respectively assigned different weights and chose different 

local measures to construct a linearly combined measure for 

different cases through maximizing the accuracy of this 

linearly combined measure. This can ensure the accuracy of 

the constructed linearly combined measure always be high in 

any cases. The paper has also presented the theoretical and 

experimental evaluation of the approach. The evaluation 

results show that the linearly combined measure constructed 

by the approach has high accuracy and the weight assignment 

and local measure selection methods are effective to improve 

the accuracy of the linearly combined measure.  

One future study will aim especially at using the proposed 

approach in practical applications. In some applications such 

as data integration, information retrieval, and knowledge 

extraction, a linearly combined measure with high accuracy is 

needed to be constructed sometimes and the approach could 

be directly applied in such construction. Another future study 

will focus on overcoming a major limitation of the proposed 

approach. The approach mainly shows how to construct a 

linearly combined measure with high accuracy for assessing 

the similarity between linguistic items and does not address 

the construction of a nonlinearly combined measure with high 

accuracy. Because a nonlinearly combined measure may be of 

use in some applications, it would be desirable to study how to 

construct such a measure with high accuracy.  
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