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ABSTRACT

f
a

The problem of constructing in parallel a maximal independent set o
given graph is considered. A new deterministic NC -algorithm imple-

-
t
mented in the EREW PRAM model is presented. On graphs with n ver
ices and m edges, it uses O ((n +m )/logn ) processors and runs in O (log n )3

-
c
time. This reduces by a factor of logn both the running time and the pro
essor count of the previously fastest deterministic algorithm which solves

the problem using a linear number of processors.
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1

deterministic.

. Introduction

The problem of constructing in parallel a maximal independent set of a given graph,

t
MIS , has been investigated in several recent papers. Karp and Wigderson proved in [KW]
hat the problem is in NC . Their algorithm finds a maximal independent set of an n -

vertex graph in O (log n ) time and uses O (n /log n ) processors. In successive papers, the4 3 3

-
s
authors proposed algorithms which either are faster, or use a smaller number of proces
ors. Luby in [L1] and Alon et al in [ABI] presented probabilistic algorithms running in

oO (log n ) time on a EREW PRAM with a linear number of processors. Luby als2

described a technique for converting probabilistic algorithms into deterministic ones; the
s

u
technique preserves the running time but requires an increase in the number of processor

sed to O (n m ), where m is the number of edges in the graph. The first deterministic
N

2

C -algorithm on a linear number of processors (EREW model) was constructed in [GS];
its running time is O (log n ). Recently, Luby [L2] proposed a general method for con-4

verting randomized parallel algorithms into deterministic ones, which does not require an
-

r
increase in the number of processors. In the case of MIS , the method yields a new algo
ithm running on a linear number of processors in polylogarithmic time; however, it runs

(
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lower than than that in [GS]. All NC -algorithms for MIS mentioned above use the fol-
lowing top-level design proposed in [KW]:

Start with an empty independent set I . Find an independent set I ′, add it to I , and
-

v
delete I ′ and the vertices adjacent to a vertex in I ′ from the graph. Repeat the pre
ious step until the graph is empty.

Call FINDSET the procedure which constructs I ′. One can easily prove that an algorithm
x

g
with such a structure belongs to NC if FINDSET is designed so that, on any n -verte

raph (n >0), it runs in polylogarithmic time and delivers an independent set C such that�
C N (C )

�
=Ω(n /log n ) for some fixed s ≥0; (N (C ) is the set of neighbors of C ).∪ s

In this paper, we present a new deterministic algorithm for MIS which improves the
,

a
running time of the algorithm in [GS] by a factor of logn and simultaneously reduces
lso by a factor of logn , the number of processors used. The algorithm is implemented in

n
[
the EREW model of computation. Thus, the processor-time product of the algorithm i
GS] is improved by log n . These gains are due to the new version of the FINDSET pro-2

2cedure. The new procedure finds in O (log n ) time an independent set I such that remov-

t
ing I ∪N (I ) reduces the size of the graph by half. Thus, the procedure FINDSET needs
o be called only O (logn ) times.

To reduce the number of processors used, we modify the definition of the size of the
s

m
graph so that it takes into account the number of edges deleted. The result of thi

odification is that the processor-reduction technique of Miller and Reif [MR] can be
applied to reduce the number of processors necessary by a factor of logn .

Both the algorithm of [GS] and the one of this paper use the idea of a partial color-
-

t
ing. A partial coloring is an assignment of colors to some, not necessarily, all of the ver
ices such that no two adjacent vertices have the same color. Examples of partial color-

c
ings include the trivial coloring where every vertex has a different color, and the empty
oloring where no vertex is colored. If a coloring assigns colors to all of the vertices,

then it is called complete. The set of vertices with the same color is called a color class.
FINDSET constructs a sequence of partial colorings starting with the trivial coloring.

s
The objective is to find a "big" color class C (the definition of "big" is given later). If
uch a color class C is found, FINDSET deletes C ∪N (C ) from the graph; if no color

v
class is "big", some of the color classes are merged. A side-effect of this is that some
ertices become uncolored. FINDSET halts when all vertices are either deleted or

uncolored. It returns the union of all the "big" color classes it found.
The success of such an approach depends on the definition of a "big" color class and

"
a
on the efficiency of merging. When an algorithm decides to merge, it should do it "fast
nd so that "not-too-many" vertices are decolored. The technical means by which this

e
task is accomplished in our implementation is the comparison of two representations of the
dge set E of a colored graph. The first one views E as the union of the sets L (C ) of

r
c
edges with an endpoint in the color class C , where C ranges over the set of all colo
lasses. Roughly speaking, L (C ) measures the size of the part of the graph that would be

c
deleted if C is added to I . The second representation of E partitions the edges into
lasses so that the membership of an edge is determined by the colors of both its end-

w
points. Every class of the second representation measures the size of the graph which

ould be decolored if merging were performed according to this particular class. The
tPropositions 1 and 2 establish that if there are no big classes, then there is efficien
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merging.
We expect that the consideration of these representations can be helpful in the design

2

of parallel algorithms for other graph problems.

. Terminology

The definitions of class NC and models of computations can be found in [P], [V],

o
[KR]. The graph-theoretic terminology used in this paper is standard [BM]. The degree

f a vertex v in a subgraph H is denoted deg (v ). Given a set K ⊂V (G ) of vertices,

H v ∈K H

H

Σσ (K ) = (1+deg (v )) is called the weight of K in H . If the graph is understood,
the indices in deg and σ (K ) are omitted. We use weight as the definition of size whenH H
we say that FINDSET finds an independent set I such that the deletion of I ∪N (I ) reduces
the size of H by half.

Let C =[C ,...,C ] be the collection of color classes of a partial coloring φ. Then,

i

0 r −1

i i -
t
L denotes the set of edges which have one endpoint in C , and N denotes the set of ver
ices which have neighbors in C . The consideration of L ’s yields the first method of

c
i i

lassifying the edges. To understand the second method, we need to define the functions

if p is odd ,
.

p
if p is even1

r

χ(p ) =

����
p −

ev (i ,q ;p )=(q −i )mod χ(p ).

,if 0≤i ,j ≤χ(p )−1
,if j =χ(p )
.

(i + j )mod χ(p )

if i =χ(p )
)2i mod χ(p
)

O

index (i ,j ;p ) =

��
� ��

2j mod χ(p

ne can readily prove that for every q and i (0≤i ,q ≤χ(p )−1), j =rev (i ,q ;p ) is the only
integer in the interval [0,χ(p )−1] with index (i ,j ;p )=q .

Let φ be a vertex coloring and C =[C ,...,C ] be the set of its color classes. For

k

0 r −1

i jk =0,...,χ−1 let π = {(C ,C ): index (i ,j ;r )=k } be a partition of C into � r /2� pairs and pos-

c
sibly one singleton. These χ partitions of C are called the regular partitions of C. One
an readily check, that for all i ≠ j , π and π do not share a common pair. Thus, the col-

0

i j

χ−1lection {π , . . . , π } presents a minimal edge coloring of the complete graph whose
vertices are C ,...,C .0 r −1

k l i j j ill l l
d

B

Fix k and let π=π . For each l =0,...,� r /2� , define B =(C ∩N (C ))∪(C ∩N (C )) an

= B . The weight σ(π) of π is then given by σ(π) = σ(B ).

�
r /2� −1

l
0

3

∪
l =

. An Outline of the Algorithm

In this section, we present a description of FINDSET and prove that every applica-
tion of FINDSET reduces the weight of the graph by half.
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Let G be a graph with n vertices and m edges. FINDSET starts by defining an
t

p
empty independent set I and a trivial vertex coloring on the vertices of G . Then, i

roceeds in phases. At every phase, one of the following actions is performed:

e<1> A color class C* is found for which σ(N (C* ))≥(n +m )/logn . All vertices of C* ar
added to I and all vertices from C* ∪N (C* ) are deleted.

t<2> The color classes are partitioned into pairs (C ,C′ ), with possibly one color class lefi i
r

c
over. The two color classes of each pair are merged. To make the merged colo
lass independent, the weights of the sets C N (C′ ) and C′ N (C ) are comparedi i i i∩∩

.

A

and the vertices of the set with the smaller weight are decolored

ction <1> is done whenever possible; action <2> is done only when there is no suitable
s

i
color class C* . The actions are executed until at most one color class is left. If it i
ndeed one color class, then independent of its weight the color class is added to I .

f
t

Action <2> is done by the procedure HALF . It constructs a regular partitioning π o
he minimal weight, and merges every pair of color classes matched by π.

.

P

The following propositions show that action <2> does not decolor too many vertices

roposition 1. Let C=[C , . . . , C ] be the set of color classes of a coloring φ and

0

0 r −1

χ−1{π ,...,π } be the set of regular partitionings of C. Then

)Σσ(π ) ≤ σ(N (C )). (*Σ
j =0

χ−1

j
i =0

r −1

i

P jroof. The set of partitionings {π }} ( j =0,...,χ−1) contains every pair of color classes

i
exactly once. Therefore, for every colored vertex v , its contribution to the left part of the
nequality is equal to σ(v )× (the number of color classes that contain vertices adjacent to

P

v ). Obviously, the contribution of v to the right part is as big as that.

roposition 2. Let φ be a coloring and C=[C , . . . , C ] be the set of its color classes.
I i

0 r −1
f for every i ≥0, σ(N (C ))≤(n +m )/logn , then there is a regular partitioning π of C and a

set D of vertices such that

(1) for every pair C ′,C ′′ of color classes matched by π,

(

C ′∪C ′′−D is an independent set;

2) σ(D )≤
2logn
n +m� ���������

χ(r )
� r������� .

Proof. If for every i ≥0, σ(N (C ))≤(n +m )/logn , then it follows from (*) thati

j =0

χ−1

jΣσ(π )≤
logn

(n +m )� ����������� r ,

hwhich in turn implies the existence of a regular partitioning π of C witk

σ k(π )≤
logn
n +m���������

χ(r )
� r������� .

Let {(C ,C )} be the set of pairs of π . For every l =0,...,
�
r /2� −1, computei j kl l
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.σ(C ∩N (C )) and σ(C ∩N (C )) and denote D the set having the smallest value of σi j j i ll l l l

∪
l

lThen, the union D = D satisfies conditions (1) and (2).

,
a

Theorem. FINDSET executes at most O (logn ) actions. If n ′ and m ′, respectively
re the number of vertices and edges of the graph G ′ induced on the set of decolored ver-

tices, then

n ′+m ′≤(
2
1��� +o (1))(n +m ).

t
l
Proof. If action <1> is applied, then the total number of edges and vertices deleted is a
east (n +m )/logn ; thus these actions are executed at most logn times. Obviously, the

number of times actions of the second type are applied is also at most
�
logn� .

Let D be the set of vertices that are decolored by the i th application of an action ofi

i ,type 2 and let A = ∪D . Then

n ′+m ′ ≤ σ(A ) ≤ σ(D ),Σ
i

i

i

i
σ i(D )≤

2logn
n +m� ���������

χ(r )
� r������� ,

and

σ(A )≤
2logn
n +m� ���������

χ(r )
� r������� ≤

2logn
n +m� ���������

χ(r )
� r������� ,

i

i

�
logn�

0

i

i =i

�
logn�

0i =
Σ Σ

w ihere r is the number of color classes just before the i th application of the type 2 action.

��������� , note that χ <r for even r ’s only, and for such r ’s, every
r

)
To evaluate

χ(ri =0

�
logn�

i

i
i i i iΣ

i s
o
application of an action of type 2 reduces the number of color classes by half; if r ≥3 i
dd, r ≤(r /2)+1. Thus,i +1 i

i =0

�
logn�

i

i

i =1

�
logn�

i

i

Σ Σχ(r )
� r������� ≤

2 −1
� 2������� ≤

�
logn� +2,

C

which implies the theorem.

orollary. Any application of FINDSET yields an independent set I , such that

I

�
I ∪N (I )

�
≥ (1/2 −o (1))(n +m ).

n the next section, we will show that FINDSET can be implemented to run in
O (log n ) time. This will imply that the running time of the algorithm is O (log n ).2 3
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We will first see how to implement FINDSET to run in O (log n ) time on n +m pro-2

d
a
cessors. Obviously, for every application of FINDSET , action of either type is execute
t most O (logn ) times. Thus, we should show that the execution of each action requires

only O (logn ) time.
A graph G is represented by a list L =L (G ) of its vertices and edges. Each edge is

o
in this list twice, once in each direction. Thus, the length of L is n +2m . For each entry

f L , there is a processor attached to it. The processors are numbered by 1,...,n +2m ; the
e

c
first n of them represent the vertices. In addition to its endpoints, each edge knows th
olors (if any) of the endpoints and the location of itself given in the other direction.

[
Almost all of the operations are done by sorting this list based on some key. >From
AKS, C] we know that it is possible to sort m records in O (logm ) time on m processors.

h
To delete a color class C , each edge checks the colors of its endpoints to see if one

as the same color as C . If one does, the edge deletes itself. Then FINDSET sorts the
list of edges to remove the deleted edges.

To decide whether to do action <1> or action <2>, FINDSET needs to calculate
fσ(C ), for each C in φ. It can calculate the degree of each vertex by sorting the list oi i

edges by their first vertex. It can then sort the list of vertices by color, and add up the
degrees of the vertices.

When HALF performs action <2>, it finds the regular partition π that minimizes

i
σ(π). For this purpose, it needs to know the degrees of each vertex. It can calculate them
tself, or it can inherit them from the previous step. To calculate σ(π), HALF calculates,

t
for each edge with two colored endpoints, index (i ,j ;r ), where i and j are the colors of
he endpoints. It then sorts the edge list by index, breaking ties by first vertex. The

-different first vertices that occur with a given index q are the vertices in D for the partiq

t qion π . HALF then sums the degrees of these vertices to calculate the weights
σ(π ) (t =0,..,χ(r )−1) and selects the partition with the minimum weight.t

Let q be the index of the selected partition π. At this stage, HALF is considering the
elist F of edges whose index is q . For every pair (C ,C ) of π, the vertices of one of thi jll

ll ji l
t
color classes will be either decolored or recolored when C and C are merged; we cal
his color class eligible. To find eligible classes, HALF computes σ =σ(C N (C )) for

l l lji i ∩
il j li j e

e
every l =0,...,� r /2� −1, and sets class C eligible iff σ ≤σ . Once HALF has identified th
ligible color classes, it looks at each edge and decolors those vertices v belonging to the

eeligible color class C that are connected to a vertex with color rev (t ,q ;r ). Finally, tht
pairs of color classes determined by q are merged into single classes by recoloring, for

o
every pair, all the vertices in the color class with the larger color, i.e. each vertex v with
riginal color c (v ) changes its color to rev (c (v ),q ;r ) iff rev (c (v ),q ;r )≤c (v ).

x
t

In general, the new color classes do not necessarily have consecutive numbers. To fi
his, the vertices are sorted by color, so that the set of colors in use can be determined.

c
Next, HALF renumbers the colors and gives each vertex its new color. To update the
olors of the first vertex stored with the edges, the list of edges is sorted by first vertex.

o
Then, the pointers to the other representation of the edges are followed to update the color

f the second vertex.
Each execution of the main loop of FINDSET requires between one and three sorts
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nd O (logn ) time spent doing other miscellaneous work. Thus, FINDSET requires only
tO (log n ) time in all. The number of times FINDSET is called is O (logn ) implying tha2

3 .the running time of the algorithm is O (log n )
So far, we have assumed that m +n processors are available. However, using the pro-

(
cessor reduction technique of Miller and Reif [MR], the algorithm can be executed on
m +n )/logn processors without increasing the running time by more than a constant. For

-
l
an arbitrary k >1, if there are only (m +n )/k processors, then each real processor can simu
ate k virtual processors in the algorithm. Since a call to FINDSET halves the value n +m

s
d
of the graph, the number of virtual processors that every real processor simulate
ecreases by a factor of 2 after each call to FINDSET . Thus, there is a constant C >0,

.such that for every i =1,2,..., the i th call of FINDSET is executed in ≤C 2 log n time−i 3

This increases the running time of the algorithm by a factor 2.
There is no problem allocating virtual processors to real processors. Each virtual pro-

o
cessor is responsible for a single item in list L of vertices and edges in the graph. It is
nly necessary to reallocate virtual processors after each call to FINDSET . The new

nrepresentation of G −(I N (I )) can easily be calculated by sorting. The reallocation ca∪
be even done after each execution of the loop in FINDSET . While this will speed up the

i
algorithm for a typical graph, the worst-case graphs do not get smaller fast enough to
mprove the asymptotic performance of the algorithm.

r
o

Note that the same technique can be applied to reduce by a factor of logn the numbe
f processors used by the probabilistic algorithms from [L1] and [ABI].

5. Conclusion

An important property of a parallel algorithm is the total work W it does. Obvi-

i
ously, W ≤P ×T , where P is the number of the processors used by the algorithm and T is
ts running time. Thus, our deterministic algorithm for MIS does O ((m +n )log n ) work

w 2

2

hich is a factor of log n more than the work done by the obvious sequential algorithm.

i
It would be nice to find an algorithm that does less work. One approach would be to
mprove the sorting algorithm that our algorithm uses. This might be possible since the

l
i
keys of all the sorts are small integers. In fact, Reif has an algorithm that sorts n smal
ntegers while doing only O (n ) work on a randomized concurrent-read, concurrent-write,

f
PRAM [R]. However, if randomization is introduced in the model, then the algorithms
rom [L1] and [ABI] are preferable. Thus, real improvement would be achieved if better

r
r
deterministic sorting algorithms were used. Obviously, they would be of interest for othe
easons as well. Another approach is to find a way to sort less often. Both approaches

appear to be very difficult.
A more promising way to improve the algorithm would be to reduce its running time

r
without increasing the work that it does very much (if at all). It may be possible to
educe the running time of the algorithm by executing different calls to FINDSET in

a
b
parallel. There are several ways to do that; the difficulty seems to be in developing

etter analytical technique for estimating the running time.
-

c
The dual representation of the edge set may also be useful for other problems, edge

oloring and vertex-coloring being among the first candidates. Another potentially fruitful

g
application of this representation is the problem of constructing an independent set of a
uaranteed size. In [G], an algorithm was described which runs in O (log n ) time on3
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(n +m ) processors and constructs an independent set with ≥n /32m (m ≥n /2) vertices.2

r
a
Conceivably, an appropriate change in the definition of the weight of a set will convert ou
lgorithm into one which builds an independent set containing ≥n /(2m +n ) vertices. This2

n
t
is guaranteed by Túran’s theorem [T] which also states that this bound is best possible i
erms of n and m .
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