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Abstract—In order to ensure optimal Quality of Experience
towards the end-users during video streaming, automatic video
quality assessment becomes an important field-of-interest to
video service providers. Objective video quality metrics try to
estimate perceived quality with a high accuracy and in an
automated manner. In traditional approaches, these metrics
model the complex properties of the Human Visual System. More
recently, however, it has been shown that Machine Learning
approaches can also yield competitive results. In this article,
we present a novel No-Reference bitstream-based objective video
quality metric that is constructed by Genetic Programming-based
Symbolic Regression. A key benefit of this approach is that it
calculates reliable white-box models that allow us to determine
the importance of the parameters. Additionally, these models
can provide human insight into the underlying principles of
subjective video quality assessment. Numerical results show that
perceived quality can be modeled with a high accuracy using
only parameters extracted from the received video bitstream.

Index Terms—Quality of Experience (QoE), Objective video
quality metric, No-Reference, H.264/AVC, High Definition.

I. INTRODUCTION

DURING real-time transmission of digital video over

best-effort Internet Protocol (IP)-based networks, packet

losses can severely degrade the overall Quality of Experience

(QoE) of the end-users [1]. This, in turn, influences willingness

to pay and customer satisfaction [2], [3]. Furthermore, QoE

is considered a key factor for the success or failure of new

broadband video services [4]. Therefore, services providers

strive towards maximizing and maintaining adequate QoE at

all times. In the case of video streaming, this requires contin-

uous monitoring and measuring of perceived video quality in

order to get an indication of end-users’ QoE.

Subjective video quality assessment is commonly used to

measure the influence of visual degradations on perceived

quality of video sequences [5]. During subjective quality

assessment, real human observers evaluate the visual quality of

a number of short video sequences by, for example, providing a

score between 1 (bad) and 5 (excellent) after or while watching

each video sequence. Afterwards, the Mean Opinion Score

(MOS) is calculated per video sequence as the average quality
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rating provided by the different observers. Several assessment

methodologies have already been standardized by the Interna-

tional Telecommunications Union (ITU) in ITU-T Recommen-

dation P.910 [6] and ITU-R Recommendation BT.500-12 [7],

and describe in detail how subjective video quality experi-

ments should be set up and conducted. However, subjective

experiments are time-consuming, expensive and need to be

conducted in controlled environments. Furthermore, it is clear

that subjective quality assessment cannot be used in the case

of real-time quality monitoring and measuring.

Over the past years, a lot of research has been conducted

towards the construction of objective video quality metrics.

As stated in [8], “The goal of objective image and video

quality assessment research is to design quality metrics that

can predict perceived image and video quality automatically.”.

This rather broad definition can also be refined by stating

that this prediction should be reliable and correlate well with

scores of subjective quality assessment (= MOS scores).

In this article, the use of a robust Machine Learning (ML)

technique, called Symbolic Regression, is proposed to derive

a new No-Reference bitstream-based objective video quality

metric for estimating perceived quality of High Definition

(HD) H.264/AVC encoded videos. The new approach has two

distinctive features that make it particularly attractive for the

analysis of perceived video quality : a) it allows us to perform

an automated selection of the most important variables, and b)

it provides predictive models that are interpretive and provide

insight in the relation between encoder settings, loss location,

and video content characteristics and the perceived quality.

The remainder of this article is outlined as follows. Section

II gives an overview of the state-of-the-art and describes

how ML algorithms can be used to derive different types

of objective video quality metrics. In Section III, the mod-

eling principles of the genetic-programming based symbolic

regression approach are outlined, and a detailed description of

the algorithmic aspects is provided. In order to validate the

effectiveness of the proposed method, an extensive subjective

experiment was conducted. The procedure that is followed to

collect the subjective quality ratings from human observers is

discussed in Section IV. Then, Section V presents the main

results and describes how the new modeling approach can be

applied to derive a new No-reference bitstream-based metric

for video quality assessment. First, the different parameters

that are extracted from the received encoded video bitstream
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are listed and the symbolic regression approach is used to

determine the most important parameters. Next, this subset

of parameters is selected in the modeling process to compute

a final model that predicts the perceived video quality in a

reliable way. An interpretation of the model and a comparison

with alternative machine learning techniques is also provided.

Numerical results confirm that the perceived quality can be

predicted accurately using only parameters extracted from the

received video bitstream. Section VI concludes the article.

II. MACHINE LEARNING-BASED METRICS

A. Objective Video Quality Metrics

In general, objective video quality metrics can be catego-

rized into three main classes, based on the availability of

the original video sequences as depicted in Figure 1. Full-

Full-Reference

Reduced-Reference

No-Reference

Pixel-based

Bit stream-based

Parametric

Processing level for
information gathering

Amount information
of reference sequence

+ Hybrid

Fig. 1. Different categories of video quality metrics based on the amount
of information which is used from the reference sequence or based on the
processing level for extracting information in order to model perceived quality.

Reference (FR) quality metrics [9] require access to the com-

plete original video stream. Research has already shown that

FR metrics can predict perceived quality with high accuracy.

However, due to their dependency on the original video, FR

metrics cannot be used for real-time video quality evalua-

tion. Reduced-Reference (RR) metrics, recently standardized

in [10], perform quality prediction by comparing features ex-

tracted from the original and received video sequence. In order

to transmit these features from the points they are extracted

to the point where the quality evaluation is performed, an

ancillary error-free channel is needed. Both FR and RR metrics

usually predict quality based on a frame-by-frame evaluation.

As such, the received video stream requires proper alignment

with the original sequence. From a real-time monitoring point

of view, No-Reference (NR) video quality metrics are the most

interesting ones as they neither need access to the original

sequence nor rely on feature extraction [11].

Another criterion to categorize these metrics is the type of

information or processing level where the information from

the video sequences is extracted. As such, pixel-based metrics

require access to the decoded video stream whereas bitstream-

based metrics only perform a parsing of the encoded data.

A last category of video quality metrics are the parametric

metrics, which only use high level information accessible

through the packet headers in the case of video streaming.

Quality metrics combining information from the network-,

pixel- and/or bitstream-level are also called hybrid metrics.

For real-time video quality evaluation, metrics which do not

require a complete decoding of the received video stream are

of particular interest. The interested reader is referred to [12]

for more details on the classification of objective video quality

metrics and a performance comparison.

The performance of FR and RR video quality metrics has

already widely been investigated by the Video Quality Experts

Group (VQEG) through several projects [13], [14], [15]. The

results of this study resulted in the standardization of a number

of objective video quality metrics. However, research is still

ongoing towards the construction of NR metrics.

B. Overview of State-of-the-art

Machine learning techniques such as Neural Networks

(NN), Support Vector Machines (SVM), Support Vector Re-

gression (SVR) and decision trees have already successfully

been applied for constructing objective video quality metrics.

In general, these metrics either use regression or classification

for estimating perceived quality. Regression is commonly used

for estimating MOS whereas classification is typically used for

predicting error visibility by means of a binary decision.

In [16] and [17], Mohamed et al. used NNs for constructing

an objective video quality metric capable of continuous qual-

ity monitoring and measuring. The stream bitrate, sequence

frame rate, network loss rate and burst size, and the ratio

of encoded intra to inter macroblocks are used as inputs to

the NN. However, only a single low resolution (352x288

pixels1) video sequence was used for training and validating

the model. Consequently, the influence of video content is

not considered in the proposed model. Nevertheless, results

indicated that quality can be estimated with a high accuracy

without the need for modeling the Human Visual System

(HVS). A similar approach is followed in [18], where an NN is

used to estimate perceived quality of H.264/AVC encoded CIF

resolution sequences. However, the authors do not consider the

influence of network impairments on the perception of quality.

NNs have further also been used in [19], [20] and [21] for

modeling video quality.

Recently, SVMs have been used to predict video quality.

In [22], different NR and RR parameters are extracted from

the decoded video stream and used to build an SVM. The

performance of the model is evaluated based on an existing FR

objective video quality metrics, VQM [23]. Compared to their

previous work [24], the authors found that video quality can

be predicted with a higher accuracy using SVMs. Also Nar-

waria et al. [25], [26], [27] model visual quality using SVR.

More specifically, ML is used for modeling the interaction

effect between spatial and temporal quality factors affecting

perveived video and image quality. In [27], they evaluate the

performance of SVR on a number of video databases against

eight different existing visual quality predictors, and the results

show a significant improvement in prediction accuracy.

Rather than estimating the perceived quality, Argyropoulos

et al. use SVMs in [28] and [29] to build a classifier for

estimating the probability that an impairment in the video

stream will result in a visible impairments for the end-user.

In [30] and [31], packet loss visibility is estimated using

decision trees. In this case, a binary classification is performed

labeling an impairment in the video bitstream as visible or

1Common Interchange Format (CIF) resolution.
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invisible to the average end-user. A decision tree is also used

by Menkovski et al. [32] to determine whether the QoE

of a video service is acceptable or not acceptable. As a

decision tree is a white box model, the internal structure of

the classification process is completely visible and can thus be

used to gain better insights in the modeling process. This is

not the case for SVMs and NNs, which are black-box models.

In our previous work [33], we investigated and modeled

impairment visibility in HD H.264/AVC encoded video se-

quences using decision trees. Our results showed that it is

possible to reliably predict impairment visibility using only

a limited number of parameters extracted from the received

video bitstream. As a decision tree was used, a binary classi-

fication is made. The work presented in this article further

elaborates on the data obtained during our previous work.

However, instead of determining impairment visibility we are

now interested in estimating how end-users would rate the

visual quality of the video sequences. As such, our goal is

to construct a video quality metric which predicts perceived

quality and correlates well with the MOS obtained during

subjective quality assessment.

III. GP-BASED SYMBOLIC REGRESSION

In this section, a novel ML technique (Genetic Programming

(GP)-based symbolic regression method [34]) is proposed to

model the perceived quality, as an alternative to modeling

the different complex properties of the HVS. As the name

suggests, this method is applied to model the MOS score by

means of a regression approach (not classification). A key

advantage of this method is that the resulting metrics are

essentially white-box models that comprise only the variables

that are truly influential. Moreover, the metric can provide

human insight into the underlying principles of subjective

video quality assessment.

A. Goal statement and notation

GP-based symbolic regression offers the unique capability

to compute non-linear white-box models that predict the MOS

quality rating q of a video fragment in terms of several

input variables ~v = {vn}
N
n=1. These variables ~v identify the

characteristics of the sequence and quality degradation factors,

and comprise only those parameters that can be extracted from

the received video bitstream without the need for complete

decoding. Given a limited set of M video sequences, a sparse

set of data samples S is obtained, which can be represented

as a set of tuples S = {(~vm, qm)}Mm=1. Symbolic regression is

then used to compute a set of models f that predict the MOS

quality scores q in terms of the parameters ~v [35]:

f : RN → R, f(~vm) ≈ qm (1)

A set of models is calculated, because this allows us to

determine the importance of variables in a reliable way. As

suggested by El Khattabi et al. [21], one should only retain

the relevant input variables, in order to reduce the computional

cost and to limit the model complexity. The importance of

carefully selecting the input variables for subjective video

quality assessment was also highlighted in [35]. After discard-

ing the redundant variables, a new set of models is computed

using only the most important variables and the best model

is returned as the final solution. Note that for the actual im-

plementation, we made use of the DataModeler package [36]

for Mathematica, because it offers the integrated functionality

for automatic variable selection and dimensionality analysis,

variable contribution analysis and set-based predictions.

B. Outline of Evolutionary Algorithm

This section explains some algorithmic details on how the

set of models can be computed in a reliable way. GP-based

symbolic regression is a biologically inspired method that

mimics the process of Darwin’s evolution theory and the

mechanisms of genetic variation and natural selection [37].

It is based on the concept of genetic programming, and

computes a set of tree-based regression models that give a

good approximation of the sparse subjective video quality data

S . The evolutionary algorithm consists of the following steps:

1) Model initialization : In the first generation step

(t = 1), an initial population of K randomly generated

parse trees P t = {fk(~v)}
K
k=1

(also called models or

individuals) with a maximal arity of 4 is formed. Each

parse tree fk(~v) represents a potential solution to the

approximation problem, and is composed of multiple

nodes that comprise primitive functions and terminals.

The primitive functions are represented by the standard

arithmetic operators (+,−, ∗, /, inv, pow, sqrt, ln, exp),
whereas the terminals consist of the input variables ~v and

real constants drawn from the interval [−5, 5]. All the

input variables ~v are scaled into the range {0...2}.

2) Model evaluation : In order to measure the fitness of a

particular individual, an operator Z is defined that maps

each model onto the space of two design objectives.

Z : fk(~v) ∈ P t → (z1(fk(~v)), z2(fk(~v))) ∈ Θ (2)

• Objective 1 aims to minimize the prediction error

z1(fk(~v)) = 1−R2(q, fk(~v)) (3)

where R represents the correlation coefficient

R(q, fk(~v)) =
cov(q · fk(~v))

std(q) · std(fk(~v))
(4)

• Objective 2 aims to minimize the expressional

model complexity z2(fk(~v)), which is defined as

the sum of the number of nodes in all subtrees of a

given tree. This objective penalizes complexity and

avoids the excessive growth of models over time.

Both criteria are often conflicting, so the goal is to obtain

models that make a good trade-off and perform well on

both objectives. This idea is motivated by Occam’s razor,

which states that simpler models are preferable to more

complex ones if they explain the data sufficiently well.

3) Model archiving and elitism : Next to the population

P t, the algorithm also maintains a fixed-size archive

At that contains the best performing models discovered

so far. This archive serves as an elistism strategy to
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ensure that the fittest models of the population are

carried forward from one generation to the next. In each

generation step t, the archive At is updated by selecting

the least-dominated models from the joint set At−1∪ P t,

where initially A0 = φ. Note that a model f1(~v) is said

to dominate a model f2(~v) in the objective space Θ if

f1(~v) is no worse than f2(~v) in all the objectives, and

strictly better in at least one of the objectives

∀i = 1, 2 : zi(f1(~v)) ≤ zi(f2(~v)) (5)

∃j ∈ {1, 2} : zj(f1(~v)) < zj(f2(~v)) (6)

(Models that are not outperformed by any other model

in terms of both objectives are “pareto-optimal” models)

4) Model evolution : In each step t of the algorithm,

a set of individuals is chosen by means of a Pareto

tournament selection operator. These individuals are

exposed to genetic operators (such as crossovers and

mutations), in order to create the population P t+1 of

the next generation step. The crossover operator selects

two parent individuals and combines them to create new

offspring by swapping sub-trees, whereas the mutation

operator makes a random alteration to nodes of a sub-

tree. At each generation, archive members (At) are

merged with the newly created population (P t), and

variation operators are applied to the aggregated set

of models. Selection of individuals for crossovers and

mutations happens by means of Pareto tournaments. This

archive-based selection preserves genotypic diversity of

the individuals. New individuals are generated using a

sub-tree crossover with rate 0.9, and sub-tree mutation

with rate 0.1. Every 10 generations, the population gets

re-initialized to provide diversity and avoid inbreeding.

This evolutionary process is repeated over many generation

steps (t = 1, ..., T ), in order to create models with increasing

fitness, based on the survival-of-the-fittest principle. The set-

tings of the algorithm are illustrated in Table I. After a certain

stopping criterion is met (e.g. a time budget), the algorithm is

terminated. All the archives At in each run are aggregated into

a compound archive A, and the non-dominated individuals in

A are used to form a super Pareto front of models. This set

of models is then returned as the final result.

TABLE I
PARETOGP EXPERIMENTAL SETTINGS

Setting Values

# replicates 5

# generations 310

population size 1000

archive size 100

crossover rate 0.9

subtree mutation rate 0.1

population tournament 5

IV. SUBJECTIVE VIDEO QUALITY EXPERIMENT

In order to validate the method, a subjective video quality

experiment was conducted. During the experiment, a number

of test subjects had to evaluate the visual quality of a number

of impaired video sequences. This section provides details

of the experiment, as well as the selection, encoding and

impairing of the different video sequences that were used.

A. Source video sequence selection

As a base for the subjective experiment, eight freely avail-

able source video sequences were selected. These sequences

were obtained from open source movies, the Consumer Digital

Video Library (CDVL) [38] and the Technical University

of Munich (TUM). All sequences were in full 1080p HD

resolution (1920x1080), with a frame rate for 25 frames per

second and a duration of exactly 10 seconds. An overview

of the different source sequences is shown in Figure 2, and a

short description of their characteristics is provided in Table II.

Marked sequences (∗) were taken from an open source movie.

It is generally known that certain video characteristics, i.e. the

TABLE II
CHARACTERISTICS OF THE EIGHT SELECTED TEST SEQUENCES.

Sequence Source Description

basketball CDVL Basketball game with score. Camera pans
and zooms to follow the action.

BBB* Big Buck
Bunny

Computer-Generated Imagery. Close-up of a
big rabbit. Slight camera pan while follow-
ing a butterfly in front to the rabbit.

cheetah CDVL Cheetah walking in front of a chainlink
fence. Camera pans to follow the cheetah.

ED* Elephants
Dream

Computer-Generated Imagery. Fixed camera
focusing on two characters. Motion in the
background.

foxbird3e CDVL Cartoon. Fox running towards a tree and
falling in a hole. Fast camera pan with zoom.

purple4e CDVL Spinning purple collage of objects. Many
small objects moving in a circular pattern.

rush hour TUM Rush hour in Munich city. Many cars mov-
ing slowly, high depth of focus. Fixed cam-
era.

SSTB* Sita Sings
the Blues

Cartoon. Close-up of two characters talking.
Slight camera zoom in.

amount of motion and the amount of spatial details, influence

the perceptibility of visual degradations [39], [40]. Therefore,

it was ensured during the subjective video quality assessment

that these video sequences have different amounts of motion

and textures [6]. For quantifying the amount of motion and

spatial details in a video sequence, two perceptual metrics are

defined in ITU-T Recommendation P.910: the Spatial percep-

tual Information (SI) and the Temporal perceptual Information

(TI). These measurements are calculated frame-by-frame and

the maximum value is taken as overall SI and TI value for a

particular video sequence. However, Ostaszewska et al. [41]

showed that the overall SI and TI of a video sequence can be

better approximated by taking the upper quartile value instead

of the maximum value as this eliminates the influence of peak

values (caused by, for example, scene cuts). Hence, the SI and

TI value of a video sequence were calculated as follows :

Q3.SI = Upperquartiletime{stdevspace[Sobel(Fn)]}. (7)

Q3.T I = Upperquartiletime{stdevspace[Mn(i, j)]}, (8)

where Mn(i, j) = Fn(i, j)− Fn−1(i, j).



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 5

(a) basketball (b) BBB (c) cheetah (d) ED

(e) foxbird3e (f) purple4e (g) rush hour (h) SSTB

Fig. 2. Overview of the eight selected source video sequences, taken from open source movies, CDVL and TUM.

Figure 3 visualizes the calculated Q3.SI and Q3.TI values

for each of the selected sequences.
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Fig. 3. Calculated Q3.SI and Q3.TI values for each sequence [41].

B. Encoding and impairment generation

The article is focused on the estimation of perceived quality

for HD H.264/AVC encoded video sequences. In order to use

realistic encoder settings, the settings used for HD content

available from online video services and websites were an-

alyzed. Furthermore, the default settings recommended by a

number of commercially available H.264/AVC encoders were

investigated. Based on this analysis, x264 was used with the

following settings for encoding the video sequences:

• Number of slices: 1, 4 and 8

• Number of B-pictures: 0, 1 and 2

• GOP size [42]: 15 (0 or 1 B-picture) or 16 (2 B-pictures)

• Closed GOP structure

• Bit rate: 15 Mbps

This results in a total number of nine different encoder con-

figurations. Each encoded video sequence was also carefully

visually inspected to ensure no encoding artifacts were present.

The open source streamer Sirannon [43] was used to impair

the encoded video sequences. First, the raw H.264/AVC Annex

B bitstream was packetized into RTP packets according to

RFC3984. Then, slice losses were simulated by dropping all

RTP packets carrying data from that particular slice2. Finally,

the stream was unpacketized and the resulting impaired bit-

stream was saved to a new file. This process is illustrated in

Figure 4. It is also possible to use different configurations for

avc-reader

nalu-drop
classifier

avc-packetizer

avc-unpacketizerwriter

Fig. 4. RTP packets, which carry data from particular slices, are dropped
using the nalu-drop classifier component. After unpacketizing, the resulting
impaired sequence is saved to a new file.

dropping slices, by considering on the following parameters:

• Number of B-pictures (0, 1, 2)

• Type of first lost slice (I, P, B)

• Location within the GOP of the loss (begin, middle, end)

• Number of consecutive slice drops (1, 2, 4)

• Location within the picture of the loss (top, middle,

bottom)

• Number of consecutive entire picture drops (0, 1)

An experimental design was used to select a subset of 48

representative impairment scenarios which are applied to the

eight selected sequences. This resulted in a total amount of

M = 384 impaired video sequences. Note that no visual

impairments were injected in the first and last two seconds

of video playback. The interested reader is referred to [33] for

more details on the experimental design.

For decoding the impaired sequences, a modified version

of the JM Reference Software version 16.1 was used, which

implements frame copy as concealment strategy [44], [45].

C. Subjective quality assessment methodology

The different encoded and impaired video sequences were

presented to human subjects using a Single Stimulus (SS) Ab-

2Entire slices should be dropped in order for the bitstream to remain
compliant with Annex B as specified in the H.264/AVC video coding standard.
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solute Category Rating (ACR) subjective assessment method-

ology, as specified in ITU-T Rec. P.910 [6]. The SS methodol-

ogy implies that all sequences are presented one-after-another,

as depicted in Figure 5. Immediately after watching each

sequence, subjects are required to evaluate the quality of that

particular sequence using a 5-grade ACR scale with adjectives.

Before the start of the experiment, all subjects received specific

~10s ~10s ~10s
voting voting

Ai Bj CkSilence/
Grey

Silence/
Grey

≤10s ≤10s

Sequence B under test condition j
Sequence A under test condition i

Sequence C under test condition k

Ai
Bj
Ck

Fig. 5. Typical trail structure of a SS subjective quality experiment defines
the order how sequences are displayed and rated by the subjects.

instructions on how to evaluate the different video sequences.

Ishihara plates and a Snellen chart were used to test the users

for visual acuity and normal vision. Three training sequences

were presented to indicate the typical impairments that they

could perceive during the experiment and to get the subjects

familiarized with the test software. The quality ratings that

were assigned to these test sequences are not taken into

account when analyzing the results. The sequences which

had to be evaluated were divided into six distinct datasets,

each containing 76 sequences. This limited the experiment

duration to 20 minutes. Subjects were encouraged to evaluate

more than one dataset, although not necessarily on the same

day. The order in which the sequences were presented was

randomized at the start of the experiment. This way, no two

subjects evaluated the sequences in exactly the same order.

The experiment was conducted inside an ITU-R BT.500 [7]

compliant test environment. A 40 inch full HD LCD television

was used the display the sequences. the test subjects were

seated at 4 times the picture height (4H) from the screen.

40 non-expert subjects participated in the experiment: 11

were females and 29 were male subjects. The age of the

subjects ranged from 18-34 years old. Most subjects evaluated

more than one dataset, and each dataset was evaluated by

exactly 24 subjects. The post-experiment screening method

detailed in Annex V of the VQEG HDTV report [15] was

used to ensure no outliers were present in the response data.

V. MODELING PERCEIVED VIDEO QUALITY

This section presents the results of using GP-based symbolic

regression to model the perceived video quality. First, all

parameters extracted from the received video bitstream are

made available to the modeling process. Next, based on the

set of generated GP models, variable importance is determined.

A new set of models is then generated using only the most

important variables. Finally, from the resulting set of GP

models, the best model is selected for predicting video quality.

This approach is visually presented in Figure 6. This section is

concluded by a comparison between the presented approach

and other existing ML techniques. The performance of the

metric is also validated on existing benchmark databases.

ParetoGP Archive

Multiple Runs

Model set

N=42

Variable 

Importance …
Variable 

Selection

N=42
N=8

ParetoGP Archive

Multiple Runs

N=8

Training 

set
Validation

set
Eq. (9)

(Test set)

Fig. 6. Approach of using GP-based symbolic regression for estimating
perceived video quality. After determining variable importance, a final set
of candidate models is generated after which, the best model is selected for
estimating video quality.

A. Listing of the parameters

The focus of this article is the construction of an NR

bitstream-based objective video quality metric. Hence, only

parameters that can be extracted or calculated from the re-

ceived video bitstream, without the need for complete de-

coding, are considered. This set comprises N = 42 different

parameters that are subdivided into the following categories:

• Describe the encoder settings

• Identify the location and severity of the loss

• Characterize the video content

A complete listing of the parameters is provided in Table III.

Note that the parameter drift represents the temporal du-

ration (extent) of the loss, i.e. the number of frames which

are affected by the loss. If a loss occurs in an I-picture, the

loss is propagated through the entire GOP. B-pictures are in

our case never used as reference. Hence, losses in B-pictures

only affect one picture and do not propagate any further. The

temporal extent caused by losses in P-pictures depends on the

location of that particular picture within the GOP. Based on

our created video sequences (as detailed in Section IV-B), we

calculated the average drift caused by losses in P-pictures, in

relation to the position of that picture within the GOP. Hence,

drift is calculated in the pixel domain as the number of pictures

containing a visual distortion. The calculated values are listed

in Table IV.

As indicated in Table III, all parameters are calculated

based on the GOP containing the loss. If a loss occurs in

an I-picture, statistics are calculated using the remaining P-

and B-pictures. In case the loss occurs in a P-picture, the

parameters are calculated using the I-picture and the remaining

P-pictures in the GOP (except for the P-pictures where the loss

originates from). This is similar when the loss originates from

a B-picture, in which case the I- and B-pictures are used for

calculating the statistics.

B. Identifying the importance of variables

First, all parameters are used during the modeling proce-

dure, and the resulting set of models is shown in Figure 7.
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TABLE III
OVERVIEW OF PARAMETERS EXTRACTED FROM RECEIVED VIDEO

BITSTREAM IN ORDER TO IDENTIFY LOCATION OF LOSS AND TO

CHARACTERIZE VIDEO CONTENT. THE SUBSET OF 8 INFLUENTIAL

PARAMETERS IS MARKED IN BOLD.

Parameter Description

Encoder settings

B-pictures, slices, GOP Number of B-pictures, slices per picture
and GOP size as specified during encod-
ing.

Loss location and severity

i loss, p loss, b loss Indication (1 or 0) whether the loss
originates from an I-, P- or B-picture.

perc pic lost Percentage of slices lost of the picture
where the loss originates.

imp in gop pos,
imp in pic pos

Temporal location within the GOP (be-
gin, middle, end) and spatial location
within the picture (top, bottom, middle)
of the first lost slice.

imp in gop idx,
imp in pic idx

Absolute position within the GOP and
within the picture of the first lost slice.

imp cons slice drops,
imp cons b slice drops,
imp pic drops

Number of consecutive slice drops, num-
ber of consecutive B-slice drops and
number of entire picture drops.

drift Temporal duration of the loss.

Video content characteristics

perc pb 4x4, perc pb 8x8,
perc pb 16x16,
perc pb 8x16,
perc pb 16x8, perc i 4x4,
perc i 8x8, perc i 16x16

Percentage of I, P & B macroblocks of
type 4x4, 8x8, 16x16, 8x16 and 16x8,
averaged over the pictures in the GOP
containing the loss.

perc i mb, perc skip,
perc ipcm

Percentage of macroblocks encoded as
I, skip and PCM, averaged over the
pictures in the GOP containing the loss.

I perc 4x4, I perc 8x8,
I perc 16x16

Percentage of macroblocks of type 4x4,
8x8 and 16x16 in the first I or IDR
picture of the GOP containing the loss.

abs avg coeff, avg qp Absolute average value of the mac-
roblock coefficients and QP value, av-
eraged over the P or B pictures in the
GOP containing the loss.

I abs avg coeff, I avg qp Absolute average value of the mac-
roblock coefficients and QP value in
the first I or IDR picture of the GOP
containing the loss.

perc zero coeff,
I perc zero coeff

Percentage of zero coefficients, averaged
over the P or B pictures in the GOP
containing the loss and average of zero
coefficients in the first I or IDR picture
of the GOP containing the loss.

avg mv x, avg mv y,
stdev mv x, stdev mv y Average absolute motion vector length

and standard deviation in x- and y-
direction, averaged over the P or B pic-
tures in the GOP containing the loss.
Motion vector magnitudes have quarter
pixel precision.

avg mv xy, stdev mv xy Average and standard deviation of the
sum of the motion vector magnitudes
in x- and y-direction, averaged over the
P or B pictures in the GOP containing
the loss. Motion vector magnitudes have
quarter pixel precision.

perc zero mv Average percentage of zero motion vec-
tors, calculated over the P or B pictures
in the GOP containing the loss.

Models that lie on the pareto front are marked in black and

represent the best individuals in the population [46]. The plot

illustrates that an increase in model complexity often results

in more accurate predictions, and it shows that the model

TABLE IV
CALCULATED AVERAGE DRIFT (WITH STANDARD DEVIATION) CAUSED BY

LOSSES IN P-PICTURES, IN RELATION TO THE LOCATION WITHIN THE

GOP OF THE P-PICTURE.

Location within GOP

BEGIN MIDDLE END

avg(drift) 14 9 4
stdev(drift) 1 2 2

prediction error saturates around 0.09. It is, however, found

that variables which are not truly significant are often present

in reasonable quantities in the final models. The presence of

insignificant variables in regression models is usually unde-

sired, because it can lead to overfitting and models that are

very complex to interpret. There are multiple reasons why such

variables can be present in models: due to the stochastic nature

of the GP algorithm, insignificant variables that disappeared

from models during the evolutionary run still have a chance

to come back by means of the random mutation operator. On

some occasions, insignificant variables are present in low-order

metavariables evaluating to an important constant.

0 200 400 600 800 1000
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0.20
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0.70
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Fig. 7. Set of GP models generated using all parameters extracted from the
video bitstream. Models on the pareto front are marked in black.

Fortunately, there is a robust way to overcome this problem.

The DataModeler environment offers the variable contribu-

tion analysis function that estimates the contribution of each

variable into the prediction error of each individual symbolic

regression model, based on the rate of change in the relative

prediction error when the variable is present or removed from

the model. It estimates the contribution of each variable to

each model in the set and aggregates all the results. Figure 8

demonstrates the quantitative characteristics of the variable

contribution. E.g., a variable contribution of 120% for variable

drift means that the removal of this variable from a model

causes on average a 120% increase in the prediction error.

This implies quantitatively that drift is a highly important

variable, which clearly agrees with the common sense and

domain knowledge. In order to determine the actual drift

accurately, pixel data should be reconstructed. However, in this

work, we are targeting a bitstream-based video quality metric

which does not require a decoding (= pixel reconstruction)

of the video stream. Therefore, it was decided to omit this

parameter as well and to use only the parameters that can
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exactly be extracted and calculated from the received encoded

video bitstream.

GOP
b_loss

imp_in_gop_idx
imp_in_gop_pos
imp_in_pic_idx
imp_in_pic_pos

imp_cons_b_slice_drops
imp_drop_next_pic

perc_zero_mv
perc_16x8

abs_avg_coeff
perc_i_mb

perc_pb_8x8
perc_i_4x4

avg_qp
stdev_mv_xy
I_perc_i_4x4

I_perc_zero_coeff
perc_pb_4x4

perc_skip
stdev_mv_x

I_avg_qp
stdev_mv_y

perc_pb_16x16
perc_8x16
avg_mv_x

perc_i_16x16
avg_mv_y

I_perc_i_16x16
I_abs_avg_coeff

perc_ipcm
avg_mv_xy
ds_number

perc_zero_coeff
perc_i_8x8

I_perc_i_8x8
imp_cons_slice_drops

B-pictures
p_loss
slices
i_loss

perc_pic_lost
drift

20 40 60 80 100 120

Variable Contribution,%

Fig. 8. Contribution of each variable into the prediction error of the regression
models when removing that particular variable from the model.

The results of the variable contribution analysis show that

there are N = 8 influential parameters for modeling perceived

video quality: perc_pic_lost, i_loss, slices,

p_loss, B_pictures, imp_cons_slice_drops,

I_perc_8x8 and perc_i_8x8. Interestingly, these

parameters largely correspond with the variables that were

used in our previous work [33] for modeling the impairment

visibility in H.264/AVC encoded HD video sequences.

C. Final modeling of Perceived Quality

The variable contribution analysis is most beneficial, since

it identifies that only 20% of video bitstream parameters are

causing significant changes in the video quality perception.

This information is of high value because it significantly

decreases the problem dimensionality, and focuses future

research. In this section, a final modeling step is applied

to construct an objective quality metric using only the most

important variables as determined in the previous section.

In order to compute an interpretable model that uses only

these influential variables, the data set S is divided into a

disjoint training (60%), validation (20%) and test (20%) set.

The training set is used to generate new models based on the

subset of 8 parameters and the results are depicted in Figure 9.

It shows that the models are able to fit the data using much

less variables without suffering a significant loss in accuracy.

All models that lie on the pareto front are now candidate

models for predicting video quality. In order to pick the “best”
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Fig. 9. Set of GP models generated using only the selected influential
parameters. Models on the pareto front are marked in black.
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Fig. 10. Prediction error versus model complexity for each pareto efficient
model identified using the validation set. The arrow indicates the final selected
model.

model from the set, all pareto-optimal models in Figure 9 are

evaluated on the validation set. Figure 10 plots the prediction

error between predicted and actual MOS against model’s

complexity for each pareto optimal models evaluated on the

validation set. Model complexity is computed as the total sum

of nodes in all the subtrees of the parse tree representation

of that particular model. In order to select the final model,

a trade-off must be made between model complexity and

accuracy. Based on the plot in Figure 10, it can be seen that

the performance saturates of the pareto optimal models with

a complexity of 60 or more. Therefore, we selected the final

model (indicated by the arrow in Figure 10) as the point in

the graph after which there is no significant gain in prediction

accuracy. This corresponds with the point located near the

‘elbow’ of the plot.

The performance of the final model is then assessed by

evaluating it over the test set that contains previously unseen

data. For each data sample in the test set, the predicted MOS

(MOSp) is compared to the actual MOS (q) and the result is

depicted in Figure 11. The Pearson correlation coefficient R
over the test set is 0.9003 with a Root Mean Squared Error

(RMSE) of 0.5663, which confirms that the final model is

indeed capable of predicting perceived quality with a high

accuracy, using only a limited number of parameters extracted
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Fig. 11. Predicted MOS (eq. 9) versus actual MOS over the test set.

solely from the received encoded video bitstream.

D. Objective Video Quality Metric

The parse tree corresponding with the final selected model

is depicted in Figure 12. This tree can easily be translated

to the algebraic expression shown in equation (9) that is

shown on top of the next page. In this model, only four

-

4.615 *

-0.548 +

* *

20 i_loss - perc_pic_lost

1.079 perc_pic_lost

imp_cons_slice_drops perc_pic_lost p_loss

Fig. 12. Parse tree corresponding with the selected GP model indicated in
Figure 10.

parameters are present for estimating video quality, since only

models with a higher complexity use all eight parameters. This

formula computes the predicted MOS as a large constant from

which multiple terms are subtracted. Each term is weighted

by the type of picture where the loss originates from. Losses

originating in I- or P-pictures cause a drop in perceived quality.

In the case losses occur in B-pictures, perceived quality

equals 4.615. In previous research [33], we found that losses

in B-pictures are never perceived. As such, the quality is not

influenced. The fact that, in this case, perceived quality does

not equal 5 (i.e. ‘excellent’ quality) can be explained by the

fact that subjects tend to avoid using the extremes of the rating

scales [47] during the subjective video quality evaluation. This

effect is also known as the saturation effect [48].

In general, losses in I-pictures will result in a higher drop in

quality due to the drift (=spatial extent) caused by the decoding

dependencies with other pictures in the GOP. Losses of entire

I-pictures are rated higher quality compared to losing only a

certain portion of the picture. This matches the conclusions

of [33] where it was found that dropping an entire picture and

relying on the error concealment strategy might benefit quality

perception. In the case of similar consecutive pictures, frame

freezes can be used as an efficient concealment technique [49].

When losses originate from P-pictures, the drop in perceived

quality is further depending on the amount of slices per picture

and the amount of slices lost. For the same amount of the

picture lost (perc_pic_lost), a higher number of slices

per picture will result in a slightly higher drop in quality. This

again matches with the earlier findings [33] that impairment

visibility of loosing up to half a picture depends on the number

of encoded slices in that particular picture, i.e. impairments are

easier detected in sequences encoded with multiple slices.

E. Performance comparison

In this last section, the results of the GP-based symbolic

regression approach are compared to several state-of-the-art

ML techniques. To this end, the same training, validation and

test set are used as in the previous section. Two different model

types are investigated and the results are listed in Table V:

• The first model type is a two-layer feed-forward Artificial

Neural Network (ANN) with sigmoid hidden neurons

and linear output neurons. It is found that this network

topology is able to approximate the non-linear function

f(~v) sufficiently well. Based on experimental results, the

number of neurons in the hidden layer is set to 4 and

the weights of the neural network are computed with the

Levenberg-Marquardt backpropagation algorithm [50].

• The second model type is the Support Vector Regression

(SVR) model used by Narwaria et al. [27]. Each attribute

of the input vector ~v is scaled to [0,1] and the following

model is computed,

f(~v) =

k∑

i=1

(α∗

i − αi)K(~vi, ~v) + b (10)

where K is chosen to be a radial basis function kernel

that maps the problem from a lower dimensional space

to a higher feature space and b is a real constant.

K(~vi, ~v) = exp(−γ ‖~vi − ~v‖
2
),γ > 0 (11)

The variables αi and α∗

i are optimized by maximizing a

constrained quadratic function, and the constants γ and C
are selected from a grid of increasing values. The reader is

referred to [51] for a detailed discussion of the algorithm.

As can be seen from Table V, the accuracy of the GP-based

symbolic regression metric (see equation 9) yields perfor-

mance results that are comparable to, or better than the ANN

and SVR algorithms. A key advantage of the GP approach

is that it provides a natural way for variable selection and

yields interpretable models. Discarding redundant variables is

important, as it reduces the dimensionality of the problem.

Numerical results in Table V confirm that models which are

based on the subset of 8 (or even 4) parameters are indeed

sufficiently accurate to characterize the perceived quality.
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MOSp = 4.615− 0.548 · (20 · i loss · (1.079− perc pic lost) · perc pic lost + imp cons slice drops · perc pic lost · p loss) (9)

TABLE V
PEARSON LINEAR CORRELATION COEFFICIENT (PLCC), SPEARMAN RANK-ORDER CORRELATION COEFFICIENT (SROCC) AND PREDICTION ERROR

1−R
2 USING DIFFERENT MODEL TYPES

Training Validation Test All
Model type PLCC SROCC Error PLCC SROCC Error PLCC SROCC Error PLCC SROCC Error

GP metric (4) 0.9047 0.75107 0.1814 0.8619 0.8288 0.2571 0.9003 0.8447 0.1895 0.8961 0.7961 0.1969

ANN (42) 0.9680 0.9164 0.0629 0.8975 0.8827 0.1945 0.8551 0.8363 0.2688 0.9310 0.8990 0.1333

ANN (8) 0.9330 0.8522 0.1294 0.8540 0.8284 0.2707 0.8712 0.8115 0.2411 0.9057 0.8447 0.1797

ANN (4) 0.9111 0.7829 0.1699 0.8567 0.8330 0.2661 0.8931 0.8231 0.2023 0.8977 0.8077 0.1941

SVR (42) 0.9665 0.9341 0.0660 0.9159 0.8746 0.1612 0.9270 0.8829 0.1407 0.9486 0.9076 0.1002

SVR (8) 0.9225 0.8489 0.1490 0.8590 0.8390 0.2621 0.9012 0.8394 0.1879 0.9065 0.8489 0.1783

SVR (4) 0.9107 0.7959 0.1706 0.8609 0.8202 0.2588 0.8713 0.8188 0.2408 0.8946 0.8089 0.1998

When providing all available parameters to the modeling

process, the SVR model achieves a slightly higher accuracy.

However, this requires an in-depth processing of the received

video stream. This, in turn, increases model complexity. In the

case of real-time monitoring, models using parameters which

do not require in-depth processing are preferred.

F. Model validation

The validity of the proposed metric (9) has also been

checked by applying it to the publicly available EPFL-PoliMI

video quality assessment database [52], [53]. This database

contains, 72 4CIF resolution (704x576 pixels) and 72 CIF

resolution H.264/AVC encoded video sequences impaired at

different packet loss rates. The MOS scores which are pre-

dicted by our metric (see Equation 9) are compared to the

MOS scores in the database, and the PLCC, the SROCC and

the prediction error (1−R2) are computed. The performance of

our metric is also compared against two well known FR quality

metric, namely PSNR and VQM [23], for benchmarking.

TABLE VI
PERFORMANCE EVALUATION OF OUR PROPOSED METRIC, PSNR AND

VQM AGAINST THE EPFL-POLIMI VIDEO DATABASE.

PLCC SROCC Pred. error

GP metric 0.8816 0.8830 0.2227
PSNR 0.7374 0.7463 0.4562
VQM 0.8127 0.8344 0.3395

It is seen from Table VI that the metric yields a very

good agreement, which confirms that the metric has good

generalization properties and that it also works well on similar

video sequences. Comparing the performance of our metric

against PSNR and VQM measurements show that our NR

bitstream-based metric achieves a higher accuracy in estimat-

ing perceived quality.

VI. CONCLUSION

In this article, a novel machine learning technique for con-

structing a no-reference bitstream-based objective video qual-

ity metric is proposed. Genetic programming-based symbolic

regression is used to generate sets of white box models for

estimating perceived quality. This, in turn, yields interpretable

models and allows automatic selection of the most quality-

affecting parameters. The modeling technique does not make

any a priori assumptions on the functional form or the com-

plexity of the final model(s). Since the focus of the article is

a no-reference bitstream-based metric, only parameters which

can be extracted from the received encoded video bitstream

without the need for complete decoding are taken into account

during the modeling process.

In total, 42 different parameters are extracted from the

bitstream characterizing the encoding settings, the type of

loss and the video content. Based on the variable contribution

analysis of the modeling toolkit, it is found that only 20%

of these parameters significantly influence perceived quality.

Modeling results confirm that the perceived quality can be

estimated accurately using only a very limited number of pa-

rameters. This enables real-time no-reference-based objective

video quality monitoring for video service providers.
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