
Auton Agent Multi-Agent Syst
DOI 10.1007/s10458-010-9132-7

Constructing a unifying theory of dynamic programming
DCOP algorithms via the generalized distributive law

Meritxell Vinyals · Juan A. Rodriguez-Aguilar ·
Jesús Cerquides

The Author(s) 2010

Abstract In this paper we propose a novel message-passing algorithm, the so-called
Action-GDL, as an extension to the generalized distributive law (GDL) to efficiently solve
DCOPs. Action-GDL provides a unifying perspective of several dynamic programming
DCOP algorithms that are based on GDL, such as DPOP and DCPOP algorithms. We empir-
ically show how Action-GDL using a novel distributed post-processing heuristic can out-
perform DCPOP, and by extension DPOP, even when the latter uses the best arrangement
provided by multiple state-of-the-art heuristics.

Keywords GDL · Generalized distributive law · DCOP · DCPOP · DPOP

1 Introduction

A distributed constraint optimization problem (DCOP) [11,12,14] is a formalism that cap-
tures the rewards and costs of local interactions in a multiagent system (MAS) where each
agent chooses a set of individual actions. DCOP is a framework that can model a large num-
ber of coordination, scheduling, and task allocation problems in MAS that has already been
applied to domains such as sensor networks [23], meeting scheduling [10] and synchroniza-
tion of traffic lights [9].

M. Vinyals (B) · J. A. Rodriguez-Aguilar
IIIA, Artificial Intelligence Research Institute, Spanish National Research Council,
Campus UAB, 08193 Bellaterra, Spain
e-mail: meritxell@iiia.csic.es

J. A. Rodriguez-Aguilar
e-mail: jar@iiia.csic.es

J. Cerquides
WAI, Departament Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585,
08191 Barcelona, Spain
e-mail: cerquide@maia.ub.es

123

Auton Agent Multi-Agent Syst

State-of-the-art complete algorithms to solve DCOPs adopt two main approaches: search
and dynamic programming. Search algorithms, like ADOPT [12] (including extensions such
as IDB-ADOPT [21]), require linear-size messages, but an exponential number of messages.
Dynamic programming algorithms, like the distributed pseudotree optimization procedure
(DPOP) and its extensions [15], only require a linear number of messages, but their complex-
ity lies on the message size, which may be very large. Recently, Atlas and Decker provided a
generalization of DPOP, the so-called distributed cross-edged pseudotree optimization proce-
dure (DCPOP) [3], which extends DPOP by handling an extended set of pseudotree arrange-
ments. Moreover, researchers have also proposed hybrid algorithms that are able to preserve
optimality whereas offering different trade-offs, as for instance MB-DPOP (message-size
vs. memory) or PC-DPOP (number of messages vs partial centralisation) [14]. In general,
DCOP algorithms share common goals, namely to minimise communication/computation
and to maximise parallelism. For some domains, privacy is also an important issue.

Against this background, in this paper we provide a unifying perspective of several
dynamic programming DCOP algorithms under the generalized distributive law (GDL). The
GDL algorithm [1] is a general message-passing algorithm that exploits the way a global
function factors into a combination of local functions. Particular cases of GDL have been
unknowingly used by different communities under different names (e.g. Viterbi’s [20], Pearl’s
belief propagation [13], or Shafer-Shenoy [17] algorithms among others). Thus, in this work
we focus on how to specialise GDL to efficiently solve DCOPs. Along this line, we make
several contributions:

– We formulate Action-GDL, a specialisation of GDL, which reduces the number and
size of messages when solving DCOPs and prove that it generalises DPOP and DCPOP
algorithms

– We theoretically characterise when Action-GDL can outperform DPOP. Thus, we ob-
serve that Action-GDL: (i) provides significant savings in computation over DPOP when
pseudotrees are generated by edge-traversal heuristics; (ii) provides no significant savings
in computation for unrestricted pseudotrees; and (iii) can severely reduce communication
complexity.

– We formulate a distributed post-processing heuristic to improve Action-GDL problem
arrangements, namely junction trees

– We provide empirical evidence that we can benefit from using Action-GDL instead of
DCPOP, and by extension of DPOP. Concretely we observe than our distributed post-
processing heuristic allows Action-GDL to outperform DCPOP by: (i) decreasing com-
munication (up to around 85%); (ii) reducing computation (up to around 30%); and
(iii) increasing parallelism (up to around 60%)

The paper is organised as follows. Section 2 introduces DCOPs as well as the notation used
throughout the paper. Section 3 outlines GDL and details Action-GDL. In Sect. 4 we prove
that DPOP and DCPOP are particular cases of Action-GDL. Next, in Sect. 5 we theoretically
characterise when Action-GDL can outperform DPOP and formulate our distributed post-
processing heuristic. Finally, Sect. 6 details our empirical analysis, and Sect. 7 draws some
conclusions and sets paths to future research.

2 DCOP definition and notation

In this section we introduce the distributed constraint optimization problem as well as the
notation we employ throughout the rest of this paper.

123

Auton Agent Multi-Agent Syst

2.1 The distributed constraint optimization problem

A distributed constraint optimization problem (DCOP) [12,15] consist of a set of variables,
each one taking on a value out of a finite discrete domain. Each constraint in this context has a
set of variables as input specifying a utility,1 namely a relation. The goal of a DCOP algorithm
is to distributedly assign values to these variables so that the total utility is maximized.

Let X = {x1, . . . , xn} be a set of variables over domains D1, . . . , Dn . A utility relation
with domain variables {xi1 , . . . , xim } is a function r : Dr → R+, where Dr = Di1 ×· · ·×Dim ,
that assigns a utility value to each combination of values of its domain variables. Formally,
a DCOP is a tuple 〈X , D, R〉 where: X is a set of variables, each one assigned to a different
agent; D is the joint domain space for all variables; and R = {r1, . . . , rp} is a set of utility
relations.

The objective function f is described as an aggregation (typically addition) over the set
of relations. Formally:

f (d) =
p∑

i=1

ri (dri) (1)

where d is an element of the joint domain space D and dri is an element of Dri . Solving a
DCOP amounts to choosing values for the variables in X such that the objective function
is maximized. In a DCOP each agent receives knowledge about all relations that involve its
variable(s). In this work we assume that each agent is assigned a single variable, so we will
use the terms “agent” and “variable” interchangeably. A DCOP is typically represented with
its constraint graph, whose vertices stand for variables and whose edges link variables that
have some direct dependency (appear together in the domain of some relation), as shown by
the examples depicted in Figs. 3a and 4a.

2.2 Notation

Next we define the functions and operators that we shall employ henceforth. Henceforth,
given some variable set X ⊆ X , DX will stand for the joint domain space of variables in X .
For the sake of simplicity in given examples we assume binary utility relations involving two
variables, although all the results in the paper are valid for any arity. Therefore, we will refer
to unary relations involving variable xi ∈ X as r i , and to binary relations involving variables
xi , x j ∈ X as r i j .

Definition 1 (Scope) The scope function returns the domain variables of a given set of rela-
tions. Ex: Scope({r12}) = {x1, x2}, Scope({r12, r24}) = {x1, x2, x4}.
Definition 2 (Complementary variables) Given a set of variables X and a relation r , we
define the complementary variables of X by r as the set of variables in r that are not in X .
Formally, X̄r = Scope(r) \ X .

Definition 3 (Utility message) A message from agent xi to agent x j is a utility message over
X ⊆ X , if the information sent is a utility relation over X . Henceforth, we shall denote that
utility relation as µi j .

Definition 4 (Assignment) Given a set of variables X ∈ X , an assignment σ over X sets a
value to each variable xk ∈ X and sets free the remaining variables. Given Y ⊂ X , we note

1 Costs can be represented with negative values.

123

Auton Agent Multi-Agent Syst

by σ [Y] the projection of σ to Y , that is, the assignment that sets the same value as σ for the
variables in Y . Ex: X = {x1, x3}, σ an assignment over X having σ (x1) = 1, σ (x3) = 0. x2
and x4 are free in σ . If Y = {x1} we have that σ [Y](x1) = 1. x2, x3 and x4 are free in σ [Y].
Definition 5 (Value message) A message from agent xi to agent x j is a value message over
X ⊆ X if the information sent is an assignment over X . Henceforth, we shall denote such
assignment by σi j .

Definition 6 (Join) Let r, s be two relations, Scope({r, s}) = {xk1 , . . . , xkm } be their joint
scope and Dr⊗s = Dk1 × . . . × Dkm be their joint domain space. The combination of r and s
(noted r ⊗s) is a utility relation over Scope({r, s}) such that (r ⊗s)(d) = r(dr)+s(ds) for all
d ∈ Dr⊗s , where dr ∈ Dr and ds ∈ Ds are the projections of d over the domains of relations
r and s respectively. Ex: (r12 ⊗r24)(0, 1, 0) = r12(0, 1)+r24(1, 0). We can readily general-
ize the join operator over a finite set of relations:

⊗
{r1,...,rm }

= r1 ⊗ (r2 ⊗ . . . (rm−1 ⊗ rm) . . .).

Thus, the join operator is a combination operator that joins the knowledge represented by
two relations into a single one by adding their values.

Definition 7 (Summarization) The summarization operator of relation r over a set of vari-
ables X returns a utility relation over X such that (

⊕

X

r)(dX) = max
d∈DX̄r

r(dX , d). Ex:(
⊕

{x2}
r12)

(0) = max
d1∈D1

r12(d1, 0) and (
⊕

{x2}
r12)(1) = max

d1∈D1
r12(d1, 1). Notice that we can employ the

summarization operator by specifying the variables to eliminate from a relation as follows⊕

\X

r =
⊕

X̄r

r =
⊕

Scope(r)\X

r . The summarization operator sums up the utility that a relation

contains over a set of variables.

Definition 8 (Slice) The slice of a relation r by an assignment σ over X is a utility rela-
tion over DX̄r such that (*

σ
r)(dX̄r) = r(dX , dX̄r) where dX ∈ DX contains the values

set by σ to the variables in X . Ex: X = {x2}, σ (x2) = 1 then (*
σ

r12)(0) = r12(0, 1) and

(*
σ

r12)(1) = r12(1, 1).

3 The Action-GDL algorithm

In this section we introduce Action-GDL, a specialization of the GDL algorithm in [1] to
efficiently solve DCOPs. Firstly, in Sect. 3.1 we outline the GDL algorithm. Secondly, in
Sect. 3.2 we show how to extend GDL to efficiently solve DCOPs, namely to allow individual
agents to calculate the variable assignment that maximizes the DCOP objective function of
Eq. 1.

3.1 The generalized distributive law

GDL [1] is a general message-passing algorithm that exploits the way a global function fac-
tors into a combination of local functions to compute the objective function in an efficient
manner. GDL is defined over two binary operations. In our case, since we are concerned with
the problem of maximizing a utility function, such operations are addition and maximiza-
tion (the max-sum GDL). In order to ensure optimality and convergence, GDL arranges the
objective function to assess in a junction tree structure (J T) [8].

123

Auton Agent Multi-Agent Syst

Definition 9 A junction tree (J T) is a tree of cliques that can be represented as a tuple
〈X , C, S,"〉 where: X = {x1, . . . , xn} is a set of variables; C = {C1, . . . , Cm} is a set of
cliques, where each clique Ci is a subset of variables Ci ⊆ X ; S is a set of separators, where
each separator si j is an edge between clique Ci and C j containing their intersection, namely
si j = Ci ∩ C j ; and " = {ψ1, . . . , ψm} is a set of potentials, one per clique, where potential
ψi is a function assigned to clique Ci . Furthermore, the following properties must hold:

– Single-connectedness. Separators create exactly one path between each pair of cliques.
– Covering. Each potential domain is a subset of the clique to which it is assigned, namely

Scope(ψi) ⊆ Ci .
– Running intersection. If a variable xi is in two cliques Ci and C j , then it must also be in

all cliques on the (unique) path between Ci and C j .

Likewise variables in DCOP, we assume that the variables in a J T are defined over domains
D1, . . . , Dn . Moreover, DCi stands for clique Ci domain space, namely the joint domain space
of the variables in clique Ci .

Figure 2 shows a J T where circles stand for cliques, labelled with the variables each one
contains, and edges between cliques stand for separators. Thus, for example, C1 contains
variables x2, x4; C3 contains variables x2, x3, x4; and their separator is composed of their
intersection, namely variables x2 and x4. Each clique Ci is associated with a potential ψi , a
function whose domain is a subset of Ci .

GDL defines a message-passing phase for cliques to exchange information about their
variables. The purpose of the algorithm is that cliques distributedly compute some objec-
tive function that is factored among them. To illustrate the way GDL operates, consider the
following example. Say that our goal is to distributedly maximise some objective function
f (x1, x2, x3, x4) = ψ1(x2, x4) + ψ2(x1, x2) + ψ3(x2, x3, x4), whose subfunctions (ψ1, ψ2
and ψ3) are arranged in the directed J T of Fig. 2. Since the J T is directed, messages are
sent in two different message-passing phases: (i) one up the tree in which each clique sends
a message to its clique parent when it has received messages from all of its children; and
(ii) one down the tree so that each clique sends a message to its children when it receives a
message from its parent.

Figure 1 shows a trace of the operation of GDL over the J T in Fig. 2. At round 1,
C2 = {x1, x2} sends a message µ21 to C1 = {x2, x4} with the values of its local function, ψ2,
after ‘filtering out’ dependence on all variables but those common to C2 and C1 (namely vari-
ables which are not in their separator). At round 3, after C1 receives the values of its children’s
local functions for its variables x2, x4, it combines those values into K̄1. K̄1 is a function
that stands for C1 knowledge over its variables. At that point, since C1 has received messages
from all its neighbors, K̄1 has complete knowledge about the global objective function for
the variables in the clique. At rounds 4 and 5, C1 sends messages to its children that con-
tain the combination (join operation) of its local function, ψ1, with other children messages.

Fig. 1 Trace of GDL over the
J T of Fig. 2

123

Auton Agent Multi-Agent Syst

Fig. 2 Example of J T

Thus, C2 receives a message from C1 that contains the potential ψ1 combined with µ31. Then
it can compute K̄2 (round 6). Analogously C3 can compute K̄3 at round 7 using the message
from C1.

Once the message-passing phase of GDL is over, each clique has complete knowledge
of the global objective function for the variables in the clique. Now each clique can locally
compute the assignment of variables that maximises the objective function. However, such
local computations do not guarantee that cliques agree on their assignments. This is the case
when several assignments maximise the objective function. In what follows we generalise
the example above to provide a more formal description of GDL2 that will help formalising
the operations that Action-GDL requires.

Firstly, the knowledge of a clique Ci results from the combination of its local function
with each of the messages it has received from its neighbours. More formally, the knowledge
of a clique Ci is defined as a table containing the values of a function K̄i : DCi → R. Initially,
K̄i is set to be the local potential ψi , but when K̄i is updated, GDL uses the following rule:

K̄i = ψi ⊗

⊗

Ck ad j Ci

µki

 (2)

where Ck ad j Ci indicates that Ck and Ci are adjacent cliques in the J T .
Secondly, notice that if two cliques Ci and C j are connected by a separator si j , the message

from Ci to C j is a table containing the values of function µi j : Dsi j → R.3 When a clique Ci
sends a message to C j , it combines its local knowledge with all messages it has received from
its neighbours other than C j , and transmits the result to C j . Following [1], we can regard a
J T as a communication network where an edge from Ci and C j is a transmission line that
“filters out” dependence (by summarization in our case) on all variables but those common
to Ci and C j . When a message µi j is updated, the following rule applies:

µi j =
⊕

si j

ψi ⊗
⊗

Ck ad j Ci ,k ,= j

µki

 (3)

To summarise, Eqs. 2 and 3 are the basis of GDL. While Eq. 3 helps a clique assess messages
to send to its neighbours, Eq. 2 allows to compute the objective function at a particular clique.

Consider two special cases regarding the application of GDL [1]: the single-vertex prob-
lem, when the goal is to compute the objective function at a single clique, and the all-vertices
problem, when the goal is to compute the objective function at all cliques. For instance, con-

2 For the sake of simplicity we restrict our description to the max-sum commutative semiring. Notice though
that GDL applies to a larger variety of semirings. We refer the interested reader to [1] for an excellent discussion
on this issue.
3 Initially all µi j functions are set to 0.

123

Auton Agent Multi-Agent Syst

sider the trace in Fig. 1. At step 3 the single-vertex problem for clique C1 is solved, whereas at
step 7 the all-vertices problem is solved because all cliques can assess the objective function.

GDL is a synthesis of the work in many fields. More concretely, it generalises Viterbi’s
[20], Pearl’s belief propagation [13], or Shafer-Shenoy [17] algorithms among others. Here,
we observe that it is also the case of the cluster tree elimination (CTE) algorithm described
in [6], a message-passing algorithm that can help solve several automated reasoning tasks
over a tree decomposition. Interestingly, the original description of CTE is equivalent to the
fully serial version of GDL [1]: a clique sends a message to a neighbour when, for the first
time, it has received messages from all of its other neighbours, and computes its knowledge
when, for the first time, it has received messages from all its neighbours. Notice that GDL can
also employ either a fully parallel schedule (at every iteration, knowledge at each clique is
updated, and every message is computed and transmitted, simultaneously) or hybrid schedule
(intermediate between fully serial and fully parallel) to solve the all-vertices problem. Impor-
tantly, no matter the schedule, after a linear number of iterations the knowledge of the cliques
are equal to the desired objective functions, and GDL terminates.

3.2 Extending GDL to solve DCOPs

Recall that our goal is to efficiently solve DCOPs as formalised in Sect. 2. Therefore, the
capability of distributedly computing an objective function,4 as provided by GDL, is not
enough. We need to go one step beyond GDL to allow agents to individually assign values
to local variables such that these values are a joint assignment that maximizes the DCOP
objective function of Eq. 1, namely the optimal assignment. At this aim, Action-GDL extends
GDL to efficiently infer the optimal assignment.

Consider a DCOP setting arranged as a J T . According to the description of GDL above,
when a clique has received messages from all its neighbors, it counts on all the information
related to its variables. Thus, it can compute its objective function. Thereafter, the clique
would be able to find the optimal assignment for its variables provided that it is aware of
its parent clique decisions (variables’ assignments) and can set the rest of clique’s variables
according to them. Once the clique finds the optimal assignment for its variables, it can
directly propagate its assignment down the tree. Notice that there is no need to propagate
utility messages down the tree (unlike GDL when solving the all-vertices problem) because
all a child requires to find an optimal assignment for its variables is its parent’s assignment.
Therefore, when solving a DCOP, after the first message-passing phase of GDL, up the
tree, is over, the second message-passing phase of GDL, down the tree, is no longer neces-
sary. Instead, we require a second message-passing phase for cliques to exchange decisions
down the tree, which is precisely the extension that Action-GDL introduces. Henceforth, we
shall refer to the first message-passing phase as utility propagation, and to the second one
as value propagation. This leads to savings in communication, since utility messages are
space-exponential in the separator size whereas the size of a value messages is linear. More-
over, it is relevant to notice that the value propagation phase ensures that whenever multiple
optimal joint decisions are feasible, cliques converge to the very same joint decision, namely
to the very same solution of a DCOP.

Algorithm 1 outlines Action-GDL. For simplicity we have assumed that each agent xi is
assigned a single clique Ci . Given a J T = 〈X , C, S,"〉, each clique Ci starts with a tuple
〈C p, Chi ,ψi , Si 〉, where C p ∈ C stands for its parent, Chi ⊆ 2C stands for its children, and
Si ∈ S stands for the separators relating the clique to its adjacent cliques.

4 In fact, each clique ends up in GDL with a summarization of the global objective function over its variables.

123

Auton Agent Multi-Agent Syst

Algorithm 1 Action-GDL(〈X , C, S,"〉)
Each clique Ci starts with 〈Cp, Chi ,ψi , Si 〉 and runs:
1: Phase I: UTILITY Propagation
2: K̂i = ψi ;
3: for all C j ∈ Chi do
4: Wait for utility message µ j i from C j
5: K̂i = K̂i ⊗ µ j i ;
6: end for
7: if Ci is not the tree’s root then
8: Let sip ∈ Si be the separator between Ci and its parent C p

9: Send µi p =
⊕

sip

K̂i to Cp

10: end if
11: Phase II: VALUE propagation
12: if Ci is not the tree’s root then
13: Wait for a value message σpi from Cp

14: K̂i = *
σpi

K̂i ; /*Slice K̂i with the value message*/

15: end if
16: d∗

i = arg max
d∈DScope(K̂i)

K̂i (d); /*Assess best values for unassigned local variables*/

17: d∗ = d∗
i ∪ σpi ; /*Put together the assessed value and the message received*/

18: for all C j ∈ Chi do
19: Let σi j = d∗

si j ; /*Project over separator*/

20: Send σi j to C j
21: end for
22: return d∗;

During the utility propagation phase (lines 1–10), cliques exchange utility messages. The
initial knowledge for each clique is its potential (line 2). Each clique waits until receiving a
utility message from each of its children cliques (lines 3–4). These messages contain a utility
relation over the variables shared by both cliques (their separator) and are sent by children
cliques. Every time that a clique receives a new utility message, it incorporates it (by using
the join operator) to its local knowledge (line 5). After combining utility messages from all
the children of a clique, if the clique has a parent (line 7), it summarizes that part of its local
knowledge (using the summarization operator) that is of interest to its parent (by means of
a utility relation over its separator). After that, the result of the summarisation is sent to its
parent (line 9).

During the value propagation phase (lines 11–22), cliques compute the optimal values
for their variables and exchange value messages, namely decisions. Given a clique, it waits
until receiving a value message (containing assignments) for all variables in common (in the
separator) with its parent (line 12–14). At that point, the clique has received all the knowl-
edge, in form of utility (from children) and value (from the parent) messages, required to
compute the objective function related to its variables. The clique slices its knowledge by
incorporating the already inferred decisions (line 15) and computes the optimal values for
the rest of its variables (line 17). Once a clique finds the optimal assignment for its variables,
it can propagate it down the tree (lines 19–22). Notice however that a clique only propagates
variable assignments required by its children cliques, namely assignments for variables in
their separator.

Table 1 displays a trace of Action-GDL over the J T in Fig. 2. In order to run Action-GDL,
the set of potentials is defined as " = {ψ1,ψ2,ψ3}, where ψ1 = r24, ψ2 = r12, and ψ3 =
r23 ⊗ r34. Hence, the objective function encoded in the J T is defined as f (x1, x2, x3, x4) =
ψ1(x2, x4)+ψ2(x1, x2)+ψ3(x2, x3, x4), which is the same as the one in the constraint graph

123

Auton Agent Multi-Agent Syst

Table 1 Trace of Action-GDL over the J T of Fig. 2

#. Messages/local knowledge K̂ #. Messages/local knowledge K̂

1. µ21(x2) = max{x1}ψ2(x1, x2) 6. σ13(x2, x4) = (x∗
2 , x∗

4)

2. µ31(x2, x4) = max{x3}ψ3(x2, x3, x4) 7. K̂2(x1) = ψ2(x1; σ12)

3. K̂1(x2, x4) = ψ1(x2, x4) + µ21(x2) + µ31(x2, x4) 8. x∗
1 = arg max{x1} K̂2

4. (x∗
2 , x∗

4) = arg max{x2,x4} K̂1 9. K̂3(x3) = ψ3(x3; σ13)

5. σ12(x2) = x∗
2 10. x∗

3 = arg max{x3} K̂3

(a) (c)(b)

Fig. 3 Example of constraint graph, a pseudotree PT and its equivalent junction tree J T

in Fig. 3. Steps 1–3 are equivalent to steps 1–3 in GDL. However, at step 4 the root clique
assesses the optimal value for x2 and x4, namely x∗

2 and x∗
4 , and propagates these values

down the tree through value messages to cliques C2 and C3 (steps 5 and 8). At steps 7–8 and
9–10, C2 and C3 assess the values of x1 and x3, respectively, using its parent decision values
(x∗

2 , x∗
4).

To summarize, as can be seen by following algorithm 1, the knowledge of a clique Ci at
the end of an Action-GDL run is:

K̂i = *
σpi

ψi ⊗
⊗

C j ∈Chi

µ j i

 (4)

We can readily assess Action-GDL complexity from cliques’ and separators’ sizes. Action-
GDL requires a number of messages linear to the number of edges in the J T (exchanging
one value message and one utility message per separator). The communication complexity
lies in the size of utility messages, which is exponential to separators’ sizes, because the
size of value messages is linear. The local memory required by each clique Ci depends on
its separators’ sizes and on the size of its local knowledge Ki , which is exponential to the
clique’s size. Regarding the computation required by each clique to build messages and find
assignments, it also scales with a cliques’ size.

123

Auton Agent Multi-Agent Syst

4 Generality of Action-GDL

In the previous section we have presented Action-GDL. In this section we show the gener-
ality of Action-GDL by showing that it unifies two state-of-the-art dynamic programming
optimal DCOP algorithms that are based on the general distributed law (GDL): DPOP [15]
and DCPOP [3].

4.1 Action-GDL generalizes DPOP

In this section we prove that DPOP is a particular case of Action-GDL when it is executed
under certain J T s. First, we give an overview of the DPOP algorithm in Sect. 4.1.1. Next
we prove that Action-GDL generalizes DPOP by: (1) providing a mapping from pseudotrees
(input of DPOP) to J T s (Sect. 4.1.2); and (2) proving that given any pseudotree, the execu-
tion of DPOP is equivalent to the execution of Action-GDL over the J T produced by our
mapping for the pseudotree (Sect. 4.1.3).

4.1.1 Overviewing DPOP

DPOP [15] is a complete state-of-the-art dynamic programming algorithm to solve DCOPs.
DPOP arranges a DCOP in a pseudotree (PT), namely a rooted tree with the same variables
as the DCOP and the property that adjacent nodes from the DCOP constraint graph fall in
the same branch of the tree. Figure 3b shows a PT for the constraint graph in Fig. 3a. A PT
of a constraint graph has two kinds of edges: tree-edges (boldfaced lines); and pseudoedges
(dashed lines). These edges stand for two relationships between variables: (1) parent/children
for variables connected through an edge (e.g. in Fig. 3b x2 is the parent of x3); (2) pseudopar-
ent/pseudochildren for variables connected through a pseudoedge (e.g. x4 is a pseudochild of
x2). Therefore, we can represent a PT as a pair 〈P, P P〉, where P and P P are functions that
map each variable to its parent and pseudoparents, respectively. We obtain functions Ch and
PCh, which return a variable’s children and pseudochildrens respectively, from the functions
above as Ch(xi) = {x j ∈ A|P(x j) = xi } and PCh(xi) = {x j ∈ A|xi ∈ P P(x j)}.

Thus, when running DPOP, agents start with a pre-processing phase, to generate a PT
by running a distributed depth first search (DFS) algorithm guided by some heuristic. Then,
given a PT , DPOP has two message-passing phases: (1) to exchange utilities about vari-
ables; and (2) to propagate values of variables inferred. Algorithm 2 shows these two phases
in terms of the operators introduced in Sect. 2.2.

In DPOP the initial knowledge of an agent xi , namely K0
i , is set to the combination of

some unary relation involving xi and of some binary relations linking xi with one of its
parent or pseudoparent variables. Thus, in Fig. 3b the knowledge of agent x4 (K0

4) is initially
composed of relations r24 and r34 (no unary relation in that case).

During the first message-passing phase, the utility propagation phase (lines 1–9), each
agent xi receives utility messages from all its children variables. The utility message that
agent xi exchanges with the agent related to its parent variable, x p , is the summarization of
its current knowledge filtering out xi (line 8). Formally:

µi p =
⊕

\xi

K0
i ⊗

⊗

x j ∈Ch(xi)

µ j i

 (5)

123

Auton Agent Multi-Agent Syst

Algorithm 2 DPOP(〈X , D, R〉,〈P, P P〉)
Each agent xi ∈ X , receives 〈Pi , P Pi ,K0

i 〉 where K0
i = ri ⊗

⊗

xk∈{P(xi)}∪P P(xi)

rik and runs:

1: Phase I: UTILITY Propagation
2: Ki = K0

i ;
3: for all x j ∈ Ch(xi) do
4: Wait for the utility message µ j i from x j
5: Ki = Ki ⊗ µ j i ;
6: end for
7: if xi is not the tree’s root, let x p = P(xi) then
8: Send µi p =

⊕

\xi

Ki to x p

9: end if
10: Phase II: VALUE propagation
11: if xi is not the tree’s root, let x p = P(xi) then
12: Wait for a value message σpi from x p
13: Ki = *

σpi
Ki ; /*Slice Ki with the value message*/

14: end if
15: d∗

i = arg max
di ∈Di

Ki (di); /* Assess best value for xi */

16: d∗ = d∗
i ∪ σpi ; /* Put together the assessed value and the message received. */

17: for all x j ∈ Ch(xi) do
18: Send σi j = d∗

Scope(µ j i)
to x j /* Send to x j the variables he is interested in */

19: end for
20: return d∗

i ;

During the second message-passing phase, the value propagation phase (lines 10–19),
each agent xi receives a value message (σpi) from the agent assigned to its parent variable,
x p . That value message contains assignments for all variables in the domain of the utility
message (µi p) that agent xi has sent to x p in the previous phase. Once agent xi has received
the value message from its parent x p , agent xi restricts its knowledge by incorporating the
assigned variables (line 13).

Then, agent xi assesses the value of xi as the one that maximizes its local knowledge (line
15) and completes it with the value message received from its parent (line 16).

Thereafter, agent xi propagates to every children of xi a value message that contains the
values assigned to already decided variables that it is interested in (lines 17–19).5

To summarize, from algorithm 2 we obtain that the knowledge of agent xi at the end of a
DPOP execution is:

Ki = *
σpi

K0
i ⊗

⊗

x j ∈Ch(xi)

µ j i

 (6)

4.1.2 Mapping PT s to J T s

Before proving the equivalence of Action-GDL and DPOP, in this section we define a map-
ping that builds a J T from a PT . First of all, we offer the intuitions behind our mapping.
In general, we propose to map each PT to a J T with as many cliques as nodes in the PT . In
fact, for each node in a PT we require its counterpart as a clique in the J T to be produced

5 When looking at lines 17–19, recall that d∗
Scope(µ j i)

stands for the values to be assigned to the variables in

the domain of the utility message µ j i .

123

Auton Agent Multi-Agent Syst

by the mapping. Hereafter, we consider the variables to include in each clique. For each
node in the PT , its clique in the J T must contain: (1) the node’s variable; (2) the variables
expected by the node’s parents/pseudoparents up in the PT ; and (3) the variables that the
node’s children need to forward up the PT .

We will refer to the node’s variable and the second set of variables as the directly related
variables (DRV), and to the third set of variables as the inherited related variables (IRV).
Hence, given a node xi in a PT , we can readily define the variables of its clique by wrapping
up directly and inherited related variables as follows:

Ci = DRV (xi) ∪ I RV (xi) (7)

On the one hand, the directly related variables of a node include its variable, its parents’ and
its pseudoparents’. Formally:

Definition 10 Given a variable xi in a PT , its directly related variables are:

DRV (xi) = {xi } ∪ {P(xi)} ∪ P P(xi) (8)

On the other hand, the inherited related variables of a node include the variables that its
children must send up the tree after eliminating their own variables. Formally:

Definition 11 Given a variable xi in a PT , its inherited related variables are:

I RV (xi) =
⋃

x j ∈Ch(xi)

Sep(x j) =
⋃

x j ∈Ch(xi)

C j\{x j } (9)

Observe that the only variable that a node can remove from a clique’s child is its child
variable. Notice also that the definition of inherited related variables leads to a recur-
sive definition of cliques and that the set of inherited related variables is empty for leaf
nodes.

Once obtained cliques’ variables, we can assess the potentials and separators completing
the definition of a JT. Thus, finally the mapping γ below allows us to build a J T from
a PT .

Definition 12 (γ) Let γ be a function that given a DCOP Φ =〈X , D, R〉 and a PT =
〈P, P P〉 maps them to a junction tree γ (Φ, PT) = 〈X , C, S,"〉, where:

1. The set of variables X is the same as in PT .
2. The set of cliques C = {C1, . . . , C|X |} contains one clique per variable in PT . The clique

Ci contains all the variables directly or inherited related to variable xi as defined by
expression 7.

3. The set of potentials " contains one potential associated to each clique. Each clique
potential ψi is the combination of: (i) a unary relation ri that involves the clique deci-
sion variable xi ; and (ii) the binary relations that link xi with its parent or one of its
pseudoparents. Formally:

ψi = r i ⊗ [
⊗

x j ∈{P(xi)}∪P P(xi)

r i j] (10)

4. The set of separators S contains one separator si j per pair of cliques Ci and C j such
that x j is parent of xi in the PT . By definition of J T , each separator si j contains the
intersection of its cliques (si j = Ci ∩ C j).

Figure 3b shows a PT over the DCOP of Fig. 3a while Fig. 3c shows the junction tree
γ (Φ, PT).

123

Auton Agent Multi-Agent Syst

4.1.3 Proving equivalence

The previously introduced mapping (γ) builds a J T from each PT . In the remaining of
the section we prove that running DPOP over that PT is equivalent to running Action-GDL
over the J T resulting from applying γ to the PT . First we state (Lemma 1) that both the
computation performed and the messages exchanged during the utility propagation phase
are the same. After that, we state (Lemma 2) that the messages exchanged during the value
propagation phase are also the same. Finally we combine these two lemmas to prove our
main result (Theorem 1). The proofs of the lemmas are provided in [18].

Lemma 1 Given a DCOP Φ and a PT , the computation performed and the messages
exchanged during the utility phase of DPOP(Φ, PT) and Action − GDL(γ (Φ, PT)) are
the same.

Lemma 2 Given a DCOP Φ and a PT the value assigned by each agent to its variable
and the messages exchanged during the value propagation phase of DPOP(Φ, PT) and
Action-GDL(γ (Φ, PT)) are the same.

Lemmas 1 and 2 combined prove the main result of this section:

Theorem 1 Given a DCOP Φ and a PT , the execution of DPOP(Φ,PT) is equivalent to
Action-GDL(γ (Φ, PT)).

Proof Since both algorithms are only composed of an utility phase and a value propagation
phase, the result follows directly from Lemmas 1 and 2.

Since computing mapping γ can be done efficiently and distributedly [19], Theorem 1 proves
that Action-GDL can be at least as efficient as DPOP in any DCOP (by mimicking its
behavior).

4.2 Action-GDL generalizes DCPOP

In this section we prove that Action-GDL can be at least as efficient as DCPOP in any DCOP
by producing equivalent executions. First, we overview the DCPOP algorithm in Sect. 4.2.1.
Next we prove that Action-GDL can produce DCPOP-equivalent executions by: (1) provid-
ing a mapping from cross-edged PT (input of DCPOP) to J T s (Sect. 4.2.2); and (2) proving
that given any cross-edged PT , the execution of DCPOP over the cross-edged PT is equiv-
alent to the execution of Action-GDL over the junction tree produced by our mapping for
the cross-edged PT (Sect. 4.2.3).

4.2.1 Overviewing DCPOP

DCPOP [3] is a generalization of DPOP based on an extension of PT s, namely cross-
edged PT s. A cross-edged PT (CT) is a PT with the addition of cross-edges (dotted line).
Figure 4b shows a CT for the constraint graph in Fig. 4a. A cross-edge is an edge from

123

Auton Agent Multi-Agent Syst

node xi to node x j that is above xi but not in the path from xi to the root. Thus, besides the
parent and pseudoparent relationships, a CT adds a new type of relationship: branch-par-
ent/branch-children for variables connected through a cross-edge (for instance, from x3 to
x4 in Fig. 4b). Therefore, we can represent a CT as a tuple 〈P, P P, B P〉, where P , P P ,
and B P are functions that map each variable to its parent, pseudoparents and branchpar-
ents respectively. We obtain function BCh, which returns a variable’s branch-children, as
BCh(xi) = {x j ∈ A|B P(x j) = xi }.

Thus, when running DCPOP, agents start with a pre-processing phase to generate a CT
by running a distributed Best-first search (BFS) algorithm guided by some heuristic. Then,
likewise DPOP, DCPOP has two main phases: to have agents exchange utilities, and to have
agents propagate values. Algorithm 3 shows the phases of DCPOP once a CT is generated
in terms of the operators introduced in Sect. 2.2. Notice that the algorithm splits the original
utility propagation phase in [3] into two phases: to propagate branch information and to
propagate utility information. This encoding aims at easing the comparison with both DPOP
and Action-GDL.

In DCPOP the initial knowledge of an agent xi (K0
i), besides being composed of some

unary relation involving xi and binary relations linking xi with one of its parent/pseudoparent
variables, also contains binary relations linking xi with its branch-children variables. Thus,

Algorithm 3 DCPOP(〈X , D, R〉,〈P, P P, B P〉)
Agent xi ∈ X receives 〈P(xi),P P(xi),B P(xi),K0

i 〉 where

K0
i = ri ⊗

⊗

xk∈{P(xi)}∪P P(xi)

rik ⊗
⊗

xk∈BCh(xi)

rik and runs:

1: Phase I: Branch information propagation
2: Bri = 〈i, |B P(xi)| + 1, 1〉; /*Create branch information for own variable*/
3: Send Bri to all B P(xi)
4: for all xk ∈ BCh(xi) do
5: Wait for branch information Brk from xk
6: 〈Bri , MV 〉 = mergeBranches(Bri , Brk)
7: end for
8: Phase II: UTILITY Propagation
9: Ki = K0

i ;
10: for all x j ∈ Ch(xi) do
11: Wait for utility message 〈µ j i , Br j 〉 from x j
12: Ki = Ki ⊗ µ j i ;
13: 〈Bri , MV 〉 = mergeBranches(Bri , Br j)

14: end for
15: if xi is not the tree’s root, let x p = P(xi) then
16: Send 〈µi p =

⊕

\MV

Ki , Bri 〉 to x p

17: end if
18: Phase III: VALUE propagation
19: if xi is not the tree’s root, let x p = P(xi) then
20: Wait for a value message σpi from x p
21: Ki = *

σpi
Ki ; /*Slice Ki with the value message*/

22: end if
23: d∗

i = arg max
d∈DMV

Ki (d); /* Assess best value for merged variables */

24: d∗ = d∗
i ∪ σpi ; /* Put together the assessed values and the message received. */

25: for all x j ∈ Ch(xi) do
26: Send σi j = d∗

Scope(µ j i)
to x j /* Send to x j the variables he is interested in */

27: end for
28: return d∗

i ;

123

Auton Agent Multi-Agent Syst

(a) (b) (c)

Fig. 4 Example of constraint graph, cross-edged pseudotree and equivalent junction tree

in Fig. 4b the knowledge of agent x4 is initially composed of relations r24 (shared with its
parent) and r45 (shared with branch-child).

The main operational difference between DPOP and DCPOP has to do with the mechanics
that DCPOP incorporates to deal with cross edges during utility propagation. That is because,
in DCPOP, a branch-child variable xi is not eliminated at its node, instead it is eliminated
in some node up the tree, at the so-called merge point of xi . Thus, in DCPOP, each branch-
child xi starts by sending branch information to its branch-parents to calculate the merge
point of xi (lines 2–3). The branch information for a variable xi contains its identifier, the
number of branches of xi and the number of merged branches (initially set to 1). After that,
each xi receives and merges branch information from its branch-children (lines 4–7). Next,
during the utility propagation phase (lines 8–17), each xi receives utility messages from all
its children variables and combines them with its local knowledge in the very same way as
in DPOP. However, in DCPOP, these messages also contain branch information of branch-
children variables. Therefore, xi merges all branches with the same originator by adding up
the number of merged branches and assesses the set of variables for which it is merge point
(MV), namely variables for which the number of merged branches equals the total number
of branches (line 13). At the end of this phase, xi exchanges a message with its parent x p
(line 16) that contains a utility message that summarizes its current knowledge after filtering
out MV and the merged branch information.

Regarding the second message-passing phase, the value propagation phase (lines 18–27),
notice that each agent’s behaviour is similar as in DPOP with the difference that instead of
assessing its own variable, each node xi assesses all variables in MV .

4.2.2 Mapping cross-edged trees into junction trees

Before proving the equivalence of Action-GDL and DCPOP, in this section we define a map-
ping that builds a J T from a CT . First of all, we offer the intuitions behind our mapping
from a CT to a J T . In general, we propose to map each CT to a J T with as many cliques as
nodes in the CT . For each node in a CT , its clique in the corresponding J T must contain:

123

Auton Agent Multi-Agent Syst

(1) the node’s variable; (2) the variables expected by the node’s parents/pseudoparents up the
CT ; (3) the variables that the node’s children need to forward up the CT ; (4) the variables
that the node’s branch-children need to forward up the CT .

Therefore, notice that the mapping is very similar to mapping γ described in Sect. 4.1.2.
The difference lies in the addition of point (4) above involving variables of branch-children
and on the set of variables in point (3), which is extended.

Analogously to the approach followed in Sect. 4.1.2, given a node xi in a CT , we can read-
ily define the variables of its clique by wrapping up directly and inherited related variables
(see Eq. 7). However, we must extend both sets.

Firstly, the set of directly related variables in Eq. 8 is extended to include the variables
that the node’s branch-children need to forward the tree. Formally:

Definition 13 Given a variable xi in the CT , its directly related variables are:

DRV (xi) = {xi } ∪ {P(xi)} ∪ P P(xi) ∪ BCh(xi) (11)

On the other hand, the inherited related variables of a node include the variables that each
child must send up the tree after eliminating: (i) those that have already been merged (either
by the child or below); and (ii) the child’s own variable if it has not branch-parents. Formally:

Definition 14 Given a variable xi in a CT , its inherited related variables are:

I RV (xi) =
⋃

x j ∈Ch(xi)

Sep(x j) =
⋃

x j ∈Ch(xi)

C j\Removable(x j) (12)

where Removable(x j) = {xk |xk ∈ C j , xk ,= x j , xk and all xl ∈ B P(xk) are descendants of
x j } ∪ {x j |B P(x j) = ∅}. Note that the difference between the definition of I RV for a CT
(Eq. 12) and a PT (Eq. 9) lies in the set of removable variables (the variables that the node’s
children don’t need to forward up the tree). Thus, the set of removable variables of a clique
Ci in a PT is uniquely composed of variable xi , while in a CT is composed of variables
whose merge point is Ci (which includes xi in case it has not branch-parents).

Next, we formulate function γCT , which defines the mapping from CT s to J T s by providing
definitions for potentials and separators in addition to cliques.

Definition 15 (γCT) Let γCT be a function that maps a DCOP Φ = 〈X , D, R〉 and a CT =
〈P, P P, B P〉 into a junction tree γCT (Φ, CT) = 〈X , C, S,"〉, where:

– The set of variables X is the same as in CT .
– The set of cliques C = {C1, . . . , C|X |} contains one clique per variable in CT . Clique Ci

contains all the variables directly or inherited related to variable xi .
– The set of potentials " contains one potential per clique. Each clique potential ψi is

the combination of: (i) a unary relation ri that involves the clique decision variable xi ;
(ii) the binary relations that link xi with its parent and pseudoparents; and (iii) the binary
relations that link xi with its branch-children. Formally:

ψi = r i ⊗

⊗

x j ∈{P(xi)}∪P P(xi)

r i j

 ⊗

⊗

x j ∈BCh(xi)

r i j

 (13)

– The set of separators S contains one separator si j = Ci ∩ C j per pair of cliques Ci , C j
such that x j is parent of xi in CT .

123

Auton Agent Multi-Agent Syst

Figure 4b shows a CT over the DCOP Φ of Fig. 4a while Fig. 4c shows the junction tree
γCT (&, CT). Observe that mapping γCT creates one clique per variable in the CT and that
cliques’ potentials are assessed following Eq. 13. Thus, the potential of C4 is composed of the
combination of the relation with its parent x2, namely r24, and the relation with its branch-
child x5, namely r45. The example also illustrates how merge points are naturally captured
by their corresponding cliques. Notice that x2 in the CT is the merge point for variable x5.
Say now that we have already generated clique C2 corresponding to variable x2 and we intend
to generate C1 for variable x1. Following Eq. 11, the set of DRV of x1 is uniquely composed
of x1. Next, we apply Eq. 12 to assess the set of I RV of x1, which in Fig. 4c is composed
of C2 = {x1, x2, x5} excluding the set of removable variables at x2. The set of removable
variables at x2 includes x2 itself because it has not branch-parents, and x5 because both x5
and its branch-parent x4 are descendants of x2. Hence C1 = {x1}.

In general, if a variable xi in a CT is the merge point for another variable x j , our map-
ping guarantees that Ci eliminates variable x j . Therefore, because variables’ merge points
are explicitly represented, the J T produced by our mapping saves both the computing and
sending of branch information.

4.2.3 Proving equivalence

Analogously to the equivalence analysis involving Action-GDL and DPOP, in this section we
analyse the relationship between DCPOP and Action-GDL. We argue that running DCPOP
over a CT is equivalent to running Action-GDL over its (as produced by mapping γCT)
J T whenever the computing and sending of branch information is disregarded. As argued
above, such information is not required because in a J T the merging points of variables are
explicitly represented. Under this assumption, we obtain analogous equivalence results to
those obtained for DPOP.

Lemma 3 Given a DCOP Φ and a CT , the computation performed and the messages
exchanged during the utility phase of DCPOP(Φ, CT) and Action-GDL(γCT (Φ, CT)) are
the same disregarding the computing and sending of branch information.

Lemma 4 Given a DCOP Φ and a CT the value assigned by each agent to its variable
and the messages exchanged during the value propagation phase of DCPOP(Φ, CT) and
Action-GDL(γCT (Φ, CT)) are the same.

We can build the proof for Lemmas 3 and 4 following the same approach as in [18]. Here
we only comment on the intuitions behind these proofs.

Regarding Lemma 3, if there are no cross-edges, DCPOP behaves like DPOP. If there are
cross-edges, branch-children variables are eliminated on their merge points, namely on the
lowest variables in the CT that are between them and the root and between their branch-
parents and the root. As argued above, Action-GDL does not require branch information
because merge points are explicitly represented in cliques and separators of the J T gener-
ated by mapping γCT . Thus, in the junction tree γCT (Φ, CT), the set of variables whose
merge point is xi are the variables in Ci that are not in the separator with its parent sip . Hence,
if we focus on comparing the computing and sending of utility information as well as on
the computing of local knowledge, we observe that the utility phase of DCPOP(Φ, CT) and
Action-GDL(γCT (Φ, CT)) are the same.

Regarding Lemma 4, since variables assessed at some node xi are the set of variables for
which xi is a merge point which Lemma 3 states that are correctly captured by our mapping
γCT , it is rather straightforward that Lemma 4 holds.

123

Auton Agent Multi-Agent Syst

The combination of Lemmas 3 and 4 leads to the following equivalence theorem:

Theorem 2 Given a DCOP Φ and a CT , the execution of DCPOP(Φ, CT) is equivalent to
Action-GDL(γCT (&, PT)) disregarding the computing and sending of branch information.

Likewise mapping γ , since the computing of mapping γCT can be done efficiently and dis-
tributedly [19], we can consider the overhead of computing the mapping negligible with
respect to the time of solving the DCOP. Therefore, Theorem 2 proves that Action-GDL can
be at least as efficient as DCPOP in any DCOP.

5 Characterizing Action-GDL usefulness

From Theorems 1 and 2 we conclude that we can obtain no benefit from using DPOP and
DCPOP over Action-GDL. Now the question is: can Action-GDL improve DPOP/DCPOP
in terms of (i) the computational/communication needs required from the agents or (ii) the
degree of parallelism when solving a DCOP?

Next, in Sect. 5.1 we provide some theoretical results that help answer the first ques-
tion with respect to DPOP. Moreover, from these theoretical results we obtain some insights
regarding how to exploit the space of J T s effectively. Thus, in Sect. 5.2 we propose a post-
processing of J T s to improve the computation, communication and degree of parallelism of a
J T . In Sect. 6 we empirically show that such postprocessing helps Action-GDL significantly
outperform DCPOP over the best CT /PT generated out of multiple heuristics.

5.1 Theoretical improvements with respect to DPOP

In this section we provide theoretical results showing in which cases Action-GDL can out-
perform DPOP in terms of communication and computation.

5.1.1 Action-GDL provides significant savings in computation over DPOP
when pseudotrees are generated by edge-traversal heuristics

In [3] Atlas and Decker show by means of an example that there exists DCOP instances for
which a CT significantly outperforms all possible PT s based on edge-traversal heuristics.
Because, by Theorem 2, Action-GDL execution is equivalent to DCPOP execution when it
runs over a γCT mapping J T , Action-GDL can also benefit from this result with respect to
DPOP.

5.1.2 Action-GDL provides no significant savings in computation for unrestricted
pseudotrees

In this subsection we prove that for any DCOP, given a J T , we can always construct a PT
so that the amount of computation for DPOP is of the same order of magnitude than that of
Action-GDL.

Lemma 5 Given a DCOP & and a J T , algorithm 4 computes a PT such that the computa-
tional requirements of DPOP are of the same order of magnitude than those of Action-GDL
(the size of the largest table to be maximized is the same)

123

Auton Agent Multi-Agent Syst

Algorithm 4 JT2PT(J T)
1: Ck = Find the largest clique in J T
2: J T ′ = J T rooted at the agent responsible for Ck
3: T = GenerateSpanningT ree(J T ′,∅);
4: PT = Construct the PT corresponding to T ;
5: return PT
6:
7: function GenerateSpanningTree(J T ,V)
8: Ck = get Root (J T) /*Let Ck be the root of J T */
9: Scope(Ck) \ V = {x1, . . . , xm } /*Establish an order among the variables in Ck not in V */
10: T = {(xi , xi+1)|1 ≤ i < m} /*Include into T a chain linking variables in Ck not in V */
11: for all J Ti ∈ Subtree(J T, Ck)/*For each subtree of J T , one for each child of Ck */ do
12: Ti = GenerateSpanningT ree(J Ti , V ∪ Scope(Ck))
13: if Scope(T) ∩ Scope(J Ti) ,= ∅ then
14: j = max{k|1 ≤ k < m and xk ∈ J Ti } /*Find J Ti variable with lowest position in T */
15: else
16: j = m
17: end if
18: T = T ∪ Ti ∪ {x j , Root (Ti)}/* Include Ti into T by linking its root as a child of x j */
19: end for
20: return T ;

Proof First we have to ensure that the tree constructed by algorithm 4 is a PT , that is,
we have to check that adjacent nodes in the constraint graph fall in the same branch of
the tree. Let xi and x j be two adjacent nodes in the constraint graph. By virtue of the
covering property, there should be a node of the J T that contains both xi and x j . If this
is the highest node where both xi and x j appear then they will be placed in a chain and
hence they will be in the same branch of the tree (lines 9–10). Otherwise, assume without
loss of generality that xi appears in a node in a different branch. By the running intersec-
tion property, xi must appear also in the root of the subtree containing these two nodes.
By construction, the branch for x j will never be inserted into the PT before the appear-
ance of xi . Hence, both xi and x j appear in the same branch (the one that has xi as root)
(line 13–15). Then, our main claim can be proven by induction on the number of vari-
ables of J T . If there is a single variable both algorithms are equivalent and hence our
result holds. If J T has more than one variable then the computational requirements to run
DPOP in the subset of PT composed by the variables of the largest clique (appearing as a
chain hanging from the root of the PT) are of O(dm) (where m is the size of the clique
and d is the highest cardinality of any variable in the clique). By induction hypothesis
this is also the case in each of the subpseudotrees hanging from variables in the largest
clique. It is easy to see that the size of the largest table to be maximized for Action-GDL is
also O(dm). 23

This result does not mean that the processing of Action-GDL and DPOP will be the same
but ensures that the improvement that we can expect from Action-GDL cannot be very large.
However, there is no mention on the amount of messages exchanged. In fact, our next result
proves that Action-GDL can effectively improve on that.

5.1.3 Action-GDL can severely reduce communication complexity

In this subsection we show that there are DCOPs for which Action-GDL severely reduces the
amount of communication with respect to DPOP. Concretely, we prove that when the DCOP

123

Auton Agent Multi-Agent Syst

Fig. 5 Best J T

is composed of a single utility relation involving all variables,6 the amount of communication
required grows linearly with the number of variables for Action-GDL using the best J T and
grows exponentially for DPOP with any PT .

Lemma 6 Given a DCOP Φ = 〈X = {x1, . . . , xn}, D, R = {r}〉 such that Scope(r) = X ,
the amount of communication required to run Action-GDL using the J T depicted in Fig. 5
grows linearly in the number of variables.

Proof In the utility propagation phase x2, . . . , xn send empty messages to x1. Then x1 com-
putes the overall solution and distributes the decisions to x2, . . . , xn in the value propa-
gation phase, exchanging n − 1 messages, the largest of them being of size log d , where
d = maxi |Di |. Hence the amount of communication is O(n log d). 23

Lemma 7 Given a DCOP Φ =〈X = {x1, . . . , xn}, D, R = {r}〉 such that Scope(r) = X ,
the amount of communication required for DPOP independently of the PT grows exponen-
tially in the number of variables.

Proof First note that the only possible structure for a PT is a chain, because otherwise
adjacent vertices in the graph will appear in different branches (since all vertices are adja-
cent). There are as many PT s as variable orderings. Assume without loss of generality that
the ordering places x1 in the root, then x2 as its child and so on until xn as a single leave.
DPOP places the relation r in xn . The execution starts maximizing r with respect to xn . The
computed relation is sent to xn−1 which maximizes it with respect to xn−1 and the process
continues that way until it reaches x1. Then the best value for x1 is computed and sent to x2
where the best value for x2 is computed and sent to x3 together with the optimal value for x1
and the process continues that way until it reaches xn . The algorithm exchanges n − 1 utility
messages, the largest of them of size dn−1 and n − 1 value messages, the largest of them of
size

∑n−1
i=1 log |Di |. Hence, the overall amount of communication is O(dn). 23

Lemmas 6 and 7 prove that Action-GDL can severely improve DPOP communication
complexity. Furthermore, it suggests that for more complex graphs, the improvement could
be related to the treewidth of the constraint graph.

6 Note that the relation containing all variables does not result from any partial centralization of the algorithm,
instead it is formulated like this in the original DCOP.

123

Auton Agent Multi-Agent Syst

(a)

(b) (c)

Fig. 6 a Postorder transformation and b,c transformations of J T of Fig. 3c

5.2 Postprocessing junction trees

Taking inspiration on Lemmas 6 and 7, we propose to postprocess the J T constructed by the
γCT mapping to reduce the amount of computation, the sizes of messages and the degree of
parallelism. Firstly, in order to reduce the amount of computation and the size of messages we
propose to exchange two connected cliques in the J T , namely Ci and its parent Cp , following
the transformation depicted in Fig. 6, whenever the set of variables in Cp is a subset of Ci .
Formally:

Cp ⊆ Ci (14)

After swapping parent for child, the child takes its parent’s children but keeping also its own
children as depicted on the right hand side of Fig. 6. The intuition behind the transformation
is straightforward. Since the structure in Fig. 5 is the best one for processing a clique with
Action-GDL, whenever there is a clique whose variables are included into one of its children,
we can think of swapping parent for child. Figure 6a, b depict the two transformations carried
out by our postprocessing over the J T in Fig. 3c. The first transformation only swaps C4 and
C3 without involving any deeper change. The second transformation entails a more profound
rearrangement because in order to swap C4 for C2, C4 must keep C3 as a child.

Notice that if we start from a valid J T , the resulting J T after this transformation still
satisfies the running intersection property (RIP) without increasing any clique. Furthermore,
it is likely that cliques can be reduced after the swap by deleting some variables not longer
necessary to ensure the RIP. Concretely, after the transformation clique C p can be restricted
to deal only with variables in the scope of its potential, that is Scope(ψp), thus reducing
the amount of computation and size of messages for C p . That is because after a swap, C p
is always a leaf node so it will not have to enlarge its clique to carry variables to satisfy the
RIP. Thus, in the example of Fig. 6c, as a consequence of the change of position, C2 can
delete x2 from its set of variables. To summarise, our postprocessing performs a postorder

123

Auton Agent Multi-Agent Syst

tree traversal of the J T computed by γCT , applying the transformation depicted in Fig. 6
whenever the condition in Eq. 14 holds. Hence, its distributed implementation is direct [16].

Secondly, after the postorder traversal, we select the root of the J T that maximises the
degree of parallelism (the maximum amount of sequential computation required by agents
when running Action-GDL). This last step is important because although changing the root of
a J T does not change the amount of computation nor of messages exchanged, it can modify
its degree of parallelism.

Observe that the resulting J T in Fig. 6c reduces communication, computation, and
improves parallelism with respect to the original J T in Fig. 3a.

5.2.1 Postprocessing complexity

In what follows we assess the complexity of the postprocess methods described above. Firstly,
in the postorder tree traversal the information exchanged is O(n2) (each node that swaps
exchanges messages with all its neighbours) and the overall computation is O(n2) where n
is the number of variables in the DCOP. Secondly, to distributedly select the root of the PT ,
agents can execute a distributed leader election algorithm [4] which information exchanged
and overall computation is O(n). Therefore we can conclude that: (1) the postprocessing can
be computed distributedly, and; (2) the overhead introduced is not significant with respect to
the costs of solving the DCOP.

6 Empirical evaluation

In this section we aim at providing evidence that using Action-GDL instead of DCPOP
(or DPOP) is useful from a practical point of view. In [3] Atlas and Decker provide empirical
evidence of the significant improvements that DCPOP can obtain when compared to DPOP.
Since ActionGDL generalizes DCPOP, it can also benefit from the same improvements with
respect to DPOP. Thus, in our experiments, we directly compare Action-GDL with DCPOP.

6.1 Measures of interest

We are interested in comparing DCPOP and Action-GDL regarding the amount of com-
munication, computation, and parallelism required in an experimental scenario. Since we
have proved that Action-GDL is a generalization of DCPOP, the metrics defined below for
Action-GDL can be readily used for DCPOP.

Computation. The amount of computation at node i is assessed as the sum of the product
of the domains’ cardinality of variables in its clique, MCi = ∏

xk∈Ci
|Dk |. The total amount

of computation is
∑n

i=1 MCi .
Communication. The size of a utility message µi j is

∏
xk∈si j

|Dk |. As noted in [3], most
communications in DCPOP are utility messages. This is also true for Action-GDL. Hence, we
have disregarded value messages in our comparison because they only add a small constant
factor. As with computation, we assess the overall amount of communication by adding the
size of every message.

Parallelism. Since both DCPOP and Action-GDL are distributed algorithms, we are also
interested in the degree of parallelism that we can obtain in its processing. Following [3],
we measure the degree of parallelism using the maximum path cost (MPC) that measures
the maximum amount of sequential computation to perform. The maximum path cost for a

123

Auton Agent Multi-Agent Syst

(a) (b)

Fig. 7 Action-GDL improvement over DCPOP in computation, communication and MPC

given J T is defined as M PC = maxi
∑

C j ∈Pi
MC j where Pi is the path from the root of

the J T to clique Ci .

6.2 Experimental design and results

In the experiments we use four heuristics to generate DCPOP arrangements: (1) DFS-MCN
(Depth-First Search Maximum Connected Node) heuristic [14], which generates PT s; and (2)
BFS-MCN (Best-First Search Maximum Connected Node), BFS-LCN (BFS Less Connected
Node) and BFS-A-B (BFS Ancestors\ Branch-parents\Branch-children rule) heuristics [3]
that generate CT s.

For DCPOP we chose the best arrangement produced by these heuristics. These PT s/CT s
are subsequently input to the γCT mapping to generate J T s which are further postprocessed
as explained in Sect. 5.2 to obtain the input for Action-GDL. For Action-GDL we chose the
best J T produced by this post-processing.

We empirically compare DCPOP with Action-GDL by plotting the average of the per-
centual improvement of ActionGDL with respect to DCPOP for each metric. We assess the
percentual improvement as P = (A−D)

(A+D) · 200, where A is the value of the chosen metric for
ActionGDL and D stands for the value for DCPOP.

6.3 Generic DCOP instances

Our initial tests perform a comparison over randomly generated DCOPs with binary variables.
We analyse the differences between DCPOP and Action-GDL as we increase the number
of constraints as well as the number of variables. Thus, we characterize each scenario by
a number of variables n and a constraint density d . For each scenario, we generate 10.000
random problems. We have explored scenarios with n ranging from 10 to 100 in 10 steps
increments and d ranging from 1 to 15 in 1 step increment.

Figure 7 summarizes our experimental results. Figure 7a shows the average of percent
improvement among tests as the constraint density increases. We observe that the denser the
DCOP, the larger the improvement of Action-GDL regarding communication and computa-
tion with respect to DCPOP. Concretely, Action-GDL reduces communication up to around
85%. The amount of computation is not reduced so significantly, though we still obtain

123

Auton Agent Multi-Agent Syst

Table 2 Results for the different scenarios of the meeting scheduling dataset

Scenario Meetings # Var. # Dom Den. Comp. (%) Comm. (%) MPC (%)

A/1 8 23 9 1.9 2.3 22.6 5.6
B/2 10 26 9 1.8 9.2 134.2 3.0
C/3 12 71 9 1.7 2.8 28.0 31
D/4 12 72 9 1.7 2.3 23.0 21.4

average percent improvements of around 30%. We also measured the computation and com-
munication improvement as in [3] in terms of the average of the difference in the number of
dimensions. Using these metrics the experiments show improvements up to 10 dimensions.
With respect to the improvement on computation and communication, the improvement on
the degree of parallelism behaves differently: observe that the MPC reaches the highest value,
around 60%, when density is set to 4, and after that it smoothly decreases up to around 50%.
That result is explained because in denser DCOPs it is more likely that there is a single clique
with a larger number of dimensions than others. Then, this clique conditions the MPC no
matter the arrangement. The difference reported for these metrics between ActionGDL and
DCPOP is statistically significant within a single value of density (paired Student’s t-tests
calculate p < 0.05) except for density 1.

Moreover, we also show in Fig. 7b the average of percent improvement as the number of
variables increases. We observe that Action-GDL reaches the higher computation/communi-
cation improvement with respect to DCPOP, around 80% and 30% respectively, in medium
size DCOPs (with 30–40 variables). As the number of variables increases the average of
improvements tend to around 70% and 28% on respectively. In terms of the average of the
difference in the number of dimensions, these results implies an improvement of up to 16
dimensions. With regard to the degree of parallelism, we observe that MPC increases with the
number of variables up to 55%. We run paired Student’s t-tests and the difference between
the metrics between ActionGDL and DCPOP is statistically significant within a single value
of variables (p < 0.05).

To sum up, the cost of solving random DCOPs is significantly reduced respect to DCPOP
when running Action-GDL over the postprocessed J T s mapped from best CT s. Next we
show that such improvement is specially significant for dense problems.

6.4 Meeting scheduling dataset

Besides the generic DCOP tests, we also run additional tests on a meeting scheduling dataset,
a common problem used by the DCOP community. Concretely, we use the meeting schedul-
ing dataset from [10], publicly available in [22]. This dataset is composed of four scenarios
(labeled as A/1,B/2,C/3 and D/4), which correspond to four different topologies, with 30
different instances per scenario.

Table 2 shows the results for the meeting scheduling dataset as well as the characteristics of
each scenario (the number of variables/constraints, the cardinality of the variables’ domain,
etc). All scenarios are composed of sparse problems with a constraint density lower than 2.
The results obtained in the meeting scheduling dataset are in line with those obtained for
generic DCOPs for similar scale and density and are also statistically significant (p < 0.05
for all paired Student’s t-tests). Firstly, the MPC is around 3–10% in small scenarios (8–10
variables) and around 20–30% for larger scenarios (70 variables). Thus, as shown in Fig. 7b
for random instances, the MPC increases with the number of variables. With regard to the

123

Auton Agent Multi-Agent Syst

improvement on computation, it is less than 10% in all scenarios, with similar values to those
shown in Fig. 7a when density is set to 2. Finally, the improvements on communication are,
in most scenarios, close to those reported in Fig. 7a for random instances of density 2, with
average percent improvements of around 20 − 30%. However, in scenario C/3 we obtain a
much higher average percentual improvement. Therefore, although one can characterize the
average improvement given the density and the scale of the problem, we observe that the
topology of the constraint graph is also an important factor. In particular, our results showed
that the communication improvement on some structured topologies is significantly larger
than on random ones.

7 Conclusions and future work

In this paper we have presented Action-GDL, a specialisation of GDL to efficiently solve
DCOPs. We have shown that Action-GDL is a promising framework that unifies several
dynamic programming DCOP algorithms that are based on the General Distributive Law
(GDL). In particular, we show that it is the case of DPOP and DCPOP. On the one hand, we
show that Action-GDL generalises DPOP. Furthermore, we provide some theoretical results
that prove that moving from pseudotrees (used by DPOP) to junction trees (used by Action-
GDL) leads to significant benefits in terms of computation and communication. With regard
to DCPOP, we show that Action-GDL can mimick any DCPOP execution by providing a
mapping from cross-edged pseudotrees (used by DCPOP) to junction trees. To exploit the
space of junction trees we propose a distributed heuristic to post-process them. We empir-
ically showed that Action-GDL significantly outperforms DCPOP when running over the
junction trees that result from post-processing the best cross-edged pseudotrees DCPOP can
operate on. Finally, we argue that, from an analytical point of view, this unifying perspective
provided by Action-GDL builds a bridge with a wealth of theoretical results for GDL over
junction trees [1] from which Action-GDL may benefit.

Regarding future work, we consider several directions. Firstly, since the efficiency of
Action-GDL depends on the underlying junction tree, a natural line of future research is to
study the potential of the existing junction trees heuristics [5,2,7] in a distributed environ-
ment. Secondly, although we provide a mapping from cross-edged pseudotrees to junction
trees, the issue of whether all junction trees can be represented as cross-edged pseudotrees
remains open. Thus, we leave open the intriguing question of whether the space of junction
trees is larger than the space of cross-edged trees or instead there exists an isomorphism
between both spaces. Thirdly, we plan to analyze the privacy aspects of Action-GDL, which
can limit its applicability to some domains, such as distributed scheduling, where privacy is
the main issue. Finally, given the multiple extensions formulated to DPOP [14] (e.g H-DPOP
or MB-DPOP) to tailor it to different domains, future work should also consider to formulate
such extensions in the GDL framework.

Acknowledgements Work funded by IEA (TIN2006-15662-C02-01), AT (CONSOLIDER CSD2007-0022,
INGENIO 2010) and EVE (TIN2009-14702-C02-01 and 02). Vinyals is supported by the Spanish Ministry
of Education (FPU grant AP2006-04636).

References

1. Aji, S. M., & McEliece, R. J. (2000). The generalized distributive law. IEEE Transactions on
Information Theory, 46(2), 325–343.

2. Amir, E. (2001). Efficient approximation for triangulation of minimum treewidth. In: UAI, pp. 7–15.

123

Auton Agent Multi-Agent Syst

3. Atlas, J., & Decker, K. (2007). A complete distributed constraint optimization method for non-traditional
pseudotree arrangements. In: AAMAS, pp. 741–784.

4. Barbosa, V. (1996). An introduction to distributed algorithms. Cambridge: The MIT Press.
5. Cano, A., & Moral, S. (1994). Heuristic algorithms for the triangulation of graphs. In: IPMU,

pp. 98–107.
6. Dechter, R. (2003). Constraint processing. San Francisco: Morgan Kaufmann.
7. Flores, M. J., Gámez, J. A., & Olesen, K. G. (2003). Incremental compilation of bayesian networks.

In: UAI, pp. 233–240.
8. Jensen, F. V., & Jensen, F. (1994). Optimal junction trees. In: UAI, pp. 360–366.
9. Junges, R., & Bazzan, A. L. C. (2008). Evaluating the performance of DCOP algorithms in a real

world, dynamic problem. In: AAMAS (Vol. 2, pp. 599–606).
10. Maheswaran, R. T., Tambe, M., Bowring, E., Pearce, J. P., & Varakantham, P. (2004). Taking DCOP

to the real world: Efficient complete solutions for distributed multi-event scheduling. In: AAMAS,
pp. 310–317.

11. Mailler, R., & Lesser, V. R. (2004). Solving distributed constraint optimization problems using
cooperative mediation. In: AAMAS, pp. 438–445.

12. Modi, P. J., Shen, W. M., Tambe, M., & Yokoo, M. (2005). Adopt: Asynchronous distributed constraint
optimization with quality guarantees. Artif Intell, 161(1–2), 149–180.

13. Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Francisco, CA: Morgan Kaufmann
Publishers Inc.

14. Petcu, A. (2007). A class of algorithms for distributed constraint optimization. PhD thesis, EPFL,
Lausanne.

15. Petcu, A., & Faltings, B. (2005). A scalable method for multiagent constraint optimization. In: IJCAI,
pp. 266–271.

16. Santoro, N. (2006). Design and analysis of distributed algorithms. (Wiley series on parallel and
distributed computing) Chicheste: Wiley-Interscience.

17. Shafer, G., & Shenoy, P. P. (1990). Probability propagation. Ann Math Artif Intell, 2, 327–351.
18. Vinyals, M., Rodriguez-Aguilar, J., & Cerquides, J. (2008). Proving the equivalence of Action-GDL

and DPOP. http://www.iiia.csic.es/files/pdfs/TRR200804.pdf.
19. Vinyals, M., Rodriguez-Aguilar, J. A., & Cerquides, J. (2009). Generalizing DPOP: Action-GDL,

a new complete algorithm for DCOPs. In: OPTMAS second international workshop on optimization
in agent systems.

20. Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory, 13(2), 260–269.

21. Yeoh, W., Felner, A., & Koenig, S. (2009). Idb-adopt: A depth-first search dcop algorithm. In: CSCLP,
Lecture notes in computer science 5655, 2009, pp 132–146.

22. Yin, Z. (2008). USC dcop repository. http://teamcore.usc.edu/dcop.
23. Zhang, W., Wang, G., Xing, Z., & Wittenburg, L. (2005). Distributed stochastic search and distrib-

uted breakout: Properties, comparison and applications to constraint optimization problems in sensor
networks. Artif Intell, 161(1–2), 55–87.

123

http://www.iiia.csic.es/files/pdfs/TRR200804.pdf
http://teamcore.usc.edu/dcop

	Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law
	Abstract
	1 Introduction
	2 DCOP definition and notation
	2.1 The distributed constraint optimization problem
	2.2 Notation

	3 The Action-GDL algorithm
	3.1 The generalized distributive law
	3.2 Extending GDL to solve DCOPs

	4 Generality of Action-GDL
	4.1 Action-GDL generalizes DPOP
	4.1.1 Overviewing DPOP
	4.1.2 Mapping PTs to JTs
	4.1.3 Proving equivalence

	4.2 Action-GDL generalizes DCPOP
	4.2.1 Overviewing DCPOP
	4.2.2 Mapping cross-edged trees into junction trees
	4.2.3 Proving equivalence

	5 Characterizing Action-GDL usefulness
	5.1 Theoretical improvements with respect to DPOP
	5.1.1 Action-GDL provides significant savings in computation over DPOPwhen pseudotrees are generated by edge-traversal heuristics
	5.1.2 Action-GDL provides no significant savings in computation for unrestricted pseudotrees
	5.1.3 Action-GDL can severely reduce communication complexity

	5.2 Postprocessing junction trees
	5.2.1 Postprocessing complexity

	6 Empirical evaluation
	6.1 Measures of interest
	6.2 Experimental design and results
	6.3 Generic DCOP instances
	6.4 Meeting scheduling dataset

	7 Conclusions and future work
	Acknowledgements
	References

