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Abstract. We introduce the notion of a weak ideal compression function,
which is vulnerable to strong forms of attack, but is otherwise random.
We show that such weak ideal compression functions can be used to create
secure hash functions, thereby giving a design that can be used to eliminate
attacks caused by undesirable properties of compression functions.

We prove that the construction we give, which we call the “zipper
hash,” is ideal in the sense that the overall hash function is indistin-
guishable from a random oracle when implemented with these weak ideal
building blocks.

The zipper hash function is relatively simple, requiring two compres-
sion function evaluations per block of input, but it is not streamable.
We also show how to create an ideal (strong) compression function from
ideal weak compression functions, which can be used in the standard
iterated way to make a streamable hash function.

Keywords: Hash function, compression function, Merkle-Damg̊ard, ideal
primitives, non-streamable hash functions, zipper hash.

1 Introduction

The design of hash functions is a long-studied problem that has become recently
more relevant because of significant attacks against commonly-used hash func-
tions [22,20,21,19,1]. It is much easier to create collision functions, which take
input of a particular size and produce output of a reduced size, than a full hash
function directly. It is common practice to follow the basic concept of the Merkle-
Damg̊ard construction [6,14]: composing a compression function with itself, each
time incorporating a block of the message, until the entire message is processed.
If f is the compression function and x is an input divisible into l blocks of the
appropriate size, then

H(x) = f(xl, f(xl−1, . . . , f(x1, IV )) . . .)

is the basic iterated hash function. There are two main ways in which this basic
method has evolved: first of all, to handle messages of arbitrary length, a message
may have to be padded so that the block size divides the length. In addition, the
length of the initial message is included in the padding: this, along with fixing
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an IV , is called Merkle-Damg̊ard strengthening. Second, a finalization function
g is often used after all the message blocks have been processed. Among other
properties, this allows the output size of the compression function to be different
from the output size of the hash function.
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Fig. 1. The modern iterated hash function

The iterated hash function construction is elegant and natural, and is addi-
tionally attractive in that it is streamable, that is, a message may be hashed piece
by piece with a small, finite amount of memory. Furthermore, this construction
is known to be collision-resistant as long as the underlying compression function
is collision-resistant [6,14]. However, there are reasons to question the iterated
hash function design now.

An underlying theme in the recent high-profile attacks on hash functions has
been the use of weaknesses in the compression function to build up an effective
attack against the overall hash function. Furthermore, many attacks have been
published recently that accomplish interesting black-box attacks against iterated
hash functions once compression-function weaknesses have been found.

Here we summarize some known black-box attacks against iterated hash func-
tions. Let n be the length of the output of a hash function H .

– Second collision attack. The basic attack goal here is to find a second
collision on H once we have found a first collision on H . In a well-known
attack, this is trivial for basic iterated hash functions: if H(x) = H(y) then
for all strings z, H(x||z) = H(y||z) is another collision. Merkle-Damg̊ard
strengthening does not solve this problem completely, since the attack still
works if |x| = |y| and z contains the correct padding. [16,13]

– Joux multicollision attack [10]. It is easier than expected to find multicol-
lisions: that is, a set of many distinct inputs that all hash to the same value.
For a generic hash function, finding a t-way collision should require hash-
ing an expected 2n·(t−1)/t messages. However, Joux showed that finding a
t-way collision can also be done by making (log2 t)2k/2 compression function
queries, where k is the output size of the compression function. Essentially,
the attack is to find one-block collisions for the compression function that
can be chained together (by a brute force birthday attack). Once we have r
such collisions, we can generate a 2r-way collision by choosing one input for
each colliding pair.

– Fixed-point attack [12,7]. The goal here is to come up with a second
preimage for one of a set of known messages. If the target set is of size 2t,
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it is easy to see that a second preimage can be found in a generic attack in
time 2n−t. This attack improves upon this by finding expandable messages
based on fixed points for the collision function. Among other examples, the
compression function in any Davies-Meyer block cipher-based hash function
(such as the SHA family as well as MD4 and MD5) is susceptible to fixed-
point attacks[12]. This allows an attack where, after hashing 2t mesage blocks,
a second preimage can be found in time t2n/2 +1+2n−t+1. Fixed points are
used to circumvent Merkle-Damg̊ard strengthening; with fixed points, one
can build “expandable messages,” which let us recover a second preimage of
the correct length.

– The “herding” attack [11]. This is an attack against the use of a hash func-
tion for commitments. The idea is to find a 2t-way collision at a value H(x),
and then find a preimage of a commitment H(x) that starts with an arbitrary
z by trying random values y until H(z||y) is one of the 2t-way collisions.

In order to combat attacks like the Joux attack and the Kelsey-Kohno herding
attack, Lucks proposed that the internal state of an iterated hash function should
be larger than the output, thus preventing the usefulness of finding compression
function collisions by brute force [13]. Lucks proposed double-pipe hash as a way to
implement this, using two parallel compression function computations per block
of message, in order to increase the size of the internal state. Lucks proved that, as-
suming the underlying compression function was ideal (i.e., a random oracle), the
double-pipe hash compression function yields a collision-resistant hash function.

At the core of Lucks’ paper, however, was an even more important idea: that
we should attempt to design hash functions that remain secure even when the
compression functions on which they are based can be attacked.

We seek to improve on the work of Lucks in two ways. First, following the work
of Coron, Dodis, Malimaud, and Puniya [4], we will prove that our construction
is not only collision-resistant, but in fact indistinguishable from a random or-
acle, assuming the building blocks are ideal. Coron et al. show that the basic
Merkle-Damg̊ard construction is not ideal in the sense that even with an ideal
compression function, it is impossible to prove that the hash function is indis-
tinguishable from a random oracle. However, with an ideal finalization function
(among other alternate modifications), iterated hash functions can be shown to
be indistiguishable from a random oracle when implemented with ideal compo-
nents. Assuming individual components to be ideal has been established as a
reasonable model for the analysis of hash functions for some time [2]. The work
of Coron et al. has set a higher standard for hash functions analyzed on the basis
of ideal primitives, and we aspire to that standard.

Second, Lucks only attempts to make a hash function resilient to brute-force
collision attacks against the compression function. It would be better to make
a hash function resilient to actual flaws in the compression function as well.
Therefore, we will weaken our assumptions about the underlying compression
function as much as possible. We will still consider an ideal form of a compression
function, but we will explicitly allow attacks against it, in order to model a weak
but minimally secure compression function.
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1.1 Our Results

In this paper, we formalize the notion of a weak ideal compression function,
and show that such compression functions can be used to make stronger ideal
primitives. Namely, we give a construction we call the “zipper hash” that makes
an ideal hash function from weak ideal compression functions. The zipper hash is
a very simple and elegant design; it requires 2l compression function evaluations
for an l-block input. (Additionally, this concept of a weak ideal primitive may
be of independent interest.)

Then, we go on to use weak ideal compression functions to make an ideal com-
pression function. This construction is based on the zipper hash, and requires four
compression function evaluations to run. We show that the Lucks double-pipe
compression function is not an ideal construction, but offer a simple modification
of it that is ideal. Thus, the compression function we consider comparable requires
eight underlying compression function evaluations per block of input.

Finally, we analyze the efficiency of our schemes. We go on to make a case for
considering non-streamable hash functions like our zipper hash in practice. We
note that streamable hash functions (0with constant-size state) always follow the
essential Merkle-Damg̊ard structure, so to avoid general attacks against iterated
hash functions, one must consider non-streamable hash functions.

2 Notation and Definitions

2.1 Hash Functions and Compression Functions

Before we explore these issues, we must give a basic introduction to the concept
of hash functions and compression functions. An n-bit hash function family is a
family of functions H : K×{0, 1}∗ → {0, 1}n where K represents the set of “keys”
from which one is chosen at random. Note that hash functions must be defined
as families: any specific hash function H : {0, 1}∗ → {0, 1}n cannot be totally
collision-resistant, because a collision H(x) = H(x′) exists, and the algorithm
that merely outputs (x, x′) would always find it. Thus, we imagine that the hash
function we use is randomly drawn from a larger family, and the “key” represents
the individual member of the family. Note that we do not think of the key as secret:
indeed, once the representative is chosen, the key will be known to all.

Compression functions must also be defined in terms of families. An (m, k)-bit
compression function family is a function f : Kf × {0, 1}m × {0, 1}k → {0, 1}k.
Again, here, Kf represents the set of keys for the compression function.

2.2 Ideal Hash Functions and Compression Functions

Typically, an ideal n-bit hash function is thought of as a random function
H : {0, 1}∗ → {0, 1}n. Here, there is no notion of key; the idea of choosing
a random key for the hash function is abstracted away, represented as part of
the randomness in the oracle.

An ideal (m, k)-bit compression function, similarly, is a random function f :
{0, 1}m × {0, 1}k → {0, 1}k.
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2.3 Ideal Weak Compression Functions

In our construction we do not want to go so far as to assume that the compression
functions are random oracles, as this would imply that they are collision resistant,
and immune to all forms of attack. Instead, we will model our ideal compression
function as a random oracle with additional attack oracles that provide results
of successful attacks, and yet still give answers consistent with a random oracle.

This can be implemented in a variety of ways, depending on what the attack
oracle does. We imagine that there is an oracle for the compression function f , so
that on a new query (x, y), a random output value z is returned. The following
list describes the attack oracles for a variety of compression function security
levels.

– Ideal compression function. No attack oracle, only the f oracle.
– Collision-tractable compression function: On invoking the attack ora-

cle with no input, the oracle returns random values (x, x′, y, y′, z) such that
f(x, y) = z = f(x′, y′) where (x, y) �= (x′, y′).1

– Second preimage-tractable compression function: On invoking the
attack oracle on input (x, y), the oracle returns a random pair of values
(x′, y′) such that f(x′, y′) = f(x, y).

– Preimage-tractable compression function: On invoking the attack or-
acle on input z, the oracle returns a random pair of values (x, y) such that
f(x, y) = z.

– Partially-specified preimage-tractable compression function: On in-
voking the attack oracle on input (x, z), the oracle returns a random value
y such that f(x, y) = z.

– Two-way partially-specified preimage-tractable compression func-
tion: There are two attack oracles. On querying the first (called f−1) on
input (x, z), the oracle returns a random value y such that f(x, y) = z. On
querying the second (called f∗) on input (y, z), the oracle returns a random
value x such that f(x, y) = z.

This last form of ideal compression function we will name for convenience a
weak ideal compression function. It should be clear that we can implement any
form of compression function higher on the list with a weak ideal compression
function (for instance, to implement the attack oracle for a preimage-tractable
compression function, on input z, we pick a random x and query our first attack
oracle on (x, z) to obtain y, then return (x, y)).

In fact, this form of weak compression function is susceptible to every form of
(black-box) attack we are aware of.2 An ideal weak compression function cannot

1 That is, x, x′, y, y′, and z are generated at random; if known values of f do not
prohibit the property f(x, y) = z = f(x′, y′), then those outputs are given, otherwise
new ones are selected until known values of f do not cause a problem. Once the attack
oracle returns a query, it affects how f will respond to (x, y) or (x′, y′).

2 Of course, we cannot capture non-black-box attacks when we try to view our prim-
itives as ideal.
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be used simply in an iterated way to make a hash function. For instance, if
the padding function appends padding that depends only on the length of the
input, we can find a collision by creating a random m-bit message x, computing
z = f(x, IV ), and then querying the attack oracle f∗(IV, z) to get a random x′

such that f(x′, IV ) = z. Then, since the padding changes x and x′ in the same
way (because they are the same length), H(x) and H(x′) will be the same, as
they collide after one block, and the remaining blocks are the same.

Nonetheless, there is cryptographic strength implied in this notion of an
ideal weak compression function, because despite the attacks we explicitly allow
against it, we still imagine that the results of such attacks will be random and
out of the control of the adversary.

Note that we are being quite generous with our attack oracles here. For an
actual compression function, there is no guarantee that (for instance) a y such
that f(x, y) = z even exists, let alone many such y.3

2.4 Ideal Hash Functions and Compression Functions Based on
Weak Ideal Compression Functions

Following Coron et al. [4], and paraphrasing closely from their paper, we will use
the following methodology to prove that our constructions are sound. Let C be
a Turing machine with access to an oracle: C will represent the construction and
its oracle(s) will represent the ideal primitive the construction is made from.

Let Γ represent the oracle(s) for the underlying ideal primitive(s), and let Δ
represent the oracle(s) for the ideal version of the primitive we try to construct
with C.

We say that C is (tA, tS , q, ε)-indifferentiable from Δ if there is a simulator S
such that for all distinguishers A,

|Pr[AC,Γ = 1] − Pr[AΔ,S = 1]| < ε,

where (1) S answers as many different types of oracle queries as Γ provides,
and S has oracle access to Δ and runs in time at most tS , and (2) A runs in
time at most tA and makes at most q queries of its various oracles. We say that
C is computationally indifferentiable from Δ if for all security parameters α it
holds that C is (tA(α), tS(α), q(α), ε(α))-indifferentiable from Δ, where tA and
tS are polynomial in α, where q(α) ≤ tA(α), and where ε is negligible in α. We
say that C is statistically indifferentiable if for all security parameters α it holds
that C is (tA(α), tS(α), q(α), ε(α))-indifferentiable from Δ, where tS and q are
polynomial in α, and where ε is negligible in α.4

3 It may be more reasonable to think of our ideal compression function as a random
quasigroup: that is, for every (x, z) there is a unique random y such that f(x, y) = z,
and similarly, for every (y, z) there is a unique random x. However, we proceed under
the more general attack oracle.

4 In other words, we no longer restrict the running time of the adversary, but we still
restrict the number of queries.
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3 The Zipper Hash Construction

The zipper hash is a general hash function construction. To build an n-bit hash
function, we need two independent (m, k)-bit compression functions f0 and f1,
as well as a padding function P , an initialization vector IV , and a finalization
function g : {0, 1}k → {0, 1}n. On input x, P is guaranteed to return a value
such that x||P (x) is a string that can be broken down into m-bit blocks, and for
all x �= x′, x||P (x) �= x′||P (x′). Given all these pieces, the zipper hash function
works as follows:

1. Let x1, . . . xl be m-bit strings such that x1|| . . . ||xl = x||P (x).
2. H1 is computed as f0(x1, IV ), and H2, . . . , Hl are computed iteratively as

Hi = f0(xi, Hi−1).
3. H ′

1 is computed as f1(xl, Hl), and H ′
2, . . . , H

′
l are computed iteratively as

H ′
i = f1(xl−i+1, H

′
i−1).

4. Output H(x) = g(H ′
l).

This construction is called the zipper hash as its structure is reminscent of a
zipper. See figure 2. Note that although we require two independent compression
functions, we can implement two independent weak ideal compression functions
with a single one; see Appendix A.
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Fig. 2. The zipper hash function

4 Security

Let C be the Turing machine that implements the zipper hash. We will prove
the following theorem:

Theorem 1. C is statistically indifferentiable from an ideal hash function Δ,
using two ideal weak compression functions represented by Γ , where g is the
identity function.

This will prove that the zipper hash, with g being the identity function, is in-
distinguishable from a random oracle. If g is not the identity function, then the
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overall zipper hash will be indistinguishable from g ◦ Δ. If, for instance, g has
the property that it produces a random output on a random input, this will also
be an ideal hash.

To briefly sketch the proof, the simulator answers oracle queries for the weak
ideal compression functions randomly, except when a query is the last one needed
to compute the hash function on some value, in which case the simulator assumes
that the query was in the forward direction for the last compression function
evaluation, and queries Δ and gives this value. It is nontrivial to show that the
simulator can always determine when a query amounts to the last one needed
to compute the hash function, but with careful record-keeping, we can do it in
polynomial time.

We will then make the assumption that no unexpected coincidences occur:
that is, for instance, if (u, v) is given as a query to an oracle of Γ , that the
randomly generated answer w is not equal to any w that has been involved in a
query before, nor is it equal to IV . We describe an event Bad, the event that this
assumption fails. We then prove (1) that if Bad never happens, the simulator will
simulate Γ perfectly, and (2) that Bad only happens with negligible probability
over the course of an attack.

4.1 Record Keeping

In order to simulate Γ (the weak ideal compression functions) with access only
to Δ, we use the natural approach: we answer queries to Γ ’s oracles randomly as
long as it follows the constraints: (1) for each (x, y) pair, there is only one value
z such that f0(x, y) = z, and only one value z′ such that f1(x, y) = z′, and (2)
for any l m-bit values x1, . . . , xl, f0 and f1 have to be such that Δ(x1|| . . . ||xl) =
C(Γ ).

Meeting the first constraint is easy; we simply do the following on each query.
When we receive a query f(x, y)5, we check to see if we have defined an answer
z = f(x, y); if so, we return z, and if not, we generate a random z and note that
z = f(x, y), and return z. When we receive an attack query f−1(x, z), we pick a
random y until we find one such that we have not defined an answer z′ = f(x, y)
for z �= z′, and return that y, and note that z = f(x, y); we do similarly for an
attack query on f∗(y, z).

However, the most difficult part of record keeping is that we must be aware
of when a query imposes a constraint based on Δ. In order to do this, we
will attempt to keep track of all “partial chains.” A partial chain is a se-
quence of x values x1, . . . , xl, and two y-values y, y′ such that f1(x1, f1(x2, . . . ,
f1(xl, f0(xl, . . . , f0(x1, y

′) . . .)) . . .)) = y. If a partial chain is such that y′ = IV
then y must be equal to Δ(x1|| . . . ||xl). However, it may be computationally in-
feasible to keep track of all partial chains that arise. Instead, we will keep track
of only those that arise in expected ways, and we will prove later that we will
actually find all partial chains as long as no unexpected coincidences occur.

5 In this proof, when we refer to an f query, we mean either an f0 or f1 query. We
use this convention similarly when referring to f∗ or f−1 queries.
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For ease of notation, when we discover a partial chain, we will make a note
of it, which we denote Chain(x, y′, y). Effectively, this note means that if the
initialization vector were y′, then H(x) would output y.

Forward queries. We show how to keep track of this for one type of query at a
time, starting with forward queries. Without loss of generality, we assume that
the query is on a new input pair (x, y). If the query is an f0 query, we will not
attempt to find whether any partial chains have been formed. For f1 queries, we
will check if any partial chains have been formed using this query at the end. If
so, we check if any of these partial chains are formed starting at IV , and if so,
we use Δ to find the value we should set to be f1(x, y). If not, we pick f1(x, y)
at random. If a query forms two or more distinct partial chains starting at IV ,
the simulator gives up and halts. If the simulator doesn’t halt, it will make notes
of all partial chains that have been formed with the current query at the end.

If the query is f0(x, y) then we can check if this completes a single-block
partial chain. If there is a y′ such that f0(x, y′) = y then the value we return
will form the chain Chain(x, y′, f1(x, y)). If there is an x′ and a y′′ such that
Chain(x′, y′′, y) and also there is a y′ such that f0(x, y′) = y′′ then the value we
return will form the chain Chain(x||x′, y′, f1(x, y)).

Backward queries. Next, we consider “backward” queries, that is, a query
f−1(x, z). Similarly to forward queries, if the query is an f−1

1 query, we will not
attempt to find whether any partial chains have been formed. For f−1

0 queries,
however, we will check if any partial chains have been formed using this query
at the beginning. If so, it may be that a partial chain has been formed starting
at IV , but we can do nothing to set the appropriate value to one matching Δ in
this case: it is too late, and the simulator will halt. However, this will not happen
unless an unexpected coincidence occurs. Thus, once we have found all partial
chains that will be formed from the current query, we pick a random answer to
it and note the chains that are formed.

The result of a query f−1
0 (x, z) will form a single-block chain if it is al-

ready known that f1(x, z) = y for some value y. In this case, we may note
Chain(x, f−1

0 (x, z), y). The result of f−1
0 (x, z) will form a longer chain if it is

already noted that Chain(x′, z, y′) for some y′, and also f1(x, y′) = y is known
for some y, in which case we may note Chain(x||x′, f−1

0 (x, z), y).

Squeeze queries. Finally, we consider “squeeze” queries, that is, a query
f∗(y, z). Though squeeze queries may form chains, we do not check for them. If
a chain is accidentally formed through a squeeze query, the simulator’s behavior
may become bad later, but this only happes if an unexpected coincidence occurs.

4.2 The Bad Event

We will prove that our simulator fools the adversary by proving that the dis-
tribution of the adversary’s output in the real system (where S is not involved) is
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identical to the distribution of the adversary’s output in the ideal system, condi-
tioned on a certain “bad” event not happening. The bad event Bad represents the
event that a previously-used value is generated as the random answer to a later
query. To be precise, let us imagine that (xi, yi, zi) are all the triples of values
such that f0(xi, yi) = zi has been established in a query, and that (x′

i, y
′
i, z

′
i) are

all the triples of values such that f1(x′
i, y

′
i) = z′i has been previously established.

Then Bad occurs on the next query if:

1. The latest query is an f(x, y) query that returns a value z equal to yi, zi, y
′
i

or z′i for some i, or z = IV .
2. The latest query is an f−1(x, z) query that returns a value y equal to yi, zi, y

′
i,

or z′i for some i, or y = IV .
3. The latest query is an f∗(y, z) query that returns some value x equal to xi

or x′
i for some i.

Lemma 1. If Bad does not happen when we simulate, the simulator will not halt
during a query.

Recall that the simulator will only halt in one situation: if a forward f1 query
completes more than one partial chain that start at IV . Specifically, this happens
when a forward query f1(x, y) is such that for some x′ �= x′′ and for some y′

0
and y′

1, we know Chain(x′, y′
0, y) and Chain(x′′, y′

1, y), and f0(x, IV ) = y′
0 and

f0(x, IV ) = y′
1. Therefore we can conclude that y′

0 = y′
1. In order for this to

happen, we must have noted both Chain(x′, y′, y) and Chain(x′′, y′, y) for some
x′ �= x′′.

Remark 1. If we note Chain(x, y′, y) then, when we note it, either y′ or y is a
newly-generated random query answer. This is clear from our description of S
above.

Remark 2. First, we prove that if there is some pair of notes Chain(x0, y
′, y)

and Chain(x1, y
′, y) where the first block of x0 is not the same as the first block

of x1, then Bad must have happened. Assume, without loss of generality, that
Chain(x0, y

′, y) was not noted later than Chain(x1, y
′, y). Because of the way we

notice chains, we note Chain(x1, y
′, y) only when computing either a forward or

backward query with x as the input value, where x is the first block of x1. Since
x is not the first block of x0, we do not note Chain(x0, y

′, y) at this time, so it
must have been noted previously. However, because of remark 1, when we note
Chain(x1, y

′, y) either y′ or y must be a newly-generated random query answer,
so it can only be equal to the previously-known value of y if Bad occurs on this
query.

Remark 3. Next, we note that if x0 and x1 consist of at least one block, and there
is some y such that Chain(x||x0, y

′, y) and Chain(x||x1, y
′, y), where x is a single

block, then either (1) there is some w and some w′ such that Chain(x0, w
′, w)

and Chain(x1, w
′, w) are already known, or (2) Bad has happened.
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Assuming that both Chain(x||x0, y
′, y) and Chain(x||x1, y

′, y) were discovered
simultaneously (if not, the previous argument shows that Bad happened), there
are two cases:

– If both were discovered on a forward query f1(x, w), it must have been that
both Chain(x0, w

′, w) was known, and that w′ = f0(x, y′) for some w and
w′. Furthermore, it must also be true that Chain(x1, w

′′, w) was known, and
that w′′ = f0(x, y′). But then, w′′ = f0(x, y′) = w′, so the first condition
holds.

– If both were discovered on a backward query f−1
0 (x, w′), then it must have

been that Chain(x0, w
′, w) was known for some w, and that f1(x, w) = y. We

must also have noted Chain(x1, w
′, w′′) for some w′′ such that f1(x, w′′) = y.

If w = w′′ then the first condition holds. If not, then from remark 1, whichever
of f1(x, w) = y, f1(x, w′′) = y, Chain(x0, w

′, w), or Chain(x1, w
′, w′′) was dis-

covered last would have triggered Bad.

Remark 4. If there is some note Chain(x, y′, y) and Chain(x||x1, y
′, y) where x is a

single block, then Bad has happened. Again, we may assume that Chain(x, y′, y)
and Chain(x||x1, y

′, y) were discovered simultaneously. There are two cases:

– If both were discovered on a forward query f1(x, y′′), then it must have been
known in advance be that f0(x, y′) = y′′, and that Chain(x1, y

′′, y′′). How-
ever, Chain(x1, y

′′, y′′) is impossible unless Bad happens, in view of remark
1.

– Similarly, if both were discovered on a backward query f−1
0 (x, z), then it

must have been known in advance that f1(x, z) = y and that Chain(x1, z, z),
which again guarantees that Bad has happened.

By remarks 2, 3, and 4, if Chain(x, y′, y) and Chain(x′, y′, y) are known for x �= x′

then Bad must have happened: if x is not a prefix of x′ of x′ or vice versa, we
can descend by remark 2, getting similar properties, until the first blocks of x
and x′ are unequal. If x is a prefix of x′ or vice versa, we can descend by remark
2 until we fall in to the case covered by remark 3. Therefore, the simulator will
never halt prematurely unless Bad has happened.

Lemma 2. If a query is ever made to S that would complete a partial chain, we
note it unless Bad happens.

Suppose a query is made to S that would complete a partial chain. There are
three cases to consider:

Case i: A partial chain is completed on a forward query. If the link determined
by f(x, y) is used anywhere other than at the end, it can only be used there if
the value generated for f(x, y) triggers the Bad event. If the link determined by
f(x, y) only completes chains by adding on to the end, it must be a query to f1,
and then there are two cases: either the partial chain is one block long, which
we explicitly check for, or the partial chain is longer, in which case, a shorter,
compatible partial chain is already known. In either case, we note the newly
completed partial chain.
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Case ii: A partial chain is completed on a backward query f−1(x, z). Similarly,
if the result of this query is used anywhere other than at the beginning, it can
only be used there if the result triggers the Bad event. Again, if the result can
be used at the beginning, it must be a f−1

0 query, and our algorithm for the
simulator is correct.

Case iii: A partial chain is completed on a “squeeze” query f∗(y, z). In this
case, the chain could only be completed if something is already known about f0
or f1 on input x where x is the result of this query. If this were the case, the
result of this query would trigger the Bad event.

Lemma 3. If a query is ever made to S that would complete a partial chain
starting at IV , we note it, and respond correctly, unless Bad happens.

The proof of this lemma is very similar to the proof of lemma 3. Note that by
lemma 3, if a query is made to S that completes any partial chain, and Bad has
not happened, we note it. Therefore, we need only consider two cases:

Case i: The partial chain Chain(x, IV, y) is noted on a forward query to f1. In
this case, we obtain y by querying Δ(x), so our answer is correct.

Case ii: The partial chain Chain(x, IV, y) is noted on a backward query to
f−1
0 . If this is the case, Bad must have happened, because this can only happen

if the result of the final f−1
0 query was IV .

Lemma 4. The probability that Bad happens is negligible.

Note that initially, before any queries are made, Bad has not happened. If Bad
has not happened after the first q queries, then the probability that it happens
on the q + 1st query is at most (2q + 1) · max(2−m, 2−k). This is because there
are at most (2q + 1) answers (all the previous y and z values, plus IV ) that
would make Bad happen, out of 2m or 2k possible random answers, depending
on the type of query. Therefore, if the adversary makes a total of q queries, the
probability that Bad happens is at most Ω(q22−r), where r = min(m, k).

We note that the running time of S is polynomial in the number of queries,
but is independent from the running time of the adversary. This completes the
proof of Theorem 1.

4.3 Security Against Standard Attacks

In this section we discuss the applicability of our security proof to the standard
attacks against hash functions. What we have proven, essentially, is that an adver-
sary with a limited number of queries cannot distinguish between the zipper hash
implemented with weak ideal compression function and a random oracle. Specif-
ically, if the number of queries the adversary can make is significantly less than
2min(m,k)/2, the Bad event remains extremely unlikely, and the proof is successful.

Provided the adversary makes fewer than this many queries, the only attacks
an adversary could succeed in are attacks that could be performed against an
ideal hash function. Hence, so long as this query limit is respected, the adversary
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should not be able to find collisions, preimages, second preimages, et cetera.
However, our proof does not imply that the adversary cannot perform these
attacks more efficiently on the zipper hash than on an ideal hash function if
the adversary exceeds this query limit. For instance, to find a preimage of an
ideal hash function takes O(2k) queries, where k is the output size, whereas we
cannot guarantee security against that many queries. As another example, our
construction does not provide security against multicollisions: in fact, it fits a
known framework in which an extension of the Joux attack is possible [15,9].

Nonetheless, keep in mind that the queries the adversary is allowed to make
in attacking the zipper hash include attack queries, which are modeled as if they
are trivial, but may in fact require significant effort.

5 Zipper Hash-Based Compression Function

The most natural criticism of the zipper hash in practice is that it is no longer
streamable, as iterated hash functions are. However, we can easily use the zipper
hash construction to create an ideal compression function rather than a full
ideal hash function, which will allow us to use one of the modified iterated
constructions of Coron et al. [4] and create a streamable, ideal hash function
from weak ideal compression functions.

Now that we have proven that the zipper hash is indifferentiable from a
random oracle, if we assume that we have an (m, m)-bit underlying compres-
sion function, we can make an (m, m)-bit ideal compression function very sim-
ply: let f(x, y) = H(x||y). That is, we use a full zipper hash computation
on the two-block message x||y as our compression function. By a simple re-
striction on our theorem, this is indifferentiable from a random oracle from
{0, 1}m × {0, 1}m → {0, 1}m, and is therefore an ideal compression function.

5.1 Amortizing Streamability vs. Efficiency

The full zipper hash requires 2 underlying compression function queries per input
block. If we use the zipper hash in the natural way as a compression function,
the resulting iterated construction (after double-piping) requires 4 underlying
compression function queries per input block. However, we can trade streama-
bility for efficiency here, by using the zipper hash function on more blocks of
input at once.

For instance, we can make a (3m, m)-bit compression function by computing
f(x1||x2||x3, y) = H(x1||x2||x3||y). This requires 8 queries for 3 input blocks,
which is a significant savings compared to 12 queries for 3 input blocks. How-
ever, by having the compression function require more input, we are sacrificing
streamability: we must now buffer 3 input blocks instead of one before we can ap-
ply the compression function. In general, if we use b blocks at once, our efficiency
will be 2(b+1)

b = 2 + 2
b queries per input block.
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6 Efficiency

The zipper hash requires 2l compression function evaluations on an input of l
blocks. There is one additional drawback in that the zipper hash is not stream-
able: we have to scan the message twice, so in principle, we cannot compute
the zipper hash in fixed memory unless for some reason it is feasible to access
the input a second time. This is an especially significant point as it is often de-
sired that limited devices such as smart cards be able to compute hash functions
with limited available memory. However, there are some points in favor of this
approach anyway:

– In applications on non-limited devices, streamability is not mission-critical.
It may be worthwhile to consider a non-streamable hash function like the
zipper hash if it has attractive theoretical properties.

– The zipper hash can be implemented using existing machinery: essentially all
that is required is two traditional Merkle-Damg̊ard hash function evaluations.

– Theoretically, it is possible that weakly secure compression functions could
be designed that may be more efficient than strong ones. If this is the case,
then such compression functions used in the zipper hash constructions may
actually yield a more efficient hash function.

– The zipper hash may remain secure even if the compression function is vul-
nerable to attack.

– Finally, any streamable hash function is essentially an iterated hash func-
tion based on a compression function. Therefore, some black-box attacks
are known that apply to any streamable hash function. If such attacks are
undesirable, it may be necessary to adopt a non-streamable approach.

This last point needs some explanation. We prove that all streamable hash
functions (that is, all hash functions with constant-size state) are in fact iterated
hash functions in Appendix B. The gist of the argument is that if a hash function
can be streamed, this means it can be computed with a fixed amount of state,
with a fixed maximum amount of memory into which the input is provided.
Whatever method is used to combine the input with the current state to arrive
at the next state can be thought of as the compression function. The initial state
can be thought of as the initialization vector, and whatever method is used, once
all input has been processed, to determine the output can be thought of as the
finalization function.

7 Conclusion

This paper is new in two ways. First of all, this is the first paper that we are
aware of to foray into positive results for non-streamable hash function design.
Second, as far as we know, this is the first paper to explicitly model weakly-secure
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primitives as ideal primitives with relevant attack oracles available. Here are some
open problems we consider worth investigating:

– Are there attacks against the generic zipper hash design that are better than
brute force?

– What other non-streamable hash function designs are possible, and what
properties do they have? In particular, are there benefits to making three or
more passes in a zipper-like construction?

– Is there a weaker version of an ideal compression function? If so, can we use
it to build secure hash functions?

– Can this notion of a weak ideal primitive be used elsewhere?
– Can we make better constructions, or prove stronger security results, by

representing our compression functions as ideal random quasigroups?
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A Simulating Two Compression Functions

In the zipper hash construction, we require two independent compression func-
tions. However, in practice, it is more sensible to use only one. If we have a single
(m + 1, k)-bit compression function f , we can define f0(x, y) = f(0||x, y) and
f1(x, y) = f(1||x, y). This idea is natural, but we must prove that it is secure in
an ideal sense.

Theorem 2. If C is the TM that computes f0 and f1 given the oracle Γ for
a weak ideal compression function f , then C is (perfectly) indifferentiable from
Δ, where Δ is the oracle for two independent random weak ideal compression
functions.

Proof. First of all, we must describe how C answers attack queries. If C is given
an attack query f−1

b (x, z), C makes an attack query f−1(b||x, z) to obtain the
answer y. If, on the other hand, C is given an attack query f−1

b (y, z), C makes
an attack query f−1(y, z) to obtain an answer b′||x where b′ is the first bit. If
b′ = b, C returns x; if not, C makes an identical attack query, and repeats until
it obtains an answer that does begin with b.

To simulate the oracle for the single weak ideal compression function is very
easy. To answer a forward query f(b||x, y), we simply return the result of the
forward query fb(x, y). To answer an attack query f−1(b||x, z), we return the
result of the attack query f−1

b (x, z). Finally, to answer an attack query f−1(y, z),
we pick a random bit b and return the result of f−1

b (y, z).
The only effective difference between the simulation and the construction is

that the construction may have made superfluous queries to f−1(y, z). However,
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for all adversaries, the queries of the adversary are independent of the superfluous
queries, and even if the adversary makes a query that is later restricted by one
of those superfluous queries, the result is still random and distributed properly.

Another application of this is to show how to make the Lucks double-pipe con-
struction ideally secure.

Lucks’ construction of a double-pipe compression function can be summed up
as follows: if f is a (2m, n)-bit compression function, then
f ′(x, y1||y2) = f(x, y1||y2)||f(x, y2||y1) is a (2m, 2n)-bit compression function.

It is easy to see that this construction is not ideal: f ′(x, y||y) = z||z for some
z, whereas this is unlikely to be the case for an ideal compression function f ′.
This flaw is easily avoided, however, by the following modification. Assume that
f0 and f1 are two independent (2m, n)-bit compression functions, and let

f ′(x, y1||y2) = f0(x, y1||y2)||f1(x, y2||y1).

Theorem 3. f ′ is computationally indifferentiable from an ideal compression
function.

Proof. It is easy to see how to simulate the f0 and f1 random oracles in the
presence of a single random oracle for f ′: to calculate f0(x, y), for instance, we
query f ′(x, y), and split the result into two halves, the first of which is f0(x, y),
and the second of which is recorded as f1(x, yfl) where yfl flips the first and
second halves of y.

Naturally, we can apply Theorem 2 to show that f0 and f1 can be simulated
with a single compression function. We do not even need the full strength of
Theorem 2, since in this case the compression functions are meant to be ideal,
rather than weak ideal.

B Universality of Merkle-Damg̊ard

In this section, we prove that any streamable hash function can be viewed as an
iterated hash function with a single compression function f , a fixed initialization
vector IV , and a finalization function g.

In order to consider a hash function “streamable,” it must be the case that H
can be computed by an algorithm M in such a way that (1) M has a fixed-size
state, and (2) M receives its input in pieces, each piece being no larger than
some maximum size m. If (1) does not hold, then potentially, M simply stores
the entire input and computes the hash function only at the end. Furthermore,
we assume that the function operates directly on the input message, that is, we
assume that any padding is computed as part of the hash function. If this is the
case, we can view H as an iterated hash function as follows.

Let k be such that any state of M can be written as a k-bit string. Let IV
be the k-bit string corresponding to the starting state of M , appended with the
empty string ε.
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Let f be the (m, k + m + 1)-bit compression function that works as follows.
On input (x, y), let the state s be the state corresponding to the first k bits of
y, and let x′ be the string encoded in the remaining m + 1 bits. Based on s, we
determine the amount m′ ≤ m of input that M expects in state s. Let s′ be the
state after M is run in state s with input the first m′ bits of x′||x. If |x′||x| is
large enough that it contains the entire next block to process, we repeat this,
processing another chunk of the input. If not, we let sout be the state M ends
in, and let xout be whatever part of x′||x has not been used, and output the
k + m + 1-bit string representation 〈sout, xout〉.

Let g be as follows. On input x, let s be the state corresponding to the first k
bits of x, and let x′ be the string encoded in the remaining bits. Run M , from
state s, on input x′ with the signal that no more input remains, and output the
output of M .

It should be clear that the iterated hash function with compression function
f , finalization function g, and initialization vector IV simply runs M on the
input to the hash function. This shows that the streamable hash function H is
in fact an iterated hash function.

B.1 Universal Vulnerability of Iterated Hash Functions

Since all hash functions that can reasonably be thought of as streamable are in
fact iterated hash functions, black-box attacks against iterated hash functions
are actually universal attacks against streamable hash functions. For instance,
the second collision attack described in the introduction applies to all streamable
hash functions. Also, the Joux attack applies to all streamable hash functions.
The efficiency of the Joux attack, as well as its extensions, depends on the size
of the internal state (k+m+1, with the construction above); if this size is large
enough, the Joux attack is irrelevant, as Lucks has shown. However, note that
a streamable hash function may be realizable as an iterated hash function more
efficiently in terms of internal state size than the general construction above.
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