
Constructing an Interactive Natural Language Interface for
Relational Databases∗

Fei Li
Univ. of Michigan, Ann Arbor

lifei@umich.edu

H. V. Jagadish
Univ. of Michigan, Ann Arbor

jag@umich.edu

ABSTRACT

Natural language has been the holy grail of query interface
designers, but has generally been considered too hard to
work with, except in limited specific circumstances. In this
paper, we describe the architecture of an interactive natural
language query interface for relational databases. Through
a carefully limited interaction with the user, we are able to
correctly interpret complex natural language queries, in a
generic manner across a range of domains. By these means,
a logically complex English language sentence is correctly
translated into a SQL query, which may include aggregation,
nesting, and various types of joins, among other things, and
can be evaluated against an RDBMS. We have constructed a
system, NaLIR (Natural Language Interface for Relational
databases), embodying these ideas. Our experimental as-
sessment, through user studies, demonstrates that NaLIR is
good enough to be usable in practice: even naive users are
able to specify quite complex ad-hoc queries.

1. INTRODUCTION
Querying data in relational databases is often challenging.

SQL is the standard query language for relational databases.
While expressive and powerful, SQL is too difficult for users
without technical training. Even for users with expertise in
programming languages, it can be challenging because it re-
quires that users know the exact schema of the database, the
roles of various entities in a query, and the precise join paths
to be followed. As the database user base is shifting towards
non-experts, designing user-friendly query interfaces will be
a more important goal in database community.

In the real world, people ask questions in natural lan-
guage, such as English. Not surprisingly, a natural language
interface is regarded by many as the ultimate goal for a
database query interface, and many natural language inter-
faces to databases (NLIDBs) have been built towards this
goal [2, 13, 11]. NLIDBs have many advantages over other

∗Supported in part by NSF grants IIS 1250880 and IIS
1017296

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivs 3.0 Unported License. To view a copy of this li­
cense, visit http://creativecommons.org/licenses/by­nc­nd/3.0/. Obtain per­
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st ­ September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 1
Copyright 2014 VLDB Endowment 2150­8097/14/09.

widely accepted query interfaces (keyword-based search, form-
based interface, and visual query builder). For example, a
typical NLIDB would enable naive users to specify complex,
ad-hoc query intent without training. In contrast, keywords
are insufficient to convey complex query intent, form-based
interfaces can be used only when queries are predictable and
limited to the encoded logic, and visual query builders still
requires extensive schema knowledge of the user.

Despite these advantages, NLIDBs have not been adopted
widely. The fundamental problem is that understanding
natural language is hard. People may use slang words, tech-
nical terms, and dialect-specific phrasing, none of which may
be known to the system. Even without these, natural lan-
guage is inherently ambiguous. Even in human-to-human
interaction, there are miscommunications. Therefore, we
cannot reasonably expect an NLIDB to be perfect. There-
fore, users may be provided with a wrong answer due to
the system incorrectly understanding or handling the query.
The system does not help user detect such error and some-
times it is impossible for users to verify the answer by them-
selves. So a user cannot be sure that the answer provided is
really the answer to the question asked. Moreover, even if
the user does realize that the answer is wrong, there is little
guidance on what to do. The only option available to the
user is to rephrase the query and hope that the system now
understands it better.

When humans communicate with one another in natural
language, the query-response cycle is not as rigid as in a
traditional database system. If a human is asked a query
that she does not understand, she will seek clarification.
She may do so by asking specific questions back, so that the
question-asker understands the point of potential confusion.
She may also do so by stating explicitly how she interpreted
the query. Drawing inspiration from this natural human
behavior, we design the query mechanism to facilitate col-
laboration between the system and the user in processing
natural language queries. First, the system explains how it
interprets a query, from each ambiguous word/phrase to the
meaning of the whole sentence. These explanations enable
the user to verify the answer and to be aware where the
system misinterprets her query. Second, for each ambiguous
part, we provide multiple likely interpretations for the user
to choose from. Since it is often easier for users to recog-
nize an expression rather than to compose it, we believe this
query mechanism can achieve satisfactory reliability without
burdening the user too much.

A question that then arises is how should a system repre-
sent and communicate its query interpretation to the user.

73

Organiza(on*Author*

Journal*Publica(on*

affilia(on*
name*

homepage*

name*

homepage*

(tle*abstract* Keyword*

cid*

jid*

Domain*

cite*

cita(on_num*

reference*

cita(on*

Conference*

Query*1:"Return"the"average"number"of"publica5ons"by"Bob"in"each"year.""

Query*2:"Return"authors"who"have"more"papers"than"Bob"in"VLDB"a>er"2000.""

Query*3:"Return"the"conference"in"each"area"whose"papers"have"the"most"total"cita5ons.""

Figure 1: A Simplified Schema for Microsoft Academic Search and Sample Queries.

SQL is too difficult for most non-technical humans. We
need a representation that is both “human understandable”
and “RDBMS understandable”. In this paper, we present
a data structure, called Query Tree, to meet this goal. As
an intermediate between a linguistic parse tree and a SQL
statement, a query tree is easier to explain to the user than
a SQL statement. Also, given a query tree verified by the
user, the system will almost always be able to translate it
into a correct SQL statement.

Putting the above ideas together, we propose an NLIDB
comprising three main components: a first component that
transforms a natural language query to a query tree, a sec-
ond component that verifies the transformation interactively
with the user, and a third component that translates the
query tree into a SQL statement. We have constructed such
an NLIDB, and we call it a NaLIR (Natural Language In-
terface to Relational databases).

The intellectual contributions of this paper are as follows:

1. Interactive Query Mechanism. We design an interac-
tion mechanism for NLIDBs to enable users to ask
complex queries and have them interpreted correctly,
with a little interaction help.

2. Query Tree. We design a query tree structure to rep-
resent the interpretation of a natural language query
from the database’s perspective. A query tree can be
explained to the user for verification, and once verified,
will almost always be correctly translated to SQL.

3. System Architecture. We provide a modular architec-
ture to support such a query mechanism, in which each
component can be designed, and improved, indepen-
dently. We develop a working software system called
NaLIR, instantiating this architecture. We discuss the
basic ideas in designing heuristic functions for each
component and describe the specific choices made in
our system.

4. User Study. We demonstrate, through carefully de-
signed user studies, that NaLIR is usable in practice,
on which even naive users are able to handle quite
complex ad-hoc query tasks.

The remaining parts of the paper are organized as follows.
We discuss the query mechanism in Section 2. The system
architecture of our system is described in Section 3. Given

a query, we show how to interpret each its words/phrases in
Section 4 and infer the semantic meaning of the whole query
(represented by a query tree) in Section 5. We discuss how
to translate a query tree to a SQL statement in Section 6.
In Section 7, our system is evaluated experimentally. We
discuss related work in Section 8. In Section 9, we draw
conclusions and point to future work.

2. QUERY MECHANISM
Keyword search systems are popular and effective in at

least some domains, such as for document search. As we
think about the architecture of an NLIDB, it is worthwhile
to draw inspiration from search engines, and how they infer
user intent from limited information. First, given a query, a
search engine returns a list of results, rather than a single re-
sult. This is central to providing acceptable recall. Second,
users are able to verify whether a result is correct (useful) by
reading the abstract/content. Third, these results are well
ranked, to minimize user burden to verify potential answers.
These strategies work very well in search engines. However,
due to some fundamental differences between search engines
and NLIDBs, as we will discuss next, this query mechanism
cannot be directly applied to NLIDBs.

First, users are often able to verify the results from a
search engine by just reading the results. However, the re-
sults returned by an NLIDB cannot usually explain them-
selves. For example, suppose a user submits Query 1 in
Figure 1 to an NLIDB and gets an answer “5”. How could
she verify whether the system understands her query and
returns to her the correct answer? To facilitate this, an
NLIDB should provide explanations for the result at least
in terms of how the query is processed.

Second, unlike search engines, users tend to express so-
phisticated query logics to an NLIDB and expect perfect re-
sults. That requires the NLIDB to fix all the ambiguities and
get a perfect interpretation for the query from the perspec-
tive of both linguistics and the given database. However,
natural language queries are often inherently ambiguous and
sometimes, some of the ambiguities are too “hard” for sys-
tems to fix with confidence. Consider Query 1 in Figure 1
again, the user specifies the word “publication”, while in a
real world bibliography database, the information of pub-
lications may be stored in many tables, say, article, book,
incollection, phdThesis, journal, proceedings and so forth.
The system itself cannot be expected to figure out which

74

Parse%Tree%&%

Mapping%

Parse%Tree%

Structure%Adjustor%

Query%Tree%

Translator%

Dependency%

Parser%

NLQ%

User%Interface%

Data%index%&%

schema%graph%

Parse%Tree%%

Node%Mapper%

Choice%

Query%Tree%

RDBMS%

SQL%

Results%

Choice%
Candidate%
Query%Trees%

Candidate%
Mappings%

InteracLve%Communicator%

Choice%InterpretaLons%

Parse%Tree%

Figure 2: System Architecture.

ones of these should be considered as publications. Even
if the included items are all unambiguous, when natural
language queries have complex structures with modifier at-
tachments, aggregations, comparisons, quantifiers, and con-
junctions, it may contain several ambiguities that cannot
be fixed by the system with confidence, from the inter-
pretation of an ambiguous phrase to the relationship be-
tween words/phrases. The number of possible interpreta-
tions grows exponentially with the number of unfixed ambi-
guities. As a result, there may be hundreds of candidate in-
terpretations for a complex natural language query, of which
only one is correct. Since these interpretations are often sim-
ilar to each other in semantics, it is very hard to develop an
effective ranking function for them. As a result, if the sys-
tem simply returns a list of hundreds of answers, the users
will be frustrated in verifying them.

Given the above two observations, instead of explaining
the query results, we explain the query interpretation pro-
cess, especially how each ambiguity is fixed, to the user. In
our system, we fix each “easy” ambiguity quietly. For each
“hard” ambiguity, we provide multiple interpretations for
the user to choose from. In such a way, even for a rather
complex natural language query, verifications for 3-4 ambi-
guities is enough, in which each verification is just making
choices from several options.

The ambiguities in processing a natural language query
are not often independent of each other. The resolution of
some ambiguities depends on the resolution of some other
ambiguities. For example, the interpretation of the whole
sentence depends on how each of its words/phrases is inter-
preted. So the disambiguation process and the verification
process should be organized in a few steps. In our system,
we organize them in three steps, as we will discuss in detail
in the next section. In each step, for a “hard” ambiguity,
we generate multiple interpretations for it and, at the same
time, use the best interpretation as the default choice to
process later steps. Each time a user changes a choice, our
system immediately reprocesses all the ambiguities in later
steps and updates the query results.

3. SYSTEM OVERVIEW
Figure 2 depicts the architecture of NaLIR1. The entire

system we have implemented consists of three main parts:

1In the current implementation, we use MySQL as the
RDBMS, and Stanford NLP Parser [7] as the dependency
natural language parser.

the query interpretation part, interactive communicator and
query tree translator. The query interpretation part, which
includes parse tree node mapper (Section 4) and structure
adjustor (Section 5), is responsible for interpreting the nat-
ural language query and representing the interpretation as
a query tree. The interactive communicator is responsible
for communicating with the user to ensure that the interpre-
tation process is correct. The query tree, possibly verified
by the user, will be translated into a SQL statement in the
query tree translator (Section 6) and then evaluated against
an RDBMS.

Dependency Parser. The first obstacle in translating
a natural language query into a SQL query is to under-
stand the natural language query linguistically. In our sys-
tem, we use the Stanford Parser [7] to generate a linguistic
parse tree from the natural language query. The linguis-
tic parse trees in our system are dependency parse trees,
in which each node is a word/phrase specified by the user
while each edge is a linguistic dependency relationship be-
tween two words/phrases. The simplified linguistic parse
tree of Query 2 in Figure 1 is shown in Figure 3 (a).

Parse Tree Node Mapper. The parse tree node map-
per identifies the nodes in the linguistic parse tree that can
be mapped to SQL components and tokenizes them into dif-
ferent tokens. In the mapping process, some nodes may fail
in mapping to any SQL component. In this case, our system
generates a warning to the user, telling her that these nodes
do not directly contribute in interpreting her query. Also,
some nodes may have multiple mappings, which causes am-
biguities in interpreting these nodes. For each such node,
the parse tree node mapper outputs the best mapping to
the parse tree structure adjustor by default and reports all
candidate mappings to the interactive communicator.

Parse Tree Structure Adjustor. After the node map-
ping (possibly with interactive communications with the
user), we assume that each node is understood by our sys-
tem. The next step is to correctly understand the tree struc-
ture from the database’s perspective. However, this is not
easy since the linguistic parse tree might be incorrect, out
of the semantic coverage of our system or ambiguous from
the database’s perspective. In those cases, we adjust the
structure of the linguistic parse tree and generate candidate
interpretations (query trees) for it. In particular, we adjust
the structure of the parse tree in two steps. In the first step,
we reformulate the nodes in the parse tree to make it fall in
the syntactic coverage of our system (valid parse tree). If

75

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.

Interactive Communicator. In case the system possi-
bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author

return

VLDB after

 2000

paper

Bob

more

number ofnumber of

ROOT

(d)

author

return

Bob

more

ROOT

(c)

VLDB after

2000

paper

VLDB after

2000

paper

author

return (SN: SELECT)
author (NN: author)

more (ON: >)
paper (NN: publication)

Bob (VN: author.name)
VLDB (VN: conference.name)

after (ON: >)

2000 (VN: publication.year)

(b)

return

after

2000

author

VLDB

ROOT

more

(a)

paper Bob

T M

TM
1

TM
11

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

Node%Type% Corresponding%SQL%Component%

Select&Node&(SN)& SQL&keyword:&SELECT&

Operator&Node&(ON)& an&operator,&e.g.&=,&<=,&!=,&contains&

FuncDon&Node&(FN)& an&aggregaDon&funcDon,&e.g.,&AVG&

Name&Node&(NN)& a&relaDon&name&or&aJribute&name&

Value&Node&(VN)& a&value&under&an&aJribute&

QuanDfier&Node&(QN)& ALL,&ANY,&EACH&

Logic&Node&(LN)& AND,&OR,&NOT&

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.

In contrast, name nodes and value nodes correspond to
the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

Ri .PK for identifying the tuples. A database schema D is
a set of relation schemas {Ri|1 ≤ i ≤ n}. Both relation
schemas and attribute schemas are called schema elements.
When populated with data, a database schema generates
a database and each attribute Aj is populated with values
Vals(Aj). In natural language queries, naive users often
informally refer to a tuple by specifying the value of one
(or a set of) specific attribute. For example, naive users
tend to refer to a paper by specifying its title. To capture
this intuition, for a relation schema, we may use one (or a
set of) attribute Ri .PA as its primary attribute to identify
tuples informally.

The Schema Graph G(V,E) is a directed graph for a
database schema D. V consists of two kinds of nodes: re-
lation nodes and attribute nodes, corresponding to relation
schemas and attribute schemas in D, respectively. Likewise,
there are two types of edges in E: projection edges and
foreign-key-primary-key (FK-PK) join edges. A projection
edge starts from a relation schema Ri to each of its attribute
schema Ai

1, A
i
2, ..., A

i
ki , while a FK-PK join edge goes from

a foreign key to a primary key when there is a FK-PK rela-
tionship between them. For each edge e in E, we assign a
weight w(e), with a value between 0 and 1, where a larger
weight indicates a stronger connection. A simplified schema
graph for the Microsoft Academic Search database is shown
in Figure 1, in which some nodes/edges are omitted.

A join path p is a list of schema elements, in which for
every two adjacent schema elements vi and vj , (vi, vj) or
(vj , vi) exists in E. The weight of p is defined as w(p) =
Πei∈p(w(ei)). In this paper, join paths containing the fol-
lowing pattern, p← f → p where f is a foreign key and p is
a primary key, are considered as invalid join paths.

4.2 Candidate Mappings
In a reasonable design of database schema, the names of

schema elements should be meaningful and human-legible.
Therefore, when the label of a parse tree node and the
name of a schema element are similar in meaning or spelling,
they are likely to correspond to the same real world object.
To capture this intuition, we use the WUP similarity func-
tion [16], denoted as Simw, which is based on the Wordnet
to evaluate the similarity between words/phrases in mean-
ing. In addition, we adopt the square root of the Jaccard
Coefficient between the q-gram sets of words/phrases, de-
noted as Simq, to evaluate their similarity in spelling [17].
Let l(n) be the label of node n and n(v) be the name of a
schema element v. The name similarity function between
l(n) and n(v) is defined as follows:

Simn(l(n), n(v)) = MAX {Simw(l(n), n(v)), Simq(l(n), n(v))}

When their similarity is above a predefined threshold τ ,
we say that v is a candidate mapped schema element of n.
Also, users may not be able to specify the exact values in
the database. In our system, we use Simq to evaluate the
similarity between the label of a parse tree node and a value.
A value is a candidate mapped value of the parse tree node,
if their similarity is above τ .

Definition 1 (NV Node). A parse tree node, which
has at least one candidate mapped schema element or can-
didate mapped value, is an NV node.

Since a database often stores meta-data/data closely re-
lated to one another, many schema elements/values may

be similar to one another, both in meaning and spelling.
As a result, multiple candidate mappings may be returned,
of which only a subset is correct. For example, in Fig-
ure 3 (a), the node “VLDB” may have multiple candidate
mappings in the database of Microsoft Academic Search, say,
VLDB, VLDB workshops, VLDB PhD workshop, PVLDB
and VLDB Journal. In this case, it is very hard for the sys-
tem to figure out which subset of the candidate mappings
the user means.

We deal with this kind of ambiguity interactively with
the user. For each ambiguous node, we return multiple of its
candidate mappings for the user to choose from. To facilitate
the user in recognizing the desired mappings from possibly
many candidate mappings, we show candidate mappings hi-
erarchically. In the first level, we show its top k1 candidate
mapped schema elements or the schema elements contain-
ing candidate mapped values. Then, under each of the k1
schema elements, we show the top k2 candidate mapped
values. Users are free to choose a subset of the candidate
mapping set as the final mappings. Note that all the final
mappings must be of the same type, either in schema el-
ement or value. When all the final mappings are schema
elements, the node is tokenized as a name node. Otherwise,
it will be tokenized as a value node.

Given the vocabulary restriction of the system, some parse
tree nodes may fail in mapping to any type of tokens. Also,
some words cannot be directly expressed by SQL compo-
nents. In such a case, a warning is generated, showing the
user a list of nodes that do not directly contribute in inter-
preting the query. Our system deletes each such node from
the parse tree and move all its children to its parent.

4.3 Default Mapping Strategy
To facilitate user choice, for each node, we would like to

choose a mapping as the default mapping, which the user
can simply accept in many cases.

A simple solution is to choose the mapping with the high-
est similarity. But sometimes, we can utilize the structure
of the sentence, as reflected in the parse tree, to enhance
the quality of the default mapping generation. Consider
the query “return all conferences in the database area”.
The node “database” maps to both the value “database”
under Domain.name and the value “database” under Key-
word.keyword. Since the node “area” is the parent of the
node “database” in the parse tree and maps to Domain with
high similarity, the node “database” is more likely to refer
to a domain name rather than a keyword. Our intuition is
that when NV nodes are closer to each other in the parse
tree, which means they are more relevant to each other,
they should map to schema elements/values more relevant
to each other in the database. The mutual relevance be-
tween schema elements is formally defined as follows:

Definition 2 (Relevance between Schema Elements).
Given two schema elements v1 and v2 in the database, p(v1, v2)
be the join path connecting v1 and v2 with the highest weight.
The weight of p(v1, v2) is defined as the mutual relevance be-
tween v1 and v2.

When we choose the default mappings for NV nodes, we
consider both the similarity in the mappings and the mutual
relevance between each pair of NV nodes. We define the
score of a mapping strategy below. The mapping strategy

77

with the highest score is returned as the default mapping
strategy.

Definition 3 (Score of a Mapping Strategy). Let
M be a mapping strategy, in which each NV node ni maps to
the schema element vni

. Let {ancestor(ni, nj)} be the set of
all NV pairs where ni is an ancestor of nj and no NV node
exists between ni and nj in the parse tree. The score of M
is defined as follows:

Π{ancestor(ni,nj)}(Sim(ni, vni
) ∗w(p(vi, vj)) ∗ Sim(nj , vnj

))

5. PARSE TREE STRUCTURE AJUSTMENT
Given the correct mapping strategy, each node in the lin-

guistic parse tree can be perfectly understood by our system.
In this section, we infer the relationship between the nodes
in the linguistic parse tree from the database’s perspective
and then understand the whole query. However, three ob-
stacles lie in the way of reaching this goal.

First, the linguistic parse tree generated from an off-the-
shelf parser may be incorrect. Natural language sentences
describing complex query logics often have complex struc-
tures with modifier attachments, aggregations, comparisons,
quantifiers, and conjunctions. As a result, the performance
of an off-the-shelf parser is often unsatisfactory for such sen-
tences. For example, the linguistic parse tree shown in Fig-
ure 3 (a) is a simplified output of the Stanford Dependency
Parser, which incorrectly attaches “VLDB” to “Bob”.

Second, the structure of the linguistic parse tree does not
directly reflect the relationship between the nodes from the
database’s perspective. Consider the following three sen-
tence fragments: (a) author who has more than 50 papers,
(b) author who has more papers than Bob, and (c) au-
thor whose papers are more than Bob. The linguistic parse
structures of these three sentence fragments are very dif-
ferent while their semantic meanings are similar from the
database’s perspective (describing the papers of the author
are more than Bob/50). We need to make such relationships
explicit and represent them properly.

Third, natural language sentences often contain elliptical
expressions. As a result, even though we understand the
relationship between all the explicit words/phrases, the sen-
tence may still be ambiguous before the elliptical part is
completed. Take the parse tree in Figure 3 (c) as an exam-
ple. Although the relationship between each pair of nodes
is clear, it still has multiple possible interpretations.

In this section, we describe the construction of the Parse
Tree Structure Adjustor in detail, which is in charge of cor-
recting the possible errors in the linguistic parse tree, mak-
ing the relationships between existing nodes understandable
from the database’s perspective, inserting implicit nodes to
the parse tree, and finally obtaining the exact interpretation
for the whole query. When ambiguities exist, the parse tree
structure adjustor will generate multiple candidate interpre-
tations for the user to choose from.

5.1 Query Tree
Since our system is designed to be a query interface that

translates natural language queries into SQL statements, the
semantic coverage of our system is essentially constrained by
the expressiveness of SQL. So, given a database, we repre-
sent our semantic coverage as a subset of parse trees, in
which each such parse tree explicitly corresponds to a SQL

statement and all such parse trees could cover all possible
SQL statements (with some constraints). We call such parse
trees as Query Trees. As such, interpreting a natural lan-
guage query (currently represented by a linguistic parse tree
and the mapping for each its node) is indeed the process of
mapping the query to its corresponding query tree in the
semantic coverage.

We defined in Figure 5 the grammar of the parse trees
that are syntactically valid in our system (all terminals are
different types of nodes defined in Figure 4.). Query trees
are the syntactically valid parse trees whose semantic mean-
ings are reasonable, which will be discussed in Section 5.3,
or approved by the user. Given the three obstacles in inter-
preting a linguistic parse tree, as we have discussed before,
there is often a big gap between the linguistic parse tree and
its corresponding query tree, which makes the mapping be-
tween them difficult. In our system, we take the following
two strategies to make the mapping process accurate.

1" Q"$>"(SClause)(ComplexCondi6on) "

2" SClause"$>"SELECT"+"GNP"

3" ComplexCondi6on"$>"ON"+"(leASubtree rightSubtree)"

4" leASubtree"$>"GNP"

5" rightSubtree"$>"GNP|VN|MIN|MAX"

6" GNP"$>"(FN"+"GNP)"|"NP"

7" NP"$>"NN"+"(NN) (Condi6on) "

8" condi6on"$>"VN"|"(ON"+"VN)"

+ represents"a"parent$child"rela6onship"

represents"a"sibling"rela6onship"

Figure 5: Grammar of Valid Parse Trees.

First, our system explains a query tree in natural lan-
guage, which enables the user to verify it. Query trees are
intermediates between natural language sentences and SQL
statements. Thus the translation from a query tree to a nat-
ural language sentence is quite straightforward, compared to
that from a SQL statement [9].

Second, given a natural language query, our system will
generate multiple candidate query trees for it, which can sig-
nificantly enhance the probability that one of them is cor-
rect. The problem is that, when the query is complex, there
may be many candidate query trees, which are similar to
each other. To show the user more candidate query trees
without burdening them too much in verifying them, we
do the mapping in two rounds and communicate with the
user after each round. In the first round, we return the top
k parse trees, which are syntactically valid according to the
grammar defined and can be obtained by only reformulating
the nodes in the parse tree. Each such parse tree represents
a rough interpretation for the query and we call them valid
parse trees. In the second round, implicit nodes (if there is
any) are inserted to the chosen (or default) valid parse tree
to generate its exact interpretation. Our system inserts im-
plicit nodes one by one under the supervision of the user. In
such a way, suppose that there are k′ possible implicit nodes
in each of the k valid parse tree, the user only needs to verify

k valid parse trees and k′ query trees instead of all k ∗ 2k
′

candidate query trees. Figure 3 (c) shows a valid parse tree
generated in the first round, while this valid parse tree is
full-fledged to the query tree in Figure 3 (d) after inserting
implicit nodes.

78

5.2 Parse Tree Reformulation
In this section, given a linguistic parse tree, we reformu-

late it in multiple ways and generate its top k rough inter-
pretations. To simplify the tree reformulation process, each
logic node or quantifier node is merged with its parent. For
example, in the parse tree of Query 3 in Figure 1, which is
shown in Figure 7 (a), the quantifier node “each” is merged
with its parent “area”.

The basic idea in the algorithm is to use subtree move op-
erations to edit the parse tree until it is syntactically valid
according to the grammar we defined. The resulting algo-
rithm is shown in Figure 6. Each time, we use the function
adjust(tree) to generate all the possible parse trees in one
subtree move operation (line 6)2. Since the number of possi-
ble parse trees grows exponentially with the number of edits,
the whole process would be slow. To accelerate the process,
our algorithm evaluates each new generated parse tree and
filter out bad parse trees directly (line 11 - 12). Also, we
hash each parse tree into a number and store all the hashed
numbers in a hash table (line 10). By checking the hash
table (line 8), we can make sure that each parse tree will be
processed at most once. We also set a parameter t as the
maximum number of edits approved (line 8). Our system
records all the valid parse trees appeared in the reformula-
tion process (line 13 - 14) and returns the top k of them for
the user to choose from (line 15 - 16). Since our algorithm
stops after t edits and retains a parse tree only if it is no
worse than its corresponding parse tree before the last edit
(line 8), some valid parse trees may be omitted.

Algorithm*1:*QueryTreeGen(parseTree)

1:--results- ;-HT+

2:--PriorityQueue.push(parseTree)!

-3:--HT.add(h(tree))

4:--while-PriorityQueue-≠ do*

-5:-----tree-=-PriorityQueue.pop()+-

6:-----treeList+=+adjust(tree)

7:-----for*all-tree’- -treeList-do!

8:---------if-tree’+not+exists+in+HT+&&-tree’.edit-<-t-then**

9:--------------tree’.edit-=-tree.edit+1;--

10:------------HT.add(h(tree’));**

11:------------if-evaluate(tree’)+>=+evaluate(tree)+then!

12:-----------------PriorityQueue.add(tree’)*

13:- -----if-tree’-is-valid

14:------------ - results.add(tree’)

15:-rank(results)-

16:-Return-results

Figure 6: Parse Tree Reformulation Algorithm.

To filter out bad parse trees in the reformulating process
and rank the result parse trees, we evaluate whether a parse
tree is desirable from three aspects.

First, a good parse tree should be valid according to the
grammar defined in Figure 5. We count the number of parse
tree nodes that violate the grammar. The fewer invalid

2There is an exception for the tree adjustment, in which a
node “=” can be inserted to the Root node and the result-
ing parse tree will be directly added to the priority queue
without evaluation.

nodes in a parse tree, the better the parse tree is. For ex-
ample, the parse tree in Figure 3 (a) has four invalid nodes,
which are “paper”, “more”, “Bob” and “VLDB”. Similarly,
the parse tree in Figure 7 (a) has three invalid nodes: “ci-
tation”, “most” and “total”.

return

conference

ROOT

area (each) papers

citations

most total

return

conference

ROOT

area (each) citations

papers

mosttotal

=

(a) (b)

return

conference

ROOT

area (each) citations

papers

mosttotal

=

(c)

conference2

area2 (each)

citations1

papers3

total4

conference3

area3 (each)

Figure 7: (a) A Simplified Linguistic Parse Tree for
Query 3 in Figure 1. (b) A Valid Parse Tree. (c) A
Query Tree after Inserting Implicit Nodes.

Second, the mappings between the parse tree nodes and
the schema elements in the database can help to infer the
desired structure of a parse tree. For example, in the parse
tree shown in Figure 3 (a), the node “VLDB” is attached to
the node “Bob”, which is an incorrect modifier attachment.
In the parse tree node mapper, we have mapped the node
“VLDB” to Conference.name, “Bob” to Author.name and
“paper” to Publication. As discussed in Section 4.3, in the
database, Conference.name is more relevant to Publication
than to Author.name. So the parse tree, which attaches
“VLDB” to “paper”, seems more reasonable than the parse
tree attaches “VLDB” to “Bob”. We capture such intuition
by formally defining the score of a parse tree.

Definition 4 (Score of a Parse Tree). Let T be a
parse tree, in which each NV node nti maps to the schema
element vi. Let {valid(nti, ntj)} be the set of all the NV
pairs where nti is an ancestor of ntj and no NV node ex-
ists between nti and ntj . Given the relevance w(p(vi, vj))
between vi and vi, the score of T is defined as follows:

score(T) = Π{valid(nti,ntj)}(w(p(vi, vj)))

Third, the parse tree should be similar to the original
linguistic parse tree, which is measured by the number of
the subtree move operations used in the transformation.

When ranking the all the generated parse trees (line 15 in
Figure 6), our system takes all the three factors into account.
However, in the tree adjustment process (line 11), to reduce
the cases when the adjustments stop in local optima, we
only consider the first two factors, in which the first factor
dominates the evaluation.

5.3 Implicit Nodes Insertion
Natural language sentences often contain elliptical expres-

sions, which make some nodes in their parse trees implicit.
In this section, for a rough interpretation, which is repre-
sented by a valid parse tree, we obtain its exact interpreta-
tion by detecting and inserting implicit nodes.

In our system, implicit nodes mainly exist in complex con-
ditions, which correspond to the conditions involving aggre-
gations, nestings, and non-FKPK join constraints. As can
be derived from Figure 5, the semantic meaning of a com-
plex condition is its comparison operator node operating

79

on its left and right subtrees. When implicit nodes exist,
such syntactically valid conditions are very likely to be se-
mantically “unreasonable”. We will first use two examples
to illustrate the concept of “unreasonable” conditions and
then provide rules to detect and insert the implicit nodes,
and finally make “unreasonable” conditions reasonable.

Consider two syntactically valid parse trees, whose se-
mantic meanings are “return all the organizations, where
the number of papers by the organization is more than the
number of authors in IBM” and “return all the authors,
where the number of papers by the author in VLDB is more
than the number of papers in ICDE”. The first parse tree
compares the number of papers with the number of organi-
zations, which sounds unreasonable in meaning. The second
parse tree seems better, but compares the number of papers
by an author in a conference with all the papers in another
conference, which is also a little weird. To detect such un-
reasonable query logics, we define the concept of core node.

Definition 5 (Core Node). Given a complex condi-
tion, its left (resp. right) core node is the name node that
occurs in its left (right) subtree with no name node as an-
cestor.

Inspired from [20], given a complex condition, we believe
that its left core node and right core node are the concepts
that are actually compared. So they should have the same
type (map to the same schema element in the database).
When they are in different types, we believe that the ac-
tual right core node, which is of the same type as the left
core node, is implicit. Consider the first query we described
above. The left core node is “paper” while the right core
node is “author”. By inserting an implicit node “paper” as
its new right core node, the semantic meaning of the parse
tree is changed to “return all the organizations, where the
number of papers by the organization is more than the num-
ber of papers by the authors in IBM”, which is much more
reasonable. For the example in Figure 7, the implicit right
core node “citations1” in Figure 7 (c) is inserted in the same
way. A special case is that when the right subtree contains
only one number, there is no implicit node in the right sub-
tree although the right core node is empty. For example,
in the condition “more than 50 papers”, the right subtree
contains only one number “50” without any implicit node.

The name nodes in a left subtree are always related to the
name nodes under the “SELECT” node. Take the parse tree
in Figure 7 (b) as an example. The nodes “conference” and
“area” are related to the nodes “citations” and “paper”. In
our system, we connect them by duplicating the name nodes
under the “SELECT” node and inserting them to left sub-
tree. Each of the nodes inserted in this step is considered as
the same entity with its original node and marked “outside”
for the translation in Section 6.

Furthermore, the constraints for the left core node and the
right core node should be consistent. Consider the parse tree
in Figure 3 (c). Its complex condition compares the number
of papers by an author in VLDB after 2000 with the number
of all the papers by Bob (in any year on any conference
or journal), which is unfair. As such, the constraints of
“in VLDB” and “after 2000” should be added to the right
subtree. To capture this intuition, we map each NV node
under the left core node to at most one NV node under the
right core node. Two nodes can be mapped only when they
correspond to the same schema element in the database.

When a node has no map, our system will add an implicit
node to the other side to make them match with each other.
Note that the nodes duplicated from “outside” nodes are
also marked “outside” and are considered corresponding to
the same entity with the original nodes.

The last kind of implicit node is the function node. In our
system, we consider two cases where function nodes may be
implicit. First, the function node “count” is often implicit
in the natural language sentences. Consider the parse tree
in Figure 3 (c). The node “paper” is the left child of node
“more” and it maps to the relation “Publication”, which is
not a number attribute. The comparison between papers
is unreasonable without a “count” function. Second, the
function nodes operating on the left core node should also
operate on the right core node. Figure 7 (c) shows an ex-
ample for this case. We see that the function node “total”
operates on the left core node “citations” but does not oper-
ate on the right core node “citations1”. Our system detects
such implicit function node and insert “total4” to the right
core node.

In our system, the detection and insertion of implicit nodes
is just an inference of the semantic meaning for a query,
which cannot guarantee the accuracy. As such, the whole
process is done under the supervision of the user.

6. SQL GENERATION
Given a full-fledged query tree, we show in this section

how to generate its corresponding SQL expression.
In the translation, a schema element mapped by an NV

node may have multiple representations in the SQL state-
ment, say the schema element itself, its relation, its primary
attribute and its primary key. For each occurrence, only one
of these representations is adopted according to the context.
Take the node “conference” in Figure 7 (c) as an example.
When it is added to the FROM clause, it actually refers to
the relation Conference. When we return it to the user as the
final result, we actually return its primary attribute, which
is Conference.name. For simplicity, we use the expression
“the schema element mapped by node ‘conference’” in all
cases, in which the specific representation can be obtained
from the context.

6.1 Basic Translation
In the cases when the query tree does not contain func-

tion nodes or quantifier nodes, which means the target SQL
query will not have aggregate functions or subqueries, the
translation is quite straightforward. The schema element
mapped by the NV node under the SELECT node is added
to the SELECT clause. Each value node (together with its
operation node if specified) is translated to a selection con-
dition and added to the WHERE clause. Finally, a FK-PK
join path is generated, according to the schema graph, to
connect each NV node and its neighbors. Such an FK-PK
join path is translated into a series of FK-PK join condi-
tions and all the schema elements in the FK-PK join path
are added to the FROM clause.

Example 2. Consider the query tree shown in Figure 7 (c).
Here we omit its complex condition. The schema element
Conference.name, which is mapped by the node “conference”,
is added to the SELECT clause. To connect the mapped
schema elements Conference and Domain, a FK-PK join
path Conference ↔ ConferenceDomain ↔ Domain is

80

generated, which will be translated to the FK-PK conditions
shown in line 16-17 in Figure 8.

1.#Block#2:#SELECT#SUM(Publica8on.cita8on_num)#as#sum_cita8on,###

#2.# # #Conference.cid,#Domain.did#

3.######## FROM#Publica8on,#Conference,#Domain,#ConferenceDomain#

#4.# ## WHERE#Publica8on.cid#=#Conference.cid#

#5. # #AND#Conference.cid#=#ConferenceDomain.cid#

#6.# # #AND#ConferenceDomain.did#=#Domain.did#

#7.# ## GROUP#BY#Conference.cid,#Domain.did#

8.#Block#3:#SELECT#MAX(block4.sum_cita8on)#as#max_cita8on,##

#9.# # #block4.cid,#block4.did#

#10. ####FROM#(CONTENT#OF#BLOCK4)#as#block4#

#11. ####GROUP#BY#block4.did#

12.Block#1:#SELECT#Conference.name,#Domain.name#

#13. #####FROM#Conference,#Domain,#ConferenceDomain#

#14. # #(CONTENT#OF#BLOCK2)#as#block2#

#15. # #(CONTENT#OF#BLOCK3)#as#block3#

#16. #####WHERE#Conference.cid#=#ConferenceDomain.cid#

17.# # #AND#ConferenceDomain.did#=#Domain.did#

18.# # #AND#block2.cita8on_num#=#block3.max_cita8on#

19. # #AND#Conference.cid#=#block2.cid#

20.# # #AND#Conference.cid#=#block3.cid#

21. # #AND#Domain.did#=#block2.did#

22.# # #AND#Domain.did#=#block3.did#

Figure 8: Translated SQL Statement for the Query
Tree in Figure 7 (c).

6.2 Blocks and Subqueries
When the query tree contains function nodes or quantifier

nodes, the target SQL statements will contain subqueries.
In our system, we use the concept of block to clarify the
scope of each target subquery.

Definition 6 (Block). A block is a subtree rooted at
the select node, a name node that is marked “all” or “any”,
or a function node. The block rooted at the select node is
the main block, which will be translated to the main query.
Other blocks will be translated to subqueries. When the root
of a block b1 is the parent of the root of another block b2, we
say that b1 is the direct outer block of b2 and b2 is a direct
inner block of b1. The main block is the direct outer block of
all the blocks that do not have other outer blocks.

Given a query tree comprising multiple blocks, we trans-
late one block at a time, starting from the innermost block,
so that any correlated variables and other context is already
set when outer blocks are processed.

Example 3. The query tree shown in Figure 7 (c) con-
sists of four blocks: b1 rooted at node “return”, b2 rooted at
node “total”, b3 rooted at node “most”, and b4 rooted at node
“total4”. b1 is the main block, which is the direct outer block
of b2 and b3. b3 is the direct outer block of b4. For this query
tree, our system will first translate b2 and b4, then translate
b3 and finally translate the main block b1.

For each single block, the major part of its translation is
the same as the basic translation as we have described. In

addition, some SQL fragments must be added to specify the
relationship between these blocks.

First, for a block, each of its direct inner blocks is included
in the FROM clause as a subquery. Second, each complex
condition is translated as a non-FKPK join condition in the
main query. Third, each of the name nodes that is marked
“outside” refers to the same entity as its original node in
the main block. Each of such relationships is translated to
a condition in the main query.

Example 4. Consider the query tree in Figure 7 (c), whose
target SQL statement is shown in Figure 8 (the block b4 is
omitted since it is almost the same as b2). In the query
tree, b4 is included by b2 while b2 and b3 are included by b1
as direct inner blocks. Thus their corresponding subqueries
are added to the FROM clause of their direct outer blocks
(line 10 and line 14 - 15). The complex condition rooted
at node “=” is translated to the condition in line 18. The
nodes “conference2”, “area2”, “conference3” and “area3”
are marked “outside” in the implicit node insertion, which
means they correspond to the same entity as the nodes “con-
ference” and “area” in the main block. These relationships
are translated to the conditions in line 19 - 22.

Finally, we need to determine the scope of each aggregate
function and quantifier (all, any). The scope of each quanti-
fier is rather obvious, which is the whole block rooted at the
name node marked with that quantifier. In contrast, when
multiple aggregate functions exist in one query, especially
when they occur in different levels of blocks, the scope of
each aggregate function is not straightforward. In our sys-
tem, we call the name node that are marked with “each”
or “outside” as grouping nodes. Each aggregate function
operates on the grouping nodes that (a) haven’t been oper-
ated on by other aggregate functions in its inner blocks, and
(b) do not have grouping nodes that meet condition (a) as
ancestors. Once a grouping node is operated on by an aggre-
gate function, it is disabled (since it has been aggregated).
Each time we determine the scope of an aggregate function,
we just add all the grouping nodes that still work. Take the
query tree in Figure 7 (c) as an example. When determin-
ing the scope of total4, both the grouping nodes conference3
and area3 work and are added to the GROUP BY clause
(the same as line 7). After this aggregation, conference3
is disabled since it has been operated on by total4. When
determining the scope of most, only area3 still works, which
will be added to the GROUP BY clause (line 11) and dis-
abled afterwards.

7. EXPERIMENTS
We implemented NaLIR as a stand-alone interface that

can work on top of any RDBMS. In our implementation,
we used MySQL as the RDBMS and the Stanford Natural
Language Parser [7] as the dependency parser. For each
ambiguity, we limited to 5 the number of interpretations for
the user to choose from.

7.1 Measurement
The motivation of our system is to enable non-technical

users to compose logically complex queries over relational
databases and get perfect query results. So, there are two
crucial aspects we must evaluate: the quality of the returned
results (effectiveness) and whether our system is easy to use
for non-technical users (usability).

81

Rela%on(#tuples(Rela%on(#tuples(

Publica(on+ 2.45+M+ Author+ 1.25+M+

cite+ 20.3+M+ Domain+ 24+

Conference+ 2.9+K+ Journal+ 1.1+K+

Organiza(ons+ 11+K+ Keywords+ 37+K+

Figure 9: Summary Statistics for MAS Database.

Effectiveness. Evaluating the effectiveness of NaLIR is
a challenging task. The objective in NaLIR is to allow users
to represent SQL statements using natural language. Tra-
ditional IR metrics like recall and precision would not work
very well since they will always be 100% if the translated
SQL statement is correct and near 0% in many times when
it is not. So, the effectiveness of our system was evaluated as
the percentage of the queries that were perfectly answered
by our system. (Note that this is a stiff metric, in that we
get zero credit if the output SQL query is not perfect, even if
the answer set has a high overlap with the desired answer).
Since the situations where users accept imperfect/wrong an-
swers would cause severe reliability problems, for the cases
when the answers were wrong, we recorded whether the users
were able to recognize such failures, whether from the an-
swers themselves or from the explanations generated by our
system. Also, for the failure queries, we analyzed the specific
reasons that caused such failures.

Usability. For the correctly processed queries, we recorded
the actual time taken by the participants. In addition, we
evaluated our system subjectively by asking each participant
to fill out a post-experiment questionnaire.

7.2 Experiments Design
The experiment was a user study, in which participants

were asked to finish the query tasks we designed for them.
Data Set and Comparisons. We used the data set

of Microsoft Academic Search (MAS). Its simplified schema
graph and summary statistics are shown in Figure 1 and
Figure 9, respectively. We choosed this data set because it
comes with an interesting set of (supported) queries, as we
will discuss next.

We compared our system with the faceted interface of the
MAS website. The website has a carefully designed ranking
system and interface. By clicking through the site, a user
is able to get answers to many quite complex queries. We
enumerated all query logics that are “directly supported” by
the MAS website and can be accomplished by SQL state-
ments. “Directly supported” means that the answer of the
query can be obtained in a single webpage (or a series of
continuous webpages) without further processing. For ex-
ample, to answer the query “return the number of confer-
ences in each area”, the user has to look at 24 webpages, in
which each webpage corresponds to the answer in an area.
Thus this query is not considered to be directly supported
by the MAS website. However, the query, QD, “return the
number of conferences in the Database area” is a directly
supported query. Queries that refer to the same relations
and attributes but different values, are considered to have
the same query logic. Thus, query QD has the same query
logic as the query “return the number of conferences in the
Graphics area”. Through exhaustive enumeration, we ob-
tained a set of 196 query logics.

Easy:&Return&all&the&conferences&in&database&area.&&&&&&&

Medium:&Return&the&number&of&papers&in&each&database&conference.&&&&&&&

Hard:&Return&the&author&who&has&the&most&publica;ons&in&database&area.&&&

Figure 10: Sample Queries in Different Complexity.

We marked the complexity of each query according to the
levels of aggregation/nesting in its corresponding SQL state-
ment. Sample queries with different complexity are shown in
Figure 10. In the query set, the number of easy/medium/hard
queries are 63/68/65, respectively.

The MAS website is expressly designed to support these
196 query logics, and the user can click through the site
to get to a results page, entering only values of constants
into search boxes as needed along the way. We used this as
the baseline for our comparison. In other words, how did
natural language direction compare with click through, for
the queries supported by the latter. (Note that an NLIDB
supports many different queries beyond just these 196, while
the website does not. We restricted our comparison to just
the queries supported by the website).

A central innovation in NaLIR is the user interaction as
part of query interpretation. To understand the benefit of
such interaction, we also experimented with a version of
NaLIR in which the interactive communicator was disabled,
and the system always chose the default (most likely) option.

Participants. 14 participants were recruited with flyers
posted on a university campus. A questionnaire indicated
that all participants were familiar with keyword search inter-
faces (e.g. Google) and faceted search interfaces (e.g. Ama-
zon), but had little knowledge of formal query languages
(e.g. SQL). Furthermore, they were fluent in both English
and Chinese.

Procedures. We evenly divided the query set into 28
task groups, in which the easy/medium/hard tasks were
evenly divided into each task group. This experiment was
a within-subject design. Each participant randomly took
three groups of tasks and completed three experimental blocks.
In the first (resp. second) experimental block, each partic-
ipant used our system without (with) the Interactive Com-
municator to accomplish the tasks in her first (second) task
group. Then in the third experimental block, each partici-
pant used the MAS interface to do her third task group. For
each task group, the participants started with sample query
tasks, in order to get familiar with each interface.

For our system, it is hard to convey the query task to the
participants since any English description would cause bias
in the task. To overcome this, we described each query task
in Chinese and asked users to compose English query sen-
tences. Since English and Chinese are in entirely different
language families, we believe this kind of design can min-
imize such bias. To alleviate participants’ frustration and
fatigue from repeated failures, a time limit of three minutes
was set for each single query task.

7.3 Results and Analysis
Effectiveness. Figure 11 compares the effectiveness of

our system (with or without the interactive communicator)
with the MAS website. As we can see, when the interactive
communicator was disabled, the effectiveness of our system
decreased significantly when the query tasks became more
complex. Out of the 32 failures, the participants only de-
tected 7 of them. Actually, most of undetected wrong an-

82

with%Interac,on without%Interac,on MAS

Simple: 34/34 26/32 20/33

Medium: 34/34 23/34 18/32

Hard: 20/30 15/32 18/33

Figure 11: Effectiveness.

Mapper Reformula,on Inser,on Transla,on

w/o3Interac,on 15 19 0 0

with3Interac,on 0 10 0 0

Figure 12: Failures in each Component.

swers were aggregated results, which were impossible to ver-
ify without further explanation. In other undetected fail-
ures, the participants accepted wrong answers mainly be-
cause they were not familiar with what they were query-
ing. In the 7 detected failures, although the participants
were aware of the failure, they were not able to correctly
reformulate the queries in the time constraint. (In 5 of the
detected failures, the participants detected the failure only
because the query results were empty sets). The situation
got much better when the interactive communicator was in-
volved. The users were able to handle 88 out of the 98 query
tasks. For the 10 failed tasks, they only accepted 4 wrong
answers, which was caused by the ambiguous (natural lan-
guage) explanations generated from our system. In contrast,
the participants were only able to accomplish 56 out of the
98 tasks using the MAS website, although all the correct an-
swers could be found. In the failure cases, the participants
were simply not able to find the right webpages, which often
required several clicks from the initial search results.

Figure 12 shows the statistics of the specific components
that cause the failures. We can see that our system could
always correctly detect and insert the implicit parse tree
nodes, even without interactive communications with the
user. Also, when the query tree was correctly generated, our
system translated it to the correct SQL statement. When
the interactive communicator was enabled, the accuracy in
the parse tree node mapper improved significantly, which
means for each the ambiguous parse tree node, the parse tree
node mapper could at least generate one correct mapping
in the top 5 candidate mappings, and most importantly, the
participants were able to recognize the correct mapping from
others. The accuracy in parse tree structure reformulation
was also improved when the participants were free to choose
from the top 5 candidate valid parse trees. However, when
the queries were complex, the number of possible valid parse
trees was huge. As a result, the top 5 guessed interpretations
could not always include the correct one.

Usability. The average time needed for the successfully
accomplished query tasks is shown in Figure 13. When the
interactive communicator was disabled, the only thing a par-
ticipant could do was to read the query task description,
understand the query task, translate the query task from
Chinese to English and submit the query. So most of the
query tasks were done in 50 seconds. When the interactive
communicator was enabled, the participants were able to
read the explanations, choose interpretations, reformulate
the query according to the warnings, and decide to whether

with%Interac,on without%Interac,on MAS

Simple: 48 34 49

Medium: 70 42 67

Hard: 103 51 74

Figure 13: Average Time Cost (s).

to accept the query results.
It is worth noting that, using our system (with interac-

tive communicator), there was no instance where the par-
ticipant became frustrated with the natural language inter-
face and abandoned his/her query task within the time con-
straint. However, in 9 of the query tasks, participants de-
cided to stop the experiment due to frustration with the
MAS website. According to the questionnaire results, the
users felt that MAS website was good for browsing data
but not well-designed for conducting specific query tasks.
They felt NaLIR can handle simple/medium query tasks
very well but they encountered difficulties for some of the
hard queries. In contrast, the MAS website was not sensitive
to the complexity of query tasks. Generally, they welcomed
the idea of an interactive natural language query interface,
and found our system easy to use. The average level of sat-
isfaction with our system was 5, 5 and 3.8 for easy, medium,
and hard query tasks, respectively, on a scale of 1 to 5, where
5 denotes extremely easy to use.

8. RELATED WORK
Keyword search interfaces are widely used by non-experts

to specify ad-hoc queries over relational databases [19, 4,
1, 8]. Recently, there has been a stream of such research
on keyword search [15, 14, 18, 5, 3], in which, given a set
of keywords, instead of finding the data relevant to these
keywords, they try to interpret the query intent behind the
keywords in the view of a formal query language. In partic-
ular, some of them extend keywords by supporting aggrega-
tion functions [15], Boolean operators [14], query language
fragments [5], and so forth. These works can be considered
as a first step toward addressing the challenge of natural
language querying. Our work builds upon this stream of re-
search. However, our system supports a richer query mecha-
nism that allows us to convey much more complex semantic
meaning than a flat collection of keywords.

Natural language interfaces to databases (NLIDB) have
been studied for several decades [2]. Early NLIDBs de-
pended on hand crafted semantic grammars tailored to each
individual database, which are hard to transport to other
databases. In contrast, our system use SQL, a generic query
language, as the translation target, which makes our sys-
tem potentially portable to various databases in different
domains.

As pointed out in [13], the major usability problem in
NLIDBs is its limited reliability. Natural language sen-
tences do not have formally defined semantics. The goal
of NLIDBs is to infer the user’s query intent, which cannot
guarantee accuracy due to ambiguities. To deal with the
reliability issue, PRECISE [13, 12] defines a subset of nat-
ural language queries as semantically tractable queries and
precisely translates these queries into corresponding SQL
queries. However, natural language queries that are not se-
mantically tractable will be rejected by PRECISE. In con-

83

trast, our system achieves reliability by explaining to the
user how we interpret her query, which is not restricted by
the scope of semantically tractable queries.

The idea of interactive NLIDB was discussed in previ-
ous literature [2, 10, 11]. Early interactive NLIDBs [2,
10] mainly focus on generating cooperative responses from
query results (over-answering). NaLIX [11] takes a step fur-
ther, generating suggestions for the user to reformulate her
query when it is beyond the semantic coverage. This strat-
egy greatly reduces the user’s burden in query reformulation.
However, the fact that the input query is in the semantic
coverage does not necessary mean it will be processed cor-
rectly. In our system, given a natural language query, we ex-
plain to the user how we process her query and interactively
resolve ambiguities with the user. As a result, under the
supervision of the user, our system could confidently handle
rather complex queries, in which the target SQL statement
may include multi-level aggregations, nestings, and various
types of joins, among other things.

An important task in our system is to explain the interpre-
tation to the user for verification. Previous systems explain
SQL queries to naive users using natural language [9] and
visualization tools [6, 3]. In our system, we explain interme-
diate logic expressions to the user, which is an easier task.

9. CONCLUSION AND FUTURE WORK
We have describe an interactive natural language query

interface for relational databases. Given a natural language
query, our system first translates it to a SQL statement and
then evaluates it against an RDBMS. To achieve high re-
liability, our system explains to the user how her query is
actually processed. When ambiguities exist, for each am-
biguity, our system generates multiple likely interpretations
for the user to choose from, which resolves ambiguities in-
teractively with the user. The query mechanism described
in this paper has been implemented, and actual user ex-
perience gathered. Using our system, even naive users are
able to accomplish logically complex query tasks, in which
the target SQL statements include comparison predicates,
conjunctions, quantifications, multi-level aggregations, nest-
ings, and various types of joins, among other things.

In our current implementation, we compose each SQL
statement from the ground up. When a query log, which
contains natural language queries and their corresponding
SQL statements, is available, we believe that our system
can benefit from reusing previous SQL statements. When
the new query is in the query log, we can directly reuse
the existing SQL statement. When the new query is dis-
similar to any previous queries, we could compose the SQL
statements from the ground up. Most importantly, we would
like to achieve somewhere in between, finding similar queries
in the query log, reusing some of the SQL fragments, and
completing the remaining parts. We believe that such im-
provements have the potential to enhance the precision of
our system, which would reduce the number of interactive
communications.

10. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A

system for keyword-based search over relational
databases. In ICDE, pages 5–16, 2002.

[2] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch.
Natural language interfaces to databases - an

introduction. Natural Language Engineering,
1(1):29–81, 1995.

[3] S. Bergamaschi, F. Guerra, M. Interlandi, R. T. Lado,
and Y. Velegrakis. Quest: A keyword search system
for relational data based on semantic and machine
learning techniques. PVLDB, 6(12):1222–1225, 2013.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using banks. In ICDE, pages 431–440, 2002.

[5] L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and
K. Stockinger. Soda: Generating sql for business
users. PVLDB, 5(10):932–943, 2012.

[6] J. Danaparamita and W. Gatterbauer. Queryviz:
helping users understand sql queries and their
patterns. In EDBT, pages 558–561, 2011.

[7] M.-C. de Marneffe, B. MacCartney, and C. D.
Manning. Generating typed dependency parses from
phrase structure parses. In LREC, pages 449–454,
2006.

[8] V. Hristidis and Y. Papakonstantinou. Discover:
Keyword search in relational databases. In VLDB,
pages 670–681, 2002.

[9] A. Kokkalis, P. Vagenas, A. Zervakis, A. Simitsis,
G. Koutrika, and Y. E. Ioannidis. Logos: a system for
translating queries into narratives. In SIGMOD
Conference, pages 673–676, 2012.

[10] D. Küpper, M. Strobel, and D. Rösner. Nauda - a
cooperative, natural language interface to relational
databases. In SIGMOD Conference, pages 529–533,
1993.

[11] Y. Li, H. Yang, and H. V. Jagadish. Nalix: an
interactive natural language interface for querying
xml. In SIGMOD Conference, pages 900–902, 2005.

[12] A.-M. Popescu, A. Armanasu, O. Etzioni, D. Ko, and
A. Yates. Modern natural language interfaces to
databases: Composing statistical parsing with
semantic tractability. In COLING, 2004.

[13] A.-M. Popescu, O. Etzioni, and H. A. Kautz. Towards
a theory of natural language interfaces to databases.
In IUI, pages 149–157, 2003.

[14] A. Simitsis, G. Koutrika, and Y. E. Ioannidis. Précis:
from unstructured keywords as queries to structured
databases as answers. VLDB J., 17(1):117–149, 2008.

[15] S. Tata and G. M. Lohman. Sqak: doing more with
keywords. In SIGMOD Conference, pages 889–902,
2008.

[16] Z. Wu and M. S. Palmer. Verb semantics and lexical
selection. In ACL, pages 133–138, 1994.

[17] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang.
Efficient similarity joins for near-duplicate detection.
ACM Trans. Database Syst., 36(3):15, 2011.

[18] D. Xin, Y. He, and V. Ganti. Keyword++: A
framework to improve keyword search over entity
databases. PVLDB, 3(1):711–722, 2010.

[19] J. X. Yu, L. Qin, and L. Chang. Keyword Search in
Databases. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2010.

[20] Y. Zeng, Z. Bao, T. W. Ling, H. V. Jagadish, and
G. Li. Breaking out of the mismatch trap. In ICDE,
pages 940–951, 2014.

84

