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1.     Introduction 

The task of system identification is to deduce, from observed data, a model (or a set of models) 

that can be used for specific purposes such as system analysis, control and prediction. A system model 

is defined by two properties: the model structure and the associated model parameters. Traditionally, 

the identification procedure for dynamical systems often merely involves a single (training) data set, 

corresponding to one specific experimental situation, and the resultant final model is thus experimental 

specific; both the model structure and the associated model parameters are fixed. In the real world, 

however, parameters in a given common model structure for a dynamical system may be required to 

be changeable to meet varying situations caused by the variation of either internal or exogenous 

parameters (Billings and Voon 1987). For example, typical mass-spring-damper vibration systems can 

be described using a common model structure, in the form of second order ordinary differential 

equation (ODE), where the associated parameters are changeable and determined by the three 

elements of mass, spring and damper. The ODE model for the vibration system can be viewed as a 

special case of internal-parameter-dependent (IPD) models, where the dynamical behaviour of the 

model is directly affected by changes of the internal parameters. 
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In terms of system identification, the task for general IPD model identification problems can be 

summarized as follows. By setting the process internal parameters to be different values, a number of 

experiments are carried out on the same system, and different data sets are obtained, corresponding to 

different parameter properties. The objective is to find from the available data a parsimonious 

common model structure, to accommodate all the different parameter properties by best fitting all the 

data sets using the common structured model, with varying process internal parameters. This is 

different from conventional parameter-varying models, where process internal parameters are assumed 

to be time-varying. 

There are many other cases where parameter-dependent models are desirable. Consider the 

following scenario. In typical normal operating conditions, the dynamical behaviour of an underlying 

system is often determined by the system model structure and the associated process internal 

parameters. In many cases, however, several external parameters, for example temperature, pressure 

intensity, light illumination, geometry shape and size, etc., may also indirectly affect the dynamical 

behaviour of the system, via the associated process internal parameters. In order to fully understand 

the mechanisms of the underlying dynamics under different operating conditions, several experiments, 

with respect to different exogenous parameter properties, may be required. The task of external-

parameter-dependent (EPD) model identification is to find a best common model structure based on 

the available data, to accommodate the effects of all the external parameters, by best fitting all the data 

sets using the common structured model, with adjustable process internal parameters. This is related to 

but distinct from the concepts of spatial piecewise linear models and models with single dependent 

parameters (Billings and Voon 1987), and operating point dependent models (Billings and Chen 1989). 

The objective of this study is to present a unified parameter-dependent common-structured (PDCS) 

modelling framework for handling the IPD and EPD identification problem, where the selection of the 

common model structure is the critical stage in the procedure. An efficient common model structure 

selection (CMSS) algorithm, called the extended forward orthogonal regression (EFOR) algorithm, is 

developed in this study to select a common model structure based on several data sets collected from 

different experiments. Once the common model structure has been obtained, relevant model 

parameters corresponding to each individual experimental condition can then be calculated based on 

the available individual data sets. The novel study of common model structure identification is very 

useful for engineering system design and control, where only a fixed common model structure is 

involved but with adjustable process internal parameters. A PDCS model can be used to analyse the 

effects of varying parameter properties on the performance of the behaviour of the underlying 

dynamical systems without carrying out experiments on the real system. This will save time and 

money spent on real system experiments. 

For convenience of description, in the following all non-internal parameters, including different 

experimental conditions, will be referred to as external or exogenous parameters. Specifically 

prescribed parameters, either internal or exogenous, will be called experiment parameters or design 
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parameters. This work involves several abbreviations and these are collected in the appendix to 

facilitate reading of text. 

2.     The concept of the parameter-dependent commonly structured model 

The parameter-dependent common-structured (PDCS) model is defined as below 

))(),(,),1(),(,),1(()( ξθuy ntutuntytyfty −−−−= LL )(te+                                                  (1) 

where  

•  the nonlinear mapping is often unknown and needs to be identified from given observations of 

the input and the output ; and  are the maximum input and output lags;  is 

the model prediction error, which can often be treated as an independent zero mean noise 

sequence providing that the function gives a sufficient description of the system. 
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where (i=1,..,K) are different linear or nonlinear functions that share a common structure in 

representation. The symbol ‘s.t. ’ means the individual model is subject to the exogenous parameter 

. Clearly, if K=1, the PDCS model (2) will reduce to the traditional NARX (Nonlinear 

AutoRegressive with eXogenous inputs) model (Leontaritis and Billings 1985, Pearson 1999). 

)(⋅if
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Note that the PDCS model considered here is different from conventional time-varying or 

parameter-varying models, where process internal parameters are assumed to be time-varying. The 

PDCS model is also different from the traditional multi-input and multi-output (MIMO) model 

structure, where each subsystem model may not need to share the same common model structure, and 

which often involves one single data set. 
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3.     The identification of the commonly structured model 

3.1   The linear-in-the-parameters regression model 

The nonlinear mapping in (1) can be constructed using a variety of local or global basis 

functions including polynomials, kernel functions, B-splines, radial basis functions, neural networks 

and wavelets (Chen and Billings 1990, Kavli 1993, Berger 1994, Wu and Harris 1997, Pearson 1999, 

Liu 2001, 

f

Harris et al. 2002, Chen et al. 2005, Billings and Wei 2005, Wei et al. 2006). One of the 

most popular representations is the polynomial model (Leontaritis and Billings 1985), which takes the 

form below 
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the degree of the polynomial  is determined by the term 
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A NARX model constructed using basis function expansions can often be expressed using a linear-

in-the-parameters form 
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where M is the total number of candidate regressors, )(tmφ ))(( tm xφ= (m=1,2, …, M) are the model 

terms generated in some way from the ‘input’ (predictor) vector defined by 

Eq.(5), 

T
d txtxt )](),([)( 1 L=x

)(ξmm θθ = are the model parameters, and ξ is a known collection of external parameters. 

3.2   The multiple regression model 

Assume that a total of K experiments, corresponding to K different cases of the experiment 

parameter properties, have been carried out on the same system, and K different data sets, with respect 

to the K experiments, have been obtained. Also, assume that a common model structure, with the form 

of (6), can best fit all the data sets. Denote the input and the output sequence for the kth experiment 
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by and , respectively, for k=1,2,…, K. The kth predictor vector is thus given by kN
tk tu 1)}({ =

kN
tk ty 1)}({ =

T
dkkk txtxt )](),([)( ,1, L=x ),(,),1([ ykk ntyty −−= L T

ukk ntutu )](,),1( −− L . It is assumed that all the 

K data sets can be represented using a common model structure, with a different parameter set, 
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This can be expressed using a compact matrix form 
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For large lags  and , the regression model (7) often involves a large number of candidate 

model terms, even if the nonlinear degree l is not very high, say =2 or l =3. Experience has shown 

that an initial candidate model with a large number of candidate model terms can often be drastically 

reduced by including in the final model only the effectively selected significant model terms. 

Furthermore, a simple concise model is usually desirable for practical applications including system 

analysis, design, control and prediction. This is one of the motivations of the present study to select 

significant model terms to form a parsimonious common model structure. 

yn un

l

3.3   The extended forward orthogonal regression algorithm 

A new common model structure selection (CMSS) algorithm, called the extended forward 

orthogonal regression (EFOR) algorithm, which is generalized from the standard orthogonal least 

squares (OLS) algorithm (Korenberg et al. 1988, Billings et al. 1989, Chen et al. 1989), and the 

recently developed forward orthogonal search (FOS) algorithm (Wei and Billings 2007), will be 

designed for the PDCS identification problem.  

Let . Denote by },,2,1{ MI L= }:{ ImD m ∈= φ  the dictionary of candidate model terms for an 

initially chosen candidate common model structure that fits to all the K regression models given by (7). 

For the kth data set, the dictionary D can be used to form a dual dictionary , where 
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Following Korenberg et al. (1988), Billings et al. (1989), and Chen et al. (1989), a squared 

correlation coefficient will be used to measure the dependency between two associated random 

vectors. The squared correlation coefficient between two vectors x and y of size N is defined as 
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The squared correlation coefficient is closely related to the error reduction ratio (ERR) criterion 

defined in the standard orthogonal least squares (OLS) algorithm for model structure selection. A 

comprehensive discussion on OLS-ERR algorithm can be found in Billings et al. (1989) and Chen et 

al. (1989). Other functions can also be used to measure the dependency of two vectors (Billings and 

Wei 2007).  
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The first significant common model term can then be selected as the s1th element, 
1sφ , in the 

dictionary D. Accordingly, the first significant basis vector for the kth regression model is thus 

, and the first associated orthogonal basis vector can be chosen as .The model 

residual for the kth regression model, related to the first step search, is given as 
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Notice that  can be viewed as the error reduction ratio (ERR) that is introduced by 

including the first basis vector  into the kth regression model. The criterion (11), by 

maximizing the sum of the ERR values relative to all the K data sets, guarantees that the variation of 

the outputs in all the K data sets can be explained by including the model term 

),( 11 skc

1,1, skk φα =

1sφ , with the highest 

percentage, compared with selecting any other candidate model term }:{ ImD m ∈=∈ φφ . The 

quantity  is referred to as the first average error reduction ratio (AERR). ∑ == K
k skcK 1 11 ),()/1()1AERR(

In general, the mth significant model term 
msφ can be chosen as follows. Assume that at the (m-1)th 

step, (m-1) significant model terms, 121 ,, −mφφφ L , have been selected. Let be the 

associated basis vectors for the kth regression model, and assume that the (m-1) selected bases have 

been transformed into a new group of orthogonal bases via some orthogonal 

transformation. Let  

1,2,1, ,,, −mkkk ααα L

1,2,1, ,,, −mkkk qqq L
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The mth significant common model term can then be selected as the th element, ms
msφ , in the 

dictionary D. Accordingly, the mth significant basis vector for the kth regression model is thus 

, and the associated orthogonal basis vector can be chosen as .The model 

residual for the kth regression model, related to the mth step search, is given as 
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Subsequent significant bases can be selected in the same way step by step.  Once the first (m-1) basis 

vectors  (respectively the associated orthogonalized bases ) have 

been determined, then these (m-1) bases together with the mth basis 

1,2,1, ,,, −mkkk ααα L 1,2,1, ,,, −mkkk qqq L

mskmk ,, φα =  (respectively the 

orthogonalized basis ) , can explain the variation in the outputs of the K data sets with a 

higher percentage than by including any other candidate bases. The quantity 

 is referred to as the mth average error reduction ratio (AERR). Note 

that this step-by-step forward selection algorithm is a non-exhaustive search method, and may not 

always produce the global optimal solution. For most problems, however, this algorithm usually 

produces satisfactory and nearly optimal results. 
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From (17) and (18), the model residual  can be used to form a criterion for model selection, and 

the search procedure will be terminated when the norm satisfies some specified conditions. In 

nk ,r

2
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the present study, an approximate minimum description length (AMDL) criterion developed by Saito 

(1994) and Antoniadis et al. (1997), on the basis of the Rissanen’s MDL criterion (Rissanen 1984), 

will be used to determine the model size. For the case of single regression model, AMDL is defined as 

N
Nnnn 2
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n 2
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where MSE is the mean-square-error from the associated model, N is the length of the associated 

training data set, n is the number of model terms, and is the associated model residual. Other criteria 

can also be used to replace (19) to monitor the orthogonal search procedure (Wei and Billings 2006). 

nr

The present study uses the following average AMDL as the criterion to determine the number of 

common model terms 
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where is value for the AMDL criterion associated to the kth data set.  )(AMDL ][ nk

3.4   Parameter estimation 

It is easy to verify that the relationship between the selected original bases  and 

the associated orthogonal bases , for the kth data set, is given by 

nkkk ,2,1, ,,, ααα L
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where ,  is an ],,[ ,1,, nkknk ααA L= nk ,Q nNk × matrix with orthogonal columns , and 

 is an unit upper triangular matrix whose entries 

nkkk ,2,1, ,,, qqq L

nk ,R nn× )1( njiuij ≤≤≤  are calculated during the 

orthogonalization procedure. The unknown parameter vector, denoted by ,  for the 

model with respect to the original bases (similar to (9)), can be calculated from the triangular equation 

 with  , where  for m=1,2, …, n. 

T
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nknknk ,,, gθR = T
nkknk gg ],,[ ,1,, L=g )/()( ,,,1, mk

T
mkmk

T
mkmg qqqr −=

3.5  A general procedure for PDCS model identification 

Common model structure selection is a critical step in PDCS identification. Once the common 

model structure has been identified, relevant model parameters for each individual data set can then be 

estimated, and the dependency of the model parameters on the associated experiment parameter 

properties can be deduced finally. The procedure for the identification of PDCS models can briefly be 

summarized below: 

•   Collect K different data sets from K experiments. 

•   Select common model terms using the new EFOR-CMSS algorithm. 

•   Estimate relevant model parameters for each individual case of the K experiments.  
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•   Deduce the dependence of the model parameters on the associated experiment parameter set. 

4.     Applications 

Two examples representing real data sets are presented to illustrate the application of the new 

PDCS model identification procedure. In the first example, the system input, corresponding to 

different external parameters, varies in the same operating region, as the system output. In the second 

example, however, the system output, corresponding to different external parameters, varies in a 

different range, when driven by the same input. 

4.1   Modelling a particle damper system 

A particle damper is a device with one or more cavities filled with dry granular particles of diverse 

shapes and small sizes. The particles can move freely and the frictions and collisions between moving 

particles or with a container wall will arise under the vibrating motion of the structure. These 

collisions exchange momentum and thus dissipate kinetic energy due to frictional and in-elastic losses. 

Particle dampers have the advantage of being simple in geometry, small in volume, and are applicable 

in extreme temperature environments. More importantly, the interactions between individual grains 

(and between grains and the container walls) are dissipative because of surface friction and the 

inelasticity of collisions. An overwhelming advantage of particle dampers is that they can operate in 

extreme temperature conditions when using metallic, tungsten carbide or ceramic particles. This 

makes particle dampers extremely applicable in areas such as gas turbines, underwater conditions and 

other high temperature environments. Comprehensive discussions on particle dampers can be found in 

the literature say in Liu et al. (2005), and Rongong and Tomlinson (2005). 

Several parameters may affect the performance of a particle damper and one crucial parameter is 

the cavity geometry. This example concerns such a geometry design parameter: the height-to-diameter 

ratio: R=H/D, where H and D are the height and diameter of the particle damper respectively. Five 

experiments, corresponding to R=2,4,6,8,10, have been completed on a particle damper device in the 

Department of Mechanical Engineering, University of Sheffield, and five different data sets, have been 

collected. Each data set consists of 2000 data pairs of the input (applied force) and the output 

(acceleration) observations, sampled with a frequency =12.8kHz. The objective is to identify a 

PDCS model, with a dependence on the design parameter R, which can be used to analyze the effect of 

the design parameter R on the performance of the particle damper. Four data sets, corresponding to 

R=2,4,6,10, which are shown in Figure 1, were used for model identification, and one data set, 

correspond to R=8 , was used to test the performance of the identified PDCS model. 

sf

Denote the system input and the output sequence using  and , respectively, with 

N=2000. The predictor vector for all the common-structured models was chosen to be 

, where 

N
ttu 1)}({ =

N
tty 1)}({ =

Ttxtxt )](,),([)( 101 L=x )()( ktytxk −=  for k=1,…, 5, and )5()( +−= ktutxk  for k=6, …,10. 
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The initial candidate common model structure for all the four data sets was chosen to be a NARX 

model below 
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This candidate model involves a total of 66 candidate model terms. Based on the candidate common 

model structure, the new EFOR-CMSS algorithm was applied to the four training data sets. The 

AAMDL index, shown in Figure 2, suggests that a common model structure, with 11 model terms, is 

preferred. The 11 selected common model terms, ranked in order of significance (the order that the 

terms entered into the model), are shown in Table 1, where results for AERR and AAMDL are also 

presented. From Table 1, the resultant common model structure is of a simple NARX representation, 

which only includes linear model terms and a DC term with a small value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  Input-output data used for the particle damper system identification. Input-2,4,6,10 (Output-2,4,6,10) 
correspond respectively to the cases R=2,34,6,10. 
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The PDCS model for the particle damper system was chosen to be  

)()()()()(
10

1
0 tetxRRty m

m
m ++= ∑

=
θθ                                                                                         (23) 

where the parameter mθ (m=0,1,…,10) depends on the design parameter R. Assume that the 

parameter mθ can be fitted using R, with a polynomial function below 

3
3,

2
2,1,0,)( RRRR mmmmm ββββθ +++= , m=0,1, …, 10,                                                       (24) 

The parameters nm,β  can directly be estimated using the results given in Table 1. The estimated values 

for nm,β , for m=0,1, …,10 and n=0,1,2,3, are presented in Table 2.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  AAMDL versus the model size of common model structure models, for the four data sets, corresponding to 
R=2,4,6,10, used for the particle damper system identification. 
 

Table 1.  Identification result for the particle damper system described in Example 1, using the 
EFOR-CMSS algorithm. 

Parameter for different data sets Search 
step 

Model 
term R=2 R=4 R=6 R=10 

AERR 
(%) 

AAMDL 

1 y(t-1) 2.1590 1.7173 1.5291 1.2342 97.7609 -2.1776 

2 y(t-2) -1.7710 -0.8474 -0.4701 0.1447 2.1065 -4.2127 

3 y(t-5) -0.2052 2386 0.3059 0.4939 0.0418 -4.4944 

4 y(t-3) 0.8049 0.7025 0.5786 0.4173 0.0173 -4.6247 

5 u(t-1) -0.3439 -0.5601 -0.6835 -0.6963 0.0046 -4.6630 

6 u(t-5) -0.1668 -0.3119 -0.3875 -0.3272 0.0086 -4.7474 

7 u(t-2) 1.0432 1.8016 2.2228 2.1882 0.0170 -4.9806 

8 u(t-4) 0.6890 1.3032 1.6290 1.4488 0.0060 -5.2148 

9 y(t-4) -0.0065 -0.8290 -0.9637 -1.3123 0.0064 -5.0786 

10 u(t-3) -1.2214 -2.2329 -2.7811 -2.6139 0.0041 -5.3216 

11 const 0.0051 0.0047 0.0077 0.0083 0.0013 -5.3571 
Run time: 2.37sec 
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Now consider the performance of the identified PDCS model (23), whose parameters are 

determined by (24) and Table 2. The data set, corresponding to R=8, which has never been used in the 

identification procedure, was used to test the performance of the identified PDCS model. The PDCS 

model was simulated using the same input as in the data set corresponding to R=8, and the output from 

the PDCS model was then compared with the corresponding measurements. Figure 3 presents a 

comparison between the model predicted output and the original measurements. Note that the model 

predicted output (MPO) is defined as , implying that 

is produced from the identified model iteratively. The mean-square-error was calculated to 

MSE=0.1158. Clearly, the PDCS model provides an excellent representation for the test data set. 

))5(,),1(),5(ˆ,),1(ˆ(ˆ)(ˆ −−−−= tututytyfty LL

)(ˆ ty

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  A comparison between the model predicted output and the corresponding measurements for the particle 
damper system. The thin solid line indicates the original measurements for the case R=8, and the thick dashed 
line indicates the model predicted output from the identified PDCS model. 
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 Table 2.  Estimates for the parameters nm ,β  in (24). 

nm ,β  
n 

 
Model 
term m 

0 1 2 3 

const 0 0.012800 -0.006325 0.001400 -0.000081 

y(t-1) 1 3.023950 -0.566579 0.114194 0.074125 

y(t-2) 2 -3.615675 0.775356 -0.161981 0.007808 

y(t-3) 3 0.848050 -0.000471 -0.012125 0.000786 

y(t-4) 4 2.039450 -1.418113 0.219888 -0.011159 

y(t-5) 5 -1.321225 0.485829 -0.120994 0.006161 

u(t-1) 6 -0.023800 -0.187875 0.014375 -0.000231 

u(t-2) 7 -0.086050 0.662946 -0.050563 0.000701 

u(t-3) 8 0.284975 -0.882169 0.065806 -0.000658 

u(t-4) 9 -0.221950 0.531054 -0.038138 0.000174 
u(t-5) 10 0.047050 -0.123988 0.008500 0.000016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2   Modelling of thermoplastic auxetic foams 

Dynamic tests on a class of auxetic elastomeric foams have been carried out at the Department of 

Mechanical Engineering, University of Sheffield, and it has been shown from experimental results that 

the associated foam specimens present nonlinear behaviour that may be applicable to design nonlinear 

dynamic filters. Several parameters may affect the nonlinear dynamic behaviour of the material and 

the imposed compression ratio is one crucial factor. This example concerns two design parameters 

related to the imposed compression ratio: the Axial (A) and the Volume (V) of the associated materials. 

The objective is to identify a PDCS model, whose parameters depend on the design parameters A and 

V, and which can be used to analyze the dynamic behaviour of the associated material when the design 

parameter A and V change. 

Ten cases, corresponding to the following values for the design parameter A and V, were 

considered in this example: 

 
A 2.13   1.88   1.63   1.38   1.13   2.13   1.87    1.60   1.33   1.20 
V 5.30   4.67   4.05   3.43   2.80   14.8   12.9    11.1   9.20   8.30  

 

Ten different data sets, symbolized by Data01, Data02, …, Data10, corresponding to the above 10 

cases,  have been collected, and each data set consists of 2000 data pairs of observations for the input 

(displacement: mm) and the output (force: N), sampled with a frequency =100Hz. Note that all the 

10 data sets are with the same input signal, as shown in Figure 4, but with different output signals, as 

shown in Figure 5, where only part of the observations are plotted for clear visualization. Eight data 

sf
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sets, numbered by 1,2,4,5,6,7,9, and 10, were used for model identification, and the remaining two 

data sets, numbered by 3 and 8, were used for the performance test of the identified PDCS model.  

Denote the system input and the output sequence using  and , respectively, with 

N=2000. The predictor vector for the common model structure was chosen to be 

, with

N
ttu 1)}({ =

N
tty 1)}({ =

Ttxtxt )](,),([)( 41 L=x )1()( +−= ktutxk  for k=1,2,3,4. The initial candidate common model 

structure was chosen to be 

)()()()()(
4

1

4
0
,

4

1

00
0 tetxtxtxty

i ij
jiji

i
ii +++= ∑∑∑

= ==
θθθ                                                                      (25) 

This candidate model involves a total of 15 candidate model terms. Based on the candidate common 

model structure, the new EFOR-CMSS algorithm was applied to the 8 training data sets. The AAMDL 

index, shown in Figure 6, suggests that a common model structure, with 8 model terms, is preferred. 

The 8 selected common model terms, ranked in order of the significance, are shown in Table 3. The 

PDCS model for the 8 training data sets was chosen to be  

)3(),()3()1(),()1(),()(),()( 2
432

2
1 −+−−+−+= tuVAtutuVAtuVAtuVAty θθθθ  

 )()1()(),(),()(),()2(),( 8765 tetutuVAVAtuVAtuVA +−+++−+ θθθθ                          (26) 

where the parameter mθ (m=1,…,8) were fitted using the following polynomial function 

2
5,4,

2
3,2,1,0,,),( VAVAVAVA mmmmmmm ββββββθ +++++= ,  m=1, …, 8,                           (27) 

The parameters nm,β  were directly estimated using the results given in Table 4 and the associated 

estimates for nm,β  are shown in Table 6. 

To inspect the performance of the identified PDCS model (26), the model was simulated by 

choosing the same input signal as that in the two test data sets numbered by 3 and 8. The output from 

the PDCS model was then compared with the relevant measurements. Figures 7 and 8 present 

comparisons between the model outputs and the associated measurements. Note that only part of the 

data points are shown in Figures 7 and 8 for a close inspection. The root-mean-square-error (RMSE), 

defined as the root of the mean-square-error, with respect to two training data sets, was calculated to 

RMSE=1.71 and 6.44, respectively.  Clearly, the PDCS model provides an excellent representation for 

the two test data sets. 
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Fig. 4.  The input signal used for the modelling of the auxetic elastomeric foams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.  The output signals in the data sets numbered by 1, 2, 4, 5, 6, 7, 9, 10, for the assicated auxetic 
elastomeric foams.  
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Fig. 6.  AAMDL versus model size for common model structure models of the assicated auxetic elastomeric foams. 

 

Table 3.  Identification result for the associated auxetic elastomeric foams described in Example 2, using the EFOR-
CMSS algorithm. 

Parameter for different data sets  
Step 

 
Model term Data01 Data02 Data04 Data05 Data06 Data07 Data09 Data10 

AERR 
(%) 

1 u2(t) -24.78 -19.10 -10.71 -10.33 -173.65 -148.65 -81.78 -66.62 88.397 

2 u(t-1) 71.22 51.28 33.09 25.26 477.51 426.92 229.47 196.34 10.042 

3 u(t-1)u(t-3) -0.35 0.43 -0.73 0.67 3.53 1.43 1.49 0.66 0.117 

4 u2(t-3) 0.52 -0.06 0.35 -0.31 1.80 2.18 0.66 0.70 0.057 

5 u(t-2) 1.43 -0.50 -2.78 -0.19 37.94 30.22 13.51 8.64 0.025 

6 u(t) -168.66 -129.39 -77.67 -67.08 -1187.99 -1016.74 -559.00 -454.19 0.015 

7 const -234.68 -194.87 -118.63 -101.74 -1701.85 -1415.05 -801.24 -632.16 0.025 

8 u(t)u(t-1) 14.63 10.60 6.23 5.53 100.55 88.73 47.78 40.04 0.083 
Run time: 2.53sec 

 
 Table 4.  Estimates for the parameters  in (27). nm ,β

 
n m 

0 1 2 3 4 5 

1 -14.05 20.09 -30.01 292.02 -161.80 16.52 

2 47.98 -72.58 10.23 -1172.89 649.59 -67.22 

3 1.81 -2.29 0.05 29.88 -16.05 1.72 

4 -0.28 0.18 -0.03 -20.62 11.29 -1.19 

5 16.35 -22.45 -0.70 -80.71 47.70 -4.83 

6 -51.41 78.40 -20.05 1955.65 -1074.11 109.58 

7 75.10 -92.45 -27.90 1688.76 -896.05 88.65 

8 12.31 -17.74 1.90 -230.03 127.98 -13.21 
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Fig. 7.  A comparison between the model predicted output from the identified PDCS model (26) and the 
corresponding measurements in Data03, for the associated auxetic elastomeric foams. The thin solid line 
indicates the measurements, and the thick dashed line indicates the model predicted output. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8.  A comparison between the model predicted output from the identified PDCS model (26) and the 
corresponding measurements in Data08, for the associated auxetic elastomeric foams. The thin solid line 
indicates the measurements, and the thick dashed line indicates the model predicted output. 
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5.     Conclusions 

Many exogenous parameters may affect the underlying dynamics of a system, where the internal 

model structure of the system is fixed but the process internal parameters change due to the effects of 

the variation of the external parameters for example design parameters or experimental conditions. 

Parameter-dependent common-structured (PDCS) models are thus desirable for system analysis and 

design. In many cases, the true model structure of the relevant system is unknown but only the input 

and the output observations, subject to given specific design parameters, are available, and a common 

model structure is often deduced from the available observations. Common model structure selection 

(CMSS) is a crucial stage to obtain an effective PDCS model. A new efficient extended forward 

orthogonal regression (EFOR) algorithm has been designed to solve the CMSS problem. The 

identification of PDCS models includes two steps. Firstly, the common model structure is selected 

using the new EFOR algorithm, and individual parameters corresponding to each of the experiments 

are calculated using this algorithm. Secondly, the individual model parameters are linked to the design 

parameters by fitting some functions where the independent variables are the design parameters. 

Results from case studies have strongly supported the applicability and effectiveness of the new EFOR 

algorithm for the CMSS problem. 

In the two examples presented in this study, the model parameters in the associated common-

structured models have been represented using a polynomial model. However, it should be noted that a 

polynomial form may not always be the best choice. For some situations, where the model parameters 

are very sensitive and vary quickly, other representations of the relative varying parameters, rather 

than a polynomial form, may be desirable. In dynamical modelling problems, the model complexity is 

determined by both the common model structure and the associated varying model parameters, and 

hence both these effects need to be considered to produce parsimonious models. This issue will be 

considered in a future study.  
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Appendix—Some abbreviations  

AAMDL: average approximate minimum description length 

AERR: average error reduction ratio 

AMDL: approximate minimum description length 

CMSS: common model structure selection 
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EFOR: extended forward orthogonal regression 

EPD: external-parameter-dependent 

ERR: error reduction ratio 

FOR: forward orthogonal regression 

IPD: internal-parameter-dependent 
MDL:  minimum description length  

OLS: orthogonal least squares 

PDCS: parameter-dependent common-structured (model) 

References 

A. Antoniadis, I. Gijbels, G. Gregoire, “Model selection using wavelet decomposition and 

applications,” Biometrika, 84(4), pp. 751-763, 1997. 

C. S. Berger, “Linear Splines with Adaptive Mesh Sizes for Modeling Nonlinear Dynamic-Systems,” 

IEE Proc.-Control Theory Appl., 141(5), pp. 277-284, 1994. 

S. A. Billings and W. S. F. Voon,  “Piecewise linear identification of non-linear systems,” Int. J. 

Control, 46(1), pp.215-235,  1987. 

S. A. Billings, S. Chen, and M. J. Korenberg,  “Identification of MIMO non-linear systems suing a 

forward regression orthogonal estimator,” Int. J. Control, 49(6), pp.2157-2189,  1989. 

S. A. Billings and S. Chen, “Extended model set, global data and threshold-model identification of  

severely non-linear systems,” Int. J. Control, 50(5), pp. 1897-1923, 1989. 

S. A. Billings and H. L. Wei, “The wavelet-NARMAX representation: A hybrid model structure 

combining polynomial models with multiresolution wavelet decompositions,” Int. J. Syst. Sci., 

36(3), pp. 137-152, 2005. 

S. A. Billings and H. L. Wei, “Sparse model identification using a forward orthogonal regression 

algorithm aided by mutual information”, IEEE Trans. Neural Networks, 18(1), pp.306-310,2007. 

S. Chen and S. A. Billings, “Representations of non-linear systems - the NARMAX model,” Int. J. 

Control, 49(3), pp. 1013-1032, 1989. 

S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares methods and their application to non-

linear system identification,” Int. J. Control, 50(5), pp.1873-1896, 1989. 

S. Chen, S. A. Billings, C. F. N. Cowan, and P. M. Grant, “Practical identification of NARMAX 

models using radial basis functions,” Int. J. Control, 52(6), pp. 1327-1350, 1990. 

S. Chen, X. Hong, C. J. Harris, and X. X. Wang, “Identification of nonlinear systems using 

generalized kernel models,” IEEE Trans. Control Syst.Technol., 13(3), pp. 401-411, 2005.

C. J. Harris, X. Hong, and Q. Gan, Adaptive Modelling, Estimation and Fusion from Data: A 

Neurofuzzy Approach.  Berlin: Springer-Verlag, 2002. 

M. Korenberg, S. A. Billings, Y. P. Liu and P. J. McIlroy, “Orthogonal parameter estimation 

 20



algorithm for non-linear stochastic systems,” Int. J. Control, 48(1), pp.193-210, 1988. 

T. Kavli, “Asmod - an algorithm for adaptive spline modeling of observation data,” Int. J. Control, 

58(4), pp. 947-967, 1993. 

I. J. Leontaritis and S. A. Billings, “Input-output parametric models for non-linear systems, part I: 

deterministic non-linear systems,” Int. J. Control, 41, pp. 303-344, 1985. 

G. P. Liu, Nonlinear Identification and Control: A Neural Network Approach. Berlin: Springer-

Verlag, 2001. 

W. Liu, G. R. Tomlinson, and J. A. Rongong, “The dynamic characterisation of disk geometry particle 

dampers,” J Sound Vibr., 280, pp. 849-861, 2005. 

R. K. Pearson, Discrete-Time Dynamic Models. Oxford: Oxford University Press, 1999.  

J. Rissanen, “A universal prior for integers and estimation by minimum description length,” Ann. Stat., 

11, pp. 416-431, 1983. 

J. A. Rongong and G. R. Tomlinson, “Amplitude dependent behaviour in the application of particle 

dampers to vibrating structures,” In the Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC 

Structures, Structural Dynamics & Materials Conference, Art No.: AIAA 2005-2327, 18-21 

April 2005, Austin, Texas, USA. 

N. Saito, “Simultaneous noise suppression and signal compression using a library of orthonormal 

bases and the minimum description length criterion,” In Wavelet in Geophysics,  Foufoula-

Georgiou, E. and Kumar, P., Eds, New York: Academic, pp. 299-324, 1994. 

H. L. Wei and S. A. Billings, “An efficient nonlinear cardinal B-spline model for high tide forecasts at 

the Venice lagoon,” Nonlinear Processes in Geophysics, 13(5), pp.577-584, 2006. 

H. L. Wei and S. A. Billings, “Feature subset selection and ranking for data dimensionality reduction,”  

IEEE Trans. Pattern Anal. Machine Intell., 29(1), pp. 162-166, 2007. 

H. L. Wei, S. A. Billings, and M. A. Balikhin, “Wavelet based nonparametric NARX models for 

nonlinear input-output system identification,” Int. J. Syst. Sci., 37(15), pp.1089-1096, 2006. 

Z. Q. Wu and C. J. Harris, “A neurofuzzy network structure for modelling and state estimation of 

unknown nonlinear systems,” Int. J. Syst. Sci., 28(4), pp. 335-345, 1997. 

 

 21


