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Abstract. We give two optimal parallel algorithms for constructing the arrangement 

of n lines in the plane. The first nethod is quite simple and runs in O(log 2 n) time 

using O(n 2) work, and the second method, which is more sophisticated, runs in 
O(log n) time using O(n 2) work. This second result solves a well-known open problem 
in parallel computational geometry, and involves the use of a new algorithmic 
technique, the construction of an e-pseudocutting. Our results immediately imply 
that the arrangement of n hyperplanes in •a in O(log n) time using O(n a) work, for 
fixed d, can be optimally constructed. Our algorithms are for the CREW PRAM. 

1. Introduction 

A geometric structure of recognized importance in computational geometry is the 

arrangement defined by n hyperplanes in •d, i.e., the combinatorial structure 

describing the cells of R d determined by the hyperplanes, as well as the adjacency 

information for these cells [15], [25], [38], [40] (see Fig. 1 for a two-dimensional 

example). Indeed, in his highly regarded book on algorithms in combinatorial 

geometry, Edelsbrunner argues that "arrangements of hyperplanes are at the very 

heart of computational geometry" [25]. Even in the plane, where there is an 

arrangement of lines (which is a planar graph), there are many applications for 

this structure (see [25], [38], and [40]). Moreover, by a well-known duality 

between hyperplanes and points, the arrangement can also be used to solve a 

number of problems dealing with points in •d [16], [25], [40], [27]. We are 

interested in the parallel complexity of constructing arrangements. 

* This research was supported by the National Science Foundation under Grants CCR-8810568 
and CCR-9003299, and by the NSF and DARPA under Grant CCR-8908092. 
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Fig. 1. A line arrangement. 

The first optimal sequential algorithms for constructing line arrangements were 

developed independently by Chazelle et al. [16] and by Edelsbrunner et al. [27]. 

The main idea behind these methods is to construct the arrangement incrementally 

one line at a time. By an interesting "zone lemma" [16], [27], it can be shown 

that only O(n) time is needed to insert each line; hence, the entire line arrangement 

can be constructed in O(n 2) time. Moreover, this approach can be generalized to 

constructing the arrangement of hyperplanes in ~d in O(n d) time. This is of course 

optimal, since the arrangement has f~(n d) size. Incidentally, a line arrangement can 

also be constructed in O(n 2) time by sweeping the plane with a vertical pseudoline 
[26], i.e., a line l that is "topologically" equivalent to a vertical line in the sense 

that the intersections of l and the lines of the arrangement are in order by 

y-coordinates. 

A parallel algorithm is said to be optimal if the product of its time and number 

of processors matches the sequential lower bound for the problem it solves. Thus, 

an optimal parallel algorithm for line-arrangement construction would have to 

have a time-processor product of ®(n2). The main obstacle to designing such an 

optimal algorithm is that the paradigms that led to efficient sequential algorithms 

seem inherently sequential. There is, of course, a trivial suboptimal parallel 

algorithm analogous to a brute-force sequential method, where the intersections 

determined by each line are computed and then the intersections along each line 

are sorted. If this algorithm is implemented using an optimal sorting algorithm 

[20], [30], then it runs in O(log n) time using O(n 2) processors. 1 Unfortunately, it 

is not at all clear how any of the known parallel techniques for deriving improved 

processor bounds may be applied to this algorithm, including Brent's theorem 

[12], the "sequential subsets" method [28], and the "accelerating cascades" 

paradigm [21]. This has prompted a number of researchers to pose as an open 

problem the existence of an O(log n) time CREW PRAM line-arrangement 

i Unless stated otherwise all processor bounds mentioned in this paper are for the CREW PRAM, 
the synchronous shared memory parallel model where several processor may access the same memory 
location only if they are all reading from that location [24], [42], [44]. 
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algorithm that uses O(nZ/log n) processors [4], [5], [29], [31]. In this paper we 

show that, in fact, a line arrangement can be optimally constructed in O(log n) 

time using O(n2/log n) processors, which is optimal. 

The previous best deterministic parallel algorithm for this problem is due to 

Anderson et al. [5], and runs in O(log n log* n) time using O(n2/log n) processors. 

There is also a randomized parallel algorithm, due to Hagerup et al., that runs in 

O(log n) expected time using O(nZ/log n) processors [31]. 

There has also been some previous work on solving the related problem of 

constructing the arrangement of n line segments [8], [9] in parallel, as well. For 

example, Chow [17] shows how to determine all the pairwise intersections of n 

axis-parallel segments in O((1/~) log n + k,,ax) time using O(n I +~) processors [17], 

where e > 0 is a small constant and kma x is the maximum, taken over all input 

segments s, of the number of intersections on s. In [29] the author shows how to 

construct the arrangement of such segments in O(log n) time using O(n + k/log n) 

processors, and how to construct a general segment arrangement in O(log n) time 

using O(n log n + k) processors. Riib [41] shows how to construct such an 

arrangement in O(log n log log n) time using O(n + k) processors. Of course, when 

applied to the line-arrangement problem these methods do not beat the trivial 

brute-force method. Recently, Clarkson et at. [19] have shown how to construct 

a segment arrangement in O(log n) expected time using O(n + k/log n) processors 

on a probabilistic CRCW PRAM, which, when applied to the line-arrangement 

problem, matches the bounds of Hagerup et al. (albeit for the more-powerful 

CRCW PRAM model, where concurrent-writes are allowed and are resolved 

arbitrarily). 
In this paper we present two optimal parallel algorithms for line-arrangement 

construction. The first is quite simple and runs in O(log 2 n) time using O(nZ/log 2 n) 

processors. The main idea of this algorithm is to apply the parallel divide-and- 

conquer paradigm using a data structure of Anderson et al. [5] and a "truncated" 

zone lemma due to the author [29] to perform the "marry" step efficiently. The 

second method is more sophisticated and runs in O(log n) time using O(n2/log n) 

processors. This algorithm is based on the efficient construction of a structure we 

call an e,-pseudocutting, which is a decomposition of the plane into pseudo- 

trapezoids (i.e., trapezoids whose top and bottom edges are defined by pseudolines) 

such that each pseudotrapezoid intersects only a "few" lines. 

2. A Simple Parallel Method 

We begin with some definitions. Suppose we are given a set S of n lines in the 

plane. For simplicity of expression we assume that there are no vertical lines in 

S (it is easy to modify our algorithm for the more general case). The arrangement 

for S, denoted A(S), is the planar graph G = (V, E) such that V is the set of 

intersections formed by the lines in S and E is the set of edges defined by 

consecutive intersections along lines in S. The depth of an edge e in A(S) is the 

number of lines of S that are directly above e, i.e., the number intersected by a 

vertical ray emanating upward from a point on e (other than one of e's endpoints). 
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The k-level in A(S) is the set of edges at depth k [25]. Clearly, the k-level is a 

monotone chain of edges in A(S), i.e., a chain that is intersected only once by any 

vertical line. In general, a k-level can have as many as ta(n log k) edges, but will 

always have no more than O(nx/~ ) edges [25]. Of course, the total size of all 

k-levels in A(S) is ®(n2). 

Our algorithm description, which follows, makes considerable use of k-levels, 

and builds upon the approach of Anderson et al. [5]. We begin by dividing the 

set S into two equal-sized sets S~ and $2, such that the lines in St all have slope 

smaller than the lines in $2. This can easily be done in O(log n) time using O(n/log n) 

processors, assuming the lines in S are presorted by slope [20], [30]. We then 

recursively construct the arrangements A(St) and A(S2) in parallel. 

As might be expected, the most difficult step in our construction is to merge 

A(S~) and A(S2) into A(S). To facilitate this we construct arrays that store each 

of the levels in A(SO and A(S2) ordered left to right. This can be done in O(log n) 

time using O(n 2) work by the list-ranking algorithm 2 of Anderson and Miller [61 

or Cole and Vishkin [22]. We distinguish the k-levels such that k is a multiple of 

[log n l  as starter levels in the arrangement. Anderson et al. make an interesting 

observation about sets of lines that are separated by their slopes, namely, 

Observation 2.1 [5].  I f  I is a line in St, then l intersects each level of A(Sj), i ~ j, 

exactly once. 

As they show, this observation can be used to build a parallel data structure for 

efficiently finding the ordered intersections of a line l in St with all the lines in 

A(S2). Simply, each starter level of A(S2) is stored in an array (as above). To 

intersect l e St with A(S2) O(n/log n) processors are assigned and / ' s  intersection 

with each starter level is found by a binary search. This cuts I into n/log n segments. 

Then, for each such segment s, the sequential search method of Chazelle [13] is 

performed to crawl iteratively around the faces s intersects 3 to discover all the 

intersections of s with A(S2). In [29] the author shows, via a "truncated" zone 

lemma, that, given the locations of s's endpoints in the arrangement, such a 

sequential search can be performed in time proportional to the number of lines s 

intersects, which in this case is O(log n). Thus, the entire computation can be 

performed in O(log n) time using O(n/log n) processors, giving us the following 

lemma. 

Lemma 2.2. Given an arrangement A(Si), a data structure can be constructed that 

allows the computation, for any line I with slope outside the range of  slopes in Si, of 

the ordered list of intersections of l with A(Si) in O(log n) time using O(n/log n) 

2 Recall that in the list-ranking problem a linked list L is given and it is required to determine for 
each dement x ~ L the rank of x in L. 

The iterative crawling method of Chazelle requires that each edge on a face f stores a pointer 
to the rightmost point on f. This can be computed using a list-ranking procedure [6], [22] for each 
face in parallel, which requires O(Iog n) time using O(n2/log n) processors. 
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processors. Moreover, this data structure can be constructed in O(log n) time using 

O(n2/log n) processors. 

We complete the merging of A(SI) and A(S2), then, for each line l in Sl, by 

computing the ordered list of its intersections with A(S2) using Lemma 2.2. In 

parallel we also perform a similar computation for each line in $2. We complete 
the construction of A(S) by merging, for each line l, I's sorted lists of intersections 

in A(S 0 and A(S2), respectively. This can be implemented in O(log n) time using 
O(n/log n) processors [10], [11], [35], [43] for each line l, or O(n2/log n) overall. 

This completes the construction. 

The time complexity, T(n), of this method is characterized by the recurrence 

T(n) = T(n/2) + b log n 

for some constant b. Thus, this method runs in O(log 2 n) time. The work 

complexity, W(n), is characterized by the recurrence 

W(n) = 2W(n/2) + cn 2 

for some constant c. This implies that this method uses O(n 2) work. By an easy 

application of Brent's theorem [12] (also see [33] and [34]), then, we can therefore 

derive the following theorem: 

Theorem 2.3. The arrangement of n lines in the plane can be constructed in 

O(log 2 n) time using O(n2/log 2 n) processors in the C R E W  P R A M  model. 

In the next section we show how to extend this approach to construct an 

e-pseudocutting for S, the main structure employed by our optimal O(log n)-time 

method. 

3. Constructing an ~-Pseudocutting 

Recent developments on the theory of e-cuttings have proven useful for solving a 

number of problems in computational geometry (e.g., see [1], [2], [14], [32], and 
[39]). The general paradigm is that a set X of n hyperplanes in ll~ d (lines in II~ 2) is 
given and a parameter e > 0, and it is desired to decompose the space into O(r a) 

constant-size polytopes (e.g., trapezoids in •2) such that each polytope intersects 

at most J-n/r-] hyperplanes, where r = 1/e. Such a set is called an e-cutting for X. 

Building on results of Matou~ek [39], Chazelle [14] shows that such an ~-cutting 

can be constructed in O(nr d- 1) time. This is closely related to the random sampling 

techniques of Clarkson [18] and Haussler and Welzl [32], which state that if the 

arrangement of r randomly chosen hyperplanes from X is triangulated, a decompo- 

sition of the space into O(r a) constant-size polytope is produced such that the 

expected number of hyperplanes intersecting any polytope is O((n/r) log r). These 

approaches have turned out to be very powerful, having applications to a number 
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Fig. 2. An e-pseudocutting. 

of different problems in discrete and computational geometry (e.g., see [2] and 

[14]). 

Our method for optimally constructing the arrangement of a set S of n lines 

in the plane is based on a similar e-cutting approach. Unfortunately, none of these 

previous algorithms translate into an efficient deterministic parallel algorithm 

running in O(log n) time (which is what we would require for our arrangement 

construction procedure). Thus, we do not attempt to construct a true e-cutting for 

S. Instead, we construct a decomposition of the plane that is "almost"  an e-cutting. 

In particular, we show in this section that if a set S of n lines in the plane is given, 

a collection of r 2 pseudotrapezoids (i.e., trapezoids with top and bottom edges 

that are pseudo line segments) can be constructed such that each pseudotrapezoid 

intersects at most O(nt/r) lines in S, where t > 1 and r _> 1 are integer parameters. 

By pseudo line segments we mean piecewise linear curve segments that are 

x-monotone and such that any two intersect each other at most once. (See Fig. 

2.) Our method extends the approach of the previous section, and results in an 

efficient parallel algorithm. 

We begin by sorting the lines in S by slope, and dividing this sorted list into 

t groups SI, S 2 . . . . .  Sr of size O(n/t) each, so that each line in S i has smaller slope 

than every line in S s if i < j. By using a slightly different implementation of the 

method of Anderson et al. [5] we can construct each A(S~) in O(log n) time using 

O((n/t) 2 log log n/t) work (where their iterative process is stopped after two itera- 

tions4). Also, for each A(S~), we construct an array representation of each level of 

* In general, O((n/t) 2 log c° n/t) work can be achieved by stopping their method after i iterations, 
but i = 2 is sufficient for our purposes. 
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A(Si). Using the list-ranking algorithm of Anderson and Miller [6] or that of Cole 

and Vishkin [22] this can be done in O(log n) time for all S~'s using a total of 

O(n2/t) work. Thus, all the A(Si)'s and their levels can be constructed in O(log n) 

time using O((n2/t) log log n/t) work. 

We define each k-level of A(Si) such that k is a multiple of Fn/r'] (including the 

first and last levels) to be a superlevel in A(Si). Note that there are O(r/t) superlevels 

per arrangement A(S~), and the total size of all the superlevels in any A(Si) is 
O(nZ/t 2) (since lSit is O(n/t)). 

For each line 1 ~ S, we compute the intersection of I with the superlevels in A(Sj) 
for j ~ i if 1 e Sv This gives us t sorted lists of intersections for each line 1. Our 

method for doing this is to intersect I with A(Si) and then compress out the 

intersection points not on superlevels by a parallel prefix computation, s Since we 

can apply Lemma 2.2 to compute the intersection of I with A(Si) and we can apply 

an optimal parallel prefix method to perform the compression step [36], [373, this 

computation can be implemented in O(log n) time using O(n 2) work in total 

(n lines • t groups * O(n/t) work per group). 

We next construct A', the arrangement of superlevels. The following lemma 

expresses a property concerning levels that is crucial to our construction. 

Lemma 3.1. Let ~ and ~g be two levels with ~ c A(Si) and J¢ ~ A(Sj), i :~ j. 

Then ZP and .t¢ intersect in a single point. 

Proof This lemma follows immediately from a similar lemma given by Edels- 

brunner [25, Lemma 14.4 on p. 338]. [] 

Therefore, by the above lemma, the intersections between A(Si) and A(Sj) can 

be viewed as the intersections defined by two sets of parallel pseudolines, i.e., they 

define a "pseudogrid." Note that, by Lemma 3.1, A' is an arrangement of 

pseduolines. Moreover, for any superlevel ~ ,  say from A(Si), L~' has O(r/t) 
intersections with the superlevels in A(S~), j ~ i; hence, each superlevel ~ has O(r) 
intersections with all the other superlevels. Also note that the total number of line 

segments making up A' is O(n2/t + r2). 
In our method for constructing A' we distinguish two kinds of intersections for 

a line l ~ Si: proper intersections, which are formed between l and a superlevel in 

some A(Sj), j ¢: i, and improper intersections, which are formed between l and the 

superlevels in A(Si). Note that proper intersections are points, while improper 

intersections are line segments. There are O(n2/t) improper intersections and O(nr) 

proper intersections determined by A' and the lines in S. (See Fig. 3.) 

Our method for constructing A', then, is as follows. First, for each line l, we 

sort the list of proper intersections along I. This amounts to merging t sorted lists, 

each of size O(r/t); hence, can be implemented in O(log t log log r) time using 

O(r log t) work [11], [35] per line (for O(nr log t) work overall). We then merge 

the list of improper intersections along I with this list of proper intersections 

along l, and "throw away" each proper intersection that does not fall on an 

Recall that in the parallel prefix problem an array A of numbers is given and it is desired to 
compute each prefix sum s~ = ~= l A[i]. 
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Fig, 3. An example superlevel arrangement .4" for the case t = 2. The superlevels in A(St) are shown 
by dotted lines and the superlevels in A(S2) are shown by solid lines. Also shown is a line l in $I, 
together with its proper intersections (shown as bold dots) and its improper intersections (shown with 
bold line segments). 

improper intersection of I. Finally, we construct the proper intersections along 

each superlevel by performing a list-ranking procedure, to link up the proper 

intersections that fall along each edge in the superlevel. This requires O(log n) 

time and O(n2/t + nr) work. Thus, given all the A(Si)'s we can construct A' in 

O(log n + log t log log r) time using a total of O(nr log t + n2/t + nr) work. 

So, how close is A' to being an e-pseudocutting? It is quite close as it turns 

out. Note that there are O(r 2) faces in A', which are defined by the O(r 2) intersection 

points. Moreover, each face has at most 2t pseudoedges on its boundary. Each 

such face is not quite a pseudotrapezoid, but we do know that, since each 

pseudoedge on f ' s  boundary is x-monotone, f ' s  boundary can be decomposed 

into two chains of pseudoedges: an upper chain and a lower chain. We also have 

the following property for A': 

Lemma 3.2. The number of proper intersections along the boundary of any face of 

A' is O(nt/r). 

Proof. Let f be a face of A'. By construction, f lies between two superlevels in 

each A(S~). Index each edge e on f by the index of the group St such that e is in 

a superlevel of A(S~). As a simple corollary of Lemma 3.1, it is easy to show that 

the edges in a left-to-right listing of the lower chain (resp. upper chain) have strictly 

increasing (resp. decreasing) indices. Suppose, for the sake of contradiction, that 

a level .(~ of A(S~) has more than two proper intersections with f.  Let a, b, and c 

be the indices of the first three proper intersections Ze has with f .  That is, f 
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enters f at a, exits at b, and enters again at c. Since .~ is x-monotone, b and c 

must both be on the lower chain of f or both on the upper chain. Without loss 

of generality, suppose they are both on the lower chain. Then i < b and c < i. 

However, this contradicts the fact that the indices on the lower chain of f have 

increasing indices. Therefore, each A(Si) can contribute at most O(n/r) proper 

intersections to the boundary of f.  The lemma follows, then, since there are t 

groups. [] 

Thus, the only types of intersections that could cause a cell to intersect more 

than O(nt/r) lines are improper intersections. Thus, we must further partition the 

cells in A' to limit the number of improper intersections per cell boundary (and 

also to enforce the property that each face in the resulting subdivision is a 

pseudotrapezoid). We do this by extending two vertical rays (one up and one 

down) from each of O(r z) distinguished points on the pseudoedges of A' to the 

first points of A' that the rays intersect, respectively. For a distinguished point p 

we call these points p's vertical shadows. The points we distinguish in this way 

include each point defined by the intersection of two superlevels and each point 

on a superlevel and whose rank in that level is a multiple of Fn/r] (when listed 

left to right). Adding edges from each distinguished point p to its vertical shadows 

forms a decomposition of A' into pseudotrapezoids with the desired "e-pseudo- 

cutting" property for S. That is, this would imply a total of O(r 2) pseudotrapezoids, 

each of which intersects at most O(nt/r) lines. 

To implement this strategy we need to locate, for each distinguished point p, 

the position of p and p's "vertical shadows" in A(S1), A(S2) . . . . . .  A(St). This would 

then allow us to "walk" efficiently through each of the arrangements from p to 

its vertical shadows using Chazelle's [13] sequential search strategy. Unfortu- 

nately, the total work we wish to allow for this collection of point locations is 

O(nrt°tt~), not O(r 2 log n), which would be the work of doing an independent point 

location for each point involved. Thus, we must use the adjacency information for 

the arrangement A' to aid us in performing all the necessary point locations in a 

batched fashion. 
We proceed as follows. For each face f in A', we sort the proper intersections 

around f, by the counterclockwise ordering. By Lemma 3.2 and a simple applica- 

tion of Brent's theorem [12] this can be implemented in O(log n) time using 

O((nt/r) log nt/r) work per face f [20], [30], for a total work bound that is 

O(nrt log nt/r). Let P(f) denote the resulting list. We merge P(f) with the list of 

endpoints of the line segments that are improper intersections around f (i.e., the 

boundary edges off),  which can be done for all the faces of A' in O(log n) additional 

time using a total of O(n2/t + nrt) work [10], [11], [35], [43]. Let l ( f)  denote the 

resulting list of intersection points around f, let IU(f) denote the sublist of those 

intersections on f ' s  upper chain, and let IL(f) denote the sublist of those 

intersections on f ' s  lower chain. We merge IU(f) and IL(f), which can also be 
done in O(log n) time using a total of O(n2/t + nrt) work for all faces in A'. For 

each distinguished point p on f this immediately gives us the position of p in l ( f)  
and the position in 1(f) ofp's "vertical shadow," q, on the other side of f. To give 

us the position of p and q in an arrangement A(S~) we perform a parallel prefix 
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computation on the list l ( f ) u  D(f), where D(f) is the set of all distinguished 

points and shadow points on the boundary of f. The goal of parallel prefix is to 

compress out all the points of l ( f )  w D(f) that are not on an edge of A(S~) and 

are not in D(f). We perform such a parallel prefix computation for each i = 1 . . . . .  t 

in parallel. By another simple application of Brent's theorem, this can be imple- 

mented in O(log n) time using O(n 2 + nrt 2) work. Since this gives us the position 

ofp and its vertical shadow in each arrangement A(Si), we may then assign a single 

processor to each distinguished point p and "walk" from p to its vertical shadow 

while computing the intersections of this vertical segment with the edges in A(SI), 

a computation that requires at most O(n/r) time [29]. Thus, since there are O(r 2) 

distinguished points, the total work for all of these traversals is O(nrt). This gives 

us all the pseudotrapezoids we desire as well as giving us the set of lines cutting 

each pseudotrapezoid. The total time for completing the construction of the 

e-pseudocutting, given A', then, is O(log n + n/r) using O(n 2 + nrt log nt/r + nrt 2) 

work. We summarize: 

Theorem 3.3. Given a set S of n lines in the plane, and parameters r > 1 and 

t > 1, a decomposition of the plane into O(r 2) pseudotrapezoids can be constructed 

such that each pseudotrapezoid intersects at most O(nt/r) pseudotrapezoids of S. 

This construction can be implemented in O(log n + log t log log r + n/r) time using 

O(n 2 + (n2/O log log n/t + nrt log nt/r + nrt 2) work in the C R E W  P R A M  model. 

Before we can present our method for optimal arrangement construction, there 

is one more algorithmic tool we need to present. 

4. Counting Intersections in a Disk 

In our arrangement construction algorithm we wish to determine, without actually 

computing them, the number of intersection points contained in the interior of a 

pseudotrapezoid of our e-pseudocutting decomposition. This problem is topologic- 

ally equivalent to the problem of simply counting intersections in a disk. That is, 

suppose we are given a collection S of n chords in a disk D and wish to determine 

the number of chord intersections in D. The method we describe actually does 

more than simply determine the total number of intersections; it also determines, 

for each chord c, the number, k(c), of intersections determined by c. Our method 

is by divide and conquer. 
1. Imagine cutting the boundary of D at some specified point so as to define a 

curve, C. This defines a total ordering of chord endpoints based on their rank in 

a counterclockwise listing along C. Sort the left endpoints by this ordering (for 

any chord c, we define c's left endpoint to be c's first endpoint in this ordering). 

This can be done in O(log n) time using O(n) processors [20], [30], and provides 

the preprocessing for our divide-and-conquer scheme. 
2. Divide the curve C into two curves A and B by cutting C at x, the median 

left endpoint of the curves in S. Divide S into three groups: SAA, SaB, and SB~, 
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where S,a denotes the set of all chords whose "left" endpoint is an a and whose 

right endpoint is on p. Note that ISAal + [Sanl + ISBBI = ISI, and IS=al -< ISI/2 for 

o~fl ~ {AA, AB, BB}. Recursively solve the problem for SAa, SAn, and Sn8 in parallel 

(we associate the curve A with Saa, the curve B with Snn, and the curve C with SAn). 

Comment. Having recursively computed all the intersections between chords in 

SAA, SAn, and SBn, respectively, we have only to compute the intersections 

determined by chords in different sets. Note, however, that no chord in SAA can 

intersect a chord in SBs. Thus, we need only consider intersections determined by 

chords in Saa and SAB (resp. SaB and SBB). Since these two cases are symmetric, 

let us restrict our attention to those intersections determined by chords in SAA 

and SAB. The following observation establishes the easy, but important, property 

we exploit to compute the number of such intersections efficiently. 

Observation 4.1. Let s and t be two chords with s E S Aa and t E San. The chords s 

and t intersect if and only' if the left endpoint of t occurs between the endpoints of s 

in a counterclockwise listing. 

3. Let T be a sorted listing of the left endpoints of chords in SAH. Let U be a 

sorted listing of the left and right endpoints of chords in SAA. Merge T and U. 

Given this merge we can immediately compute the number of chords in SAn 

intersecting a particular chord c in SAA. In particular let a(c) (resp. b(c)) be the 

rank in T of c's left (resp. right) endpoint. Then the number of chords c intersects 

in SAR is b(c) - a(c), by the above observation. The true value for k(c) can therefore 

be calculated by summing this value with the recursively computed value for k(c). 

A similar computation can be performed for each c in San. This step requires 

O(log n) time and O(n/log n) processors [I0], [11], [35], [43]. 

4. Repeat step 3 to determine the intersections between San and Snn and update 

the k(c) values accordingly. Summing all the k(c) values over all chords in C gives 

us the value of k. 
Thus, in O(log 2 n) time and O(n log n) work we can determine the number of 

intersection points in the circle. Since the essential computation in each step 

involves merging recursively constructed lists of endpoints, with a little more effort, 

the cascading divide-and-conquer paradigm of Atallah et aL [7] can be applied 

to implement this algorithm in O(log n) time using O(n) processors. Nevertheless, 

O(log 2 n) time is sufficient for our purposes, so we will not elaborate on how 

O(log n) time can be achieved. 
Note that our intersection-counting method did not depend on any geometric 

properties of the disk; it simply depended on the property that the boundary of 

the enclosing curve was simple and the endpoints were sorted around the 

boundary. Thus, it can also be applied to pseudotrapezoids. We summarize: 

Lemma 4.2. Given a collection of chords C in a pseudotrapezoid, the number of 

intersections k(c) along each chord c in C can be computed in O(log n) time using 

O(n) processors in the CREW P R A M  model. 
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In the next section we show how to combine the methods of the previous two 

sections to design a fast arrangement-construction algorithm. 

5. Fast Arrangement Construction 

We show in this section how to construct the arrangement of n lines in O(log n) 

time using O(n2/log n) processors. The method is to construct, in O(log n) time, an 
e-pseudocutting for r = n/(log log n) 2 and t = log log n by Theorem 3.3. This 

implies that our construction uses O(n 2) work, and results in O(n2/(log log n) 4) 

pseudotrapezoids, each of which intersects at most O((log log n) 3) lines. That is, if 

we "cut" each line at its proper intersections, this e-pseudocutting determines 
O(n2/log log n) line segments, with at most O((log log n) 3) segments per pseudo- 

trapezoid. We then use our method for counting intersections in a "disk" to 

determine the number of intersections in each pseudotrapezoid. We then group 

the pseudotrapezoids into O(n2/log n) "buckets," such that each bucket contains 

at most O(log n/log log n) segments and determines at most O(log n) intersections 

(in the interiors of the pseudotrapezoids in this bucket). This can easily be done 
in O(log n) time using O(n 2) work, say, by parallel prefix computations. Finally, 

we assign a single processor to each bucket, and let that processor apply the 

sequential segment-arrangement method of ChazeUe and Edelsbrunner to con- 
struct the arrangement in each pseudotrapezoid in this bucket. The method of 

Chazelle and Edelsbrunner runs in O(n b log n b + kb) time, where nb is the number 
of segments in bucket b and k b is the number of intersections these segments 

determine. In our case, n b is always O(log n/log log n) and k b is always O(log n). 
Therefore, no processor will take more than O(log n) time to complete the 

construction of the arrangements in its assigned pseudotrapezoids. This completes 

the construction and gives us the following theorem: 

Theorem 5.1. The arrangement of n lines in the plane can be constructed in O(log n) 
time using O(n2/log n) processors in the CREW PRAM model, which is optimal. 

6. Discussion 

We have shown how to construct optimally the arrangement of n lines in the plane 

in O(log n) time, solving a well-known open problem in parallel computational 

geometry [4], [29], [5]. Using the "induction" argument of Anderson et al. [5], 
this immediately implies that the arrangement of n hyperplanes in •d, for fixed d, 

can be optimally constructed in O(log n) time using O(nd/log n) processors. 
In the sequential setting the construction of a line arrangement is the bottleneck 

computation for a number of problems, including hidden-line elimination [23] 

and the problem of finding the minimum-area triangle determined by three points 

taken from a set of n points in the plane [16]. Our methods immediately imply 

O(log n)-time, optimal-work parallel methods for these problems. 
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Besides solving an important  subproblem in many applications, the previous 

sequential l ine-arrangement algorithms [ t6 ] ,  [26], [27] have also contr ibuted 

impor tant  ideas that  eventually led to an optimal method for construct ing the 

arrangement  of  n line segments [15]. An interesting open question, then, is the 

following: Can  the arrangement  of  n line segments be deterministically constructed 

in O(log n) time using O(n + k/log n) processors, where k is the number  of 

intersections? Currently, the only optimal output-sensitive methods are either 

randomized [19] or  for special cases, such as axis-parallel segments [29], 
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