
Discrete Comput Geom 9:371-385 (1993)

Gi76i i try
© 1993 Springer-Verlag New York Inc.

Constructing Arrangements Optimally in Parallel*

Michael T. Goodrich

Department of Computer Science, The Johns Hopkins University,

Baltimore, MD 21218, USA
goodrich@cs.jhu.edu

Abstract. We give two optimal parallel algorithms for constructing the arrangement

of n lines in the plane. The first nethod is quite simple and runs in O(log 2 n) time

using O(n 2) work, and the second method, which is more sophisticated, runs in
O(log n) time using O(n 2) work. This second result solves a well-known open problem
in parallel computational geometry, and involves the use of a new algorithmic
technique, the construction of an e-pseudocutting. Our results immediately imply
that the arrangement of n hyperplanes in •a in O(log n) time using O(n a) work, for
fixed d, can be optimally constructed. Our algorithms are for the CREW PRAM.

1. Introduction

A geometric structure of recognized importance in computational geometry is the

arrangement defined by n hyperplanes in •d, i.e., the combinatorial structure

describing the cells of R d determined by the hyperplanes, as well as the adjacency

information for these cells [15], [25], [38], [40] (see Fig. 1 for a two-dimensional

example). Indeed, in his highly regarded book on algorithms in combinatorial

geometry, Edelsbrunner argues that "arrangements of hyperplanes are at the very

heart of computational geometry" [25]. Even in the plane, where there is an

arrangement of lines (which is a planar graph), there are many applications for

this structure (see [25], [38], and [40]). Moreover, by a well-known duality

between hyperplanes and points, the arrangement can also be used to solve a

number of problems dealing with points in •d [16], [25], [40], [27]. We are

interested in the parallel complexity of constructing arrangements.

* This research was supported by the National Science Foundation under Grants CCR-8810568
and CCR-9003299, and by the NSF and DARPA under Grant CCR-8908092.

372 M.T. Goodrich

Fig. 1. A line arrangement.

The first optimal sequential algorithms for constructing line arrangements were

developed independently by Chazelle et al. [16] and by Edelsbrunner et al. [27].

The main idea behind these methods is to construct the arrangement incrementally

one line at a time. By an interesting "zone lemma" [16], [27], it can be shown

that only O(n) time is needed to insert each line; hence, the entire line arrangement

can be constructed in O(n 2) time. Moreover, this approach can be generalized to

constructing the arrangement of hyperplanes in ~d in O(n d) time. This is of course

optimal, since the arrangement has f~(n d) size. Incidentally, a line arrangement can

also be constructed in O(n 2) time by sweeping the plane with a vertical pseudoline
[26], i.e., a line l that is "topologically" equivalent to a vertical line in the sense

that the intersections of l and the lines of the arrangement are in order by

y-coordinates.

A parallel algorithm is said to be optimal if the product of its time and number

of processors matches the sequential lower bound for the problem it solves. Thus,

an optimal parallel algorithm for line-arrangement construction would have to

have a time-processor product of ®(n2). The main obstacle to designing such an

optimal algorithm is that the paradigms that led to efficient sequential algorithms

seem inherently sequential. There is, of course, a trivial suboptimal parallel

algorithm analogous to a brute-force sequential method, where the intersections

determined by each line are computed and then the intersections along each line

are sorted. If this algorithm is implemented using an optimal sorting algorithm

[20], [30], then it runs in O(log n) time using O(n 2) processors. 1 Unfortunately, it

is not at all clear how any of the known parallel techniques for deriving improved

processor bounds may be applied to this algorithm, including Brent's theorem

[12], the "sequential subsets" method [28], and the "accelerating cascades"

paradigm [21]. This has prompted a number of researchers to pose as an open

problem the existence of an O(log n) time CREW PRAM line-arrangement

i Unless stated otherwise all processor bounds mentioned in this paper are for the CREW PRAM,
the synchronous shared memory parallel model where several processor may access the same memory
location only if they are all reading from that location [24], [42], [44].

Constructing Arrangements Optimally in Parallel 373

algorithm that uses O(nZ/log n) processors [4], [5], [29], [31]. In this paper we

show that, in fact, a line arrangement can be optimally constructed in O(log n)

time using O(n2/log n) processors, which is optimal.

The previous best deterministic parallel algorithm for this problem is due to

Anderson et al. [5], and runs in O(log n log* n) time using O(n2/log n) processors.

There is also a randomized parallel algorithm, due to Hagerup et al., that runs in

O(log n) expected time using O(nZ/log n) processors [31].

There has also been some previous work on solving the related problem of

constructing the arrangement of n line segments [8], [9] in parallel, as well. For

example, Chow [17] shows how to determine all the pairwise intersections of n

axis-parallel segments in O((1/~) log n + k,,ax) time using O(n I +~) processors [17],

where e > 0 is a small constant and kma x is the maximum, taken over all input

segments s, of the number of intersections on s. In [29] the author shows how to

construct the arrangement of such segments in O(log n) time using O(n + k/log n)

processors, and how to construct a general segment arrangement in O(log n) time

using O(n log n + k) processors. Riib [41] shows how to construct such an

arrangement in O(log n log log n) time using O(n + k) processors. Of course, when

applied to the line-arrangement problem these methods do not beat the trivial

brute-force method. Recently, Clarkson et at. [19] have shown how to construct

a segment arrangement in O(log n) expected time using O(n + k/log n) processors

on a probabilistic CRCW PRAM, which, when applied to the line-arrangement

problem, matches the bounds of Hagerup et al. (albeit for the more-powerful

CRCW PRAM model, where concurrent-writes are allowed and are resolved

arbitrarily).
In this paper we present two optimal parallel algorithms for line-arrangement

construction. The first is quite simple and runs in O(log 2 n) time using O(nZ/log 2 n)

processors. The main idea of this algorithm is to apply the parallel divide-and-

conquer paradigm using a data structure of Anderson et al. [5] and a "truncated"

zone lemma due to the author [29] to perform the "marry" step efficiently. The

second method is more sophisticated and runs in O(log n) time using O(n2/log n)

processors. This algorithm is based on the efficient construction of a structure we

call an e,-pseudocutting, which is a decomposition of the plane into pseudo-

trapezoids (i.e., trapezoids whose top and bottom edges are defined by pseudolines)

such that each pseudotrapezoid intersects only a "few" lines.

2. A Simple Parallel Method

We begin with some definitions. Suppose we are given a set S of n lines in the

plane. For simplicity of expression we assume that there are no vertical lines in

S (it is easy to modify our algorithm for the more general case). The arrangement

for S, denoted A(S), is the planar graph G = (V, E) such that V is the set of

intersections formed by the lines in S and E is the set of edges defined by

consecutive intersections along lines in S. The depth of an edge e in A(S) is the

number of lines of S that are directly above e, i.e., the number intersected by a

vertical ray emanating upward from a point on e (other than one of e's endpoints).

374 M.T. Goodrich

The k-level in A(S) is the set of edges at depth k [25]. Clearly, the k-level is a

monotone chain of edges in A(S), i.e., a chain that is intersected only once by any

vertical line. In general, a k-level can have as many as ta(n log k) edges, but will

always have no more than O(nx/~) edges [25]. Of course, the total size of all

k-levels in A(S) is ®(n2).

Our algorithm description, which follows, makes considerable use of k-levels,

and builds upon the approach of Anderson et al. [5]. We begin by dividing the

set S into two equal-sized sets S~ and $2, such that the lines in St all have slope

smaller than the lines in $2. This can easily be done in O(log n) time using O(n/log n)

processors, assuming the lines in S are presorted by slope [20], [30]. We then

recursively construct the arrangements A(St) and A(S2) in parallel.

As might be expected, the most difficult step in our construction is to merge

A(S~) and A(S2) into A(S). To facilitate this we construct arrays that store each

of the levels in A(SO and A(S2) ordered left to right. This can be done in O(log n)

time using O(n 2) work by the list-ranking algorithm 2 of Anderson and Miller [61

or Cole and Vishkin [22]. We distinguish the k-levels such that k is a multiple of

[log n l as starter levels in the arrangement. Anderson et al. make an interesting

observation about sets of lines that are separated by their slopes, namely,

Observation 2.1 [5]. I f I is a line in St, then l intersects each level of A(Sj), i ~ j,

exactly once.

As they show, this observation can be used to build a parallel data structure for

efficiently finding the ordered intersections of a line l in St with all the lines in

A(S2). Simply, each starter level of A(S2) is stored in an array (as above). To

intersect l e St with A(S2) O(n/log n) processors are assigned and / ' s intersection

with each starter level is found by a binary search. This cuts I into n/log n segments.

Then, for each such segment s, the sequential search method of Chazelle [13] is

performed to crawl iteratively around the faces s intersects 3 to discover all the

intersections of s with A(S2). In [29] the author shows, via a "truncated" zone

lemma, that, given the locations of s's endpoints in the arrangement, such a

sequential search can be performed in time proportional to the number of lines s

intersects, which in this case is O(log n). Thus, the entire computation can be

performed in O(log n) time using O(n/log n) processors, giving us the following

lemma.

Lemma 2.2. Given an arrangement A(Si), a data structure can be constructed that

allows the computation, for any line I with slope outside the range of slopes in Si, of

the ordered list of intersections of l with A(Si) in O(log n) time using O(n/log n)

2 Recall that in the list-ranking problem a linked list L is given and it is required to determine for
each dement x ~ L the rank of x in L.

The iterative crawling method of Chazelle requires that each edge on a face f stores a pointer
to the rightmost point on f. This can be computed using a list-ranking procedure [6], [22] for each
face in parallel, which requires O(Iog n) time using O(n2/log n) processors.

Constructing Arrangements Optimally in Parallel 375

processors. Moreover, this data structure can be constructed in O(log n) time using

O(n2/log n) processors.

We complete the merging of A(SI) and A(S2), then, for each line l in Sl, by

computing the ordered list of its intersections with A(S2) using Lemma 2.2. In

parallel we also perform a similar computation for each line in $2. We complete
the construction of A(S) by merging, for each line l, I's sorted lists of intersections

in A(S 0 and A(S2), respectively. This can be implemented in O(log n) time using
O(n/log n) processors [10], [11], [35], [43] for each line l, or O(n2/log n) overall.

This completes the construction.

The time complexity, T(n), of this method is characterized by the recurrence

T(n) = T(n/2) + b log n

for some constant b. Thus, this method runs in O(log 2 n) time. The work

complexity, W(n), is characterized by the recurrence

W(n) = 2W(n/2) + cn 2

for some constant c. This implies that this method uses O(n 2) work. By an easy

application of Brent's theorem [12] (also see [33] and [34]), then, we can therefore

derive the following theorem:

Theorem 2.3. The arrangement of n lines in the plane can be constructed in

O(log 2 n) time using O(n2/log 2 n) processors in the C R E W P R A M model.

In the next section we show how to extend this approach to construct an

e-pseudocutting for S, the main structure employed by our optimal O(log n)-time

method.

3. Constructing an ~-Pseudocutting

Recent developments on the theory of e-cuttings have proven useful for solving a

number of problems in computational geometry (e.g., see [1], [2], [14], [32], and
[39]). The general paradigm is that a set X of n hyperplanes in ll~ d (lines in II~ 2) is
given and a parameter e > 0, and it is desired to decompose the space into O(r a)

constant-size polytopes (e.g., trapezoids in •2) such that each polytope intersects

at most J-n/r-] hyperplanes, where r = 1/e. Such a set is called an e-cutting for X.

Building on results of Matou~ek [39], Chazelle [14] shows that such an ~-cutting

can be constructed in O(nr d- 1) time. This is closely related to the random sampling

techniques of Clarkson [18] and Haussler and Welzl [32], which state that if the

arrangement of r randomly chosen hyperplanes from X is triangulated, a decompo-

sition of the space into O(r a) constant-size polytope is produced such that the

expected number of hyperplanes intersecting any polytope is O((n/r) log r). These

approaches have turned out to be very powerful, having applications to a number

376 M.T. Goodrich

I I i
I I I

I I I I
I I I

I I I I I I - ;
1 I 1

,

j - ~ . - - - r - \ v" i ~ x . , ~ x , . Z ~ \ l t
I i N ; i - I \ ' , / i \ ~ ' ~

i I I I ' I

1 1

I I I

' r i

Fig. 2. An e-pseudocutting.

of different problems in discrete and computational geometry (e.g., see [2] and

[14]).

Our method for optimally constructing the arrangement of a set S of n lines

in the plane is based on a similar e-cutting approach. Unfortunately, none of these

previous algorithms translate into an efficient deterministic parallel algorithm

running in O(log n) time (which is what we would require for our arrangement

construction procedure). Thus, we do not attempt to construct a true e-cutting for

S. Instead, we construct a decomposition of the plane that is "almost" an e-cutting.

In particular, we show in this section that if a set S of n lines in the plane is given,

a collection of r 2 pseudotrapezoids (i.e., trapezoids with top and bottom edges

that are pseudo line segments) can be constructed such that each pseudotrapezoid

intersects at most O(nt/r) lines in S, where t > 1 and r _> 1 are integer parameters.

By pseudo line segments we mean piecewise linear curve segments that are

x-monotone and such that any two intersect each other at most once. (See Fig.

2.) Our method extends the approach of the previous section, and results in an

efficient parallel algorithm.

We begin by sorting the lines in S by slope, and dividing this sorted list into

t groups SI, S 2 Sr of size O(n/t) each, so that each line in S i has smaller slope

than every line in S s if i < j. By using a slightly different implementation of the

method of Anderson et al. [5] we can construct each A(S~) in O(log n) time using

O((n/t) 2 log log n/t) work (where their iterative process is stopped after two itera-

tions4). Also, for each A(S~), we construct an array representation of each level of

* In general, O((n/t) 2 log c° n/t) work can be achieved by stopping their method after i iterations,
but i = 2 is sufficient for our purposes.

Constructing Arrangements Optimally in Parallel 377

A(Si). Using the list-ranking algorithm of Anderson and Miller [6] or that of Cole

and Vishkin [22] this can be done in O(log n) time for all S~'s using a total of

O(n2/t) work. Thus, all the A(Si)'s and their levels can be constructed in O(log n)

time using O((n2/t) log log n/t) work.

We define each k-level of A(Si) such that k is a multiple of Fn/r'] (including the

first and last levels) to be a superlevel in A(Si). Note that there are O(r/t) superlevels

per arrangement A(S~), and the total size of all the superlevels in any A(Si) is
O(nZ/t 2) (since lSit is O(n/t)).

For each line 1 ~ S, we compute the intersection of I with the superlevels in A(Sj)
for j ~ i if 1 e Sv This gives us t sorted lists of intersections for each line 1. Our

method for doing this is to intersect I with A(Si) and then compress out the

intersection points not on superlevels by a parallel prefix computation, s Since we

can apply Lemma 2.2 to compute the intersection of I with A(Si) and we can apply

an optimal parallel prefix method to perform the compression step [36], [373, this

computation can be implemented in O(log n) time using O(n 2) work in total

(n lines • t groups * O(n/t) work per group).

We next construct A', the arrangement of superlevels. The following lemma

expresses a property concerning levels that is crucial to our construction.

Lemma 3.1. Let ~ and ~g be two levels with ~ c A(Si) and J¢ ~ A(Sj), i :~ j.

Then ZP and .t¢ intersect in a single point.

Proof This lemma follows immediately from a similar lemma given by Edels-

brunner [25, Lemma 14.4 on p. 338]. []

Therefore, by the above lemma, the intersections between A(Si) and A(Sj) can

be viewed as the intersections defined by two sets of parallel pseudolines, i.e., they

define a "pseudogrid." Note that, by Lemma 3.1, A' is an arrangement of

pseduolines. Moreover, for any superlevel ~ , say from A(Si), L~' has O(r/t)
intersections with the superlevels in A(S~), j ~ i; hence, each superlevel ~ has O(r)
intersections with all the other superlevels. Also note that the total number of line

segments making up A' is O(n2/t + r2).
In our method for constructing A' we distinguish two kinds of intersections for

a line l ~ Si: proper intersections, which are formed between l and a superlevel in

some A(Sj), j ¢: i, and improper intersections, which are formed between l and the

superlevels in A(Si). Note that proper intersections are points, while improper

intersections are line segments. There are O(n2/t) improper intersections and O(nr)

proper intersections determined by A' and the lines in S. (See Fig. 3.)

Our method for constructing A', then, is as follows. First, for each line l, we

sort the list of proper intersections along I. This amounts to merging t sorted lists,

each of size O(r/t); hence, can be implemented in O(log t log log r) time using

O(r log t) work [11], [35] per line (for O(nr log t) work overall). We then merge

the list of improper intersections along I with this list of proper intersections

along l, and "throw away" each proper intersection that does not fall on an

Recall that in the parallel prefix problem an array A of numbers is given and it is desired to
compute each prefix sum s~ = ~= l A[i].

378 M.T. Goodrich

Fig, 3. An example superlevel arrangement .4" for the case t = 2. The superlevels in A(St) are shown
by dotted lines and the superlevels in A(S2) are shown by solid lines. Also shown is a line l in $I,
together with its proper intersections (shown as bold dots) and its improper intersections (shown with
bold line segments).

improper intersection of I. Finally, we construct the proper intersections along

each superlevel by performing a list-ranking procedure, to link up the proper

intersections that fall along each edge in the superlevel. This requires O(log n)

time and O(n2/t + nr) work. Thus, given all the A(Si)'s we can construct A' in

O(log n + log t log log r) time using a total of O(nr log t + n2/t + nr) work.

So, how close is A' to being an e-pseudocutting? It is quite close as it turns

out. Note that there are O(r 2) faces in A', which are defined by the O(r 2) intersection

points. Moreover, each face has at most 2t pseudoedges on its boundary. Each

such face is not quite a pseudotrapezoid, but we do know that, since each

pseudoedge on f ' s boundary is x-monotone, f ' s boundary can be decomposed

into two chains of pseudoedges: an upper chain and a lower chain. We also have

the following property for A':

Lemma 3.2. The number of proper intersections along the boundary of any face of

A' is O(nt/r).

Proof. Let f be a face of A'. By construction, f lies between two superlevels in

each A(S~). Index each edge e on f by the index of the group St such that e is in

a superlevel of A(S~). As a simple corollary of Lemma 3.1, it is easy to show that

the edges in a left-to-right listing of the lower chain (resp. upper chain) have strictly

increasing (resp. decreasing) indices. Suppose, for the sake of contradiction, that

a level .(~ of A(S~) has more than two proper intersections with f. Let a, b, and c

be the indices of the first three proper intersections Ze has with f . That is, f

Constructing Arrangements Optimally in Parallel 379

enters f at a, exits at b, and enters again at c. Since .~ is x-monotone, b and c

must both be on the lower chain of f or both on the upper chain. Without loss

of generality, suppose they are both on the lower chain. Then i < b and c < i.

However, this contradicts the fact that the indices on the lower chain of f have

increasing indices. Therefore, each A(Si) can contribute at most O(n/r) proper

intersections to the boundary of f. The lemma follows, then, since there are t

groups. []

Thus, the only types of intersections that could cause a cell to intersect more

than O(nt/r) lines are improper intersections. Thus, we must further partition the

cells in A' to limit the number of improper intersections per cell boundary (and

also to enforce the property that each face in the resulting subdivision is a

pseudotrapezoid). We do this by extending two vertical rays (one up and one

down) from each of O(r z) distinguished points on the pseudoedges of A' to the

first points of A' that the rays intersect, respectively. For a distinguished point p

we call these points p's vertical shadows. The points we distinguish in this way

include each point defined by the intersection of two superlevels and each point

on a superlevel and whose rank in that level is a multiple of Fn/r] (when listed

left to right). Adding edges from each distinguished point p to its vertical shadows

forms a decomposition of A' into pseudotrapezoids with the desired "e-pseudo-

cutting" property for S. That is, this would imply a total of O(r 2) pseudotrapezoids,

each of which intersects at most O(nt/r) lines.

To implement this strategy we need to locate, for each distinguished point p,

the position of p and p's "vertical shadows" in A(S1), A(S2) A(St). This would

then allow us to "walk" efficiently through each of the arrangements from p to

its vertical shadows using Chazelle's [13] sequential search strategy. Unfortu-

nately, the total work we wish to allow for this collection of point locations is

O(nrt°tt~), not O(r 2 log n), which would be the work of doing an independent point

location for each point involved. Thus, we must use the adjacency information for

the arrangement A' to aid us in performing all the necessary point locations in a

batched fashion.
We proceed as follows. For each face f in A', we sort the proper intersections

around f, by the counterclockwise ordering. By Lemma 3.2 and a simple applica-

tion of Brent's theorem [12] this can be implemented in O(log n) time using

O((nt/r) log nt/r) work per face f [20], [30], for a total work bound that is

O(nrt log nt/r). Let P(f) denote the resulting list. We merge P(f) with the list of

endpoints of the line segments that are improper intersections around f (i.e., the

boundary edges off), which can be done for all the faces of A' in O(log n) additional

time using a total of O(n2/t + nrt) work [10], [11], [35], [43]. Let l (f) denote the

resulting list of intersection points around f, let IU(f) denote the sublist of those

intersections on f ' s upper chain, and let IL(f) denote the sublist of those

intersections on f ' s lower chain. We merge IU(f) and IL(f), which can also be
done in O(log n) time using a total of O(n2/t + nrt) work for all faces in A'. For

each distinguished point p on f this immediately gives us the position of p in l (f)
and the position in 1(f) ofp's "vertical shadow," q, on the other side of f. To give

us the position of p and q in an arrangement A(S~) we perform a parallel prefix

380 M.T. Goodrich

computation on the list l (f) u D(f), where D(f) is the set of all distinguished

points and shadow points on the boundary of f. The goal of parallel prefix is to

compress out all the points of l (f) w D(f) that are not on an edge of A(S~) and

are not in D(f). We perform such a parallel prefix computation for each i = 1 t

in parallel. By another simple application of Brent's theorem, this can be imple-

mented in O(log n) time using O(n 2 + nrt 2) work. Since this gives us the position

ofp and its vertical shadow in each arrangement A(Si), we may then assign a single

processor to each distinguished point p and "walk" from p to its vertical shadow

while computing the intersections of this vertical segment with the edges in A(SI),

a computation that requires at most O(n/r) time [29]. Thus, since there are O(r 2)

distinguished points, the total work for all of these traversals is O(nrt). This gives

us all the pseudotrapezoids we desire as well as giving us the set of lines cutting

each pseudotrapezoid. The total time for completing the construction of the

e-pseudocutting, given A', then, is O(log n + n/r) using O(n 2 + nrt log nt/r + nrt 2)

work. We summarize:

Theorem 3.3. Given a set S of n lines in the plane, and parameters r > 1 and

t > 1, a decomposition of the plane into O(r 2) pseudotrapezoids can be constructed

such that each pseudotrapezoid intersects at most O(nt/r) pseudotrapezoids of S.

This construction can be implemented in O(log n + log t log log r + n/r) time using

O(n 2 + (n2/O log log n/t + nrt log nt/r + nrt 2) work in the C R E W P R A M model.

Before we can present our method for optimal arrangement construction, there

is one more algorithmic tool we need to present.

4. Counting Intersections in a Disk

In our arrangement construction algorithm we wish to determine, without actually

computing them, the number of intersection points contained in the interior of a

pseudotrapezoid of our e-pseudocutting decomposition. This problem is topologic-

ally equivalent to the problem of simply counting intersections in a disk. That is,

suppose we are given a collection S of n chords in a disk D and wish to determine

the number of chord intersections in D. The method we describe actually does

more than simply determine the total number of intersections; it also determines,

for each chord c, the number, k(c), of intersections determined by c. Our method

is by divide and conquer.
1. Imagine cutting the boundary of D at some specified point so as to define a

curve, C. This defines a total ordering of chord endpoints based on their rank in

a counterclockwise listing along C. Sort the left endpoints by this ordering (for

any chord c, we define c's left endpoint to be c's first endpoint in this ordering).

This can be done in O(log n) time using O(n) processors [20], [30], and provides

the preprocessing for our divide-and-conquer scheme.
2. Divide the curve C into two curves A and B by cutting C at x, the median

left endpoint of the curves in S. Divide S into three groups: SAA, SaB, and SB~,

Constructing Arrangements Optimally in Parallel 381

where S,a denotes the set of all chords whose "left" endpoint is an a and whose

right endpoint is on p. Note that ISAal + [Sanl + ISBBI = ISI, and IS=al -< ISI/2 for

o~fl ~ {AA, AB, BB}. Recursively solve the problem for SAa, SAn, and Sn8 in parallel

(we associate the curve A with Saa, the curve B with Snn, and the curve C with SAn).

Comment. Having recursively computed all the intersections between chords in

SAA, SAn, and SBn, respectively, we have only to compute the intersections

determined by chords in different sets. Note, however, that no chord in SAA can

intersect a chord in SBs. Thus, we need only consider intersections determined by

chords in Saa and SAB (resp. SaB and SBB). Since these two cases are symmetric,

let us restrict our attention to those intersections determined by chords in SAA

and SAB. The following observation establishes the easy, but important, property

we exploit to compute the number of such intersections efficiently.

Observation 4.1. Let s and t be two chords with s E S Aa and t E San. The chords s

and t intersect if and only' if the left endpoint of t occurs between the endpoints of s

in a counterclockwise listing.

3. Let T be a sorted listing of the left endpoints of chords in SAH. Let U be a

sorted listing of the left and right endpoints of chords in SAA. Merge T and U.

Given this merge we can immediately compute the number of chords in SAn

intersecting a particular chord c in SAA. In particular let a(c) (resp. b(c)) be the

rank in T of c's left (resp. right) endpoint. Then the number of chords c intersects

in SAR is b(c) - a(c), by the above observation. The true value for k(c) can therefore

be calculated by summing this value with the recursively computed value for k(c).

A similar computation can be performed for each c in San. This step requires

O(log n) time and O(n/log n) processors [I0], [11], [35], [43].

4. Repeat step 3 to determine the intersections between San and Snn and update

the k(c) values accordingly. Summing all the k(c) values over all chords in C gives

us the value of k.
Thus, in O(log 2 n) time and O(n log n) work we can determine the number of

intersection points in the circle. Since the essential computation in each step

involves merging recursively constructed lists of endpoints, with a little more effort,

the cascading divide-and-conquer paradigm of Atallah et aL [7] can be applied

to implement this algorithm in O(log n) time using O(n) processors. Nevertheless,

O(log 2 n) time is sufficient for our purposes, so we will not elaborate on how

O(log n) time can be achieved.
Note that our intersection-counting method did not depend on any geometric

properties of the disk; it simply depended on the property that the boundary of

the enclosing curve was simple and the endpoints were sorted around the

boundary. Thus, it can also be applied to pseudotrapezoids. We summarize:

Lemma 4.2. Given a collection of chords C in a pseudotrapezoid, the number of

intersections k(c) along each chord c in C can be computed in O(log n) time using

O(n) processors in the CREW P R A M model.

382 M.T. Goodrich

In the next section we show how to combine the methods of the previous two

sections to design a fast arrangement-construction algorithm.

5. Fast Arrangement Construction

We show in this section how to construct the arrangement of n lines in O(log n)

time using O(n2/log n) processors. The method is to construct, in O(log n) time, an
e-pseudocutting for r = n/(log log n) 2 and t = log log n by Theorem 3.3. This

implies that our construction uses O(n 2) work, and results in O(n2/(log log n) 4)

pseudotrapezoids, each of which intersects at most O((log log n) 3) lines. That is, if

we "cut" each line at its proper intersections, this e-pseudocutting determines
O(n2/log log n) line segments, with at most O((log log n) 3) segments per pseudo-

trapezoid. We then use our method for counting intersections in a "disk" to

determine the number of intersections in each pseudotrapezoid. We then group

the pseudotrapezoids into O(n2/log n) "buckets," such that each bucket contains

at most O(log n/log log n) segments and determines at most O(log n) intersections

(in the interiors of the pseudotrapezoids in this bucket). This can easily be done
in O(log n) time using O(n 2) work, say, by parallel prefix computations. Finally,

we assign a single processor to each bucket, and let that processor apply the

sequential segment-arrangement method of ChazeUe and Edelsbrunner to con-
struct the arrangement in each pseudotrapezoid in this bucket. The method of

Chazelle and Edelsbrunner runs in O(n b log n b + kb) time, where nb is the number
of segments in bucket b and k b is the number of intersections these segments

determine. In our case, n b is always O(log n/log log n) and k b is always O(log n).
Therefore, no processor will take more than O(log n) time to complete the

construction of the arrangements in its assigned pseudotrapezoids. This completes

the construction and gives us the following theorem:

Theorem 5.1. The arrangement of n lines in the plane can be constructed in O(log n)
time using O(n2/log n) processors in the CREW PRAM model, which is optimal.

6. Discussion

We have shown how to construct optimally the arrangement of n lines in the plane

in O(log n) time, solving a well-known open problem in parallel computational

geometry [4], [29], [5]. Using the "induction" argument of Anderson et al. [5],
this immediately implies that the arrangement of n hyperplanes in •d, for fixed d,

can be optimally constructed in O(log n) time using O(nd/log n) processors.
In the sequential setting the construction of a line arrangement is the bottleneck

computation for a number of problems, including hidden-line elimination [23]

and the problem of finding the minimum-area triangle determined by three points

taken from a set of n points in the plane [16]. Our methods immediately imply

O(log n)-time, optimal-work parallel methods for these problems.

Constructing Arrangements Optimally in Parallel 383

Besides solving an important subproblem in many applications, the previous

sequential l ine-arrangement algorithms [t6] , [26], [27] have also contr ibuted

impor tant ideas that eventually led to an optimal method for construct ing the

arrangement of n line segments [15]. An interesting open question, then, is the

following: Can the arrangement of n line segments be deterministically constructed

in O(log n) time using O(n + k/log n) processors, where k is the number of

intersections? Currently, the only optimal output-sensitive methods are either

randomized [19] or for special cases, such as axis-parallel segments [29],

Acknowledgments

We would like to thank Richard Anderson, Richard Cole, and S. Rao Kosara ju

for several helpful discussions related to topics discussed in this paper. We would

also like to thank an anonymous referee for a number of helpful comments that

significantly improved the level of rigor in our algori thm descriptions.

References

1. P. K. Agarwal, Partitioning Arrangements of Lines, 1I: Applications, Discrete Comput. Geom. 5

(1990), 533-573.
2. P. K. Agarwal, Geometric Partitioning and Its Applications, Technical Report CS-1991-27, Dept.

of Computer Science, Duke University, 1991.
3. A. Aggarwal, B. Chazelle, L. Guibas, C. O'DOnlaing, and C. Yap, Parallel Computational

Geometry, AIgorithmica 3 (1988), 293-328.
4. A. Aggarwal and J. Wein, Computational Geometry, M.I.T. Report MIT/LCS/RSS 3, 1988.
5. R. Anderson, P. Beame, and E. Brisson, Parallel Algorithms for Arrangements, Proc. 2nd ACM

Syrup. on Parallel Algorithms and Architectures, 1990, pp. 298-306. (An expanded version of this
paper is available as Technical Report 89-12-08, Dept. of Computer Science and Engineering,
University of Washington, 1989.)

6. R. J. Anderson and G. L. Miller, Deterministic Parallel List Ranking, Proc. 3rd Aegean Workshop

on Computing, A WOC '88, Lecture Notes in Computer Science, Vol. 319, Springer-Veflag, Berlin,
1988, pp. 81-90.

7. M. J. Atallah, R. Cole, and M. T. Goodrich, Cascading Divide-and-Conquer: A Technique for
Designing Parallel Algorithms, SIAM J. Comput. 18 (1989), 499-532.

8. J. L. Bentley and T. Ottmann, Algorithms for Reporting and Counting Geometric Intersections,
IEEE Trans. Comput. 28 (1979), 643-647.

9. J. L. Bentley and D. Wood, An Optimal Worst Case Algorithm for Reporting Intersections of
Rectangles, IEEE Trans. Comput. 29 (1980), 571-576.

10. G. Bilardi and A. Nicolau, Adaptive Bitonic Sorting: An Optimal Parallel Algorithm for Shared
Memory Machines, Technical Report 86-769, Dept. of Computer Science, Cornell University,

August 1986.
t 1. A. Borodin and J. E. Hopcroft, Routing, Merging, and Sorting on Parallel Models of Computation,

J. Comput. System Sci. 30 (1985), 130-145.
12. R. P. Brent, The Parallel Evaluation of General Arithmetic Expressions, J. Assoc. Comput. Mach.

21 (1974), 201-206.
13. B. Chazelle, Reporting and Counting Segment Intersections, J. Comput. System ScL 32 (1986),

156-182.
14. B. Chazelle, An Optimal Convex Hull Algorithm and New Results on Cuttings, Proc. 32nd IEEE

Syrup. on Foundations of Computer Science, 1991, pp~ 29-38.

384 M.T. Goodrich

15. B. ChazeUe and H. Edelsbrunner, An Optimal Algorithm for Intersecting Line Segments in the

Plane, J. Assoc. Comput. Mach. 39 (1992), 1-54.
16. B. Chazelle, L. J. Guibas, and D. T. Lee, The Power of Geometric Duality, BIT 25 (1985), 76-90.
17. A. Chow, Parallel Algorithms for Geometric Problems, Ph.D. thesis, Computer Science Dept.,

University of Illinois, 1980.
18. K. L Clarkson, New Applications of Random Sampling in Computational Geometry, Discrete

Comput. Geom. 2 (1987), 195-222.
19. K. L. Clarkson, R. Cole, and R. E. Tarjan, Randomized Parallel Algorithms for Trapezoidal

Diagrams, Internat. J. Comput. Geom. AppL 2 (1992), 117-134.
20. R. Cole, Parallel Merge Sort, SIAM £ Comput. 17 (1988), 770-785.
21. R. Cole and U. Vishkin, Deterministic Coin Tossing and Accelerating Cascades: Micro and Macro

Techniques for Designing Parallel Algorithms, Proc. 18th ACM Symp. on Theory of Computing,

1986, pp. 206-219.
22. R. Cole and U. Vishkin, Approximate and Exact Parallel Scheduling with Applications to List,

Tree and Graph Problems, Proc. 27th IEEE Symp. on Foundations of Computer Science, 1986,

pp. 478-491.
23. F. D~vai, Quadratic Bounds for Hidden-Line Elimination, Proc. 2ndACM Syrup. on Computational

Geometry, 1986, pp. 269-275.
24. P. W. Dymon and S. A. Cook, Hardware Complexity and Parallel Computation, Proc. 21st IEEE

Symp. on Foundations of Computer Science, 1980, pp. 360-372.
25. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.

26. H. Edelsbrunner and L. J. Guibas, Topologically Sweeping an Arrangement, J. Comput. System

Sci. 38 (1989), 165-194.
27. H. Edelsbrunner, J. O'Rourke, and R. Seidel, Constructing Arrangements of Lines and Hyperplanes

with Applications, SlAM J. Comput. 15 (1986), 341-363.
28. M. T. Goodrich, Efficient Parallel Techniques for Computational Geometry, PhD. thesis, Dept.

Computer Sciences, Purdue University, 1987.
29. M. T. Goodrich, Intersecting Line Segments in Parallel with an Output-Sensitive Number of

Processors, SlAM £ Comput. 20 (1991), 737-755.
30. M. T. Goodrich and S. R. Kosaraju, Sorting on a Parallel Pointer Machine with Applications to

Set Expression Evaluation, Proc. 30th IEEE Symp. on Foundations of Computer Science, 1989,

pp. 190-195.
31. T. Hagerup, H. Jung, and E. Welzl, Efficient Parallel Computation of Arrangement of Hyperplanes

in d Dimensions, Proc. 2nd ACM Symp. on Parallel Algorithms and Architectures, 1990,

pp. 290-297.
32. D. Haussler and E. Welzl, e-Nets and Simplex Range Queries, Discrete Comput. Geom. 2 (1987),

127-151.
33. J. JAJh, An Introduction to Paratl¢l Algorithms, Addison-Wesley, Reading, MA, 1992.
34. R. M. Karp and V. Ramachandran, Parallel Algorithms for Shared-Memory Machines, in

Handbook of Theoretical Computer Science, Vol. A, J. Van Leeuwen, ed., MIT Press, Cambridge,

MA, 1990, pp. 869--942.
35. C. P. Kruskal, Searching, Merging, and Sorting in Parallel Computation, IEEE Trans. Comput.

32 (1983), 942-946.
36. C. P. Kruskal, L Rudolph, and M. Snir, The Power of Parallel Prefix, Proc. 1985 tnternat. Conf.

on Parallel Processing, 1985, pp. 180-185.
37. R. E. Ladner and M. J. Fischer, Parallel Prefix Computation, J. Assoc. Comput. Mach. 27 (1980),

831-838.
38. D. T. Lee and F. P. Preparata, Computational Geometry--A Survey, IEEE Trans. Comput. 33

(1984), 872-1101.
39. J. Matou~ek, Approximations and Optimal Geometric Divide-and-Conquer, Proc. 23rd ACM

Syrup. on Theory of Computing, 1991, pp. 505-511.
40. F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag,

New York, 1985.
41. C. Riib, Line Segment Intersection Reporting in Parallel, Al#orithmica $ (1992), 119-144.

Constructing Arrangements Optimally in Parallel 385

42. W. L. Ruzzo, On Uniform Circuit Complexity, J. Comput. System Sci. 22 (1981), 365-383.

43. Y. Shitoach and U. Vishkin, Finding the Maximum, Merging, and Sorting in a Parallel Computa-
tion Model, J. Algorithms 2 (1981), 88-102.

44. J.C. Wyllie, The Complexity of Parallel Computation, Ph.D. thesis, Technical Report 79-387, Dept.

of Computer Science, Cornell University, 1979.

Received August 29, 1991, and in revised form September 4, 1992.

