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Abstract. Many applications arise in manufacturing systems, and queueing network
problems involve Markov chains having slow and fast components. These components are
coupled through weak and strong interactions. The main goal of this work is to study as-
ymptotic properties for the probability distribution of the aforementioned Markov chains.
Explicit construction of series expansions, consisting of regular part and boundary layer
part or singular part, are developed by means of singular perturbation methods. The
regular part is obtained by solving algebraic-differential equations, and the singular part
is derived via solution of differential equations. One of the key points in the constructions
is to select appropriate initial conditions. This is done by taking into consideration the
regular part and the singular part together with their interactions. It is shown that the
singular part decays exponentially fast. Analysis of residue is carried out, and the error
bound for the remainder terms is ascertained.

1. Introduction. The preparation of this work was promoted by a wide range of
applications involving a singularly perturbed Markov chain consisting of slow and fast
motions with weak and strong interactions. Our main interest is to study the asymptotic
behavior of the underlying Markov chains. In a recent paper [6], the authors have proved
that the probability distribution of a class of singularly perturbed Markov chains with
rapidly fluctuating motion, admits an asymptotic series expansion. This paper is a

Received July 13, 1994.
1991 Mathematics Subject Classification. Primary 34E05, 34E15, 60J27.
Key words and phrases. Asymptotic expansion, slow and fast motions, singular perturbation, Markovian
generator.
Research of the first author was supported in part by the Office of Naval Research under grant N00014-
93-1-0936, and N00014-95-1-0793.
Research of the second author was supported in part by the National Science Foundation under grant
DMS-9529738, and in part by Wayne State University.
Research of the third author was supported in part by the Office of Naval Research Grant N00014-96-1-
0263 and in part by the University of Georgia Faculty Research Grant.

©1997 Brown University
177



178 R. Z. KHASMINSKII, G. YIN. and Q. ZHANG

substantial generalization of [6]. We address the issue of asymptotic properties when a
system is governed by a Markov chain that consists of both slow and fast processes. An
immediate question is: can we still develop an asymptotic series expansion? Our findings
indicate that the answer to the question above is affirmative.

To model Markov chains involving slow and fast motions with weak and strong inter-
actions, let £ > 0 be a small parameter, and a6(t) be a Markov chain with generator

where A(t) and B{t) are N x N measurable matrix-valued functions, for all t e [0, T]
and some 0 < T < oo. We assume that A(t) has the diagonal form

(A\t) \ (Bu(t) Bl2(t) ••• Bll(t)\

A(t) =
A\t)

V A l(t)J
and B(t) =

B2\t) B22(t)

\ Bn(t) Bl2(t)

BM{t)

B"(t) /

where Av[t) G for u = 1,2,... ,1 are themselves generators with Yll=in" =
N. Similarly, BZ3(t) for i, j = 1,... ,/ are blocks of submatrices that have comparable
dimensions. Since Au(t) with v = 1,2,... J, A(t) and B{t) are generators of Markov
chains,

nu N N

^2 Aij(t) = 0 for i = 1,... , v, Aij(t) — 0 and ^ = 0 for i — 1,... , N.
j=i j=i i=i

In what follows, we use the convention that for integers, superscripts denote the parti-
tioned submatrices and subscripts denote the components of a vector and/or entries of
a matrix or a submatrix.

The study of asymptotic properties of the underlying Markov chains is facilitated by
considering the following ordinary differential equation:

y£(t) = y£(t) (~A(t) + B(t)

N (1)
yt(0) = y(0), Vl(0) >0, i= 1,2,... ,N, $>(0) = 1.

i=i

Our main objective is to develop series expansions for the solution y6(•) with small e > 0.
It is well known that (see [2] and [3]) the solution of (1) defines the probability distri-

bution of the Markov chain ae(t) at time t with initial distribution y£(0), i.e.,

(P(ac(t) = l),...,P(a%t) = N))=y*(t)

with initial distribution (P(a£(0) = 1),..., P(a£(0) = N)) — ye(0).

Since the differential equation is linear, (1) has a unique solution. Consequently,

N

0<ye{t)<l and ^2yf(t) = l. (2)
i= 1
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In many problems arising in manufacturing systems, queueing networks, random fa-
tigue analysis, and system reliability, finite state Markov chains with singular perturba-
tion play an important role. To illustrate, consider the following problem. Suppose that
two unreliable machines are lined up in a cascade form. The machines are subject to
random breakdown and repair. However, the rates of breakdown for the two machines
are not identical. In fact, one machine breaks down more often than the other. One
way to formulate the problem is to assume the system capacity is a finite state Markov
chain a£(t) having a generator (l/e)A(t) + B(t), with A(t) and B(t) given above. In
order to design optimal controls for the manufacturing systems, the first and foremost
important task is to investigate the asymptotic properties of the Markov chain involved.
Heuristically, as £ gets smaller and smaller, the Markov chain will approach its "average"
in an appropriate sense. Our results in this paper show that if A(t) = A and B(t) = B
are constant matrices, ye(t) converges to the equilibrium distribution (see [2]) ft such
that i TTi = 1- In the more general cases, with time-dependent generators, n is re-
placed by 7t(t), a quasi-equilibrium distribution (to be defined in Sec. 2). In addition,
a full asymptotic development is obtained, which shades more light in studying many
properties of the Markov chains as well as related optimal control problems.

Notice that the formulation above is also frequently encountered in queueing network
problems. For instance, consider two service stations in cascade form such that the
service rate of one station is much faster than the other.

Using singular perturbation methods, we proved in [6] that when A(t) has only one
block, i.e., for / = 1, and B(t) = 0, ye{t) has an asymptotic series expansion. Such
cases correspond to a Markov chain with rapidly varying motions. As was pointed out
in [6], although singular perturbation has been the focus of many researchers for years,
the existing results (see [1], [7], [9], [10] and the references therein) are not applicable to
the system we wish to study due to the singularity of the matrix A(t). (Note that 0 is an
eigenvalue for the generator with corresponding right eigenvector 11 =(1,1,... , 1)' e R",
where / denotes the transpose.)

In the current paper, we treat more complicated situations in which the Markov chains
have both slow and fast components. The fast components are governed by each of the
blocks in A(t), and the slow components are governed mainly by the matrices B(t). The
slow and fast components are coupled through weak and strong interactions. The states
corresponding to Au(t), v = 1,... , I, are not isolated or independent of each other. More
precisely, if we group the states corresponding to Al(t) as Si, i — 1,2,... , I. then these
groups are coupled through the matrix B(t), and transitions from St to Sj, i ^ j, are
possible.

Under close scrutiny, we establish in this paper that an asymptotic expansion can be
constructed. Explicit forms of the "coefficients of £n's" (functions of t) in the expansion
are given. Their desired properties are obtained. The analysis of residue or remainder
of the error terms is provided. Owing to the complexity of introducing diagonal blocks
in A(t), the derivation of the asymptotic expansion is much more involved than that of
[6]. In fact, the regular part of the expansion is obtained through solutions of algebraic-
differential equations. The solutions of these equations highly depends on a number of
"multipliers", which represent the interactions among different blocks. The multipliers,
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in turn, depend on the general solution of the boundary layers. On the other hand, the
choice of the initial conditions for the boundary layer terms relies on the solution to the
regular part of the expansion. As a result, the selection of the initial conditions is a
rather subtle and delicate issue.

The rest of the paper is arranged as follows. Section 2 gives precise formulation of the
problem. We then begin the construction of the asymptotic series. The regular part of
the expansion is constructed in Sec. 3, and boundary layer corrections are dealt with in
Sec. 4. To establish the desired asymptotic properties, we need to make sure that the
singular part of the expansion decays sufficiently fast. This is treated in Sec. 5, which
exploits the key relation between the regular and singular parts. Among other things,
the initial conditions are chosen to ensure matched asymptotic expansions. In Sec. 6, we
analyze the remainder term in detail. The main results of the paper are summarized in
Sec. 7. In addition, an outline of the computation procedure is also presented. Finally,
we close the paper with an illustrative example.

2. Problem formulation. In this paper, we only consider finite state Markov chains.
The qualifier "finite state" will be dropped in the sequel.

We first recall some definitions of Markov chains. For each t G [0, T], let a Markov
chain have a generator Q{t) £ Rrxr. The matrix Q(t) has the following form:

Q(t)
/-<?1 (t) qi2{t) ■■■ q\r(t) ^

<721 (t) -q2(t) ■■■ q2r{t)

\qri(,t) qri{t) ••• -qr{t) J

where qt(t) =
As defined in [6], a vector y(t) is said to be a quasi-equilibrium (or quasi-stationary)

distribution if it satisfies
r

Vi{t)> o, ^yi(t) = 1,
i=1 W

y{t)Q(t) = 0.

We say that a Markov chain generated by Q(t) £ Rrxr is weakly irreducible if the
system

y(t)Q(t) = 0,

= 0 (4)

has a unique solution.
With a slight abuse of notation, if a Markov chain is irreducible, we also say the cor-

responding generator Q(t) is irreducible. Notice that as a consequence of the definition
above, if a chain is weakly irreducible, there exists a unique quasi-equilibrium distribu-
tion. In fact, this can be used as an alternative definition of weak irreducibility. The latter
emphasizes the probabilistic aspects of weak irreducibility, whereas the former stresses
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the algebraic structure. Observe that if Q(t) is weakly irreducible, rank £,)(£) = r — 1 and
there is a minor M(t) 6 ]R(r_1)x(r_1) such that det M(t) ^ 0.

We remark that the notion of weak irreducibility, which was defined in [6], is different
from the usual definition of irreducibility (see [2] and [3]). To illustrate, consider the
stationary case. That is, Q(t) = Q, a constant matrix. The usual notion of irreducibility
requires that the equilibrium distribution be strictly positive, i.e., ffj > 0, i — 1,... , r,
whereas the irreducibility in the weak sense means that some of the are allowed
to be zero. As for the time-varying case, for example Q(t) = the usual
irreducibility requires that A(t) > 0 and yu(t) > 0 for all t. However, only A(t) + fi(t) > 0
is needed in the weak formulation. This is particularly useful in studying failure-prone
manufacturing systems. For example, in a manufacturing model, ^(-) may denote the
repairing rate of a machine. The case ii(t) = 0 corresponds to, for example, breaks of
the repairing workers are allowed or a waiting period is needed to get the required parts.

To proceed, we make the following assumptions.
(Al) For each t 6 [0, T], Av{t), v = 1,2,... ,1, are weakly irreducible.
(A2) For some n, A(-), B(-) e Cn+2[0, T], i.e., they are n+2 continuously differentiate

in [0,T],

Notice that, in view of the definition of weak irreducibility, conditions (Al) and (A2)
imply that A"(-), v = 1,2,... ,1 are uniformly weakly irreducible in [0,T], i.e., for each
t 6 [0, T], there exists M"(t), a minor of A"(t) such that the determinant of Mv(t) / 0.
In the sequel, superscripts with curly bracket denote indices of a sequence. Based on the
framework of singular perturbation methods, we seek solutions of (1) of the form

= P{0} (t) + £p{1} (t) + £y 2> (*) + •■• (5)

+ q{0}(t/e) + e<7{1}(i/e) + e2g{2}(t/e) H .

We call pW (•), i = 0,1, 2,... the regular part of the expansion, and (•), i = 0,1, 2,...
the boundary layer correction or the singular part of the expansion. It will be shown in the
sequel that p^ (•) is nothing but the quasi-equilibrium distribution. As was mentioned
in the introduction, classical results in singular perturbation are not applicable due to
the highly degenerate nature of the matrix A(t).

Many applications in manufacturing systems and in production planning consist of
a Markov chain aE(t) — (a£(t), f3(t)) such that ae(*) is a fast-changing component and
/?(•) is a slowly-varying one. Very often, the generators of the two components of the
Markov chain commute. See the example in Sec. 6 for a typical case. In this case,
the proof in the sequel can be much simplified. Our aim, however, is to obtain the
desired results without further restrictions (other than the weak irreducibility and the
smoothness conditions (Al) and (A2)) on the generators.

For each k = 1,2,... , define

k k
Yk(t) = J2£lp{l}^ + ]C£l(?{t}(t/£) = Pk(t) + Qk(t/e)- (6)

i=0 i=0
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We show in this paper that (t) can be constructed such that

sup \f(t)-Y:(t)\=0(en+1).
te[o,T]

The main difficulty lies on the interactions between different block matrices. In our
early paper [6], the functions p^ (•) for i — 1,... , n, were constructed independently of
<?'''(•); the functions g^(-) were constructed essentially independently of p^ (•) except
for the initial conditions p^(0). Now for the harder part; and q^ (•) are highly
intertwined and tangled together. The trick of the methods in the sequel is to find p^1' (•)
and q^1} (•) jointly and recursively. In the process of construction, we bare in mind to
make q(l> (•) decay sufficiently fast. One of the crucial and delicate points is to select the
"right" initial conditions.

For future use, define a differential operator C£ on the space of 1R1X 'v-valued functions
by

££/ = e ft~f{A + eB)- (7)
The formulation is completed. We are now in a position to derive the asymptotic expan-
sion.

3. Regular part in the asymptotic expansion. To construct the regular part
of the expansion, setting CEp£[t) = 0, and equating like powers of el, i = 0,1, 2,..., we
obtain

p{0](t)A(t) = 0

pW(t)=p^{t)A(t)+pW{t)B{t)
p^(t)=p^(t)A(t)+p^(t)B(t)

s°

e1

e2
(8)

£n : pW(t) = pin+l1>(t)A(t) + p{n](t)B(t)

In the case of absence of B(t) and without subdivision of A(t), i.e., A(t) consists of
only one block of weakly irreducible matrices, the problem was solved in [6] by computing
the solution of the first equation in (8) together with YliLi Pi W = then substituting

the resulting p^ (t) into the second equation, together with P,W ~ 0' t° obtain
p^{t) and so on. That is, all the p(•), i = 0,1,2,... are obtained by solving a set of
algebraic equations. However, in this paper the picture is quite different. To begin with,
note that the system

pW(t)A(t) = 0,
N

£*""<«> = i
i=1

has infinitely many solutions due to the fact that rank^4(i) < N — 1 if I > 1. More
information is needed to determine (t) uniquely.

Since Au(t), v = 1,2,... ,1 are weakly irreducible, rank,4'y(£) = nv — 1 for each
t £ [0, T] and v = 1,2,... ,1. As a result, xankA(t) = N — I for each t. This indicates
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that in order to get a unique solution, we need to supply I auxiliary equations. Where
can we find these equations? Loosely, the idea is to apply the Fredholm alternative, and
use the orthogonality condition to choose I additional equations to replace I equations in
the system represented by the first equation in (8). Consider the conjugate equation

A(t)z(t) = 0, z(t) G M.N.

It is easy to see that there exist I linearly independent solutions zi(t),... , zi(t) such that

z1(t) = (l,...,l,0,...,0)',

z2(t) = (0,... ,0,1^^1,0... ,0)',
nl n 2 (9)

z,(i) = (0,... ,0,1,... ,1)'.
"i

In view of (9), the Fredholm alternative implies that the second equation in (8) has a
solution if and only if

p^(t) — is orthogonal to z„(£) (10)

for v = 1,2,... ,1. Thus we have the equations:

pW(t)A(t) = 0,

X>!0|(«) = i,
i= 1
cv-\+n„ cu-i+n

■AO}

(11)

^2 Pi W" H = 0, for v = 1,2,... ,/,
i—cv-i + l i—c.v-i + l

where c„_\ = X)J=i nj- The last equation in (11) is a direct consequence of (10).
To formalize what was mentioned above, we introduce some notation and conveniently

write the above equations in their equivalent forms as follows. Partition the vector (t)
as (pl°l'1(<), ■ ■ ■ ,p(Q}'l(t)) such that p^'"(t) G Mlxn". Corresponding to this partition,
the first equation in (8) can be written as

p^'v(t)Av{t) = 0, i/ = l(12)

Since rankAl'(i) = nv — 1, for each t G [0,T], the null space of Av{t) is one dimensional.
Notice that JZ"=i7^ 1 in general. However, J2tLiPl°Ht) = 1- Let

{0},er
i=l

We establish the following:
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Lemma 3.1. Assume that the conditions (Al) and (A2) are satisfied. Then for each
v = 1,... , I, the solution of

p{*h"(t)Av(t) = 0,

£><»>.*(,) _ f(°u[t) <13'
2=1

can be uniquely expressed as p^,u{t) — where n"{') £ Cn+2[0,T], with

nu

HU*)>0, « = ,n„, J2rf(t) = l, nv(t)A"(t)= 0.
2 = 1

Remark. Although it is unique, needs to be determined later. Observe
that /{°}'"(") satisfies — '• For v — 1,2,... ,I, [iv{t) are the quasi-
equilibrium distributions for the sub-chain generated by Av(t). Nevertheless, between
different block matrices, there are weak interactions. As a consequence, the individual
quasi-equilibrium distribution is no longer a quasi-equilibrium distribution for the entire
system. The interactions are embedded in the scalar-valued function Roughly,
the lemma states that the quasi-equilibrium distribution for the Markov chain generated
by A(t) is proportional to or a "multiple" of the quasi-equilibrium distributions of the
Markov chains generated by Au(t), for v — 1,... ,1. The multiplier t) reflects the
interactions for different sub-chains.

Proof. Since rankyll'(£) = nv — 1, there are nu — 1 linearly independent equations in
the system of equations in (13). For fixed t 6 [0, T], without loss of generality, suppose
the first nv — I equations are linearly independent. Replace the n„th equation by the
last equation in (13). The resulting coefficient matrix then has full rank. By virtue of
the weak irreducibility,

A(t)

A^(t) A^(t)

M,nuS) ■■■ Kv,nv-lW
1 • • • 1

/o.

Owing to Cramer's rule, for each i = 1,... ,n„,

^n(t) ■■ 0 ••• A^(t)

A (t) ^l,n„-l(0 1 CO
1 ••• ■■■ 1

2th column

A(«)

An(t) ■■■ 0 ••• A-vA(t)

^,„,-i(0 Kv,nuS)
1 ••• ^ ••• 1

ith column
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Notice that

Klit) ■■■ 0 ••• A^{t)
1

A (t) Kn„-x it) (0
1 ••• 1 ••• 1

ith column

is the unique solution of the system (13) with = 1, and it is Cn+2 smooth. The
lemma is thus concluded.

Our next task is to determine these s. Define an N x I matrix

Ina
(lni \

i =

\ ^-ni )

where lni = (1,... ,1)' e IRn\ Then C£p£(t) I = 0. Noticing A{t)l = 0 and rewriting
p{°*(i) as

iV(*)' ^ \
P{0](t) = v{0}'1(t),...,fW>l(t)) M {t)

\

by equating the first power of £ in C£p£(t) 1 = 0, we arrive at

ft(f{0}A(t),/<°>-'(t)) = • • • , /{o}''(t))G(0,
/ ni V \ (14)

(/W.^O) /{°>,i(0))= (x;w<(0)  X] *(°)).
\«=1 i=N—/

where

G(t) =
/V(*) \

B(*)L

V m'W/
Equation (14) is a linear system of differential equations. Solving this system yields that

/ ni v \
(/{0},1w» ■ • •,/{0}'!(0) = Ew(°)' • •" ' E »(°) *('•°)>

\i=l i=N—n-i + l /

where X(t,r) is the principal matrix solution (see [5]) of (14). Since X(-, •) purely
depends on the properties of A(t) and B(t), (/^'1(»),. •. & Cn+2[0,T]. Up
to now, we have shown that p^°^(-) can be constructed such that p'°^(-) £ Cn+2[0,T].
We summarize the discussion above as:
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Proposition 3.2. Denote (t) = (/^^(f), • ■ ■ , For t £ [0, T], (t) can
be obtained uniquely by solving the system

p{o}^(t)Av(t) = 0,

i= 1

=f{°nt)G(t) (l5)
dt

N
with /{o}(0) = I ^yi(O),... , fi(°)

\ i=l i=N — ui +1 /

such that G Cra+2[0,T].
Since pW (t) is obtained, the vector

6t°>(i) =pt°>(t) -p{0}(i)B(t)

becomes known. To proceed, consider the system of equations

pW(t)A(t) = bW(t),

J2pln(t) = o.
i= 1

Partitioning the matrices yields

/^(t)
= ,b{oh\t)) = b{0}{t).

V A\t),
Again, by virtue of the Fredholm alternative, the equation pi1}*1'(t)Av(t) = b^'u(t)

has a solution if and only if b^°',l/(t) is orthogonal to z„(t). This condition is fulfilled
(see the last equation in (11)). To obtain the unique solution, we add the normalizing
condition P^'v(t) = /^'"(i)- Notice that — 0- Consequently, we
have the system of equations:

p^(t)A»(t) = bM'»(t), i/ = 1

£><»•■•(() = /i'l-w. (16)
i=l

Then the solution can be written as

p{^(t)=^(() + /{^(tK(t), (17)

where f ^M(t)nv(t) is a solution of the homogeneous equation p^,v{t)Av(t) = 0 and
ft{°}.|y(t) is a solution of the nonhomogeneous equation with the right-hand side of (16),
namely, ^^'"(i) being orthogonal to zv.
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Similar to the previous development, we proceed to determine by solving the
system of equations in Cep£(t) 1 = 0.

Using ££i b^^it) = 0 and Y^i=l = we ^ave

P{1}(*)I = (/{1}>1(t),...,/{1}-'(t))

and

where G(i) is the same as before.
By equating the second power of e in Cepe(t) I = 0, we obtain a linear nonhomogeneous

equation

with initial conditions 0), for u = 1,2,... ,1 such that Yll=i /^'"(O) = 0.
The initial conditions /^'"(O) for i/ = 1,... , Z, have not yet been specified. We do

this later to ensure the matched asymptotic expansion. Once the /^^"(Oj's are given,
the solution of the above equation is:

fW(t)) = (/{1}'x(0),... , fW>l(0))X(t, 0)

+ f (6{0}a(T),... ,i(0)'l(r))B(r)il(t,r)rfT
Jo

Therefore /^'"(*)> v = \are found, and so is p^(-). Moreover, p^(-) €
Cn+1[0,T]. In fact, p^(*) is obtained by solving a system of equations similar to (15),
except the initial conditions of (0) have not been given at this point.

Similar to &{°}'"(*)j define and write

b^(t) = ,Ui}'l{t)).

Proceeding inductively, we obtain:

Proposition 3.3. Under the conditions (Al) and (A2), sequences of row vector-valued
functions pW (•), and /W (•) for i — 1,2,... , n, can be obtained by solving the system
of algebraic-differential equations

p^{t)A{t) = p^{t)-p^{t)B(t),

(19)
3 = 1

jtf{i}(t) = f{l}{t)G[t) + b^(t)B(t) I

such that £>{'}(•) 6 Cn+2~l[0, T], provided the initial conditions /W(0), for i = 1,2,... , I
are given.

So far, with the proviso of specified initial conditions, the construction of the regular
part has been completed; the smoothness of p^ (■) has been established, and the section
is concluded.
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4. Construction of the singular part. The regular part alone gives a good ap-
proximation of y£{•) when t is away from 0. Nevertheless, when t is sufficiently near 0,
this part no longer gives a reasonable approximation due to the apparent nonuniformity
related to the 1/e term in (1). What happens is that a boundary layer of thickness e
is developed. To circumvent the difficulty, we enlarge the picture near 0 by defining a
stretched variable

s = \, (20)

and considering a sequence of boundary layer correction terms. In what follows, we use
to denote dnz/dsn, and i to denote dz/ds.

Substituting qe(s) into Ce f — 0, and noting the change of variable (20),

-^(<7{0}(s) + £^1}(s) H ) = (<?{0}(s) + £9{1}(s) 4 X^4(£s) + eB(es)).
ds

By means of the Taylor expansion,

A(es) + eB(£S) = A(0) + £sAW(0) + • • • + + • • •
n!

+ eB{ 0) + e2sBW{ 0) + ■ ■ • + ^^-B^(0) + • • • .
n\

Using this expansion and equating coefficients of like powers of we obtain

e° : q{0]{s) = q{o}(s)A{0)

£i : qW(s) = q{1}(s),4(0) + <?{o}(s)(B(0) + s,4(1,(0))

(21)
n— 1 /

Sn : q[n}{s) = <?{n>(s)^(0) + ^ q[n~l~1}(s) (

i=o ^

0) si+1^4(i+1)(0)
s! + (« + l)!

Our next task is to solve these equations. The initial conditions are at our disposal. We
will choose them so that the expansion becomes a matched one. The discussion on the
choice of initial conditions for qW (•) is deferred until the next section. Suppose that

(0), (0),... , (0) are given. Then the solution is:

q^(s) = (jf{°}(0)exp(,4(0)s)

qW(s)=q{n}(0)exp(A(0)s)
n— 1| f. (*5® + " '»*•

(22)
We summarize this into the following proposition.
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Proposition 4.1. Under the conditions (Al) and (A2), c/'°' (•) is uniquely determined
by choosing (0) = 7/(0) — p^°^(0). For each i = 1,2,... ,n, if <?^(0) is chosen, a
sequence of boundary layer terms can be obtained by (22).

Remark. Since /{'^"(O) have not been specified, neither have gW'"(0). Our next
task is to select these initial conditions in a clever way so that qW (•) decay exponentially
fast. In addition,

E
2=0

^[pW(0) + 9{i}(0)]=2/(0).

That is, the asymptotic expansion is a matched one.

5. Exponential decay and choice of initial conditions. To ensure the boundary
layer terms act properly, we need to verify that when s is sufficiently large, q(•) is
negligibly small. To be more precise, it is shown in the sequel that q^ (•) for i < n, decay
exponentially. For each u = 1,... , Z, denote the equilibrium distribution corresponding
to the generator Av{0) by py. Define

(fi1 \ (Kj1 \

7T — ill =
A2

\ A'/ \ InjA4 /

In the rest of the paper, K denotes a generic positive constant. Its value may be different
at each appearance. Thus K + K = K and KK = K, etc.

Proposition 5.1. Assume the conditions of Proposition 4.1 are fulfilled.
1. For i = l,... , n, the initial conditions are selected as follows:

(a) For v — 1,2,... , I, find Y^j=i 0) from the equation

1 roc j .

J — ] 7r. (23)

(b) Choose/W'"(0) = - YTjh ?jt}(0), for i/= 1
(c) Choose g^l^(0) = — p{®}(0).

2. There is a positive real number 7 = 7n such that

\q{n}(s)\ < A'exp(—7s).

Remark. By Proposition 5.1, the initial conditions for f^,u(0) are specified. As
a consequence, p'l'(*) are uniquely determined by Proposition 3.3. The solutions of
pW(.) give specified initial conditions for q^(0). Thus, q^{-) are uniquely determined
by Proposition 4.1. We emphasize that owing to the structure of the matrix n, only I
unknowns, namely f°r v — 1, • • • J, are involved in (23). In fact, for a
vector V € MlxiV, let V1,... , V1 denote a partition of the vector with V" £ Rlxn" for
v = 1,2,... , I. We have

V* = (V1lnip.\... yiniH1).
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Since

Proof. First notice that owing to the block-diagonal structure of yl(0),

exp(A(0)s) =

/ exp(yl1(0)s) \
exp(,42(0)s)

\ exp(Al(0)s)J

For each v = 1, 2,... , I, consider the transition probability matrix P"{s) corresponding
to the generator Av{0). It satisfies the differential equation

P"(a) = Pv(s)Au( 0),

P"( 0) = /.

The solution is Pu(s) = exp(_A"(0)s). By the well-known ergodic theorem (see [2], The-
orem II.10.1), limj^oo Pu{s) exists. Clearly 0 is an eigenvalue of A"{0). In view of the
weak irreducibility, the multiplicity of the eigenvalue Aj = 0 is 1. Since the limit Pv{s)
exists, the rest of the eigenvalues of ^"(O) must have negative real parts. By virtue of [2],
Theorem II.12.8, where as noted p," is a row vector and is precisely the
equilibrium distribution corresponding to the generator ^"(0). Consequently, for some

lv > 0,
| exp(J4"(0)s) - 1 nup,"\ < K exp(—7„s).

The discussion above implies that

exp(j4(0)s) —> 7r as s —» <x>.

Since (y(0) — (0))I = 0, (y(0) — (0))ir = 0. It in turn yields

q{°}(s) = (y(0) -p{o}(0))7r + (y(0) - p{0} (0))(exp(A(0)s) - n)

= (2/(0) - p{o)(0))(exp(A(0)s) - 7r).

As a result,

i
\q{0}(s)| < K Y, |(2/"(0) -p<°^(0))(exp(^(0)S) -

V=\

I
< A^y^exp(-7^s)

V=l

< Kexp(—7s),
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where 7 = min^,,. In fact, we have shown that, for any vector v G RlxJV,

|t; (exp(j4(0)s) — 7r)| < Kexp(—7s).

We continue our estimate for the next term, (s), and show it decays exponentially.
In this process, the crucial point is to choose the initial condition in a suitable way.

In view of (22),

q^(s) — (0) exp(A(0)s) + f q^(r) exp(A(0)r)B(0) exp(v4(0)(s — r))di
Jo

+ [ exp(A(0)r)A'1^(0) exp(A(0)(s — r))dr.
J 0

(24)

Recall that <7^(0) has not been specified as yet.
Similar to [6], for each t 6 [0, T\, A(t) 1 = 0. Differentiating the equation above with

respect to t, dl/dtl{A(t)l) = 0. Therefore, A1-1)(0)it = 0 for i = 1,  This together
with q{°} (t)tt = 0 yields that

[ Tq^(r) exp(A(0)r)J4^1^(0) exp(A(0)(s — t))cIt
Jo

< f r|g^o^(r)[exp(J4(0)r)) — 7r]||^4^1^(0)[exp(^4(0)(s — t)) — 7r]|dr
Jo

< Ks2 exp(—7s).

To obtain the desired property, we need only work with the first two terms on the right
side of the equality sign of (24). Noticing the exponential decay property of <7^(s),

roc

/ |9{0}(r)exp(^(0)r)|d-
Jo

-r < 00,

i.e., the improper integral converges absolutely.

By virtue of the same argument as in the first paragraph of the proof of this lemma,

lim <7^(0) exp(j4(0)s) = ^1^(0)7r,
S—►OO

lim [ q^(r) exp(A(0)r)i?(0) exp(A(0)(s — r))di
s~>oc Jg

rOC

= / <?'°^(t) exp(yl(0)r)(irB(0)7r
Jo

= qW*,

(26)

where £ Klx7V is a constant vector.
By virtue of the structure of n, partitioning the vector <7^°} as (g^0''1, • • ■ ,q^'1), for

v — 1,... ,1, we have

9{1}(0)tt = (^^(O)!^1,.-- ,q{1}'l(0)lnifj,1),

q{0}7T = (qW'Hnifi\ ... ,qW'llnip,1).
(27)
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Note that

InX
'Ml ' ' ' Mn„

V Ml • • • Mn„
We thus have

QW^(0)lni/^= (0) U"
u=i

(28)

^=i
Set

g^(0)7r + <j^°*7r = 0. (29)

In view of (27) and (28), although there are N equations in (29), only I of them are
unknowns, namely,

nu

^gj1}'"(0) for v = 1,... ,1.
3=1

This linear system is easily solved. Choose

/{1}-(0) = -E^(0) for v = . ,1.
i=1

Then (18) is uniquely solvable. Substituting the results into (17), we obtain p^(').
Finally, choose (0) = —p^^(0). The process of choosing initial conditions for p^(-)
and <7^(0 is completed.

Next, we have to verify that the first two terms on the right side of the equality sign
in (24) decay exponentially. To this end,

(0) exp(>l(0)s) + [ <7^(t) exp(^4(0)r)B(0) exp(.4(0)(s — r))dr
Jo

pOO
< |g^1^(0)(exp(yl(0)s) — tt)\ + ^^^(0)^+ / q^(r)exp(A(0)r)dr5(0)7r

Jo

+ [ Q{0}{T) exp(A(0)r)5(0)[exp(A(0)(5 - r)) -7r]\dr
Jo '
/oo |g{0}(r) exp(^(0)r)|rfr|JB(0)7r|

< A"(exp(—7s) + [ exp(—7r)exp(—7(s — T))dr|5(0)| — — |i?(0)7r|exp(—7r)|
V Jo 7

< K ^exp(—7s) + J exp( —'ys)dr\B(0)\j

< K(1 + s) exp(—7s).

Combining the estimate above with (25), we arrive at

|<?^(s)| < /^(l + s + s2) exp(—7s) < K exp(—71s),

where 0 < 71 < 7.
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Proceeding with the next term,

(?{2}(s) = (0) exp(yl(0)s) + f (t)B(O) exp(v4(0)(s - t))<1t
Jo
f rq^ (t)B^ (0) exp(/l(0)(s — r))dr

Jo
[ rg^1^(r)J4'1'(0)exp(^4(0)(s — t))cIt

Jo

+

+

+

Similar to the previous case, choose

nu

(30)

[ r2q{°}(t)A(2\0) exp(^4(0)(s — r))dr
Jo

/{2}.-( 0) = -£gj2},,,(0) for«/=l I
j=l

where are the solutions of

q^ (0)n + g'1' (t)cItB(O) + J Tq^(>^ (t)cItB^ (0)^j it = 0.

Then p^(') is uniquely determined. Next, choose <7^(0) = — p*2*(0). Similar to the
estimate of (s),

M2*(s)| < K exp(—72s) for some 0 < 72 < 7.

Suppose it has been shown that

|<7{l}(s)| < Kexp(—7js), i < n

for some 0 < 7$ <7. Solve

9{"}(0)7r = - \ J ^Vn_i_1}("r)dTB«(0)j tt

to obtain Y^= 1 Set

nu

/{n},"(0) = -^9j"}'l/(0) for 1/ = 1,... ,1.
3=1

Finally choose q^(0) = —p^n^(0). Exactly the same argument leads to

< K exp( —7ns) for some 0 < 7„ < 7.

Thus the proposition follows.
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6. Analysis of remainder. In the previous sections, regular and singular parts
of the approximating sequence are constructed, and their desired properties are proved.
The objective of this section is to carry out error analysis.

To assist us for subsequent study, we derive the following lemma.

Lemma 6.1. Let uE(•) be the solution (on [0,T]) of the initial-value problem

C£ue(t) = ri£(t) with sup \rj£(t)\ = 0(el+l) for i < n,
*e[o,T] (31)

ue( 0) = 0.

Then it satisfies
ue{t) — 0(el) uniformly in t € [0,T].

Proof. Using the notation Q£(t) = e~1A(t) + B(t), the differential equation in (31)
can be written as

^=«ww+®.dt c
Denoting the principal matrix solution by $£(£,r), then

ue(t) = - ( r;e(r)$£(<, t)(1t.
£ Jo

By virtue of (2), $e(i) is bounded on [0, T]. Hence

\u£{t)\<el f \$e{t,r)\dT <Ke\
Jo

With Lemma 6.1, we are now ready to derive:

Proposition 6.2. For each i = 0,1,2,..., define

e^(t)=y%t)-(p!(t)+q!(t/e)). (32)

Then
sup |e<n>'£(*)| = 0(en+1).

0 <t<T

Remark. In view of Lemma 6.1, it seems that the order in terms of e for the solution
of (31) is lower than C6uE. If we wish to get (32), a direct estimate seems to be rather
difficult. Thus we use the technique "back up one step" as in our work [6]. For notational
simplicity, in what follows, suppress the e-dependence in e^'e(*) and write it as eW(*)
instead.

Proof. For i = 0,1,2,... ,n, it is easily seen that e^(0) = 0 by the initial-value
problem (1) and the initial data selected for p^(-) and g^(*)- Since CeyE(t) = 0, for
each i = 0,1,2,... , n,

i i
C£e{l](t) = -C£^ejp{j}(t) - £e]TV<7{i}(*/£)•

i—o j=o
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First consider Noticing that

pW(t)A(t) = 0 and p^(t) = p^(t)A(t)+p^(t)B(t),
and using (8) and (21), upon cancellation,

CeeM(t) = -e—+ p{0}(t)A(t) + ep^(t)B(t)

- e2dT>{1Jt (t) + epw(t)A(t) + e?pW{t)B(t)

- q{0}(t/e) + qW{t/e)A(t) + £(?{0}(f/e)B(0

- £<?{1>(£/£) + £<^1} (£/£)>!(£) +

= -eV2}(t)A(t) + qW(t/e)[A(t) - (,4(0) + tA™(0)) + e(B(t) - B{0))]
+ £<?{1^(^/£)(A(t) - >1(0)) + e2q^ (t/e)B(t)

— 0(e2) + q^ (t/e)0(t2 + et) + eq^(t/e)0(t) + 0(e2)

= 0(e2),
(33)

where q^(s) = -^q^(s). In the above, we have used the Taylor expansions for A(t)
and B(t) as well as Proposition 5.1, and noted that

\t2qW{t/e)\<Ke2, \tqW{t/e)\<K£, and \tq^(t/e)\ < Ke.
Applying Lemma 6.1, e^(t) = 0(e). However,

e^(t) = e^°^(i) — ep^(t) — eq^(t/e).

Since ep^ (t) + eq^ (t/e) = 0(e), e^(t) — 0(e) as well. Moreover, the bound is
uniform in t £ [0, T],

Likewise, similar estimates lead to
, fn+1 n+1 \

£*e<"+1>(i) = -e± ( J2£iP{i)W + I>Vi}(«/e)
\i=0 2=0 /

dt
( n-\-1 n+1

+ £Vp{<>(t) + £ygW(f/e) UA{t) + eB(t))
\i=0 i=0 /

= -£n+2pin+2}(t)A(t)

+ J2elq{l}(t/e) m 7!
3=0 J

+ £ B(t)_gPB0)( o,
2=0

+ en+1q{n+1] (t/e)(A(t) - A(0)) + en+2q{n+1} (t/e)B(t).

j\
3=0 J

(34)
Using the Taylor expansions for A(t) and B(t), we can show that the above expression
has an upper bound

n

0(en+2) + ^£yi> (t/e)0(tn~l+2 + etn~i+1) + en+lq[n+l] (t/e)0(t) + 0(en+2)
2 = 0

= 0(en+2) + q{0}(t/e)O(tn+2 + etn+1) + eq{1}(t/e)0(tn+1 + etn)

+ ... + en+1q(n+1Ht/e)0(t + e),



196 R. Z. KHASMINSKII, G. YIN, and Q. ZHANG

which is further bounded by

K(en+2 + (tn+2 + etn+l + • • • + en+lt)e-^'e) < Ken+2.

By virtue of Lemma 6.1, e^n+1^ (t) — 0(en+l) uniformly in t € [0, T\. However,

e<"+1J(i) =r eM(t) -£n+lp{n+\}^ _ £«+1 (?{n+i} ^/£)

= e^(t) + 0(en+1) uniformly in t G [0,T],

Therefore, e^(t) = 0(en+1) uniformly in t G [0,T] as desired.

7. Summary of results and procedures. This section consists of two parts.
First, the main results of this paper are summarized in Theorem 7.1. Then the second
subsection gives an outline of the asymptotic expansion procedure.

7.1. Summary of results. The main results are given below.

Theorem 7.1. Suppose the conditions (Al) and (A2) are satisfied. To approximate the
solution ye{-) of (1), an asymptotic series expansion

n

i=0

can be constructed in the following way: For each i = 0, 1, ..., n,
1. pW (•) is obtained uniquely from Proposition 3.2, and (•) is obtained from Propo-

sition 4.1 with the initial condition {0) = y(0) — p^°^(0).
2. With temporarily unspecified initial data /^'"(O), are obtained from Propo-

sition 3.3.
3. With temporarily unspecified initial data q^(0), q^1' (•) are obtained from (22).
4. Use Eq. (23) to determine i 0)-
5. For i = 1,... ,n, (0) are selected so that

f{iU( 0) = -f>f'>).
3 =1

This together with 2 above uniquely determines
6. Choose <7^(0) = — pM(0). This together with 3 above uniquely determines <rl'(-)-
7. pW{-) G Cn+2~i[0, T).

8. (£)| < K exp(-71) for some 7 > 0.
9. ye{t) - Y£(t) = 0(sn+1) uniformly in t G [0, T],

Remark. If B(t) is a block diagonal matrix compatible with A(t), i.e., it has the
same kind of partition Bu{t) with the same dimension as that of A"{t), then the results
of Theorem 7.1 can be obtained as in [6].

We point out once more that (23) contains only I unknowns 1 Thus using

this equation, we do not determine all gj^(0), for j = 1,... , N, but only the sum of the
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components corresponding to each block partition. This is easily seen by noticing the
structure of the matrices 1 n„P-v and the structure of 7r and (0)-7T. In fact, denote

=
j 1 poo j

^ 0).„■ i \ J o J '

Since

j=o

=

for i/ = 1,... , Z, we have

gW(0)7T = (9ti>-1(0)l„1A1,... ,9{<},,(0)l„ljs')lnih

ni

and

= N £«',,''<°> I I E«i'1,!(0) I

= ji1 

 IEi=i 1 ̂

7.2. The computation procedure. Since the construction of p^< (•) and (•) is rather
involved, and the choice of initial conditions is very tricky, we summarize the proce-
dure below. This procedure can certainly be used as a user's guide for developing the
asymptotic expansion. The procedure is divided into two main stages.
Step 1: Initialization—finding (•) and q^{-)-
1. Obtain the unique solution p'0^*) via (15).
2. Obtain the unique solution (•) via (22) and the initial condition (0) = y(0) —

(0).
Step 2. Iteration—finding pW (•) and q^ (•) for i < n.

While i < n, do the following:
1. Find p^('), the solution of (19) with temporarily unspecified /^'"(O) for v — 1,... ,1.
2. Obtain <7^(-) from (22) with temporarily unspecified <7^(0).
3. Use the equation

q{l}
(^~ ^ pOO j \

/ —ql~3~1{r)dTB(:i\0) 7r
j=oJo J■ J

to determine J2*j=i 0).
4. Set /^'"(O) = - J2j=i Up to now, p^(-) are determined uniquely.
5. Choose qW (0) = —pW(0). By now, <?^(*) have also been determined uniquely.
6. Set i = i + 1.
7. If i > n, stop.
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8. An example. Let us consider a failure-prone manufacturing system that con-
sists of a two-machine flowshop. Each of the two machines has two states up, de-
noted by 1, and down, denoted by 0. Then, the system has four states, represented
by {(1,1), (0,1), (1,0), (0, 0)}. Consider further that the state of the first machine is
changing more frequently than the second one. Moreover, these two machines are proba-
bilistic independent. One way of modeling the scenario is to formulate the state process
(see, for example, [8] and the references therein) as a Markov chain with generator

Qe(t) = -e

/-A (t) A (t) 0 0 \
jl(t) — fi(t) 0 0

0 0 -A (t) A (t)
\ 0 0 p,(t)

(-X i{t) 0 A i(t) 0 ^
0 -Ai (i) 0 A x(i)

p,i(t) 0 -/ti (t) 0
V 0 ih{t) 0 -fir (t)J

In this model, the breakdown rate and repair rate for the first machine (or the second
machine) are A{t)/e and fi(t)/e (or Ai(i) and fi\ (t)), respectively. The probability of the
state process is given by the y£(t) that satisfies

■

4

ye(0) = J/(0) = (2/1 (0),3/2(0),2/3(0),2/4(0)), such that yt(0) > 0 and ^y,(0) = 1.
1 = 1

To solve this set of equations, note that

jtm)+vm = -^m)+2m) + +m),
ftm)+vm = ̂ m)+m) - ^m)+m),

+ J/K0) = —^i(t)(2/f (t) + 2/2W) + AiWCylW + 2/IW).
d
dt

To proceed, let

-tMS) + 3/4W) = *i(t)(y£r{t) + ye2{t)) - fir{t){yl{t) + y%{t)).

ai3(t) = (2/1 (0) + 2/3(0)) exp J (A(r) + fi(r))d

+ Jo +
«24(t) = (2/2(0) + 2/4(0)) exp J (A(r) + /x(r))d-

+ (A (t) +/i(r))dr^ du

ai2(t) = (2/i(0) +2/2(0)) exp J (Ai(t) +/xi(r))dT

+ J fir (u) exp f • J (Ai (r) + Ai (t))c?tJ du,
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034(2) = (2/3(0) +y4(0))exp Jo (Mr) + h{T))d

+1 M«)exp(- £ (Ai(t) + fh(T))dr^ du.

Then
2/f(2) + 2/3(2) = ais(t),
2/i(i) + 2/1(2) = 024(2),
2/iW + 2/2W = 012(2),
2/1(2) + 2/1(2) = 034(2).

Note also that

jl2/i(2) = — f~ + ^i(2) + Ai(2)"] 2/i(2) + ^^012(2) + Mi(2)013(2).at \ £ £ J £
Thus,

2/i(2) = 2/i(0) exp + Ai(r) + /I(r)^

/ (^^~ai2(w) + Mi(«)oi3(«)) exP J + + fh(r)j drj du.+

Consequently,
2/1(2) = 012(2) — 2/i(2),

2/1(2) = 013(2) - 2/i(2),
2/1(2) = 024(2) -2/1(2).

In this example,

where
{0},i/f) = p{0},2/^ = / A(2) A(t) 

\A(t) + ji(t)' A (t) + jl(t)
and

=(/«"»■'«),/*•>'«)> (-*$ *«).

with initial value (/{0},1(0), /{0}'2(0)> = (j/i(0) + 3/2(0), 2/3(0) +2/4(0)).
(s) is given by

q{0}(s) = q{0Hs)A(0), gW(0) = y£(0) -p{°>(0).
By virtue of Theorem 7.1,

1/e(0-p{0}(2)-gW(2) = O(e),

provided that Q£(2) £ C2[0,T]. Noticing the exponential decay of q^(t), we have

ye(t)=p{0}(«) + O(e + c- 7t/£).

This implies, in particular, that for any t > 0,

lirnj/£(*)=p{0}(2).
£-<0

Namely, p^°^(2) is the "average" distribution of the Markov chain generated by Qe{t).
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