Constructing Attack Scenarios through Correlation
of Intrusion Alerts

PENG NING

North Carolina State University

YUN CUI

MCNC Research & Development Institute
and

DOUGLAS S. REEVES

North Carolina State University

Traditional intrusion detection systems (IDSs) focus on low-level attacks or anomalies, and raise
alerts independently, though there may be logical connections between them. In situations where
there are intensive attacks, not only will actual alerts be mixed with false alerts, but the amount
of alerts will also become unmanageable. As a result, it is difficult for human users or intrusion
response systems to understand the alerts and take appropriate actions. This paper presents
a practical technique to address this issue. The proposed approach constructs attack scenarios
by correlating alerts on the basis of prerequisites and consequences of attacks. Intuitively, the
prerequisite of an attack is the necessary condition for the attack to be successful, while the
consequence of an attack is the possible outcome of the attack. Based on the prerequisites and
consequences of different types of attacks, our method correlates alerts by (partially) matching
the consequences of some prior alerts with the prerequisites of some later ones. Moreover, to
handle large collections of alerts, this paper presents three interactive analysis utilities aimed at
reducing the complexity of the constructed attack scenarios without losing the structure of the
attacks. This paper also reports the experiments conducted to validate the proposed techniques
with the 2000 DARPA intrusion detection scenario-specific datasets, and the data collected at the
DEFCON 8 Capture The Flag (CTF) event.

Categories and Subject Descriptors: D.4.6 [Operating Systems|: Security and Protection—
Invasive software (e.g., viruses, worms, Trojan horses); K.6.5 [Management of Computing
and Information Systems]: Security and Protection

General Terms: Security

Additional Key Words and Phrases: intrusion detection, security management, alert correlation

Parts of this paper appeared in preliminary form in Proceedings of the 9th ACM Conference on
Computer and Communications Security [Ning et al. 2002b] and Proceedings of the 5th Interna-
tional Symposium on Recent Advances in Intrusion Detection [Ning et al. 2002a].

This work is partially supported by the U.S. Army Research Office (ARO) under grant DAAD19-
02-1-0219, and by the National Science Foundation (NSF) under grant CCR-0207297. Ning’s work
is also supported by the NSF under grant ITR-0219315.

Authors’ addresses: Peng Ning and Douglas S. Reeves, Department of Computer Science, North
Carolina State University, Raleigh, NC 27695-8207, emails: {ning, reeves}@csc.ncsu.edu; Yun
Cui, Advanced Networking Research, MCNC Research & Development Institute, Research Trian-
gle Park, NC 27709; email: ycui@anr.mcnc.org.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright /server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2003 ACM 0000-0000,/2003/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, July 2003, Pages 1-35.

2 . Ning, Cui, and Reeves

1. INTRODUCTION

Intrusion detection has been studied for more than twenty years since Anderson’s
report [Anderson 1980]. Intrusion detection techniques can be roughly classified as
anomaly detection and misuse detection. Anomaly detection (e.g., NIDES/STAT
[Javits and Valdes 1993]) is based on the normal behavior of a subject (e.g., a user
or a system); any action that significantly deviates from the normal behavior is con-
sidered intrusive. Misuse detection (e.g., NetSTAT [Vigna and Kemmerer 1999])
detects attacks based on the characteristics of known attacks or system vulnerabil-
ities; any action that conforms to the pattern of a known attack or vulnerability is
considered intrusive.

Traditional intrusion detection systems (IDSs) focus on low-level attacks or anoma-
lies, and raise alerts independently, though there may be logical connections be-
tween them. In situations where there are intensive attacks, not only will actual
alerts be mixed with false alerts, but the amount of alerts will also become unman-
ageable. As a result, it is difficult for human users or intrusion response systems
to understand the alerts and take appropriate actions. Therefore, it is necessary
to develop techniques to construct attack scenarios (i.e., steps that attackers use in
their attacks) from alerts to facilitate intrusion analysis.

In this paper, we develop a practical alert correlation technique that can be used
to construct attack scenarios for real-life intrusion analysis. Our method can be
explained through the following observation: most attacks are not isolated, but
related as different stages of attack sequences, with the early stages preparing for
the later ones. For example, in Distributed Denial of Service (DDOS) attacks, the
attacker has to install the DDOS daemon programs in vulnerable hosts before he
can instruct the daemons to launch an attack. In other words, an attacker has to
(or usually does) reach a certain state before he can carry out certain attacks, and
usually reaches the state by launching some other attacks.

Based on this observation, we correlate alerts using prerequisites and consequences
of attacks. Intuitively, the prerequisite of an attack is the necessary condition for the
attack to be successful, while the consequence of an attack is the possible outcome
of the attack. For example, the existence of a vulnerable service is the prerequisite
of a remote buffer overflow attack against the service, and as the consequence of
the attack, the attacker may gain access to the host. Accordingly, we correlate
the alerts together when the attackers launch some early attacks to prepare for
the prerequisites of some later ones. For example, if they use a UDP port scan to
discover the vulnerable services, followed by an attack against one of the services,
we can correlate the corresponding alerts together. It is well-known that current
IDSs often miss unknown attacks, or variations of known attacks. To tolerate
missing detections, our method allows partial satisfaction of prerequisites of an
attack. In addition, our method allows flexible alert aggregation, and provides
intuitive representations of correlated alerts.

We apply this alert correlation method to analyze real-world, intrusion inten-
sive data sets. In particular, we would like to see how well the alert correlation

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts : 3

method can help human users organize and understand intrusion alerts, especially
when IDSs report a large amount of alerts. We argue that this is a practical prob-
lem that the intrusion detection community is facing. As indicated in [Manganaris
et al. 2000], “encountering 10-20,000 alarms per sensor per day is common.” In
this paper, we also present three utilities (called adjustable graph reduction, focused
analysis, and graph decomposition) to facilitate the analysis of large sets of corre-
lated alerts. These utilities are intended for human users to analyze and understand
the correlated alerts as well as the strategies behind them.

The contribution of this paper is as follows. First, we develop a formal frame-
work for alert correlation. Our method can deal with attack attempts and correlate
alerts as long as there are signs of connections between them, even if some related
attacks fail or bypass the IDSs. In addition, our method provides an intuitive
mechanism (called hyper-alert correlation graph) to represent the attack scenar-
ios constructed through alert correlation. Second, we develop an off-line tool that
implements our alert correlation method. Based on the information about differ-
ent types of attacks, our tool processes the alerts reported by IDSs and generates
hyper-alert correlation graphs as the output. As we will see in Section 5, these
hyper-alert correlation graphs reveal the structure of series of attacks, and thus the
strategy behind them. Third, we develop three interactive utilities to facilitate the
analysis of very large attack scenarios. These utilities reduce the size of large attack
scenarios while keeping the structure of the attacks. Finally, we perform a series of
experiments to validate our methods using 2000 DARPA intrusion detection sce-
nario specific datasets [MIT Lincoln Lab 2000] and the network traffic captured
at the DEFCON 8 Capture the Flag (CTF) event [DEFCON 2000]. Our results
show that our correlation method not only correlates related alerts and uncovers
the attack strategies, but also provides a way to differentiate between alerts, and
that the interactive analysis utilities can effectively simplify the analysis of large
amounts of alerts. Our analysis also reveals several attack strategies that appeared
in the DEFCON 8 CTF event.

The remainder of this paper is organized as follows. The next section discusses
related work. Section 3 presents our formal framework for correlating alerts using
prerequisites and consequences of attacks, as well as a DBMS based implementation
of this approach. Section 4 describes three utilities for analyzing attack scenarios
constructed from large collections of alerts. Section 5 reports our experiments with
the 2000 DARPA intrusion detection scenario specific datasets and the DEFCON 8
CTF dataset. Section 6 discusses the advantages and limitations of our approach,
and Section 7 concludes this paper and points out some future research directions.

2. RELATED WORK

Intrusion detection has been studied for more than twenty years, since Anderson’s
report [Anderson 1980]. A survey of the early work on intrusion detection is given
in [Mukherjee et al. 1994], and an excellent overview of current intrusion detection
techniques and related issues can be found in a recent book [Bace 2000].

Research on intrusion alert correlation has been rather active recently. The first
class of approaches (e.g., Spice [Staniford et al. 2002], probabilistic alert correlation
[Valdes and Skinner 2001], and the alert clustering methods in [Cuppens 2001] and

ACM Journal Name, Vol. V, No. N, July 2003.

4 . Ning, Cui, and Reeves

[Julisch 2001]) correlates alerts based on the similarities between alert attributes.
Though they are effective for clustering similar alerts (e.g., alerts with the same
source and destination IP addresses), they cannot fully discover the causal relation-
ships between related alerts.

Another class of methods (e.g., correlation based on STATL [Eckmann et al. 2002]
or LAMBDA [Cuppens and Ortalo 2000], and the data mining approach [Dain and
Cunningham 2001]) performs alert correlation based on attack scenarios specified
by human users, or learned from training datasets. A limitation of these methods is
that they are restricted to known attack scenarios, or those that can be generalized
from known scenarios. A variation in this class uses a consequence mechanism to
specify what types of attacks may follow a given attack, partially addressing this
problem [Debar and Wespi 2001].

A third class of methods, including JIGSAW [Templeton and Levitt 2000], the
MIRADOR correlation method [Cuppens and Miege 2002], and our approach, tar-
gets recognition of multi-stage attacks; it correlates alerts if the prerequisites of
some later alerts are satisfied by the consequences of some earlier alerts. Such
methods can potentially uncover the causal relationship between alerts, and are
not restricted to known attack scenarios.

Our method can be considered as a variation of JIGSAW [Templeton and Levitt
2000]. Both methods try to uncover attack scenarios based on specifications of indi-
vidual attacks. However, our method also differs from JIGSAW. First, our method
allows partial satisfaction of prerequisites (i.e., required capabilities in JIGSAW
[Templeton and Levitt 2000]), recognizing the possibility of undetected attacks and
that of attackers gaining information through non-intrusive ways (e.g., talking to
a friend working in the victim organization), while JIGSAW requires all required
capabilities be satisfied. Second, our method allows aggregation of alerts, and thus
can reduce the complexity involved in alert analysis, while JIGSAW currently does
not have any similar mechanisms. Third, we develop a set of utilities for alert

correlation and interactive analysis of correlated alerts, which is not provided by
JIGSAW.

The work closest to ours is the MIRADOR correlation method proposed in [Cup-
pens and Miege 2002], which was developed independently and in parallel to ours.
These two methods share substantial similarity. The MIRADOR approach also
correlates alerts using partial match of prerequisites (pre-conditions) and conse-
quences (post-conditions) of attacks. However, the MIRADOR, approach uses a
different formalism than ours. In particular, the MIRADOR, approach treats alert
aggregation as an individual stage before alert correlation, while our method al-
lows alert aggregation during and after correlation. As we will see in Section 4,
our treatment of alert aggregation leads to the three utilities for interactive alert
analysis.

A formal model named M2D2 was proposed in [Morin et al. 2002] to correlate
alerts by using multiple information sources, including the characteristics of the
monitored systems, the vulnerability information, the information about the mon-
itoring tools, and information of the observed events. Due to the multiple infor-
mation sources used in alert correlation, this method can potentially lead to better
results than those simply looking at intrusion alerts. A mission-impact-based ap-

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts : 5

proach was proposed in [Porras et al. 2002] to correlate alerts raised by INFOSEC
devices such as IDSs and firewalls. A distinguishing feature of this approach is that
it correlates the alerts with the importance of system assets so that attention can
be focused on critical resources. These methods are complementary to ours.

Several techniques have used the prerequisites and consequences of attacks for
vulnerability analysis purposes. In [Ritchey and Ammann 2000], a model checking
technique was applied to analyze network vulnerabilities on the basis of prerequisites
and results (i.e., consequences) of exploits (i.e., attacks), along with hosts and
network connectivity information. In [Sheyner et al. 2002] and [Jha et al. 2002],
the technique in [Ritchey and Ammann 2000] was further extended to generate
and analyze all possible attacks against a vulnerable networked system. These
techniques are focused on analyzing what attacks may happen to violate a given
security property. In contrast, our purpose is to reconstruct what has happened
according to the alerts reported by IDSs, and our technique has to deal with the
inaccuracy of IDSs (i.e., false alerts and undetected attacks). We consider our
method as complementary to these vulnerability analysis techniques.

Several languages have been proposed to represent attacks, including STAT [Il-
gun et al. 1995; Vigna and Kemmerer 1999; Eckmann et al. 2002], Colored-Petri
Automata (CPA) [Kumar and Spafford 1994; Kumar 1995], LAMBDA [Cuppens
and Ortalo 2000], and MuSig [Lin et al. 1998] and its successor [Ning et al. 2001].
In particular, LAMBDA uses a logic-based method to specify the precondition and
postcondition of attack scenarios, which is similar to our method. However, all these
languages specify entire attack scenarios, which are limited to known scenarios. In
contrast, our method (as well as JIGSAW and the MIRADOR correlation method)
describes prerequisites and consequences of individual attacks, and correlates de-
tected attacks (i.e., alerts) based on the relationship between these prerequisites
and consequences. Thus, our method can potentially correlate alerts in unknown
attack scenarios.

GrIDS uses activity graphs to represent the causal structure of network activi-
ties and detect propagation of large-scale attacks [Staniford-Chen et al. 1996]. Our
method also uses graphs to represent correlated alerts. However, unlike GrIDS, in
which nodes represent hosts or departments and edges represent network traffic be-
tween them, our method uses nodes to represent alerts, and edges the relationships
between the alerts.

Alert correlation has been studied in the context of network management (e.g.,
[Gruschke 1998], [Ricciulli and Shacham 1997], and [Gardner and Harle 1998]). In
theory, alert correlation methods for network management are applicable to intru-
sion alert correlation. However, intrusion alert correlation faces more challenges
than its counter part in network management: While alert correlation for network
management deals with alerts about natural faults, which usually exhibits regular
patterns, intrusion alert correlation has to cope with less predictable, malicious
intruders.

3. A FRAMEWORK FOR ALERT CORRELATION

As discussed in the introduction, our method is based on the observation that in
a series of attacks, the attacks are usually not isolated, but related as different

ACM Journal Name, Vol. V, No. N, July 2003.

6 . Ning, Cui, and Reeves

stages of the attack sequence, with the early ones preparing for the later ones. To
take advantage of this observation, we propose to correlate the alerts generated
by IDSs using prerequisites and consequences of the corresponding attacks. Intu-
itively, the prerequisite of an attack is the necessary condition for the attack to be
successful. For example, the existence of a vulnerable service is a prerequisite for
a remote buffer overflow attack against the service. Moreover, the attacker may
make progress in gaining access to the victim system (e.g., discover the vulnerable
services, install a Trojan horse program) as a result of an attack. Informally, we
call the possible outcome of an attack the (possible) consequence of the attack. In a
series of attacks where the attackers launch earlier attacks to prepare for later ones,
there are usually strong connections between the consequences of the earlier attacks
and the prerequisites of the later ones. Indeed, if an earlier attack is to prepare for
a later attack, the consequence of the earlier attack should at least partly satisfy
the prerequisite of the later attack.

Accordingly, we propose to identify the prerequisites (e.g., existence of vulnerable
services) and the consequences (e.g., discovery of vulnerable services) of each type
of attack. These are then used to correlate alerts, which are attacks detected by
IDSs, by matching the consequences of (the attacks corresponding to) some previous
alerts and the prerequisites of (the attacks corresponding to) some later ones. For
example, if we find a Sadmind Ping followed by a buffer overflow attack against
the corresponding Sadmind service, we can correlate them to be parts of the same
series of attacks. In other words, we model the knowledge (or state) of attackers
in terms of individual attacks, and correlate alerts if they indicate the progress of
attacks.

Note that an attacker does not have to perform early attacks to prepare for a
later attack, even though the later attack has certain prerequisites. For example, an
attacker may launch an individual buffer overflow attack against a service blindly,
without knowing if the service exists. In other words, the prerequisite of an attack
should not be mistaken for the necessary existence of an earlier attack. However,
if the attacker does launch attacks with earlier ones preparing for later ones, our
method can correlate them, provided that the attacks are detected by IDSs.

In the following subsections, we adopt a formal approach to develop our alert
correlation method.

3.1 Prerequisite and Consequence of Attacks

We propose to use predicates as basic constructs to represent the prerequisites and
(possible) consequences of attacks. For example, a scanning attack may discover
UDP services vulnerable to a certain buffer overflow attack. We can use the pred-
icate UDPVulnerableToBOF (VictimIP, VictimPort) to represent the attacker’s
discovery (i.e., the consequence of the attack) that the host having the IP address
VictimIP runs a service (e.g., sadmind) at UDP port VictimPort and that the ser-
vice is vulnerable to the buffer overflow attack. Similarly, if an attack requires a
UDP service vulnerable to the buffer overflow attack, we can use the same predicate
to represent the prerequisite.

Some attacks may require several conditions be satisfied at the same time in
order to be successful. To represent such complex conditions, we use a logical
combination of predicates to describe the prerequisite of an attack. For example,

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts . 7

a certain network launched buffer overflow attack may require that the target host
have a vulnerable UDP service accessible to the attacker through the firewall. This
prerequisite can be represented by UDP Vulnerable ToBOF (VictimIP, VictimPort)
A UDPAccessible ViaFirewall (VictimIP, VictimPort). To simplify the following
discussion, we restrict the logical operators in predicates to A (conjunction) and V
(disjunction).

We also use a set of predicates to represent the (possible) consequence of an
attack. For example, an attack may result in compromise of the root privilege as
well as modification of the .rhost file. Thus, we may use the following to repre-
sent the corresponding consequence: {GainRootAccess (VictimIP), rhostModified
(VictimIP)}. Note that the set of predicates used to represent the consequence is
essentially the logical combination of these predicates and can be represented by a
single logical formula. However, representing the consequence as a set of predicates
rather than a long formula is more convenient and will be used here.

The consequence of an attack is indeed the possible result of the attack. In other
words, the attack may or may not generate the stated consequence. For example,
after a buffer overflow attack against a service, an attacker may or may not gain
the root access, depending on if the service is vulnerable to the attack.

We use possible consequences instead of actual consequences due to the following
two reasons. First, an IDS may not have enough information to decide if an attack
is effective or not. For example, a network based IDS can detect certain buffer
overflow attacks by matching the patterns of the attacks; however, it cannot decide
whether the attempts succeed or not without more information from the related
hosts. Thus, it may not be practical to correlate alerts using the actual consequences
of attacks. In contrast, the possible consequence of a type of attack can be analyzed
and made available for the IDS. Second, even if an attack fails to prepare for the
follow-up attacks, the follow-up attacks may still occur simply because, for example,
the attacker wants to test the success of the previous attack, or the attacker uses
a script to launch a series of attacks. Using possible consequences of attacks will
lead to better opportunity to correlate such attacks.

For the sake of brevity, we refer to a possible consequence simply as a consequence
throughout this paper.

3.2 Hyper-alert Type and Hyper-alert

Using predicates as the basic construct, we introduce the notion of a hyper-alert
type to represent the prerequisite and the consequence of each type of alert.

Definition 3.1. A hyper-alert type T is a triple (fact, prerequisite, consequence),
where (1) fact is a set of attribute names, each with an associated domain of values,
(2) prerequisite is a logical combination of predicates whose free variables are all in
fact, and (3) consequence is a set of predicates such that all the free variables in
consequence are in fact.

Each hyper-alert type encodes the knowledge about a type of attack. The compo-
nent fact of a hyper-alert type tells what kind of information is reported along with
the alert (i.e., detected attack), prerequisite specifies what must be true in order
for the attack to be successful, and consequence describes what could be true if the
attack indeed succeeds. For the sake of brevity, we omit the domains associated

ACM Journal Name, Vol. V, No. N, July 2003.

8 . Ning, Cui, and Reeves

with the attribute names when they are clear from the context.

Example 3.2. Consider the buffer overflow attack against the sadmind remote
administration tool. We may have a hyper-alert type SadmindBufferOverflow =
({ VictimIP, VictimPort}, ExistHost (VictimIP) A VulnerableSadmind (VictimlIP),
{GainRootAccess(VictimIP)}) for such attacks. Intuitively, this hyper-alert type
says that such an attack is against the host at IP address VictimIP. (We expect the
actual values of VictimIP are reported by an IDS.) For the attack to be successful,
there must exist a host at IP address VictimIP, and the corresponding sadmind
service must be vulnerable to buffer overflow attacks. The attacker may gain root
privilege as a result of the attack.

Given a hyper-alert type, a hyper-alert instance can be generated if the corre-
sponding attack is detected and reported by an IDS. For example, we can generate
a hyper-alert instance of type SadmindBufferOverflow from a corresponding alert.
The notion of hyper-alert instance is formally defined as follows:

Definition 3.3. Given a hyper-alert type T = (fact, prerequisite, consequence),
a hyper-alert (instance) h of type T is a finite set of tuples on fact, where each
tuple is associated with an interval-based timestamp [begin_time, end_time]. The
hyper-alert h implies that prerequisite must evaluate to True and all the predicates
in consequence might evaluate to True for each of the tuples. (Notation-wise, for
each tuple ¢ in h, we use t.begin_time and t.end_-time to refer to the timestamp
associated with ¢.)

The fact component of a hyper-alert type is essentially a relation schema (as in
relational databases), and a hyper-alert is a relation instance of this schema. One
may point out that an alternative way is to represent a hyper-alert as a record,
which is equivalent to a single tuple on fact. However, such an alternative cannot
accommodate certain alerts possibly reported by an IDS. For example, an IDS may
report an [PSweep attack along with multiple swept IP addresses, which cannot be
represented as a single record. In addition, our current formalism allows aggregation
of alerts of the same type, and is flexible in reasoning about alerts. Therefore, we
believe the current notion of a hyper-alert is an appropriate choice.

A hyper-alert instantiates its prerequisite and consequence by replacing the free
variables in prerequisite and consequence with its specific values. Since all free vari-
ables in prerequisite and consequence must appear in fact in a hyper-alert type, the
instantiated prerequisite and consequence will have no free variables. Note that
prerequisite and consequence can be instantiated multiple times if fact consists of
multiple tuples. For example, if an IPSweep attack involves several IP addresses,
the prerequisite and consequence of the corresponding hyper-alert type will be in-
stantiated for each of these addresses.

In the following, we treat timestamps implicitly and omit them if they are not
necessary for our discussion.

Example 3.4. Consider the hyper-alert type SadmindBufferOverflow in example
3.2. There may be a hyper-alert hgqaminasor as follows: {(VictimIP = 152.1.19.5,
VictimPort = 1235), (VictimIP = 152.1.19.7, VictimPort = 1235)}. This implies
that if the attack is successful, the following two logical formulas must be True

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts : 9

as the prerequisites of the attack: FExistHost (152.1.19.5) A VulnerableSadmind
(152.1.19.5), EzistHost (152.1.19.7) A VulnerableSadmind (152.1.19.7). Moreover,
as possible consequences of the attack, the following might be True: GainRootAccess
(152.1.19.5), GainRootAccess (152.1.19.7). This hyper-alert says that there are
buffer overflow attacks against sadmind at IP addresses 152.1.19.5 and 152.1.19.7,
and the attacker may gain root access as a result of the attacks.

A hyper-alert may correspond to one or several related alerts. If an IDS reports
one alert for a certain attack and the alert has all the information needed to instan-
tiate a hyper-alert, a hyper-alert can be generated from the alert. However, some
IDSs may report a series of alerts for a single attack. For example, EMERALD may
report several alerts (within the same thread) related to an attack that spreads over
a period of time. In this case, a hyper-alert may correspond to the aggregation of
all the related alerts. Moreover, several alerts may be reported for the same type
of attack in a short period of time. Our definition of hyper-alert allows them to
be treated as one hyper-alert, and thus provides flexibility in the reasoning about
alerts. Certain constraints are necessary to make sure the hyper-alerts are reason-
able. However, since our hyper-alert correlation method does not depend on them
directly, we will discuss them after introducing our method.

Ideally, we may correlate a set of hyper-alerts with a later hyper-alert if the
consequences of the former ones imply the prerequisite of the latter one. However,
such an approach may not work in reality due to several reasons. First, the attacker
may not always prepare for certain attacks by launching some other attacks. For
example, the attacker may learn a vulnerable sadmind service by talking to people
who work in the organization where the system is running. Second, the current IDSs
may miss some attacks, and thus affect the alert correlation if the above approach
is used. Third, due to the combinatorial nature of the aforementioned approach,
it is computationally expensive to examine sets of alerts to find out whether their
consequences imply the prerequisite of an alert.

Having considered these issues, we adopt an alternative approach. Instead of
examining if several hyper-alerts imply the prerequisite of a later one, we check
if an earlier hyper-alert contributes to the prerequisite of a later one. Specifically,
we decompose the prerequisite of a hyper-alert into individual predicates and test
whether the consequence of an earlier hyper-alert makes some of the prerequisites
True (i.e., make the prerequisite easier to satisfy). If the result is yes, then we
correlate the hyper-alerts together. This idea is specified formally through the
following Definitions.

Definition 3.5. Cousider a hyper-alert type T'= (fact, prerequisite, consequence).
The prerequisite set (or consequence set, resp.) of T, denoted P(T) (or C(T), resp.),
is the set of all predicates that appear in prerequisite (or consequence, resp.). Given
a hyper-alert instance h of type T, the prerequisite set (or consequence set, resp.)
of h, denoted P(h) (or C'(h), resp.), is the set of predicates in P(T) (or C(T), resp.)
whose arguments are replaced with the corresponding attribute values of each tuple
in h. Each element in P(h) (or C(h), resp.) is associated with the timestamp of
the corresponding tuple in h. (Notation-wise, for each p € P(h) (or C(h), resp.),
we use p.begin_time and p.end_time to refer to the timestamp associated with p.)

ACM Journal Name, Vol. V, No. N, July 2003.

10 . Ning, Cui, and Reeves

Ezxample 3.6. Consider the Sadmind Ping attack through which an attacker dis-
covers possibly vulnerable sadmind services. The corresponding alerts can be repre-
sented by a hyper-alert type SadmindPing = ({ VictimIP, VictimPort}, { ExistHost
(VictimIP)}, { VulnerableSadmind (VictimIP)}).

Suppose a hyper-alert instance hsqdmindpPing of type SadmindPing has the follow-
ing tuples: {(VictimIP = 152.1.19.5, VictimPort = 1235), (VictimIP = 152.1.19.7,
VictimPort = 1235), (VictimIP = 152.1.19.9, VictimPort = 1235)}. Then we
have the prerequisite set P(hsqdmindpPing) = {EwistHost (152.1.19.5), ExistHost
(152.1.19.7), EzistHost (152.1.19.9)}, and the consequence set C(hsadmindPing) =
{ VulnerableSadmind (152.1.19.5), VulnerableSadmind (152.1.19.7), VulnerableSad-
mind (152.1.19.9)}.

Ezxample 3.7. Consider the hyper-alert hsqaminapor discussed in example 3.4.
We have P(hgadminasor) = {FzistHost (152.1.19.5), FxistHost (152.1.19.7), Vul-
nerableSadmind (152.1.19.5), VulnerableSadmind (152.1.19.7)}, and C(hsadmindBOF)
= {GainRootAccess (152.1.19.5), GainRootAccess (152.1.19.7)}.

Definition 3.8. Hyper-alert hy prepares for hyper-alert hsy, if there exist p €
P(h2) and C C C(h1) such that for all ¢ € C, c.end_time < p.begin_time and the
conjunction of all the predicates in C' implies p.

The prepare-for relation is developed to capture the causal relationships between
hyper-alerts. Intuitively, hi prepares for ho if some attacks represented by h; make
the attacks represented by ho easier to succeed.

Ezxample 3.9. Let us continue examples 3.6 and 3.7. Assume that all tuples in
hSadmindPing have timestamps earlier than every tuple in AsqdmindiBor. By com-
paring the contents of C'(hsadmindpPing) and P(hsedmindBOF), it is clear the instan-
tiated predicate VulnerableSadmind (152.1.19.5) (among others) in P(hsadmindBOF)
is also in C(hsadmindPing)- Thus, hsedmindping Prepares for, and should be corre-
lated with hsqdmindBOF-

Given a sequence S of hyper-alerts, a hyper-alert i in S is a correlated hyper-
alert, if there exists another hyper-alert A’ in S such that either h prepares for h’
or h' prepares for h. If no such I/ exists, h is called an isolated hyper-alert. The
goal of the correlation process is to discover all pairs of hyper-alerts hy; and hg in
S such that hy prepares for hs.

3.2.1 Temporal Constraints for Hyper-alerts. As discussed earlier, we allow mul-
tiple alerts to be aggregated into a hyper-alert, which gives some flexibility in rea-
soning about alerts. However, the definition of hyper-alert is overly flexible in some
situations; it allows alerts that occur at arbitrary points in time to be treated as a
single hyper-alert. Although some attackers usually spread their intrusive activities
over time, aggregating alerts at arbitrary time points is still overly broad, and may
affect the effectiveness of alert correlation.

In the following, we introduce two temporal constraints for hyper-alerts. The
purpose of these temporal constraints is to restrict the alert aggregation to mean-
ingful ones. We are particularly interested in hyper-alerts that satisfy at least one
of the constraints. However, most of our discussion in this paper applies to gen-
eral hyper-alerts. Thus, we will not specifically indicate the constraints if it is not

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts . 11

necessary.

Definition 3.10. Given a time duration D (e.g., 100 seconds), a hyper-alert h sat-
isfies duration constraint of D if Max{t.end_time|Vt € h} — Min{t.begin_time|¥t €
h} < D.

Definition 3.11. Given a time interval I (e.g., 10 seconds), a hyper-alert h sat-
isfies interval constraint of I if (1) h has only one tuple, or (2) for all r in h,
there exist another v’ in h such that there exist r.begin_time < T < r.end-time,
r’.begin_time < T’ < r'.end_time, and |T —T'| < I.

Intuitively, a hyper-alert satisfies a duration constraint of D if all contributing
alerts occur during a period of duration D. Similarly, a hyper-alert satisfies an
interval constraint of I if the gap (in time) between two consecutive contributing
alerts never exceeds I.

The temporal constraints are introduced to prevent unreasonable aggregation of
alerts. However, this does not imply that alerts have to be aggregated. Indeed, in
our initial experiments, we treat each alert as an individual hyper-alert. In other
words, aggregation of alerts is an option provided by our model, and temporal
constraints are restrictions that make the aggregated hyper-alerts meaningful.

3.3 Hyper-alert Correlation Graph

The prepare-for relation between hyper-alerts provides a natural way to represent
the causal relationship between correlated hyper-alerts. In the following, we in-
troduce the notion of a hyper-alert correlation graph to represent attack scenarios
on the basis of the prepare-for relation. As we will see, the hyper-alert correlation
graph reflects the high-level strategies or logical steps behind a sequence of attacks.

Definition 3.12. A hyper-alert correlation graph HG = (N, E) is a connected
DAG (directed acyclic graph), where the set N of nodes is a set of hyper-alerts,
and for each pair of nodes ny,ne € N, there is an edge from ny to ny in E if and
only if n, prepares for ns.

Ezxample 3.13. Suppose in a sequence of hyper-alerts we have the following
ones: hIPSweepa hSadmindPing7 hSadmindBOFu and hDDOSDaemon' The hyper'alel"ts
hsadminaBor and hgedmindPing have been explained in examples 3.4 and 3.6, re-
spectively. Suppose hrpsweep represents an IP Sweep attack, and hppospaemon
represents the activity of a DDOS daemon program. Assume we have: hrpsweep
prepares for hSadmindPing and hSadmindBOF7 YeSpeCtiVelYa hSadmindPing prepares
for hsadminaBor, and hseaminaBor prepares for hppospaemon- These are intu-
itively shown in a hyper-alert correlation graph in Figure 1(a).

The hyper-alert correlation graph provides an intuitive representation of corre-
lated hyper-alerts. With this notion, the goal of the alert correlation process can
be rephrased as the discovery of hyper-alert correlation graphs that have maximum
number of nodes from a sequence of hyper-alerts.

In addition to getting all the correlated hyper-alerts, it is often desirable to
discover those that are directly or indirectly correlated to one particular hyper-
alert. For example, if an IDS detects a DDOS daemon running on a host, it would

ACM Journal Name, Vol. V, No. N, July 2003.

12 . Ning, Cui, and Reeves

hIPSNeep N sadmindgor Nbbospaemon hIPSNeep N sadmindsor

O hSadmindPi ng O hSadmindPi ng
(a) A hyper-alert correlation graph HG (b) PG = precedent(hsadmindBor, HG)

Pipsuee Nsagmindsor Nbpospaemon
O @ O
h SadmindBOF hDDOSDaemon \ /
e =0 O hSadm'ndPing

(c) SG = subsequent(hsadmindsor, HG) (d) CG = correlated(hsadmindBor, HG)

Fig. 1. Hyper-alert correlation graphs

be helpful to inform the administrator how this happened, that is, report all the
alerts that directly or indirectly prepare for the DDOS daemon. Therefore, we
define the following operations on hyper-alert correlation graphs.

Definition 3.14. Given a hyper-alert correlation graph HG = (N, E) and a
hyper-alert n in N, precedent (n, HG) is an operation that returns the maximum
sub-graph PG = (N’, E’) of HG that satisfies the following conditions: (1) n € N,
(2) for each n’ € N’ other than n, there is a directed path from n’ to n, and (3)
each edge e € E’ is in a path from a node n’ in N’ to n. The resulting graph PG
is called the precedent graph of n w.r.t. HG.

Definition 3.15. Given a hyper-alert correlation graph HG = (N, E) and a
hyper-alert n in N, subsequent (n, HG) is an operation that returns the maximum
sub-graph SG = (N', E’) of HG that satisfies the following conditions: (1) n € N’,
(2) for each n’ € N’ other than n, there is a directed path from n to n’, and (3)
each edge e € F’ is in a path from n to a node n’ in N’. The resulting graph SG
is called the subsequent graph of n w.r.t. HG.

Definition 3.16. Given a hyper-alert correlation graph HG = (N, E) and a
hyper-alert n in N, correlated (n, HG) is an operation that returns the maximum
sub-graph CG = (N', E') of HG that satisfies the following conditions: (1) n € N’,
(2) for each n’ € N’ other than n, there is either a path from n to n’, or a path
from n’ to n, and (3) each edge e € E’ is either in a path from a node in N’ to n, or
in a path from n to a node in N’. The resulting graph CG is called the correlated
graph of n w.r.t. HG.

Intuitively, the precedent graph of n w.r.t. HG describes all the hyper-alerts in
HG that prepare for n directly or indirectly, the subsequent graph of n w.r.t. HG

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts : 13

Knowledge || = _
Base :
Y
Hyper—alert
Alert Hyper—Alerts Correlation pe Visualization
& > . Correlation Graph 5
Preprocessor Auxjliary| Data Engine Generator (GraphViz)

Correlated Hyper—Alerts

Y

Database
Management System

Alerts

/

Fig. 2. The architecture of the intrusion alert correlator

describes all the hyper-alerts in HG for which n prepares directly or indirectly, and
the correlated graph of n w.r.t. HG includes all the hyper-alerts in HG that are
correlated to n directly or indirectly. It is easy to see that correlated(n, HG) =
precedent(n, HG) U subsequent(n, HG).

Assuming the black node hgqdmindapor in figure 1(a) is the hyper-alert of concern,
figures 1(b) to 1(d) display the precedent graph, subsequent graph, and correlated
graph of hgadminasor w.r.t. the hyper-alert correlation graph in figure 1(a), re-
spectively. Note that figure 1(d) is the same as figure 1(a). This is because all the
hyper-alerts in figure 1(a) are related to hgadminasor via the prepare-for relation.
In reality, it is certainly possible that not all hyper-alerts are related to the hyper-
alert of concern. In this case the correlated graph only reveals those directly or
indirectly correlated to that hyper-alert.

The hyper-alert correlation graph is not only an intuitive way to represent at-
tack scenarios constructed through alert correlation, but also reveals opportunities
to improve intrusion detection. First, the hyper-alert correlation graph can poten-
tially reveal the intrusion strategies behind the attacks, and thus lead to better
understanding of the attacker’s intention. Second, assuming some attackers exhibit
patterns in their attack strategies, we can use the hyper-alert correlation graph
to profile previous attacks and thus identify on-going attacks by matching to the
profiles. A partial match to a profile may indicate attacks possibly missed by the
IDSs, and thus lead to human investigation and improvement of the IDSs. Never-
theless, additional research is necessary to demonstrate the usefulness of hyper-alert
correlation graphs for this purpose.

3.4 Implementation

We have implemented an off-line intrusion alert correlator using the method dis-
cussed earlier. Figure 2 shows the architecture. It consists of a knowledge base, an
alert preprocessor, a correlation engine, a hyper-alert correlation graph generator,
and a visualization component. All these components except for the visualization
component interact with a DBMS, which provides persistent storage for the inter-
mediate data as well as the correlated alerts. The program was written in Java, with
JDBC to access the database. To save development effort, we use the GraphViz
package [AT & T Research Labs | as the visualization component.

The knowledge base contains the necessary information about hyper-alert types

ACM Journal Name, Vol. V, No. N, July 2003.

14 . Ning, Cui, and Reeves

as well as implication relationships between predicates. In our current implemen-
tation, the hyper-alert types and the relationship between predicates are specified
in an XML file. When the alert correlator is initialized, it reads the XML file, and
then converts and stores the information in the knowledge base.

Our current implementation assumes the alerts reported by IDSs are stored in
the database. Using the information in the knowledge base, the alert preproces-
sor generates hyper-alerts as well as auxiliary data from the original alerts. The
correlation engine then performs the actual correlation task using the hyper-alerts
and the auxiliary data. After alert correlation, the hyper-alert correlation graph
generator extracts the correlated alerts from the database, and generates the graph
files in the format accepted by GraphViz. As the final step of alert correlation,
GraphViz is used to visualize the hyper-alert correlation graphs.

3.4.1 Preprocessing and Correlation of Hyper-alerts. Preprocessing and corre-
lation of hyper-alerts are the major tasks of the alert correlator. These tasks are
performed using the hyper-alert type information stored in the knowledge base. As
discussed earlier, the knowledge base stores two types of information: the implica-
tion relationships between predicates and the hyper-alert type information. When
the alert correlator reads in the hyper-alert types, it generates the prerequisite and
consequence sets of each hyper-alert type. In addition, it expands the consequence
set of each hyper-alert type by including all the predicates in the knowledge base
implied by the consequence set. We call the result the expanded consequence set of
the corresponding hyper-alert type. (Similar to the consequence set of a hyper-alert
type, we may instantiate the expanded consequence set with a hyper-alert instance
and get the expanded consequence set of the hyper-alert.)

To simplify the preprocess and correlation of hyper-alerts, we make the following
assumptions.

Assumption 3.17. Given a set P = {p1(Z11, -, T1ky), -, Pm(Tm1, -+, Tmk,,)} Of
predicates, for any set of instantiations of the variables 11, ..., 1k, , ---; ZTm1, -+, Tmk,, »
deriving all predicates implied by P followed by instantiating all the variables leads
to the same result as instantiating all the variables and then deriving all the pred-
icates implied by the instantiated predicates.

Assumption 3.18. All predicates are uniquely identified by their names and the
special characters “(”, “)”, and “,” do not appear in predicate names and arguments.

The major preparation for alert correlation is performed at the preprocessing
phase. The alert preprocessor generates hyper-alerts from the alerts reported
by IDSs and instantiates the prerequisite and expanded consequence sets of each
hyper-alert. The current implementation generates one hyper-alert from each alert,
though our method allows aggregating multiple alerts into one hyper-alert. Note
that having the expanded consequence set of a hyper-alert, we can test if some
predicates in the consequence set imply a predicate by checking whether the latter
predicate is included in the expanded consequence set.

We encode instantiated predicates as strings, and thus further transform the
alert correlation problem to a string matching problem. Specifically, each instan-
tiated predicate is encoded as the predicate name followed by the character “(”,

W

followed by the sequence of arguments separated with the character “,”, and finally

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts : 15

followed by the character “)”. Thus, under assumption 3.18 and the fact that the
order of arguments in a predicate is significant, comparing instantiated predicates
is equivalent to comparing the encoded strings.

We store the encoded prerequisite and expanded consequence sets in two tables,
PreregSet and ExpandedConsegSet, along with the corresponding hyper-alert ID and
timestamp, assuming that each hyper-alert is uniquely identified by its ID. (Note
that one hyper-alert may have multiple tuples in these tables.) Both tables have
attributes HyperAlertID, EncodedPredicate, begin_time, and end_time, with mean-
ings as indicated by their names. As a result, alert correlation can be performed
using the following SQL statement.

SELECT DISTINCT c.HyperAlertID, p.HyperAlertID

FROM PrereqSet p, ExpandedConseqSet ¢

WHERE p.EncodedPredicate = c.EncodedPredicate
AND c.end_time < p.begin_time

The correctness of our implementation method is guaranteed by the following
theorem.

THEOREM 3.19. Under assumptions 3.17 and 3.18, our implementation method
discovers all and only the hyper-alert pairs such that the first one of the pair prepares
for the second one.

PRrROOF. Consider a pair of hyper-alerts hy; and hs such that hy prepares for ho.
By Definition 3.8, there exists p € P(hs) and C' C C(hy) such that for all ¢ € C,
c.end_time < p.begin_time and the conjunction of all predicates in C' implies p. By
assumption 3.17, p should be in the expanded consequence set of h; (but associated
with a different timestamp). Thus, both PreregSet and ExpandedConsegSet have
a tuple that has the same encoded predicate along with the appropriate hyper-alert
ID and timestamp. As a result, the SQL statement will output that h; prepares
for hQ.

Suppose the SQL statement outputs that h; prepares for ho. Then there exist
t1 in ExpandedConseqSet and to in PrereqSet such that t1.EncodedPredicate =
to.EncodedPredicate and ti.end_time < to.begin_time. According to assumption
3.18, t1.Encoded Predicate and to. Encoded Predicate must be the same instantiated
predicate. Let us refer to this predicate as p; when it is in the expanded consequence
set of hy, and as ps when it is in P(hg). Thus, p;1 = ps and p;.end_time <
p2.begin_time. If py is also in C(hq), let C = {p1}. Otherwise, let C be the set
of predicates in C(hq) that are instantiated by the same tuple in hy as p;. By the
way in which an expanded consequence set is constructed and assumption 3.17, p;
is implied by the predicates in C. This is to say that py is implied by C C C(h;)
such that for all ¢ € C, c.end_time < ps.begin_time. Thus, hy prepares for hy by
Definition 3.8. O

4. UTILITIES FOR ANALYZING INTENSIVE ALERTS

Our experiments demonstrate that the alert correlation method is effective in an-
alyzing small amount of alerts. However, our experience with intrusion intensive
datasets (e.g., the DEFCON 8 CTF dataset [DEFCON 2000]) has revealed several
problems.

ACM Journal Name, Vol. V, No. N, July 2003.

16 . Ning, Cui, and Reeves

First, let us consider the following scenario. Suppose an IDS detected an Sad-
mindPing attack, which discovered the vulnerable Sadmind service on host V, and
later an SadmindBufferOverlfow attack against the Sadmind service. Assuming
that they were launched from different hosts, should we correlate them? On the
one hand, it is possible that one or two attackers coordinated these two attacks
from two different hosts, trying to avoid being correlated. On the other hand, it is
also possible that these attacks belonged to two separate efforts. Such a scenario
clearly introduces a dilemma, especially when there are a large amount of alerts.

One may suggest to use time to solve this problem. For example, we may cor-
relate the aforementioned attacks if they happened within ¢ seconds. However,
knowing this method, an attacker may introduce delays between attacks to bypass
correlation.

The second problem is the overwhelming information encoded by hyper-alert
correlation graphs when intensive attacks trigger a large amount of alerts. Our
initial attempt to correlate the alerts generated for the DEFCON 8 CTF dataset
[DEFCON 2000] resulted in 450 hyper-alert correlation graphs, among which the
largest hyper-alert correlation graph consists of 2,940 nodes and 25,321 edges. Such
a graph is clearly too big for a human user to comprehend in a short period of time.

Although the DEFCON 8 dataset involves intensive attacks not usually seen in
normal network traffic, the actual experience of intrusion detection practitioners
indicates that “encountering 10-20,000 alarms per sensor per day is common [Man-
ganaris et al. 2000].” Thus, it is necessary to develop techniques or tools to deal
with the overwhelming information.

In this section, we propose three utilities, mainly to address the second problem.
Regarding the first problem, we choose to correlate the alerts when it is possible,
leaving the final decision to the user. We would like to clarify that these utilities are
intended for human users to analyze alerts interactively, not for computer systems
to draw any conclusion automatically, though some of the utilities may be adapted
for automatic systems. These utilities are summarized as follows.

(1) Adjustable graph reduction. Reduce the complexity (i.e., the number of nodes
and edges) of hyper-alert correlation graphs while keeping the structure of
sequences of attacks. The graph reduction is adjustable in the sense that users
are allowed to control the degree of reduction.

(2) Focused analysis. Focus analysis on the hyper-alerts of interest according to
the user’s specification. This may generate hyper-alert correlation graphs much
smaller and more comprehensible than the original ones.

(3) Graph decomposition. Cluster the hyper-alerts in a hyper-alert correlation
graph based on the common features shared by the hyper-alerts, and decompose
the graph into smaller graphs according to the clusters. This can be considered
to combine a variation of the method proposed in [Valdes and Skinner 2001]
with our method.

4.1 Adjustable Reduction of Hyper-alert Correlation Graphs

A natural way to reduce the complexity of a hyper-alert correlation graph is to
reduce the number of nodes and edges. However, to make the reduced graph use-
ful, any reasonable reduction should maintain the structure of the corresponding

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts . 17

G
“ 5

Sadmind_Amslverify_Overflow

Attacking Host: 202.77.162.213
Victim Host: 172.16.112.50

@ Stream_DoS

Mstream_Zombie

Fig. 3. A hyper-alert correlation graph discovered in the 2000 DARPA intrusion
detection evaluation datasets

Attacking Host: 202.77.162.213
Victim Host: 172.16.112.50

Sadmind_Ping Rsh Mstream Zombie Stream DoS

Sadmind_Amslverify_Overflow

Fig. 4. A hyper-alert correlation graph reduced from Fig. 3

attacks.

We propose to aggregate hyper-alerts of the same type to reduce the number of
nodes in a hyper-alert correlation graph. Due to the flexible definition of hyper-
alerts, the result of hyper-alert aggregation will remain valid hyper-alerts. For
example, in Figure 3, hyper-alerts 67432, 67434, 67436, and 67440 are all instances
of hyper-alert type Sadmind_Amslverify-Overflow. Thus, we may aggregate them
into one hyper-alert. As another example, hyper-alerts 67558, 67559, 67560, and
67553 are all instances of Rsh, and can be aggregated into a single hyper-alert.

Edges are reduced along with the aggregation of hyper-alerts. In Figure 3,
the edges between the Rsh hyper-alerts are subsumed into the aggregated hyper-
alert, while the edges between the Sadmind_Ping hyper-alert and the four Sad-
mind_Amslverify_Overflow hyper-alerts are merged into a single edge. As a result,
we have a reduced hyper-alert correlation graph as shown in Figure 4.

Reduction of a hyper-alert correlation graph may lose information contained in
the original graph. Indeed, hyper-alerts that are of the same type but belong to
different sequences of attacks may be aggregated and thus provide overly simplified
results. Nevertheless, our goal is to lose as little information of the structure of
attacks as possible.

Depending on the actual alerts, the reduction of a hyper-alert correlation graph
may be less simplified so that there is too much detail in the resulting graph, or
overly simplified so that some structures are hidden. We would like to give a human
user more control over the graph reduction process.

We allow hyper-alert aggregation only when the resulting hyper-alerts satisfy an
interval constraint of a given threshold I. Intuitively, we allow hyper-alerts to be
aggregated only when they are close to each other in time. The larger a threshold

ACM Journal Name, Vol. V, No. N, July 2003.

18 . Ning, Cui, and Reeves

I is, the more a hyper-alert correlation graph can be reduced. By adjusting the
interval threshold, a user can control the degree to which a hyper-alert correlation
graph is reduced.

4.2 Focused Analysis

Focused analysis is implemented on the basis of focusing constraints. A focusing
constraint is a logical combination of comparisons between attribute names and con-
stants. (In our work, we restrict logical operations to AND (A), OR (V), and NOT
(=).) For example, we may have a focusing constraint SrcIP = 129.174.142.2 v
DestIP = 129.174.142.2. We say a focusing constraint C is enforceable w.r.t. a
hyper-alert type T if when we represent C in a disjunctive normal form, at least
for one disjunct CY;, all the attribute names in C; appear in T'. For example, the
above focusing constraint is enforceable w.r.t. T = ({SrcIP, SrcPort}, NULL, (),
but not w.r.t. T/ = ({VictimIP, VictimPort}, NULL, (). Intuitively, a focusing
constraint is enforceable w.r.t. T' if it can be evaluated using a hyper-alert instance
of type T.

We may evaluate a focusing constraint C; with a hyper-alert h if C; is en-
forceable w.r.t. the type of h. A focusing constraint Cy evaluates to True for
h if there exists a tuple ¢ € h such that Cy is True with the attribute names
replaced with the values of the corresponding attributes of ¢; otherwise, C'y eval-
uates to False. For example, consider the aforementioned focusing constraint C,
which is SrcIP = 129.174.142.2 V DestIP = 129.174.142.2, and a hyper-alert
h = {(SrcIP =129.174.142.2, SrcPort = 80)}, we can easily have that Cy = True
for h.

The idea of focused analysis is quite simple: we only analyze the hyper-alerts
with which a focusing constraint evaluates to True. In other words, we would like
to filter out irrelevant hyper-alerts, and concentrate on analyzing the remaining
hyper-alerts. We are particularly interested in applying focusing constraints to
atomic hyper-alerts, i.e., hyper-alerts with only one tuple. In our framework, atomic
hyper-alerts correspond to the alerts reported by an IDS directly.

Focused analysis is particularly useful when we have certain knowledge of the
alerts, the systems being protected, or the attacking computers. For example, if we
are interested in the attacks against a critical server with IP address Server_IP, we
may perform a focused analysis using DestIPAddress = Server_IP. However, focused
analysis cannot take advantage of the intrinsic relationship among the hyper-alerts
(e.g., hyper-alerts having the same IP address). In the following, we introduce the
third utility, graph decomposition, to fill in this gap.

4.3 Graph Decomposition Based on Hyper-alert Clusters

The purpose of graph decomposition is to use the inherent relationship between (the
attributes of) hyper-alerts to decompose a hyper-alert correlation graph. Concep-
tually, we cluster the hyper-alerts in a large correlation graph based on the “com-
mon features” shared by hyper-alerts, and then decompose the original correlation
graphs into subgraphs on the basis of the clusters. In other words, hyper-alerts
should remain in the same graph only when they share certain common features.
We use a clustering constraint to specify the “common features” for clustering
hyper-alerts. Given two sets of attribute names A; and As, a clustering constraint

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts : 19

C.(A1, As) is a logical combination of comparisons between constants and attribute
names in A; and Ay. (In our work, we restrict logical operations to AND (A), OR
(V), and NOT (—).) A clustering constraint is a constraint for two hyper-alerts;
the attribute sets A; and As identify the attributes from the two hyper-alerts. For
example, we may have two sets of attribute names A; = {SrcI P, DestI P} and Ay =
{SrcIP, DestI P}, and C.(A1, A2) = (A1.SrcIP = A3.SrcIP) A (Ay.DestIP =
Ag.DestIP). Intuitively, this is to say two hyper-alerts should remain in the same
cluster if they have the same source and destination TP addresses.

A clustering constraint C.(A1, A) is enforceable w.r.t. hyper-alert types Th and
T if when we represent C.(A7, Ag) in a disjunctive normal form, at least for one
disjunct C,;, all the attribute names in A; appear in 77 and all the attribute names
in Ay appear in Tb. For example, the above clustering constraint is enforceable
w.r.t. 77 and T3 if both of them have SrcIP and DestIP in the fact compo-
nent. Intuitively, a clustering constraint is enforceable w.r.t. 77 and T5 if it can be
evaluated using two hyper-alerts of types 77 and T, respectively.

If a clustering constraint C.(A;, As) is enforceable w.r.t. T1 and Ts, we can eval-
uate it with two hyper-alerts h; and hy that are of type T1 and T5, respectively. A
clustering constraint C.(A;, As) evaluates to True for h; and hg if there exists a tu-
ple t; € hy and to € ho such that C.(A1, Az) is True with the attribute names in A,
and As replaced with the values of the corresponding attributes of ¢; and s, respec-
tively; otherwise, C.(A1, Ag) evaluates to False. For example, consider the cluster-
ing constraint C.(A1, Az) : (A1.SrcIP = Ay.SrcIP) A (Ay1.DestIP = Ay.DestIP),
and hyper-alerts hy = {(SrcIP = 129.174.142.2, SrcPort = 1234, DestIP =
152.1.14.5, DestPort = 80)}, ha = {(SrcIP = 129.174.142.2, SrcPort = 65333,
DestI P = 152.1.14.5, Dest Port = 23)}, we can easily have that C.(A;, A2) = True
for hq and he. For brevity, we write C.(h1, ha) = True if C.(A71, A2) = True for hy
and hQ.

Our clustering method is very simple, with a user-specified clustering constraint
C.(A1,As). Two hyper-alerts hy and hg are in the same cluster if C.(A;, A3)
evaluates to True for hy and hs (or he and hqy). Note that C.(hq, he) implies that
h1 and ho are in the same cluster, but the reverse is not true. This is because
Cc(hl, h2) A OC(hQ, hg) implies neither Oc(hl, hg) nor Oc(hg, hl)

4.4 Discussion

The alert correlation method is developed to uncover the high-level strategies be-
hind a sequence of attacks, not to replace the original alerts reported by an IDS.
However, as indicated by our initial experiments (See Section 5), alert correlation
does provide evidence to differentiate between alerts. If an alert is correlated with
some others, it is more possible that the alert corresponds to an actual attack.

It is desirable to develop a technique which can comprehend a hyper-alert cor-
relation graph and generate feedback to direct intrusion detection and response
processes. We consider such a technique a part of our future research plan. How-
ever, given the current status of intrusion detection and response techniques, it is
also necessary to allow human users to understand the attacks and take appropriate
actions.

The three utilities developed in this section are intended to help human users
analyze attacks behind large amounts of alerts. They can make attack strategies

ACM Journal Name, Vol. V, No. N, July 2003.

20 . Ning, Cui, and Reeves

behind intensive alerts easier to understand, but cannot improve the performance
of alert correlation.

5. EXPERIMENTAL RESULTS

In this section, we report the experiments used to validate our techniques. Due to
the space limit, we can only report selected results in this paper. For complete and
detailed experimental results, please refer to [Cui 2002].

We have performed two sets of experiments. The first set of experiments was
aimed at evaluating the effectiveness of our method in constructing attack scenarios
and its ability to differentiate true and false alerts!. These experiments were done
with the 2000 DARPA intrusion detection scenario specific datasets [MIT Lincoln
Lab 2000]. The second set of experiments was intended to evaluate the usefulness
of the three analysis utilities in dealing with large collections of intrusion alerts. For
the second set of experiments, we chose the dataset collected at the DEFCON 8 CTF
event [DEFCON 2000], which contains intensive attacks launched by competing
hackers during the contest.

In each experiment, we replayed selected network traffic with NetPoke? in an
isolated network monitored by a RealSecure Network Sensor 6.0 [Internet Security
Systems |. RealSecure was chosen because it has an extensive set of well documented
attack signatures. In all the experiments, the Network Sensor was configured to
use the Mazimum_Coverage policy with a slight change, which forced the Network
Sensor to save all the reported alerts. Our alert correlator was then used to pro-
cess the alerts generated by RealSecure. The hyper-alert correlation graphs were
visualized using the GraphViz package [AT & T Research Labs]. For the sake of
readability, transitive edges are removed from the graphs.

We mapped each alert type reported by RealSecure to a hyper-alert type with
the same name. The prerequisite and consequence of each hyper-alert type were
specified according to the descriptions of the attack signatures provided with the
RealSecure Network Sensor 6.0. The collection of predicates, the implication re-
lationships between these predicates, and the hyper-alert types are given in [Cui
2002).

5.1 Experiments with the DARPA 2000 Datasets

The 2000 DARPA intrusion detection scenario specific datasets include LLDOS
1.0 and LLDOS 2.0.2 [MIT Lincoln Lab 2000]. LLDOS 1.0 contains a series of
attacks in which an attacker probes, breaks in, installs the components necessary
to launch a Distributed Denial of Service (DDOS) attack, and actually launches a
DDOS attack against an off-site server. LLDOS 2.0.2 includes a similar sequence of
attacks run by an attacker who is a bit more sophisticated than the first one. Each
dataset includes the network traffic collected from both the DMZ and the inside
part of the evaluation network. We have performed four sets of experiments, each
with either the DMZ or the inside network traffic of one dataset.

LAn alert is true if it is raised because the IDS detects an actual attack; otherwise, it is false.
2NetPoke is a utility to replay packets to a live network that were previously captured with the
tcpdump program. http://www.1ll.mit.edu/IST/ideval/tools/tools_index.html

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts . 21

A

W9,

Sadmind_Amslverify_Overflow67438

) Sadmind_Amslverify_Overflow6744:
LI e g—— =
Ping67341 ‘Sadmind_Amsiverify_Overflow67428 X

= \{ Mstream_Zombie67563
—_— | - Rsh6’

N
PPE=——1
—Z . Rsn67539
Sadmind_Amslverify_Overflow67430
Rsh67562 \
Rsh67542 \

y—
Rsh675:

li)

0 Rene

ﬁ";}..
)

)

0/00

v

S\

o v >
Y

Sadmind_Amslverify_Overflow67416 y -

4\‘
"D
g
2,

imind_Amslverify_Overflow67417

g
A
Y
)
I\

N Sadmind_Amslverify_Overflow67. OIS i
) ey —— S
Sadmind_Amslverify_Overflow67422 " e Rsh67550 "(Mstream_Zombie67537
e —— oy S ? P —

e stream_Zombie67776

Sadmind_Amslverify_Overflow67:

Sadmind_Amslverify_Overflow67426 v
Email_Almail_Overflow67304 2\
Sadmind_Amslverify_Overflow67432 — < /

FTP Syst d Sadmind_Amslverify_Overflow67434 .

> o ((Sadmind_ — Py -

67243 Ping67343 SAPS ¢ /L Msiream Zombie67554
Sadmind_Amslverify_Overflow67436 PR(Rsh67559 ”'

N

N
S
R

o

/| 7A

AP A
g ENENE
& §‘

\

i
I

H
b

— S
Sadmind_Amslverify_Overflow67. p(Rsh67560

—
Email_Almail_Overflow67529

Fig. 5. The (only) hyper-alert correlation graph discovered in the inside network
traffic of LLDOS 1.0.

5.1.1 Effectiveness of Alert Correlation. Our first goal of these experiments is
to evaluate the effectiveness of our method in constructing attack scenarios from
alerts. Before discussing the quantitative measures, let us first look at one of the
hyper-alert correlation graphs generated by the alert correlator.

Figure 5 shows the (only) hyper-alert correlation graph discovered from the inside
network traffic in LLDOS 1.0. Each node in Figure 5 represents a hyper-alert. The
text inside the node is the name of the hyper-alert type followed by the hyper-alert
ID. (We will follow this convention for all the hyper-alert correlation graphs.)

There are 44 hyper-alerts in this graph, including 3 false alerts, which are shown
in gray. We will discuss the false alerts later. The true hyper-alerts can be divided
into five stages horizontally. The first stage consists of three Sadmind_Ping alerts,
which the attacker used to find out the vulnerable Sadmind services. The three
alerts are from source IP address 202.077.162.213, and to destination IP addresses
172.016.112.010, 172.016.115.020, and 172.016.112.050, respectively. The second
stage consists of fourteen Sadmind_Amslverify_Overflow alerts. According to the
description of the attack scenario, the attacker tried three different stack pointers
and two commands in Sadmind_-Amslverify-Overflow attacks for each victim host
until one attempt succeeded. All the above three hosts were successfully broken
into. The third stage consists of some Rsh alerts, with which the attacker installed
and started the mstream daemon and master programs. The fourth stage consists of
alerts corresponding to the communications between the DDOS master and daemon
programs. Finally, the last stage consists of the DDOS attack.

We can see clearly that the hyper-alert correlation graph reveals the structure
as well as the high-level strategy of the sequence of attacks. The other hyper-alert

ACM Journal Name, Vol. V, No. N, July 2003.

22 . Ning, Cui, and Reeves

Table I. Completeness and soundness of alert correlation.

LLDOS 1.0 LLDOS 2.0.2
DMZ Inside DMZ | Inside
correctly correlated alerts 54 41 5 12
related alerts 57 44 8 18
correlated alerts 57 44 5 13
completeness measure R, 94.74% | 93.18% | 62.5% | 66.7%
soundness measure R, 94.74% | 93.18% | 100% | 92.3%

correlation graphs and the corresponding analysis are included in [Cui 2002].

This hyper-alert correlation graph is still not perfect. Two Email_Almail_Overflow
hyper-alerts (shown in gray in Figure 5) are false alerts, and are mis-correlated with
the Rsh alerts, though it is possible that an attacker uses these attacks to gain access
to the victim system and then copy the DDOS program with Rsh. The FTP_Syst
hyper-alert is also a false one; it is correlated with one of the Sadmind_Pings, be-
cause an attacker may use FTP_Syst to gain the OS information and then launch
an Sadmind_Ping attack. Moreover, the attacker used a telnet as a part of the
sequence of attacks, but this graph does not include the corresponding hyper-alert.

Another interesting issue is that we correlated alerts that are not attacks. In
both DMZ and inside traffic of LLDOS 2.0.2, we correlated an Email_Ehlo with
an Email_Turn from 135.013.216.191 to 172.016.113.105. Our further analysis in-
dicated that these were normal and related activities between email servers.

To better understand the effectiveness of our method, we examine the complete-
ness and the soundness of alert correlation. The completeness of alert correlation
assesses how well we can correlate related alerts together, while the soundness eval-
uates how correctly the alerts are correlated. We introduce two simple measures,
R. and R, to quantitatively evaluate completeness and soundness, respectively:

_ Fcorrectly correlated alerts

R Fcorrectly correlated alerts
.=

R =
#related alerts ’ #correlated alerts

Counting the numbers in R, and R is easy, given the description of the attacks
in the DARPA datasets. However, RealSecure generated duplicate alerts for several
attacks. In our experiments, we counted the duplicate alerts as different ones. False
alerts are counted (as incorrectly correlated alerts) so long as they are correlated.
Though non-intrusive alerts (e.g., the above Email_Ehlo and Email_Turn) are not
attacks, if they are related activities, we counted them as correctly correlated ones.

Table I shows the results about completeness and soundness of the alert correla-
tion for the two datasets. As shown by the values of Ry, most of the hyper-alerts are
correlated correctly. The completeness measures (R.) are satisfactory for LLDOS
1.0. However, they are only 62.5% and 66.7% for the DMZ and inside traffic in LL-
DOS 2.0.2. (Though the results for LLDOS 2.0.2 are much more informative than
not having the correlation capability, they are not as desirable as the results for
LLDOS 1.0.) Our further analysis reveals that all the hyper-alerts missed are those
triggered by the telnets that the attacker used to access a victim host. Each telnet
triggered three alerts, TelnetEnvAll, TelnetXDisplay and TelnetTerminalType. Ac-
cording to RealSecure’s description, these alerts are about attacks that are launched

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts : 23

Table II. Ability to differentiate true and false alerts. RS corresponds to the results
directly obtained with RealSecure Network Sensor 6.5; Cor corresponds to results
obtained after correlation.

dataset attacks | tool | alerts | detected | detection true false
attacks rate alerts | alert rate

DMZ 89 RS 891 51 57.30% 57 93.60%
LLDOS Cor 57 50 56.18% 54 5.26%
1.0 Inside 60 RS 922 37 61.67% 44 95.23%
Cor 44 36 60% 41 6.82%
DMZ 7 RS 425 4 57.14% 6 98.59%

LLDOS Cor 5 3 42.86% 3 40%
2.0.2 Inside 15 RS 489 12 80.00% 16 96.73%
Cor 13 10 66.67% 10 23.08%

using environmental variables (TelnetEnvAll) in a telnet session, including XDisplay
(TelnetXDisplay) and Terminal Type (Telnet Terminal Type). However, according to
the description of the datasets, the attacker did not launch these attacks, though
he did telnet to one victim host after gaining access to it. Nevertheless, to be con-
servative, we consider them as related alerts in our evaluation. Considering these
facts, we can conclude that our method is effective for these datasets.

5.1.2 Ability to Differentiate Alerts. Our second goal of these experiments is to
see how well alert correlation can be used to differentiate false alerts and true alerts.
As we conjectured in Section 3, false alerts, which do not correspond to any real
attacks, tend to be more random than the actual alerts, and are less likely to be
correlated to others. If this conjecture is true, we can divert more resources to deal
with correlated alerts, and thus improve the effectiveness of intrusion response.

To understand this issue, we deliberately drop the uncorrelated alerts and then
compare the resulting detection rate and false alert rate with the original ones of
RealSecure.

We counted the number of actual attacks and false alerts according to the de-
scription included in the datasets. False alerts can be identified easily by comparing
the alerts with the attack description provided with the datasets; however, counting
the number of attacks is subjective, since the number of attacks depends on how
one views the attacks. Having different views of the attacks may result in different
numbers.

We adopted the following way to count the number of attacks in our experiments.
The initial phase of the attacks involved an IP Sweep attack. Though many packets
were involved, we counted them as a single attack. Similarly, the final phase had a
DDOS attack, which generated many packets but was also counted as one attack.
For the rest of the attacks, we counted each action (e.g., telnet, Sadmind_Ping)
initiated by the attacker as one attack. The numbers of attacks observable in these
datasets are shown in Table II. Note that some activities such as telnet are not
usually considered as attacks; however, we counted them here if the attacker used
them as part of the attacks.

RealSecure Network Sensor 6.0 generated duplicate alerts for certain attacks. For
example, the same rsh connection that the attacker used to access the compromised

ACM Journal Name, Vol. V, No. N, July 2003.

24 . Ning, Cui, and Reeves

Table III. General statistics of the initial analysis

total hyper-alert types 115 || # total hyper-alerts | 65054
correlated hyper-alert types 95 || # correlated 9744
uncorrelated hyper-alert types 20 || # uncorrelated 55310
partially correlated hyper-alert types 51 || % correlated 15%

host triggered two alerts. As a result, the number of true alerts (i.e., the alerts
corresponding to actual attacks) is greater than the number of detected attacks.

The detection rates were calculated as #fgfsz}’fb‘feaz‘zgizs, while the false alert rates

_ true alerts
were computed as (1 Falerts).

Table II summarizes the results of these experiments. For the DMZ network
traffic in LLDOS 1.0, RealSecure generated 891 alerts. According to the description
of the data set, 57 out of the 891 alerts are true alerts, 51 attacks are detected, and
38 attacks are missed. Thus, the detection rate of RealSecure Network Sensor is
57.30%, and the false alert rate is 93.60%.2 Our intrusion alert correlator processed
the alerts generated by the RealSecure Network Sensor. As shown in Table II,
57 alerts remain after correlation, 54 of them are true alerts, and 50 attacks are
covered by these alerts. Thus, the detection rate and the false alert rate after alert
correlation are 56.18% and 5.26%, respectively. The results for the other datasets
are also shown in Table II.

The experimental results in Table II show that discarding uncorrelated alerts
reduces the false alert rates greatly without sacrificing the detection rate too much.
Thus, it is reasonable to treat correlated alerts more seriously than uncorrelated
ones. However, simply discarding uncorrelated alerts is dangerous, since some of
them may be true alerts, which correspond to individual attacks, or attacks our
method fails to correlate.

5.2 Experiments with the DEFCON 8 CTF Dataset

It would be helpful for the evaluation of our method if we could identify false alerts,
alerts for sequences of attacks, and alerts for isolated attacks. Unfortunately, due to
the nature of the dataset, we are unable to obtain any of them. Thus, in this study,
we focus on the analysis of the attack strategies reflected by hyper-alert correlation
graphs, but only discuss the uncorrelated alerts briefly.

5.2.1 Initial Attempt. In our initial analysis of the DEFCON 8 CTF dataset, we
tried to correlate the hyper-alerts without reducing the complexity of any hyper-
alert correlation graphs. The statistics of the initial analysis are shown in Table
I11.

Table IIT shows that only 15% alerts generated by RealSecure are correlated. In
addition, 20 out of 115 hyper-alert types that appear in this data set do not have
any instances correlated. Among the remaining 95 hyper-alert types, 51 types have
both correlated and uncorrelated instances.

Table IV shows the statistics of the top 10 uncorrelated hyper-alert types (in
terms of the number of uncorrelated hyper-alerts). Among these hyper-alert types,

3Choosing less aggressive policies than Maximum_Coverage can reduce the false alert rate; how-
ever, we may also lose the opportunity to detect some attacks.

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts : 25

Table IV. Statistics of top 10 uncorrelated hyper-alert types.

Hyper-alert # uncorrelated | # correlated
type alerts alerts
IPHalfScan 33745 958
Windows_Access_Error 11657 0
HTTP_Cookie 2119 0
SYNFlood 1306 406
IPDuplicate 1063 0
PingFlood 1009 495
SSH_Detected 731 0
Port_Scan 698 725
ServiceScan 667 2156
Satan 593 280

uncorrelated IPHalfScan accounted for 61% of all uncorrelated hyper-alerts. After
analyzing the dataset, we believed that most, if not all, of the uncorrelated IPHalf-
Scans were triggered by SYNFlood attacks. Windows_Access_Error accounted for
21% of all uncorrelated alerts. According to the description provided by RealSe-
cure, a Windows_Access_Error represents an unsuccessful file sharing connection to
a Windows or Samba server, which usually results from an attempt to brute-force
a login under another account’s privileges. It is easy to see that the correspond-
ing attacks could hardly prepare for any other attacks (since they failed). The
third largest hyper-alert type HTTP-Cookie counted for 3.8% of all uncorrelated
hyper-alerts. Though such alerts have certain privacy implications, we do not treat
them as attacks, considering the nature of the DEFCON CTF events. These three
hyper-alert types counted for 74.5% of all the alerts. We omit the discussion of the
other uncorrelated hyper-alerts.

Figure 6 shows one of the small hyper-alert correlation graphs. All the hyper-
alerts in this figure were destined to the host at 010.020.001.024. All the IPHalfScan
attacks were from source IP 010.020.011.240 at source port 55533 or 55534, and
destined to port 110 at the victim host. After these attacks, all the attacks in
the second stage except for 31886 were from 010.020.012.093 and targeted at port
110 of the victim host. The only two hyper-alerts that were not targeted at port
110 are hyper-alert 30882, which was destined to port 80 of the victim host, and
hyper-alert 31886, which was destined to port 53. Thus, it is very possible that all
the hyper-alerts except for 30882 and 31886 were related.

Not all of the hyper-alert correlation graphs are as small and comprehensible as
Figure 6. In particular, the largest graph (in terms of the number of nodes) has
2,940 nodes and 25,321 edges, and on average, each graph has 21.75 nodes and
310.56 edges. Obviously, most of the hyper-alert correlation graphs are too big to
understand for a human user.

5.2.2 Adjustable Graph Reduction. We further analyzed the hyper-alert corre-
lation graphs with the three utilities proposed in Section 4. Due to space reasons,
we only report our analysis results about the largest hyper-alert correlation graph
in this section.

We first applied the graph reduction utility to the largest hyper-alert correlation

ACM Journal Name, Vol. V, No. N, July 2003.

26 . Ning, Cui, and Reeves

Generic_Intel_Overflow31886

HTTP_Machinelnfo30822 Dany — 4 Generic_Intel_Overflow89044
s ¢
IPHalfScan68574 v‘l
—

=
S Generic_Intel_Overflow89032
— =
1PHalfScan68073 _ C__POP_QPopAuth_Overflow89028

—

i

"‘i‘

— >
IPHalfScan68084 S—_—_ AN POP_QPopCommand_Overflow89039
— X

s
|PHalScan68568 !: POP_QPopALth_Overflow89040
"~ POP_QPopCommand_Overflow89027

Fig. 6. A small hyper-alert correlation discovered in initial analysis

graph. Figure 7 shows the fully reduced graph. Compared with the original graph,
which has 2,940 nodes and 25,321 edges, the fully reduced graph has 77 nodes and
347 edges (including transitive edges).

The fully reduced graph in Figure 7 shows 7 stages of attacks. The layout of this
graph was generated by GraphViz [AT & T Research Labs |, which tries to reduce
the number of cross edges and make the graph more balanced. As a result, the
graph does not reflect the actual stages of attacks. Nevertheless, Figure 7 provides
a much clearer outline of the attacks.

The hyper-alerts in stage 1 and about half of those in stage 2 correspond to
scanning attacks or attacks to gain information of the target systems (e.g., ISS,
Port_Scan). The upper part of stage 2 include attacks that may lead to execu-
tion of arbitrary code on a target system (e.g., HTTP_WebSite_Sample). Indeed,
these hyper-alerts directly prepare for some hyper-alerts in stage 5, but GraphViz
arranged them in stage 2, possibly to balance the graph. Stages 3 consists of a
mix of scanning attacks (e.g., Nmap_Scan), attacks that reveal system information
(e.g,, HI'TP_PHP_Read), and attacks that may lead to execution of arbitrary code
(e.g., HTTP_Campas). Stage 4 mainly consists of buffer overflow attacks (e.g.,
POP_QPopCommand_Overflow), detection of backdoor programs (e.g., BackOri-
fice), and attacks that may lead to execution of arbitrary code. The next 3 stages
are much cleaner. Stage 5 consists of attacks that may be used to copy programs
to target hosts, stage 6 consists of detection of two types of DDOS (Distributed
Denial of Service) daemon programs, and finally, stage 7 consists of the detection
of an actual DDOS attack.

Note that the fully reduced graph in Figure 7 is an approximation to the strate-
gies used by the attackers. Hyper-alerts for different, independent sequences of
attacks may be aggregated together in such a graph. For example, if two individ-
ual attackers use the sequence of attacks (e.g., using the same script downloaded
from a website) to attack the same target, the corresponding hyper-alerts may be
correlated and aggregated in the same fully reduced graph. Nevertheless, a fully
reduced graph can clearly outline the attack strategies, and help a user understand
the overall situation of attacks.

As we discussed earlier, the reduction of hyper-alert correlation graphs can be
controlled with interval constraints. Figure 8 shows the numbers of nodes and edges
of the reduced graphs for different interval sizes. The shapes of the two curves in
Figure 8 indicate that most of the hyper-alerts that are of the same type occurred

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts . 27

—

— ’ f
p '// > _SNMP_Backd
— (P
Cimep 5003
G

!

\‘

\

/,‘\ S
'/ .’ Queso_Scan \§‘

(s e A N

Scanner Jif—7
FTP_Privi

D
_Uploader g
/l//. s SMar
/ ~
Y

=,
4‘;\2: |

Mstream
()
L7
Trinoo
Daemon

Generic_Intel
_Overflow |
§ = N
H

HTTP_Netscape [
_PageServices Vy =
> —— 8

<)
HTTP_ColdFusion Y1
_SourceWindow <] (Y

— —> POP_QPoy
] P
HTTP_ColdFusion NJEL 2, “ Auth_Overflow
\ _FileExists | |
! " HTTP_Novell_Files
HTTP_Site
N 'sc_Access
L]

N
Il
AN
\/

"
g
:
A

/]

N

)

HTTP_QuikStore

Fig. 7. The fully reduced graph for the largest aggregated hyper-alert correlation graph.

close to each other in time. Thus, the numbers of nodes and edges have a deep drop
for small interval thresholds and a flat tail for large ones. A reasonable guess is that
some attackers tried the same type of attacks several times before they succeeded
or gave up. Due to space reasons, we do not show these reduced graphs.

5.2.3 Focused Analysis. Focused analysis can help filter out the interesting parts
of a large hyper-alert correlation graph. It is particularly useful when a user knows
the systems being protected or the potential on-going attacks. For example, a user
may perform a focused analysis with focusing constraint DestIP = ServerlP,

ACM Journal Name, Vol. V, No. N, July 2003.

28 . Ning, Cui, and Reeves

25000 B #nodes|]

20000 —l— # edges ———
€ 15000 -
3
© 10000 \

5000
0 h;v-' T — ‘ ‘ g
0 100 200 300 400 500 600
Interval threshold (second)

Fig. 8. Sizes of the reduced graphs w.r.t. the interval threshold for the largest hyper-alert corre-
lation graph

where ServerIP is the IP address of a critical server, to find out attacks targeted
at the server. As another example, he/she may use SrcIP = ServerI PV DestIP =
ServerI P to find out attacks targeted at or originated from the server, suspecting
that the server may have been compromised.

In our experiments, we tried a number of focusing constraints after we learned
some information about the systems involved in the CTF event. Among these focus-
ing constraints are (1) Cyq : (DestI P = 010.020.001.010) and (2) Cye : (SrelP =
010.020.011.251ADestI P = 010.020.001.010). We applied both focusing constraints
to the largest hyper-alert correlation graph. The results consist of 2154 nodes and
19423 edges for Cy1, and 51 nodes and 28 edges for Co. The corresponding fully
reduced graphs are shown in Figures 9 and 10, respectively. (Isolated nodes are
shown in gray.) These two graphs can also be generated by graph decomposition
(Section 5.2.4). To save space, we will reuse these two graphs to illustrate graph
decomposition in the next subsection.

Focused analysis is an attempt to approximate a sequence of attacks that satisfy
the focusing constraint. Its success depends on the closeness of focusing constraints
to the invariants of the sequences of attacks. A cunning attacker would try to avoid
being correlated by launching attacks from different sources (or stepping stones)
and introducing delays between attacks. Thus, this utility should be used with
caution.

5.2.4 Graph Decomposition. We applied three clustering constraints to decom-
pose the largest hyper-alert correlation graph discussed in Section 5.2.1. In all these
clustering constraints, we let A; = Ay = {Srcl P, DestI P}.

(1) Cea(A1, Ag): Ay.DestIP = Ay.DestIP. This is to cluster all hyper-alerts that
share the same destination IP addresses. Since most of attacks are targeted
at the hosts at the destination IP addresses, this is to cluster hyper-alerts in
terms of the victim systems.

(2) Ce2(A1,As): A1.SrcIP = As.SrcIP A Ay.DestIP = As.DestIP. This is
to cluster all the hyper-alerts that share the same source and destination IP
addresses.

(3) Ces(A1, A2): A1.SrclP = Ay .SrcIP V Ay.DestlP = As.DestIP vV A;.SrclP

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts 29

HTTP_WebSite_Sample

HTTP.I E, HTTP_WebFinger
#
HTTP_WebSite_Uploader @

e v
P % B HTTP AnyFormPos
-
’7 HTTP Carbo_Server_ e 8 T TP Campas
/ HTTP_ColdFusion_Sourcewindow _ ;
CyberCop_Scanner =} r
i HTTP. Netscape, PageServices g HTTP_NphTestCgi \

S &
' Kerberos User_Snarf .
<
HTTP_ColdFusion_FileExists
v,‘

T

\

o

‘;g%
W\

|

Fig. 9. A fully reduced hyper-alert correlation graph resulting from focused analysis with Cy; :
(DestIP = 010.020.001.010). This graph also appears in the result of graph decomposition with
Cec1. (Cluster ID = 1; DestIP = 010.020.001.010.)

‘\ HTTP_DotDot
—
l
HTTP_WebSite_Uploader

Kerberos_User_Snarf
'Sun_SNMP_Backdoor

Fig. 10. A fully reduced hyper-alert correlation graph resulting from focused analysis with
Cyo @ (SrcIP = 010.020.011.251 A DestIP = 010.020.001.010). This graph also appears in
the result of graph decomposition with Cea. (Cluster ID = 10; SrcIP = 010.020.011.251; DestIP

= 010.020.001.010.)

ACM Journal Name, Vol. V, No. N, July 2003.

30 . Ning, Cui, and Reeves

Table V. Partial statistics of decomposing the largest hyper-alert correlation graph.

cluster ID 1 2 3 4 5 6 7 8 19
connected nodes | 2154 244 | 105 | 227 83 | 11 | 54 | 28 |0
Cer | # edges 19423 | 1966 | 388 | 2741 | 412 | 30 | 251 | 51 | O
isolated nodes 0 0 0 0 0 0 0 0|1
correlated nodes | 1970 17 0 12 0 0 0 310
Coo | # edges 2240 66 0 10 0 0 0 2 10
isolated nodes 3 0 21 17 35 126 | 15 |12 | 4
connected nodes | 2935 0 - - - - - - | -
Ces | # edges 25293 0 - - - - - - | -
isolated nodes 4 1 - - - - - - | -

= As.DestIP vV Ay.DestIP = As.SrclP. This is to cluster all the hyper-alerts
that are connected via common IP addresses. Note that with this constraint,
hyper-alerts in the same cluster do not necessarily share the same IP address
directly, but they may connect to each other via other hyper-alerts.

Table V shows the statistics of the decomposed graphs. Constraint C.; resulted
in 12 clusters, among which 10 clusters contain edges. Constraint C.s resulted in
185 clusters, among which 37 contain edges. Due to space reasons, we only show
the first 9 clusters for C.; and Cyo in Table V. Constraint C.3 in effect removes one
hyper-alert from the original graph. This hyper-alert is Stream_DoS, which does
not share the same IP address with any other hyper-alerts. This is because the
source IP addresses of Stream_DoS are spoofed and the destination IP is different
from any of the IP addresses involved in the earlier alerts. This result shows that
all the hyper-alerts except for Stream_DoS share a common IP address with some
others.

The isolated nodes in the resulting graphs are the hyper-alerts that prepare for
or are prepared for by those that do not satisfy the same clustering constraints.
Note that having isolated hyper-alerts in a decomposed graph does not imply that
the isolated hyper-alerts are correlated incorrectly. For example, an attacker may
hack into a host with a buffer overflow attack, install a DDOS daemon, and start
the daemon program, which then tries to contact its master program. The corre-
sponding alerts (i.e., the detection of the buffer overflow attack and the daemon’s
message) will certainly not have the same destination IP address, though they are
related.

Figures 9 and 10 show a decomposed graph for C.; and C.q, respectively. Both
graphs are fully reduced to save space. All the hyper-alerts in Figure 9 are des-
tined to 010.020.001.010. Figure 9 shows several possible attack strategies. The
most obvious ones are those that lead to the Mstream_Zoombie and TrinooDaemon.
However, there are multiple paths that lead to these two hyper-alerts. Considering
the fact that multiple attackers participated in the DEFCON 8 CTF event, we can-
not conclude which path caused the installation of these daemon programs. Indeed,
it is possible that none of them is the actual way, since the IDS may have missed
some attacks.

Figure 9 involves 75 source IP addresses, including IP address 216.136.173.152,
which does not belong to the CTF subnet. We believe that these attacks belong

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts : 31

to different sequences of attacks, since there were intensive attacks from multiple
attackers who participated in the CTF event.

Figure 10 is related to Figure 9, since they both are about destination IP ad-
dress 010.020.001.010. Indeed, Figure 10 is a part of Figure 9, though in Figure
9, ISS prepares for HTTP_Campas through HTTP_DotDot. Since all the hyper-
alerts in Figure 10 have the same source and destination IP addresses, it is very
possible that the correlated ones belong to the same sequence of attacks. Note
that HP_OpenView_.SNMP_Backdoor appears as both connected and isolated nodes.
This is because some instances are correlated, while the others are isolated.

5.2.5 Attack Strategies. We analyzed the correlated hyper-alerts using the three
utilities and discovered several strategies used by the attackers. We first restricted
our attention to the hyper-alert correlation graphs that satisfy the clustering con-
straint Cea. One common strategy reflected by these graphs is to use scanning
attacks followed by attacks that may lead to execution of arbitrary code. For
example, the attacker(s) at 010.020.011.099 scanned host 010.020.001.010 with Cy-
berCop_Scanner, IPHalfScan, Nmap_Scan, and Port_Scan and then launched a se-
quence of HTTP-based attacks (e.g., HTTP_DotDot) and FTP based attacks (e.g.,
FTP_Root). The attacker(s) at 010.020.011.093 and 010.020.011.227 also used a
similar sequence of attacks against the host 010.020.001.008.

As another strategy, the attacker(s) at 010.020.011.240 used a concise sequence
of attacks against the host at 010.020.001.013: Nmap_Scan followed by PmapDump
and then ToolTalk_Overflow. Obviously, they used Nmap_Scan to find the portmap
service, then used PmapDump to list the RPC services, and finally launched a
ToolTalk_Overflow attack against the ToolTalk service. Indeed, the sequence of two
alerts, Nmap_Scan followed by PmapDump with the same source and destination
IP address appeared many times in this dataset.

The attacker(s) at 010.020.011.074 used the same sequence of HTTP-based at-
tacks (e.g., HTTP_DotDot and HTTP_TestCgi) against multiple web servers (e.g.,
servers at 010.020.001.014, 010.020.001.015, 010.020.001.019, etc.). Our hyper-alert
correlation graphs shows that HTTP_DotDot prepares for the HT'TP-based attacks
that follow. However, our further analysis of the dataset shows that this may be an
incorrect correlation. Though it is possible that the attacker used HTTP_DotDot
to collect necessary information for the later attacks, the timestamps of these alerts
indicate that the attacker(s) used a script to launch all these attacks. Thus, it is
possible that the attacker(s) simply launched all the attacks, hoping one of them
would succeed. Though these alerts are indeed related, these prepare-for relations
reveal that our method is aggressive in correlating alerts. Indeed, alert correlation
is designed to recover the relationships between the attacks behind alerts; any alert
correlation method may make mistakes when there is not enough information.

There are several other interesting strategies; however, due to space reasons, we
do not list them here.

One interesting observation is that with clustering constraint C.o, there are not
many hyper-alert correlation graphs with more than 3 stages. Considering the
fact that there are many alerts about BackOrifice and NetBus (which are tools to
remotely manage hosts), we suspect that many attackers used multiple machines
during their attacks. Thus, their strategies cannot be reflected by the restricted

ACM Journal Name, Vol. V, No. N, July 2003.

32 . Ning, Cui, and Reeves

hyper-alert correlation graphs.

When we relax the restriction to allow hyper-alert correlation graphs for alerts
with different source IP addresses, but still with the same destination IP addresses
(i.e., with clustering constraint C.;), we have graphs with more stages. Figure 9 is
one such fully reduced hyper-alert correlation graph. However, due to the amount
of alerts and source IP addresses involved in this graph, it is difficult to conclude
which hyper-alerts belong to the same sequences of attacks.

In summary, during the analysis of the DEFCON 8 CTF dataset, the utilities
have greatly simplified the analysis process. We have discovered several attack
strategies that were possibly used during the attacks. However, there are a number
of situations where we could not separate multiple sequences of attacks. This implies
that additional work is necessary to address this problem.

6. DISCUSSION

Our method has several advantages. First, our approach provides a high-level
representation of correlated alerts that reveals the causal relationships between
them. As we have seen in Section 5, the hyper-alert correlation graphs generated
by our implementation clearly show the strategies behind these attacks. Second,
our approach can potentially reduce the impact caused by false alerts by providing
a way to differentiate alerts. While true alerts are more likely to be correlated with
other alerts, false alerts, which do not correspond to any actual attacks, tend to be
more random than the true alerts, and are less likely to be correlated to others.

Our method does not depend on predefined attack scenarios to discover sequences
of related attacks. This is a common feature that our method shares with JIGSAW
[Templeton and Levitt 2000] and the MIRADOR, approach [Cuppens and Miege
2002]. However, unlike JIGSAW, our method can correlate alerts even if some
alerts correspond to failed attack attempts or the IDSs fail to detect some related
attacks. Compared with the MIRADOR approach, our method allows flexible ag-
gregation of the same type of alerts, while the MIRADOR approach treats alert
aggregation as a pre-correlation process. This difference enables us to develop the
three interactive analysis utilities presented in Section 4. In addition, our method
provides an intuitive representation (i.e., hyper-alert correlation graph) of corre-
lated alerts, which reveals the high-level strategy behind the attacks.

Our decision certainly has its pros and cons. On the positive side, our method
is simple and yet able to correlate related alerts even when the IDSs miss certain
attacks. However, on the negative side, our method may correlate alerts incorrectly
when one attack seemingly prepares for another. In other words, our method
has both a higher true correlation rate and a higher false correlation rate than
JIGSAW. Nevertheless, Section 5 shows experimentally that our method has a low
false correlation rate at least with the 2000 DARPA datasets.

Our approach has several limitations. First, our method depends on the under-
lying IDSs to provide alerts. Though our reasoning process can compensate for
undetected attacks, the attacks missed by the IDSs certainly have a negative effect
on the results. If the IDS misses a critical attack that links two stages of a series of
attacks, the related hyper-alerts may be split into two separate hyper-alert correla-
tion graphs. In the extreme case where the underlying IDSs missed all the attacks,

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts : 33

our approach cannot do anything.

Second, our approach is not fully effective for alerts between which there is no
prepare-for relationship, even if they may be related. For example, an attacker
may launch concurrent Smurf and SYN flooding attacks against the same target;
however, our approach will not correlate the corresponding alerts, though there are
connections between them (i.e., same time and same target). Therefore, our method
should be used along with other, complementary techniques (e.g., the probabilistic
alert correlation [Valdes and Skinner 2001}).

Third, our method may falsely correlate alerts belonging to different attack se-
quences if they are launched close to each other in time. Take Figure 9 as an
example, which shows a fully reduced hyper-alert correlation graph involving the
destination IP address 010.020.001.010. Because of the nature of the DEFCON CTF
contest, it is very likely that multiple hacker teams were attacking 010.020.001.010
during the same period of time. They were not necessarily cooperating with each
other; however, because of the possible connections between these alerts, our method
may correlate them into the same attack scenario. Nevertheless, it’s not clear
whether any method can correlate coordinated attacks without making the same
mistake. We will investigate techniques that can cope with this problem in our
future work.

Finally, it is worth mentioning that the results produced by our correlation tech-
niques are only as good as the hyper-alert information provided by the user, and
the interactive analysis utilities require expert users who have certain skills and
insights in the attacks and the system configuration.

7. CONCLUSIONS AND FUTURE WORK

This paper presented a practical method for constructing attack scenarios through
alert correlation, using prerequisites and consequences of attacks. The approach
was based on the observation that in a series of attacks, the attacks were usually
not isolated, but related as different stages, with the earlier stages preparing for the
later ones. This paper proposed a formal framework to represent alerts along with
their prerequisites and consequences, and developed a method to correlate related
hyper-alerts together, including an intuitive representation of correlated alerts that
reveals the attack scenario of the corresponding attacks. An off-line intrusion alert
correlator was developed on the basis of the formal framework. To facilitate the
analysis of large sets of correlated alerts, we also developed another three interac-
tive utilities, adjustable graph reduction, focused analysis, and graph decomposition.
We studied the effectiveness of our techniques through experiments with the 2000
DARPA intrusion detection scenario specific datasets [MIT Lincoln Lab 2000] and
the DEFCON 8 CTF dataset [DEFCON 2000]. Our experimental results showed
that our correlation method not only correlated related alerts and uncovered the at-
tack strategies, but also provided a way to differentiate between alerts, and that the
interactive analysis utilities could effectively simplify the analysis of large amounts
of alerts. Our analysis also revealed several attack strategies that appeared in the
DEFCON 8 CTF event.

Several issues are worth future research. First, we plan to develop better ways
to specify hyper-alert types, especially how to represent predicates to be included

ACM Journal Name, Vol. V, No. N, July 2003.

34 . Ning, Cui, and Reeves

in their prerequisite and consequence sets to get the best performance for alert
correlation. Second, we will study possible way to integrate our method with com-
plementary correlation methods (e.g., [Valdes and Skinner 2001]) for better perfor-
mance. In particular, we are interested in methods that can better tolerate false
alerts and missing detections typically seen in current IDSs. Third, we will extend
our method to seek the possibility to identify attacks possibly missed by the IDSs
and predict attacks in progress. In general, we would like to develop a suite of
comprehensive techniques that facilitate the analysis and management of intensive
intrusion alerts.

REFERENCES

ANDERSON, J. P. 1980. Computer security threat monitoring and surveillance. Tech. rep., James
P. Anderson Co., Fort Washington, PA.

AT & T RESEARCH LABS. Graphviz - open source graph layout and drawing software. http:
//www.research.att.com/sw/tools/graphviz/.

BACE, R. 2000. Intrusion Detection. Macmillan Technology Publishing.

Cul, Y. 2002. A toolkit for intrusion alerts correlation based on prerequisites and consequences
of attacks. M.S. thesis, North Carolina State University. Available at http://www.lib.ncsu.
edu/theses/available/etd-12052002-193803/.

CupPPENS, F. 2001. Managing alerts in a multi-intrusion detection environment. In Proceedings
of the 17th Annual Computer Security Applications Conference.

CupPPENS, F. AND MIEGE, A. 2002. Alert correlation in a cooperative intrusion detection frame-
work. In Proceedings of the 2002 IEEE Symposium on Security and Privacy.

CuppPENS, F. AND ORTALO, R. 2000. LAMBDA: A language to model a database for detection of
attacks. In Proc. of Recent Advances in Intrusion Detection (RAID 2000). 197-216.

DAIN, O. AND CUNNINGHAM, R. 2001. Fusing a heterogeneous alert stream into scenarios. In
Proceedings of the 2001 ACM Workshop on Data Mining for Security Applications. 1-13.

DEBAR, H. AND WESPI, A. 2001. Aggregation and correlation of intrusion-detection alerts. In
Recent Advances in Intrusion Detection. LNCS 2212. 85 — 103.

DEFCON. 2000. Def con capture the flag (CTF) contest. http://www.defcon.org/html/defcon-
8-post.html. Archive accessible at http://wi2600.org/mediawhore/mirrors/shmoo/.

EckMANN, S., VIGNA, G., AND KEMMERER, R. 2002. STATL: An Attack Language for State-based
Intrusion Detection. Journal of Computer Security 10, 1/2, 71-104.

GARDNER, R. AND HARLE, D. 1998. Pattern discovery and specification translation for alarm
correlation. In Proceedings of Network Operations and Management Symposium (NOMS’98).
713-722.

GRUSCHKE, B. 1998. Integrated event management: Event correlation using dependency graphs. In
Proceedings of the 9th IFIP/IEEE International Workshop on Distributed Systems: Operations
& Management.

ILcun, K., KEMMERER, R. A., AND PORRAS, P. A. 1995. State transition analysis: A rule-based
intrusion detection approach. IEEE Transaction on Software Engineering 21, 3, 181-199.

INTERNET SECURITY SYSTEMS. RealSecure intrusion detection system. http://www.iss.net.

JaviTs, H. AND VALDES, A. 1993. The NIDES statistical component: Description and justification.
Tech. rep., SRI International, Computer Science Laboratory.

JHA, S., SHEYNER, O., AND WING, J. 2002. Two formal analyses of attack graphs. In Proceedings
of the 15th Computer Security Foundation Workshop.

JuLisch, K. 2001. Mining alarm clusters to improve alarm handling efficiency. In Proceedings of
the 17th Annual Computer Security Applications Conference (ACSAC). 12-21.

KUMAR, S. 1995. Classification and detection of computer intrusions. Ph.D. thesis, Purdue
University.

KUMAR, S. AND SPAFFORD, E. H. 1994. A pattern matching model for misuse intrusion detection.
In Proceedings of the 17th National Computer Security Conference. 11-21.

ACM Journal Name, Vol. V, No. N, July 2003.

Constructing Attack Scenarios through Correlation of Intrusion Alerts : 35

LiN, J., WANG, X. S., AND JAJODIA, S. 1998. Abstraction-based misuse detection: High-level spec-
ifications and adaptable strategies. In Proceedings of the 11th Computer Security Foundations
Workshop. Rockport, MA, 190-201.

MANGANARIS, S., CHRISTENSEN, M., ZERKLE, D., AND HERMIZ, K. 2000. A data mining analysis
of RTID alarms. Computer Networks 34, 571-577.

MIT LiNncOLN LAB. 2000. 2000 DARPA intrusion detection scenario specific datasets. http:
//www.1l.mit.edu/IST/ideval/data/2000/2000_data_index.html.

MoriN, B., Mé, L., DEBAR, H., AND Ducassé, M. 2002. M2D2: A formal data model for IDS
alert correlation. In Proceedings of the 5th International Symposium on Recent Advances in
Intrusion Detection (RAID 2002). 115-137.

MUKHERJEE, B., HEBERLEIN, L. T., AND LEvITT, K. N. 1994. Network intrusion detection. IEEE
Network 8, 3 (May), 26-41.

NiING, P. AND Cul, Y. 2002. An intrusion alert correlator based on prerequisites of intrusions.
Tech. Rep. TR-2002-01, North Carolina State University, Department of Computer Science.
January.

NiNgG, P., Cul, Y., AND REEVES, D. S. 2002a. Analyzing intensive intrusion alerts via correlation.
In Proceedings of the 5th International Symposium on Recent Advances in Intrusion Detection
(RAID 2002). Zurich, Switzerland, 74-94.

Ning, P., Cul, Y., AND REEVES, D. S. 2002b. Constructing attack scenarios through correlation of
intrusion alerts. In Proceedings of the 9th ACM Conference on Computer and Communications
Security. Washington, D.C., 245-254.

NiING, P., Jajopia, S., AND WANG, X. S. 2001. Abstraction-based intrusion detection in dis-
tributed environments. ACM Transactions on Information and System Security 4, 4 (Novem-
ber), 407-452.

PoORRAs, P., FONG, M., AND VALDES, A. 2002. A mission-impact-based approach to INFOSEC
alarm correlation. In Proceedings of the 5th International Symposium on Recent Advances in
Intrusion Detection (RAID 2002). 95-114.

Riccruinr, L. AND SHACHAM, N. 1997. Modeling correlated alarms in network management sys-
tems. In In Western Simulation Multiconference.

RITCHEY, R. AND AMMANN, P. 2000. Using model checking to analyze network vulnerabilities.
In Proceedings of IEEE Symposium on Security and Privacy. 156—165.

SHEYNER, O., HAINES, J., JHA, S., LIPPMANN, R., AND WING, J. 2002. Automated generation
and analysis of attack graphs. In Proceedings of IEEE Symposium on Security and Privacy.
STANIFORD, S., HOAGLAND, J., AND MCALERNEY, J. 2002. Practical automated detection of

stealthy portscans. Journal of Computer Security 10, 1/2, 105-136.

STANIFORD-CHEN, S., CHEUNG, S., CRAWFORD, R., DILGER, M., FRANK, J., HOAGLAND, J.,
LevitT, K., WEE, C., YIP, R., AND ZERKLE, D. 1996. GrIDS - a graph based intrusion detection
system for large networks. In Proceedings of the 19th National Information Systems Security
Conference. Vol. 1. 361-370.

TEMPLETON, S. AND LEVITT, K. 2000. A requires/provides model for computer attacks. In
Proceedings of New Security Paradigms Workshop. ACM Press, 31 — 38.

VALDES, A. AND SKINNER, K. 2001. Probabilistic alert correlation. In Proceedings of the 4th
International Symposium on Recent Advances in Intrusion Detection (RAID 2001). 54—68.
VIGNA, G. AND KEMMERER, R. A. 1999. NetSTAT: A network-based intrusion detection system.

Journal of Computer Security 7, 1, 37-71.

ACM Journal Name, Vol. V, No. N, July 2003.

