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Abstract6

Statistical inference and machine learning methods are benchmarked on test7

data independent of the data used to train the method. Biological sequence families8

are highly non-independent because they are related by evolution, so the strategy9

for splitting data into separate training and test sets is a nontrivial choice in bench-10

marking sequence analysis methods. A random split is insufficient because it will11

yield test sequences that are closely related or even identical to training sequences.12

Adapting ideas from independent set graph algorithms, we describe two new meth-13

ods for splitting sequence data into dissimilar training and test sets. These algo-14

rithms input a sequence family and produce a split in which each test sequence15

is less than p% identical to any individual training sequence. These algorithms16

successfully split more families than a previous approach, enabling construction17

of more diverse benchmark datasets.18
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Introduction19

Computational methods are typically benchmarked on test data that are independent20

of the data that were used to train the method [1, 2, 3, 4]. In many areas of machine21

learning and statistical inference, data samples are at least approximately independent,22

and in this case a standard approach is to randomly split available data into a train-23

ing and a test set. In computational biology, families of biological sequences are not24

independent because they are related by evolution. Random splitting typically results25

in test sequences that are closely related or even identical to training sequences. For26

benchmarks of sequence homology recognition methods, for example, random splitting27

leads to artifactual overestimation of performance even for classical sequence align-28

ment methods. The problem becomes more concerning for complex models capable29

of memorizing their training inputs [5]. This issue motivates strategies that consider30

sequence similarity and split data into dissimilar training and test sets [1, 2, 3, 4].31

Previous work from our group splits a given sequence family into training and32

test sets using a single-linkage clustering by pairwise sequence identity at a chosen33

threshold p, such as p = 25% for protein or p = 60% for RNA [6, 7]. One cluster34

(usually the largest one) becomes the training set, and the remaining clusters are the35

source of test sequences. We refer to this procedure as the Cluster algorithm in this36

paper. The procedure guarantees that no sequence in the test set has more then p%37

pairwise identity to any sequence in the training set. This is a clear and simple rule for38

ensuring that training and test sets are remotely homologous, and we can control p to39

vary the difficulty of the benchmark.40

We have found that in many cases, the Cluster algorithm is unable to split a family41

because single-linkage clustering collapses it into a single cluster, but a valid split could42

have been identified if we removed certain sequences before clustering. For example,43

if a family contains two groups that would form separate single-linkage clusters at 25%44

identity and even just one bridging sequence that is >25% identical to a sequence in45
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each group, then single-linkage clustering collapses all the sequences into one cluster.46

If we omit the bridge sequence, the two groups form separate clusters after single-47

linkage clustering. The larger the family, the more likely it is to contain sequences48

that bridge together otherwise dissimilar clusters, so the procedure fails more often on49

deeper alignments. This is a concern because we and others are exploring increasingly50

complex and parameter-rich models for remote sequence homology recognition that51

can require thousands of sequences for training [8, 9, 10, 11, 12, 13]. In order to pro-52

duce training/test set splits for benchmarks that cover a more diverse range of sequence53

families represented by deep sequence alignments, we were interested in improving on54

Cluster.55

Here we describe two improved splitting algorithms called Blue and Cobalt that56

are derived from “independent set” algorithms in graph theory. A main intuition is57

that Blue and Cobalt can exclude some sequences as they identify dissimilar clusters.58

Blue splits more families, but can be computationally prohibitive on deep alignments.59

Cobalt (a shade of Blue) is much more computationally efficient and is still a large60

improvement over Cluster. We compare these algorithms to Cluster and to a simple al-61

gorithm that selects a training set independently at random, which we call Independent62

Selection. We compare splitting success and computational time on a large set of dif-63

ferent MSAs with 10’s to 100,000’s of sequences. In addition, we compare homology64

search benchmarks built with these different splitting algorithms.65

Results66

Given set of sequences (here, a multiple sequence alignment), the goal is to split it into67

a training set and a test set, such that no test sequence has > p% pairwise identity to any68

training sequence and no pair of test sequences is > q% identical. The first criterion69

defines dissimilar training and test sets, and the second criterion reduces redundancy in70

the test set.71
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We cast the splitting problem in terms of graph theory with each sequence rep-72

resented by a vertex and a non-independent relationship indicated by an edge. For73

example, a pairwise identity of ≥ p% between two sequences defines an edge for the74

first criterion.75

Each splitting method is a two step procedure, for which we use related algorithms.76

In the first step, we identify disjoint subsets S and T of our original set of sequences,77

such that for any x ∈ S and y ∈ T there is no edge (pairwise identity > p%) between x78

and y. We assign S as the training set and T as the candidate test set. The second step79

then starts with a graph on T , using pairwise identity threshold q to define edges. We80

identify a representative subset U such that no pair of vertices y, y′ ∈ U is connected81

by an edge and assign U to be the test set. The graph problems in steps (i) and (ii) are82

related. It is useful to discuss the simpler algorithm for step (ii) before describing its83

adaptation to task (i).84

Task (ii) is exactly the well-studied graph algorithm problem of finding an indepen-85

dent set in a graph. Formally, in a graph G = (V,E) with vertex set V and edge set E,86

a subset of vertices U ⊆ V is an independent set (IS) if for all u,w ∈ U , (u,w) 6∈ E.87

To frame task (i), we define a bipartite independent pair (BIP) as a pair of disjoint sets88

U1, U2 such that there are no edges between pairs of vertices in U1 and U2, i.e. for all89

u1 ∈ U1 and u2 ∈ U2, (u1, u2) 6∈ E. The algorithms we describe here follow this90

two-step approach, but differ in how they achieve each step.91

Splitting algorithms92

In our descriptions below, vertex w is a neighbor of vertex v if (v, w) is an edge in the93

graph. The degree of a vertex v, denoted d(v), is the number of neighbors of v. The94

neighborhood of v in the graph G = (V,E) is N(v) = {w ∈ V : (w, v) ∈ E}.95

Cobalt. The Cobalt algorithm is an adaptation of the greedy sequential maximal in-96

dependent set algorithm, studied in [14]. The graph’s vertices are ordered arbitrarily,97
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and each vertex is added to the independent set if none of its neighbors have already98

been added. Step 2 of Cobalt is this algorithm with the vertex order given by a ran-99

dom permutation. Assigning a vertex to an IS disqualifies all of its neighbors from the100

IS, and so it may be advantageous to avoid placing large degree vertices in the IS. In101

Cobalt, higher degree vertices are less likely to be added to the IS; a vertex v is placed102

in the IS if all of its neighbors come after it in the random order, which happens with103

probability 1/d(v).104

Algorithm 1: Greedy sequential IS in graph G = (V,E) (Cobalt Step 2)
Result: An independent set U in G = (V,E)

U = ∅

Place the vertices of V in a random order: v1, v2, . . . vn.

for i=1 to n do

if vi is not adjacent to any vertex in U then U = U ∪ {vi};

end

return U

105

Step 1 is a variant which instead finds a bipartite independent pair. Once a BIP is106

found in Step 1, the larger set is declared the training set, and the smaller set is input107

into the greedy sequential IS algorithm as the vertex set of G2 (Cobalt Step 2).108
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Algorithm 2: Greedy sequential BIP in graph G = (V,E) (Cobalt Step 1)
Result: A bipartite independent pair S, T in G = (V,E)

S, T = ∅

Place the vertices of V in a random order: v1, v2, . . . vn.

for i=1 to n do
Sample r ∼ unif(0, 1).

if r < 1/2 then

if vi is not adjacent to any vertex in S then S = S ∪ {vi} ;

else if vi is not adjacent to any vertex in T then T = T ∪ {vi};

else

if vi is not adjacent to any vertex in T then T = T ∪ {vi} ;

else if vi is not adjacent to any vertex in S then S = S ∪ {vi};

end

end

if |S| < |T | then swap the names of S and T ;

return S, T

109

Blue. The Blue algorithm leverages the fact that the number of vertices disqualified110

by the addition of a vertex v to an IS is not exactly its degree; it is the number of111

neighbors of v that are still eligible. Blue is based on the IS Random Priority Algorithm112

introduced by [15]. In each round of this algorithm, the probability of selecting a vertex113

is inversely proportional to the number of neighbors that are eligible at the beginning114

of the round.115

Each eligible vertex is labeled with a value drawn uniformly at random from the116

interval [0, 1]. If a vertex has a lower label than all of its neighbors, the vertex is added117

to the independent set and its neighbors are declared ineligible. This process repeats118

until there are no eligible vertices. The pseudocode presented here describes the multi-119

round election process in the most intuitive way. Our implementation avoids storing the120
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entire graph structure G and instead only computes the non-independence relationship121

when algorithm needs to know whether an edge exists.122

Algorithm 3: Random Priority IS in graph G = (V,E) (Blue Step 2)
Result: An independent set U in G = (V,E)

U = ∅;L = V

while L 6= ∅ do
Declare ` an empty dictionary.

for each v ∈ L do `(v) ∼ unif(0, 1);

Place the vertices of L in a random order: v1, v2, . . . vk

for i=1 to k do

if vi ∈ L and `(vi) < `(w) for all w ∈ L ∩N(vi) then
U = U ∪ {vi}

L = L \ (N(vi) ∪ {vi})

end

end

end

return U

123

In our modification of this algorithm to find a BIP, we keep track of each vertex’s124

eligibility for each of the sets S and T . In each round, every vertex that is eligible125

for at least one set is declared either an S-candidate or T -candidate and assigned a126

value uniformly at random from the interval [0, 1]. Each S-candidate is added to S if127

its label is smaller than the labels of all its neighbors that are both T -candidates and128

T -eligible. When a vertex v is added to S, v is declared ineligible for both S and129

T , and all neighbors of v are declared ineligible for T . After iterating through all S-130

candidates, any T -candidates that are still T -eligible are added to T . Once a BIP is131

found, the larger set is declared the training set, and the smaller set is input into the132

greedy sequential IS algorithm as the vertex set of G2 (Blue Step 2).133
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Algorithm 4: Random Priority BIS in graph G = (V,E) (Blue Step 1)
Result: A bipartite independent pair S, T in G = (V,E)

S, T = ∅;LS , LT = V

while LS ∪ LT 6= ∅ do
CS , CT = ∅

for each v ∈ LS ∪ LT do

if v ∈ LS \ LT then CS = CS ∪ {v} ;

if v ∈ LT \ LS then CT = CT ∪ {v} ;

if v ∈ LT ∩ LS then
Sample r ∼ unif(0, 1).

if r < 1/2 then CS = CS ∪ {v} ;

else CT = CT ∪ {v} ;

end

end

Declare ` an empty dictionary.

for each v ∈ CS ∪ CT do `(v) ∼ unif(0, 1);

Place the vertices of CS in a random order: v1, v2, . . . vk

for i=1 to k do

if `(vi) < `(w) for all w ∈ LT ∩ CT ∩N(vi) then
S = S ∪ {vi}, LT = LT \ (N(vi) ∪ {vi}) and LS = LS \ {vi}

end

end

T = T ∪ (CT ∩ LT )

for v ∈ (CT ∩ LT ) do LT = LT \ {v} and LS \ (N(v) ∪ {v}) ;

end

if |S| < |T | then swap the names of S and T ;

return S, T

134
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Repetitions of Blue and Cobalt. The use of randomness is a strength of Cobalt and135

Blue. Unlike Cluster, which produces the same training set and same test set size136

every time the algorithm is run, the sets produced by Blue and Cobalt may be highly137

influenced by which vertices are selected first. Running the algorithms many times138

typically yields different results. We implemented two features to take advantage of139

this: (i) the “run-until-n” option in which the algorithm runs at most n times and returns140

the first split that satisfies a user defined threshold, and (ii) the “best-of-n” option in141

which the algorithm runs n times and returns the split that maximizes the product of142

the training and test set sizes (i.e. the geometric mean).143

Cluster. In the first step, the graph G1 is partitioned into connected components, such144

that there is no edge between any pair of connected components. The vertices of the145

largest connected component are returned as the training set S. The remaining vertices146

become the set T , and the training set U is formed by selecting one vertex at random147

from each connected component of the graph G2 with vertex set T .148

Independent selection. In the first step, every vertex of G1 is added to set S inde-149

pendently with probability p = 0.70. All vertices that are not in S and not adjacent to150

any vertex in S are added to T . In the second step, the Greedy sequential IS algorithm151

(Cobalt Step 2) is applied to G2 (which has vertex set T ) to produce a training set U .152

Performance comparisons153

We compared the success rates for splitting biological sequence families of different154

sizes by running our algorithms on multiple sequence alignments from the protein155

database Pfam [16]. To study a wide range of different numbers of sequences per fam-156

ily, we split both the smaller curated Pfam “seed” alignments and the larger automated157

“full” alignments.158

Figure 1 illustrates the pass rates of the algorithms when p = 25% and q =159

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.462285doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462285
http://creativecommons.org/licenses/by/4.0/


50%. Of the 12340 Pfam seed families with at least 12 sequences, Blue splits 34.4%,160

Cobalt splits 29.0%, Cluster splits 19.1%, and Independent Selection splits 6.8% into a161

training-test set pair with at least 10 training and 2 test sequences. After running Blue162

and Cobalt 40 times each, 59.8% and 55.9% of the families (respectively) are success-163

fully split. For the Pfam full families, we require that the training and test sets have164

size at least 400 and 20 respectively. Of the 9827 Pfam full families with at least 420165

sequences, Blue splits 30.5%, Cobalt 28.4%, Cluster 14.0%, and Independent Selec-166

tion 3.0%. The algorithms were considered unsuccessful on the 188, 2, and 1 families167

that Blue, Cluster, and Cobalt did not finish in under 24 hours. The success rates of168

Blue and Cobalt increase to 53.6% and 50.1% after 40 iterations.169

1 105 20 40

1 105 20 40

1

11

1

1 105 20 40

1 105 20 40

Indep.
Selection

Indep.
Selection

(A) Performance on seed families at 10/2 threshold

ClusterCluster

Cobalt Cobalt

Blue Blue

(B) Performance on full families at 400/20 threshold

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 1: Performance of splitting algorithms on Pfam families. (A) Fraction of
the 12340 Pfam seed families with at least 12 sequences that were split into a training
set of size at least 10 and test set of size at least 2. The numbers on the Blue and
Cobalt bars indicate the fraction of families successfully split at least once out of 1, 5,
10, 20, 40 independent runs. (B) Fraction of the 9827 Pfam families with at least 420
sequences in their full alignment that were split into a training set of size at least 400
and test set of size at least 20.

Figure 2 illustrates the characteristics of the full families that are successfully split170

by the algorithms at the 400/20 threshold. Figure S1 is the analogous plot for the seed171

families at the 10/2 threshold. The algorithms struggle to split smaller families and172

families in which a high fraction of the sequence pairs are at least 25 percent identical.173

Figures S2 and S3 illustrate the sizes of the training and test sets produced by the four174
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(F) Independent Selection

Figure 2: Characteristics of Pfam full families successfully split. Each marker repre-
sents a family in Pfam. The connectivity of a sequence is the fraction of other sequences
in the full family with at least 25% pairwise identity. Families successfully split into a
training set of size at least 400 and a test set of size at least 20 are marked by a cyan
circle, whereas families that were not split are marked by a red diamond. In (B) and
(D) the cyan circle represents at least one successful split among 40 independent runs.
The 34 families that Blue did not finish splitting within 6 days are not included in the
Blue plots.
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Algorithm All seed All full Max full Full families
(min:sec) (days-hours:min) (hours:min) >1 min

Blue 3:16 — — 1422 (7.9%)
Cobalt 0:43 7-0:24 46:25 419 (2.3%)
Cluster 0:58 5-0:31 37:17 244 (1.3%)

Indep. Selection 0:19 0-5:49 1:30 48 (0.2%)

Table 1: Runtime of implementations on Pfam seed and full. The runtime bench-
marks were obtained by running each algorithm on the seed and full multi-MSAs Pfam-
A.seed and Pfam-A.full on 2 cores with 8 GB RAM for the seed alignments and on 3
cores with 12 GB RAM for the full alignments. We did not compute the maximum
runtime of the Blue algorithm; the algorithm failed to terminate within 6 days for 34
families.

algorithms.175

We also compare the running times of our implementations of each algorithm. Ta-176

ble 1 displays the runtime of the algorithms on the multi-MSAs for the Pfam seed and177

full databases. All algorithms can split the entire Pfam seed database in under four178

minutes. Most Pfam full families can be split in under one minute. Figure 3 illustrates179

the runtimes as a function of the product of the number of sequences and the columns in180

the alignment. Our implementations take as input a set of N sequences and only com-181

pute the distance between a pair of sequences if the algorithm needs to know whether182

there is an edge between the corresponding vertices. In the worst case (a family with183

no edges), our algorithm must compute O(N2) distances. Computing percent identity184

is O(L) where L is the length of the sequence. Therefore when distance is percent185

identity, the worst case runtime is O(LN2).186

Benchmarking homology search methods with various splitting al-187

gorithms188

All four algorithms produce splits that satisfy the same dissimilarity criteria (p = 25%189

and q = 50%), but we noticed that the different procedures create training-test set pairs190

that are more or less challenging benchmarks. To study this, we used the four algo-191

rithms in a previously published benchmark procedure described in [7]. Briefly, neg-192

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.462285doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462285
http://creativecommons.org/licenses/by/4.0/


[102, 103) [103, 104) [104, 105) [105, 106) [106, 107) [107, 108) [108, 109)

10-1

101

103

105

Sequences * columns in alignment

Ti
m

e 
(s

ec
on

ds
)

Blue

Cobalt
ClusterIndep.

Selection

Figure 3: Runtime of algorithms. Each algorithm was run once on each Pfam seed
and full alignment for at most 6 days. The runtimes are reported as a function of the
product of the number of sequences and the number of columns in the alignment. The
results for families with at most 10,000 sequences were obtained on 2 cores and 8 GB
of RAM, and the remaining were obtained on 3 cores and 12GB of RAM. The results
do not include 34 families that Blue did not finish running within 6 days. Blue finished
939 of 944 families in the [106, 107) range, 58 of 85 families in the [107, 108) range,
and 1 of 3 families in the [108, 109) range (and we omitted a bar plot for Blue for
[108, 109)).

ative decoy sequences are synthetic sequences generated from shuffled subsequences193

randomly selected from UniProt, and positive sequences are constructed by embedding194

a single test domain sequence into a synthetic sequence.195

We applied each algorithm to the Pfam seed families with the requirement that there196

be at least 10 training and 2 test sequences. To avoid over-representing families that197

yielded large test sets, all test sets were down-sampled to contain at most 10 sequences.198

First we used these splits to benchmark profile searches with the HMMER hmmsearch199

program [17]. As illustrated by Figure 4, ROC curves vary substantially based on the200

splitting algorithm used. The accuracy is highest for Independent Selection, followed201

by Cobalt, Blue, and then Cluster.202

We consider two hypotheses for why HMMER performance depends on the split-203

ting method: (i) the families that are successfully split by a particular algorithm are also204

inherently easier or harder for homology recognition, and (ii) the splitting algorithms205
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Figure 4: Benchmarks of HMMSEARCH. (A) Each benchmark includes data from
all families that were split into training and test sets of size at least 10 and 2 respec-
tively by one run of the algorithm. The number of families included in the benchmark
for each algorithm is stated in the labels. For each family, HMMER produces a single
profile from the alignment of the training sequences. We constructed 200,000 decoy
sequences from shuffled subsequences chosen randomly from UniProt. At most 10
positive test sequences are constructed by embedding a single homologous domain se-
quence from the test set into synthetic decoy sequence. (See Methods.) The x-axis
represents the number of false positives per profile search and the y-axis represents
the fraction of true positives detected with the corresponding E-value, over all profile
searches. The error bars at each point represent a 95 percent confidence interval ob-
tained by a Bayesian bootstrap. (B) The faded lines are copies of the plot (A). The dark
lines are the analogous curves constructed by restricting to the benchmarks to the 708
families successfully split by all four algorithms. (C) The distribution of the distances
between each test sequence and the closest training sequence (measured in PID) for
families split by Blue, Cobalt, and Cluster.14
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create training and test sets with inherently different levels of difficulty.206

To explore the first hypothesis, we compiled ROC curves for the 708 families split207

by all four algorithms. Figure 4B shows that the ROC curves for Blue and Cobalt are208

brought closer the ROC curve for Independent Selection, and so hypothesis (i) may209

explain some of the discrepancy between the Blue, Cobalt, and Independent Selection210

benchmarks. However, hypothesis (i) does not explain the discrepancy with the Cluster211

benchmark because the Blue and Cobalt ROC curves are even farther from the Cluster212

ROC curve under the family restriction.213

The second hypothesis is likely a better explanation. A sequence that is less than214

25% identical to all other sequences in the family is probably the hardest sequence215

for a homology search program to recognize. If such a sequence exists, the Cluster216

algorithm will always assign it to the test set, whereas Blue, Cobalt, and Independent217

selection will assign it to the test set 50, 50, and 30 percent of the time respectively.218

Figure 4C illustrates distribution of distances (in PID) between each sequence in the219

test set and the closest sequence in the training set. The test sequences are on average220

farther from the closest training sequence under the Cluster algorithm.221

Since the different algorithms lead to different performance results with one homol-222

ogy search program, we then wanted to see if the choice of splitting algorithm alters223

the relative performance in a comparison of different homology search algorithms. Fig-224

ure 5 demonstrates that the relative ranking of the performance of various homology225

search algorithms is approximately the same regardless of which splitting algorithm226

was used to produce the split of the data into training and test sets. In addition to227

HMMER, we benchmarked BLASTP, PSI-BLAST, and DIAMOND. PSI-BLAST per-228

forms a BLAST search with a position-specific scoring matrix determined in our case229

from the set of training sequences [18]. DIAMOND is a variant BLASTP that utilizes230

double indexing, a reduced alphabet, and spaced seeds to produce a faster algorithm231

[19]. DIAMOND is benchmarked using “family pairwise search,” in which the best232

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.462285doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462285
http://creativecommons.org/licenses/by/4.0/


E-value between the target sequence (positive test or negative decoy) and all sequences233

in the training set is reported [20]. DIAMOND is designed for speed, not sensitivity,234

and its low sensitivity is apparent. Running DIAMOND with the “sensitive” flag (de-235

noted diamond-sen in Figure 5) improves accuracy, but it remains less accurate than236

PSI-BLAST, BLASTP, and HMMER. The choice of splitting algorithm does not alter237

the relative order of performance of the four search algorithms.238
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DIAMOND-SEN

DIAMOND
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Figure 5: Homology search benchmarks on data produced by splitting algorithms.
The benchmarks are constructed as in Figure 4. Blue 40 and Cobalt 40 refer to the algo-
rithms run with the “best-of-40” feature. BLASTP and DIAMOND are benchmarked
using family pairwise search.

Discussion239

We present two new algorithms, Blue and Cobalt, that are able to split more Pfam pro-240

tein sequence families into training and test sets so that no training-test sequence pair is241
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more than p = 25 percent identical and no test-test sequence pair is more than q = 50242

percent identical. Our algorithms are able to split approximately three times as many243

Pfam families as compared to the Cluster algorithm we have used in previous work244

[6, 7, 10], and more than six times as many families as compared to a simple Indepen-245

dent Selection algorithm (see Figure 1). Our algorithms allow us to create larger and246

more diverse benchmarks across more Pfam families, and also to produce deep train-247

ing sets with thousands of sequences for benchmarks of new parameter-rich machine248

learning models. The Blue algorithm maximizes the number of families included; the249

faster Cobalt algorithm is recommended for splitting large sequence families.250

Blue and Cobalt are random algorithms that typically create different splits each251

time they are run. Although this is useful, different splits are unlikely to be inde-252

pendent. The variation between splits will depend on the structure of the graph for253

the sequence family. Different splits are not suited for a procedure like k-fold cross-254

validation in machine learning, for example.255

We were initially surprised to find that for the same sequence identity thresholds,256

the four splitting algorithms result in benchmarks of varying challenge level for homol-257

ogy search algorithms. However, within a given benchmark, relative performance of258

different algorithms is unaffected by the choice of splitting algorithm. Moreover, since259

the dissimilarity requirement p is an input, the difficulty of a benchmark is tunable.260

These algorithms address a fundamental challenge in training and testing models in261

biological sequence analysis. Random splitting into training and test data assumes that262

all data points are independently and identically drawn from an unknown distribution263

P (x). A model of P (x) is fitted to the training data and evaluated on the held-out test264

data. However, in a task like remote homology recognition, the remote homologs y are265

not from the same distribution as the known sequence x; they are drawn from some266

different distribution P (y | x, t), where x are the known sequences and t accounts for267

evolutionary distances separating remote homolog x from the known examples y on268

18
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a phylogenetic tree. In machine learning, “out of distribution” recognition typically269

means flagging anomalous samples, but this is a case where it is the task itself [21].270

Our procedures create out-of-distribution test sets, with dissimilarity of the training/test271

distributions controlled by the pairwise identity parameter p. The out-of-distribution272

nature of the remote homology search problem affects not only how appropriate bench-273

marks are constructed, but also how improved methods are designed.274

Methods275

Details of benchmarking procedure.276

We used the benchmarking pipeline as described in [7], as implemented in the “prof-277

mark” directory and programs in the HMMER software distribution. Briefly: for a278

given input multiple sequence alignment (MSA), first remove all sequences whose279

length is less than 70% of the mean. Then the splitting algorithm produces a training280

set and a test set. The training set sequences remain aligned according to the original281

MSA, and the sequence order is randomly permuted. This alignment is used to build282

a profile in benchmarks of profile search methods such as HMMER “hmmsearch” and283

PSI-BLAST.284

The test set is randomly down-sampled to contain at most 10 sequences. Pfam285

MSAs consist of individual domains, not complete protein sequences. Each test do-286

main sequence is embedded in a synthetic nonhomologous protein sequence as follows:287

(i) draw a sequence length from the distribution of sequence lengths in UniProt that is288

at least as long as the test domain (ii) embed the test domain at a random position,289

(iii) fill in the remaining two segments with nonhomologous sequence by choosing290

a subsequence of the desired length from UniProt and shuffling it. The resultant se-291

quences form the positive test set for the particular family. Next form a shared negative292

test set of 200,000 sequences similarly as follows: (i) choose a positive test sequence293
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at random (from the full group of test sequences) and record the lengths of the three294

segments, (iii) fill in each segment as described in step (iii) of producing positive se-295

quences. The default “profmark” procedure in HMMER embeds two test domains per296

positive sequence (for purposes of testing multidomain protein parsing); for this work297

we used the option of embedding one domain per positive sequence.298

Hardware, software and database versions used.299

All computations were run on Intel Xeon 6138 Processors at 2.0 Ghz. Our time bench-300

marks were measured in real (wall clock) time. Our tests were performed on the Pfam-301

A 33.1 database, released in May 2020. We used UniProt release 2/2019. Software302

versions used: HMMER 3.3.1, BLAST+ 2.9.0, DIAMOND 0.9.5.303

Availability of code.304

The splitting algorithms are implemented in C and available here: https://github.305

com/spetti/hmmer/tree/master/profmark. To run the algorithms, the fol-306

lowing version of EASEL is needed:https://github.com/spetti/easel. The307

code used to generate the figures in this paper is available at https://github.308

com/spetti/split_for_benchmarks.309
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(F) Independent Selection

Figure S1: Characteristics of Pfam seed families successfully split. Each marker
represents a family in Pfam. The connectivity of a sequence is the fraction of other
sequences in the seed family with at least 25% pairwise identity. Families successfully
split into a training set of size at least 10 and a test set of size at least 2 are marked by
a cyan circle, whereas families that were not split are marked by a red diamond. In (B)
and (D) the cyan circle represents at least one successful split among 40 independent
runs.
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Figure S2: Size of training and test sets produced by each algorithm on seed fam-
ilies. The two-dimensional normalized histograms illustrate the distribution of training
and test set sizes produced by the algorithms among results with at least 10 and 2 train-
ing and test sequences respectively. In each plot, the x-coordinate and y-coordinates
of the green circle represent the median training and median test set sizes respectively.
The white X is placed at the median training and test set sizes among the 2363 families
that were successfully split by Blue, Cobalt, and Cluster.
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Figure S3: Size of training and test sets produced by each algorithm on full
families. The two-dimensional normalized histograms illustrate the distribution of
training and test set sizes produced by the algorithms among results with at least 400
and 20 training and test sequences respectively. In each plot, the x-coordinate and y-
coordinates of the green circle represent the median training and median test set sizes
respectively. The white X is placed at the median training and test set sizes among the
1070 families that were successfully split by Blue, Cobalt, and Cluster.
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