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Abstract

Given a bivariate mesh of points, a C 1 surface of corresponding genus and connect

edness is constructed. Most of the surface is parametrized by a biquadratic spline whose

control points are obtained by refining the input mesh via corner cutting. The remaining

mesh regions are parametrized by bicubic patches in Bernstein-Bezier form. The construc

tion can be extended to rational patches and to interpolate at the vertices of the input

mesh.
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1. Introduction

Aug 25 92

Repeated corner cutting to smoothen a polytope is an intuitively appealing design

paradigm. This paradigm is algorithmically realized by generalized subdivision. Given a

bivariate input mesh\ the algorithms of [Catmull and Clark '78], [Doo '78], [Loop '87],

[Dyn, Levin and Liu '92] to name just a few, create at each stage a refined mesh of points by

averaging neighboring points of the current mesh according to one or more weight patterns

called masks. For properly chosen cut ratios, some regular meshes can be interpreted as

control point meshes of box and tensor-product splines. However, only surfaces of genus one

can be modeled with such regular meshes. And even then, local geometric considerations

may call for an irregular mesh. Thus, general surface modeling requires irregular meshes

and generalized subdivision schemes do not provide a parametrization of the corresponding

limit surface. This not only makes it tricky to establish elementary properties like tangent

plane continuity ofthe limit surface (see e.g. [Doo, Sabin 78], [Ball, Storry '86,'88,'89]), but

is also a major obstacle for integrating these techniques with other CAGD representations.

Starting from analytic descriptions of surface pieces, called patches, a large number of

surface constructions for meshes of arbitrary genus and connectedness have been derived

(see e.g. [Gregory '90] for a survey). Predictably, the smooth joining of more than four

patches at a common point and the dual problem of covering non quadrilateral mesh cells

has been the central difficulty. A number of solutions have been suggested that either

sacrifice the low degree of the surfaces (e.g. [Sarraga '87]'[Hahn '89]) or depart from the

standard tensor-product B-spline representation (e.g. [Gregory '74], [Loop, DeRose '90]).

The central idea of the parametric approach is to reparametrize when crossing from one

patch to the next. This shifts the focus from the geometric paradigm of subdivision to

clever uses of the chain rule. For example G-spline spaces ([Sabin '83], [Goodman '88] and

[Hollig, Mogerle '89]) are obtained by fixing the reparametrizations a priori dependent only

on the connectedness of the patches but not on the geometric data. In order to match the

data, large sparse linear systems in the patch coefficients have to be solved. This makes it

tricky to reason about the shape of the resulting surface.

The algorithm to be detailed here reconciles the subdivision paradigm with the para

metric approach. In an initial step, it refines a given open or closed bivaraiate mesh of

arbitrary topology to give the surface its rough shape and separate irregular mesh regions.

It then fits a biquadratic C l spline over the regular mesh regions and covers the remaining

non quadrilateral cells with bicubic patches so that the resulting surface has a polynomial

representation of low degree. Remarkably, the Bernstein-Bezier coefficients of the polyno

mial patches can be derived from the input mesh by applying a sequence of convolution

masks; thus, in contrast to other parametrizations, no system of equations has to be solved

to build the surface.

From an analytic point of view, the proposed and implemented bicubic tangent-plane

continuous extension of the standard biquadratic tensor-product spline surface can be

viewed as an alternative to rational blending schemes, S-patches and global methods. The

approach differs from [Hahn '89] and [Hollig, Mogerle '89] and [Mogerle '92] in that the

1 The mesh cells are isomorphic images of polygons but not necessarily planar. There

fore neither polyhedral mesh nor I-skeleton is an appropriate name for the input mesh.
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a = 0.25

Figure 1.1(a): Blended cubes with a twist.

Figure 1.1 (b ,c): Reflection lines (isoclines) on the same object.

bicubic extension beyond the biquadratic spline surface is not parametrically C 1
: the

reparametrization map is a quadratic perturbation of the identity rather than the iden

tity. This difference is crucial, since it leaves the necessary degrees of freedom for a local

construction of low degree.

From a discrete, corner cutting point of view, the second stage of the algorithm is
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ex = 0.5

Smooth biquadratic-bicubic surfaces Aug 25 92

Figure 1.2: A bicubic drop in the sea of biquadratic splines (model of a salt dome).

Figure 1.3: A slightly curved car part.
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a rule for introducing additional cuts such that a well-known uniform cutting procedure,

Chaikin's respectively de Casteljau's algorithm, thereafter will generate a C l surface in the

limit. This point of view reflects the author's preference to evaluate and display patches in

Bernstein-Bezier form by subdivision aka recursive application of de Casteljau's algorithm.

Since it can be guaranteed that the resulting surface interpolates the average of the

control points of each original mesh cell, a simple modification to the algorithm interpolates

the vertices of the input mesh. Similarly, it is possible to prescribe normals at the vertices.

There are no restrictions on the valence of the vertices and in particular none that depend

on the parity of the number of adjacent cell edges or neighboring mesh points as in [van

Wijk '86].

An example of the proposed construction is the blending of four cubes shown in Figure

1.1. The top cube is twisted to make sure that the 6-sided mesh cell at the common point

of the cubes is not symmetric. The object also features irregular 3, 4 and 5-sided mesh

cells. The second example, Figure 1.3, models the discretely sampled (zero) level set of a

trivariate map. The third shows approximate reflection lines on a slightly curved surface.

Note the absence of loops, especially in the reflection line across the 5-valent vertex. To

display the objects and the reflection lines, Gouraud shading based on points and normals

on the surfaces is used.

Section 2 details the 3-stage construction: (1) an initial corner cutting to give the ob

ject its rough shape and curvature, (2) the interpretation of the quadrilateral, 4-valent por

tion of the refined mesh as a (rational) B-spline control mesh, (3) the tangent-plane contin

uous cover of the remaining holes in the B-spline complex via the quadratic reparametriza

tions

Section 3 establishes the consistency and continuity of the resulting surface and proves

some simple shape properties.

2. The Gl construction in analytic, Bezier and control point representation

Denote by G l the agreement of the derivatives of two maps p and q from IR? to IRn

after reparametrization by a map cp from IR2 to IR2 that connects the domains np and nq

of p and q. That is, the algorithm constructs a surface that has a local, but not necessarily

a global C l parametrization by enforcing

where cp(Ep ) = E q , E p and E q are edges of np and nq respectively, D l denotes differen

tiation in the direction perpendicular to Ep and cp maps interior points of nq to exterior

points of np to avoid cusps. The components of cp are cp[l] and cp[2]

The algorithm is explained in three equivalent representations: in the above analytic

representation that focuses on the connecting map cp, in Bernstein-Bezier (BB) represen

tation and as a corner cutting process that computes new points as averages of old ones
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via a (convolution) mask. Figure 2.4 labels the connecting-maps cPi and 'l/Ji, the patches

Pi, qi,j with BB coefficients Pjk,i and Qjk,i, and the control mesh points Ai, Bij, Ci. To

simplify the computation of the product of polynomials in BB form, the binomial factor is

combined with the BB coefficient:

d

[bo, ... , bd] represents p: t t---+ L t
j (1 - t )d- j bj

j=O

so that [bo, ... ,bd][co, . .. ,ce ] = [boco, . .. ,L:k+l=j bkcz, ... ,bdce ]. Important constants are:

s E LZ+, the valence of a vertex,

27r
c:= cos(-)

s
and

c
a:=--.

1-c

With this notation, we can now state the basic algorithm. The end of the section specifies

two simple extensions of the algorithm that guarantee interpolation of the mesh vertices

and allow for conic blends and, more generally, for rational patches in the surface.

The Algorithm: Steps AI-A3

Input: an open or closed bivariate mesh of arbitrary genus and connectedness.

Output: (the specification of) a tangent-plane continuous surface consisting of biquadratic

and bicubic patches. The surface interpolates the centroids of the input mesh cells.

Shape parameters:

(a) For each mesh cell f of the input mesh a cut ratio 0 < a f < 1 can be specified. The

size of the tangent plane at the center S of f decreases, resp. increases with af' The

default, a f = 0.5 distributes the curvature most evenly across the edge between two faces.

Smaller values for both faces increase and larger values decrease the curvature across the

edge.

(b) For every non quadrilateral cell f of the refined mesh, there is a scalar 13f ~ 0 that

measures the distance of the interpolation point from the centroid of that mesh cell. The

default is f3f = O.

(Al) Refinement of the mesh. In two steps, a refined mesh of control points is

created from the input mesh. The refinement coarsely shapes the object by cutting off

corners and edges (ef. Figure 2.1). As illustrated by the figure, at each step, s new points

are created for each s-sided cell. Each new point connects to new points arising from

the two adjacent vertices of the same cell and the two adjacent cells of the same vertex.

The new point corresponding to a vertex V of the cell f with centroid F has the location

(1 - af)V + afF. In Figure 1.1, af = 1/4 uniformly, while a uniform af = 1/2 in Figure

1.3 results in more rounded features. In the second step, the ratio of a cell can be obtained

as the average of the ratios of the old cells that contribute a vertex. The cutting also

isolates non quadrilateral mesh cells so that, with the labels of Figure 2.4, (1) a connected
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Figure 2.1: Corner cutting for coarse shaping. A slot feature (8 additional points)

is added to the smoothed cubes.

biquadratic complex of patches qij, corresponding to the dark area in Figure 2.3, can be

created in Step A2, (2) the control points Bi,j in Figure 2.4can be changed without loss of

the centroid interpolation property: continuity requires that for every cell of the control

mesh with s E I := {i : i = 2m, m ~ 3} = {6, 8,10, .. } edges, the control points labeled

B· . are replaced by B· . + (_l)i+ j E where E '= -1 " ' " ' ~ " ' " ' ~ (_l)i+ jB·· (If a cell ofZ,J Z,J , . 28 6z=16J=1 Z,J'

the input mesh has s E I edges and a vertex with s' E I neighbors, e.g. a hexagon with a

6-valent vertex, then the shared Bij is fixed the second time.)

Remark: If Q f = 1/2 uniformly, the cells of the refined quadrilateral mesh correspond to

the same quadratic and can be stored more efficiently (d. [Doo '78 p 163] ).

(A2) The construction of the biquadratic tensor product mesh. Any rectilinear

submesh of the refined mesh can be interpreted as the control mesh of a biquadratic tensor

product spline surface. Around any s-sided mesh cell this creates a parametrically 0 1

biquadratic complex of 2s patches qi,j, i = 1..s, j = 1,2 as sketched by the grey areas in

Figures 2.3 and 2.4. That is, rp = id and for adjacent patches q1 and q2,

• BB representation: For each quadrilateral mesh cell, the centroid is the vertex coefficient
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Figure 2.2: A schematic view of 2 steps of the corner cutting algorithm. The input

mesh is solid, the first and second refinement are dotted and dashed respectively. Note that

both 5-sided cells and vertices with 5 neighbors result in 5-sided cells of the refined mesh.
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Figure 2.3: Constructing the BB representation of the biquadratic tensor-product mesh

dual to the 4-sided mesh cells to cover the grey regions of the refined mesh.

of four BB patches, the average of two adjacent mesh points is the middle coefficient

of a quadratic boundary curve of two patches and the mesh points themselves are the

respective central coefficients. In Figure 2.3, the quadrilateral C1 B 2 C2 A yields Qoo =

8



J Peters Smooth blquadratlc-blcubic surfaces Aug 25 92

(C1+B2+C2+A)/4, Q01 = (A+C2)/2, and Ql1 = A. Note the duality ofthe quadrilateral

mesh and the mesh of boundary curves.

In Figure 2.4, the mesh cell AiBi,l CiBi,2 yields L i = Qoo = (A z + Bi,l + Ci + Bi,2)/4,

Q01 = (Ci+Bi,2)/2 and Ql1 = Bi,2 for the coefficients Qab of Qi,2. Note that all coefficients

computed are in the grey area outside the pentagon.

Figure 2.4: A schematic view of the patches in the vicinity of a non quadrilateral mesh cell.

For construction and proof, it is convenient to coordinatize Pi with respect to

three different domain corners. The curved arrows indicate the reparametrization by cP and 'ljJ.

(A3a) Extension of the tangent plane across the spline complex. Each patch qi,j

of the complex is extended across the boundary of the complex by choosing the patches pz
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D·p· = D·(q· ·0 A-. .. )
] Z ] Z,] 'Y Z,] ,

where ai = a := -1c for now and
-c

(C)

in the coordinate system of the domain of Pi at Li. The coordinate system is oriented as

in Figure 2.4: (t l , 0) = E2, p(O, 0) = Li, p(l, 0) = Mi. Geometrically, the constraint is

at Li that DjPi = Djqi,j and at Mi that DjPi and DNi,j are collinear. In between, the

tangent direction varies quadratically in contrast to a parametrically Cl extension across

the boundary of the complex.

• BB representation: The coefficients PjO, j = 0..3 are obtained from the coefficients Q10,

1= 0..2 by degree raising, i.e.

Due to degree raising, the transversal BB differences of the patch complex have to be

scaled by 2/3, so that the 4 constraints on Pjl, j = 0..3 across the edge LiMi read

2
= -[1,1 + a] * "3 [QOl - Qoo, 2(Ql1 - QlO), Q2l - Q20] + [0, a, 0] * [QlO - Qoo, Q20 - QlO]'

The first constraint, POI = POO + ~(Qoo - QoI), holds after raising the degree of the

quadratic boundary curve.

• control point representation: The BB coefficients can be expressed in terms of the control

points via the following "masks":

1 1
P20 ,i = 12 (5Bi,2 + Bi+l,l + 5Ci + Ci+I), P30 ,i = 4(Bi,2 + Bi+l,l + Ci + Ci+I).

1 a
P ll . = -(5B· 2 + 5B· l + A· + 25C·) + -(B· 2 - B· 1 + 5C· - 5A·)

, Z 36 z, z, Z Z 36 z, z, Z Z

1 a
P2l ,i = 36 (5Bi,2 + 5Ci+l + Bi+l,l + 25Ci) + 36 (-llBi,2 + 3Bi+l,1 + 3Ci+l + 5Ci)

1 a
P31 ,i = 12 (Bi,2 + Bi+l,l + 5Ci+l + 5Ci) + 6(Ci+l + Ci - Bi,2 - Bi+l,l)

Remark: If a = 0, then the coefficients correspond to those of a degree-raised quadratic.

10



J Peters Smooth biquadratic-bicubic surfaces Aug 25 92

(A3b) Smooth covering of the interior of non quadrilateral mesh cells. The

constants ai = a of the connecting-maps <Pi in the tangent extension were chosen so that

tangent plane continuity across the interior boundaries can be enforced as

where 'l/Ji :=id+t1(1-t 2 ) [~c], (I)

where c := coses7l"), D 1 is the derivative across the joint boundary of the patches and

pi(O,O) = S, i.e. we use the coordinate system at S in Figure 2.4.

• BB representation: Constraint C of Step 2 fixes all but the central vertex S and the

adjacent (tangent and twist) coefficients, P23,i = P32 ,i-l, P32 ,i = P23 ,i+l and P22 ,i of the

patches Pi. The 4 constraints across the edge M iS read

[P20 ,i-l - P30 ,i-l, 3(P21 ,i-l - P31 ,i-d, 3(P22 ,i-l - P32 ,i-d, P23 ,i-l - P33 ,i-l]

+ [P02 ,i - P03 ,i, 3(PI2 ,i - PI3 ,i), 3(P22 ,i - P23 ,i), P32 ,i - P33 ,i]

= [0, -2c] * [P31 ,i-l - P30 ,i-l, 2(P32 ,i-l - P31 ,i-l), P33 ,i-l - P32 ,i-l].

Two of these constraints hold already by Step 2.

To determine S, define the averages Sp := ~ 2::=1 P31 ,i and Se := ~ 2::=1 Ci. If
there exists a convex triangulation of the mesh (in the vicinity of the s-sided mesh cell

and not including the cell), then one can define (3* 2: 1 to be the smallest value such

that Se + (3*(Sp - Se) intersects the interior cone formed by the planar extension of the

triangles. Otherwise set (3* = 1. Then

S = Se + (3(Sp - Se), 0:::; (3:::; (3*. (2.5)

guarantees interpolation at the centroid if (3 = 0 and allows for a convex construction if

(3* > 1 and (3 2: 1.

Since P33 i = Sand P23 i = P32 i-I, the remaining constraints are, "

2(1 - c)S = P32 ,i-l - 2CP32 ,i + P32 ,i+l

2((1 - C)P32 ,i + CP31 ,i) = P22 ,i-l + P22 ,i.

There are three degrees of freedom that allow for a number of approaches. We choose an

explicit symmetric construction below, but point out that it is always possible to solve the

least squares problem

s s

min L IIP;2,i - P32 ,i11
2 +L IIP;2,i - P22 ,iI1

2

i=1 i=1

(2.6)

subject to the constraints hand 14 , where the P3*2 i' Pt2 i are desirable locations for the

tangent and twist coefficients (e.g. locations o b t a i ~ e d f r ~ m degree-raising). An explicit

11
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symmetric solution to the constraints subject to the shape parameter a and the choice of

Sis:

a LS

21r
P32 i = S + - cos(-l)P31 i+l,

, 8 8'
1=1

O<a<1.

The scalar a is a shape parameter proportional to the diameter of the tangent plane of

first differences (cf. [Loop '90 Fig.3D and therefore similar to the corner cutting ratio of

the Doo-Sabin algorithm. Define Ei := (1 - C)P32 ,i +CPS1 ,i. If 8 > 4, then 0 < C < 1 and

hence E i is a convex average of the interior coefficients of the boundary curve. The twist

are

• control point representation:

a LS

21r 1 - 2a 5 + 2a 1r 21r(1+ !)
P32 i = S + - cos(-l) (Bi+12 + Bi+l+1 1) + cos( -) cos( )Gi+l ,

, 8 8 12 ' , 6 8 8
1=1

odd

even

Two Extensions of the Algorithm:

(AD) Interpolation at the vertices of the input mesh Do one refinement as in Step

Al and next, for each vertex S of the input mesh, move the control points Gi, i = 1..8

whose construction involves S by S - ~ 2::=1 Gi. Then S is the centroid of the resulting

cell and will be interpolated. Similarly, one can interpolate normals at the vertices.

(A2a) Conic blends and rational patches To obtain conic blends and, more generally,

rational surfaces, treat the control points as vectors in IR4 and the fourth coordinate as an

additional shape parameter. If P, Q : [0 .. 1]2 I-----t IRs and p, q : [0 .. 1]2 I-----t IR and P = Q and

p = q along a boundary shared by the functions P / p and Q/ q, then

along that boundary. The latter holds if the masks of the algorithm are applied to the

coefficients of (P, p) E IR
4

. That is, the fourth coordinate corresponds to the rational weight

function. For example, choosing the weight component of two neighboring control points

12
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in the regular mesh to be 3 rather than 1 (and keeping the other weight components at 1)

yields two circular arcs with weights (112) and one conic with weights (232). in between:

weights of the control points 1 1 3 1 1

weights of three quadratic boundary curves 1 1 2 3 2 1 1

weights of the control points 1 1 3 1 1

In general, the algorithm works for constructing bivariate surfaces in IRn.

3. Consistency and continuity of the resulting surface

This section proves the correctness of the construction. The first part examines the

initial cutting process, the second proves consistency of the construction and smoothness of

the surface at Li, Mi and 5 respectively and the third discusses the shape of the resulting

surface.

3a. The mesh refinement

Denote as type 1 every pair of non-4-sided cells arising from two adjacent non-4-sided

cells or from two adjacent non-4-valent vertices and as type 2 every pair of non-4-sided

cells arising from a non-4-sided cell and its non-4-valent vertex.

(3.1) Lemma. The two cuts in Step Al result in a control mesh such that (Rl) every

interior control point has four neighbors, (R2) every type 1 pair is separated by three layers

of quadrilateral cells and (R3) every type 2 pair is separated by one layer of quadrilateral

cells.

Proof Since every new control point is connected to two new points on the same

original cell and across to edges of that cell, R1 holds after the first step. After one step

any two cells are separated by one layer of quadrilateral cells. This implies R2. Since every

type 2 pair still has a common vertex after one step, R3 follows from the same argument .

•
(3.2) Corollary. The control points Bi,j of a type 1 pair of cells are distinct. The

perturbation of any Bi,j does not alter the control points of a cell that contains the centroid

of a cell of the input mesh.

The perturbation is motivated by the construction at 5, Lemma 3.8. It is the minimal

perturbation that enforces E := L:=l L~=l (-l)i+j Bi,j = O. The corner cutting process

is a variant of the Doo-Sabin algorithm [Doo '78] that preserves some edge directions.

(3.3) Lemma. The cutting in Step Al leaves all facet-cell edges parallel to the original

facet cells and hence two of the edge-cell edges parallel to original edges.

Proof The endpoints of the new and old edges together with the centroid form similar

triangles. •

3b. Continuity

To avoid listing a large number of equations, the following proofs are formulated

independent of the surface representation as far as possible.

13
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(3.4) Lemma. The construction in Step A2 yields a parametrically C l surface.

Proof The centroid of four points A, B, C, D in IR
3

is also the intersection of the

two lines At
B

Gt
D and At

D
Gt

B
. Thus the vertex coefficient Qoo is well defined and the

tangent coefficients QOl etc. of the patches abutting at Qoo lie in the same plane. Since

the tangent coefficients are also the average of the central coefficients of adjacent patches,

the difference vectors across any boundary agree pairwise. •

(3.5) Lemma. Consider a particular corner vertex Li = L (and therefore drop the sub

script i). At L

(3.6)

that is, that the extensions of the patches ql and q2 define the mixed derivative of P

consistently.

Proof Expanding the left hand side of Equation 3.6 according to the chain rule and

noting that D2cPi,ljO = (0,1) and Dl cPi,210 = (1,0) we have at 0 (in the coordinate system

at L of Figure 2.4)

and similarly D l D2q2 + a2Dlq2 + al D2q2 for the right hand side. By construction of the

1 D D . - 4(B· Bj+G A+Bj + A+Bj+Bi+G ) - A + C B· B· S' bcomp ex, 1 2qJ - - J - -2- - -2- 4 - - J - ~. lnce y

construction also Djq2 = Djql, the left hand side of Equation 3.6 equals the right hand

side and uniqueness of the mixed derivative D l D2P follows. •

(3.7) Lemma. The continuity constraints (I) at Mi = M are consistent with the con

struction of the tangents across the boundary of the complex.

Proof Move the coordinate systems of 'l/Ji, cPi-l,2 and cPi,l to Mi as in Figure 2.4 to

obtain the reparametrizations ' l / J ~ , and c P ~ - l 2 = cP~ l' Thus the inverse image of S is both

'l/Ji(O, 0) = 'l/J~(O, 1). Algebraically, one o b t a i ~ s ' l / J ~ f ~ o m 'l/Ji by replacing 1 - t 2 by t2, i.e.

and similarly

c P ~ - 1 , 2 ( -tl, t 2) = cP~,l(tl' t2) = id + at2(1 - td [ ~\] .

We need to check that along the common boundary and in particular at M that

Clearly at (0,0), Pi-l = Pi 0 'l/JL D2pi-l = (1 + a)D2qi-l,2 = (1 + a)D2qi,1 = D2(Pi 0 'l/JD,

and

14
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To show that also D 2D 1Pi = D 2D 1(pi 0 'l/JD, we observe that D 1D 2qi-l,2

D 1qi-l,2 = D 1qi,1 and hence

D 2D 1(qi-l,2 0 <P~-1,2) = -D2D_1(Qi-l,2 0 <P~-1,2)

= (1 + a)D1D 2Qi-l,2 + a(D1Qi-l,2 + D 2Qi-l,2)

= D 2D 1(Qi,1 0 <P~,I) + 2aD2Qi,1

This implies the fourth equality below, while the other equalities follow from the definition

of Pi and Pi-l and the connecting maps.

The constraint holds since -2c = l~a' •

(3.8) Lemma. The choices of the tangent coefficients P32,i and P22 ,i in Step A3b solve

the constraints Is and 14 and thus enforces consistency at S.

Proof Constraint Is holds since

s 2

L
71",

cos(-Z)(P31 i-I - 2CP31 i + P31 i+l)
s' "

i=1

~ 271" 271" . 271" 271" .
= LP31 i(cos(-(i -1)) + cos(-(z + 1)) - 2cos(-)cos(-z)) = O.

. ' s s s S
z=1

If s is odd, then

s

P22 ,i-l + P22 ,i = - L(-1)j(Ei+j - 1 + E i+j ) = 2Ei

j=1

as required. If s is even, then

~ . O! ~ . ~ 271"
L(-l)J P32 ,j = -; L(-l)J L cos( ---:;l)P31 ,j+l = 0

j=1 j=1 l=1

sInce 2:;=1 (-l)j cose
s

7r j) = 0 and 2:;=1 (-l)j P31 ,j = 0 since the Ci cancel and the

perturbation forces E := 2::=1 2:~=1 (-l)i+j Bi,j = O. (E = 0 is also a necessary constraint

for solvability.) Therefore 2:;=1 (-l)j Ej = 0 and
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3c. Shape considerations

Consider a cone made from n similar triangles meeting at an apex. If the cutting

ratios are alternatingly high and low, say 0.25 and 0.5, then the n-cell resulting from the

cutting process has a boundary in the form of a crown. This illustrates that e.g. convexity

preservation depends crucially on the cutting ratios. Nevertheless, a few statements can be

made, since the averaging operation in Step A2 is just a change of basis from B-spline to

BB form representation so that the shape of the biquadratic surface already follows from

the control mesh.

(3.9) Lemma. If four cells surround a vertex A, then the biquadratic patch with center

coefEcient Qll = A has zero curvature if and only if the cells are coplanar. Two adjacent

coplanar cells, give rise to a linear boundary curve.

Proof The 9 by 9 system of equations relating the control points to the BB coefficients

is of full rank. While the linearity of the boundary curve follows from coplanarity, the

reverse does not hold, because the system is 3 x 6. •

(3.10) Lemma. The curvature at S is zero if and only if P31 ,i, i = 1..8 and S lie in the

same plane.

Proof Let pen) be the normal component of P. According to Lemma 3.8, all P32 ,i and

S lie in the same tangent plane. The normal direction to that plane is n = Ai X Ai+1, where

Ai := 2::=1 coses7l" l)P31 ,I+i. If some P31 ,i does not lie in that plane, then (a) the curvature

of the ith boundary curve is nonzero and (b) the PZZ,i do not all lie in the plane either.

The latter follows by contradiction from 14 : 2CP31 ,i = 2((1 - C)P32 ,i(n) + cP31 ,i(n)) =

PZZ ,i-1 (n) +PZZ,i(n) = O. Conversely, if all P31 ,i lie in the tangent plane, then the normal

components of all P32 ,i and PZZ,i are zero by construction. •

(3.11) Corollary. If all Ci and ~ ( B i , l + Bi,Z) are in the same plane, then the normal

curvatures at S are zero. If additionally all Ai and ~ ( B i , l - Bi,Z) are in the common plane,

then the bicubic cover is Bat.

Proof Follows directly from the control point representation. •

While it is desirable that planar data give rise to a planar surface, the choice of S

should prevent flatness for convex data. For the following proof concerning a non quadri

lateral cell we assume (a) local symmetry of the control mesh, i.e. Ai+1, Bi+1,j and Ci+1
can be obtained from Ai, Bij and Ci by a rotion by Zs7l" and (b) local convexity of the

control mesh, i.e. the extensions of the cells spanned by Ai, Bij and Ci i = 1..8 form a

convex cone. If the mesh at a non quadrilateral cell is locally symmetric, then cell with

vertices Ci is planar and we may denote the normal distance of a point P from that plane

by P(n). Also due to the symmetry the subscripts of the control points can be dropped

and we have A(n) < B(n) < C(n) = 0 < f3 = P3z ,i(n) = Sen) if the control mesh is also

locally convex.

16
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(3.12) Lemma. If the control mesh is locally convex and symmetric, then for s > 4 the

boundary curves are convex if and only if 1 :::; (3 :::; (3*; for s = 3, (3 = 1 is sufficient. If

s > 4, then the normal components of the coefficients Pij (n) are monotonically increasing

with i + j if and only if A(n) > :t~~ B(n).

Proof By symmetry, the curve with coefficients [P30 ,i, 3P31 ,i, 3P32 ,i, P33 ,i] constructed

in Step A3, common to two adjacent bicubic patches lies in a perpendicular plane. By

Step A3a and since 1 < a = I~C for s > 4, and B(n) < 0,

Ci+I(n) + Ci(n) 2a-l
P31 ,i(n) = 2 + 12 (Ci+I(n) + Ci(n) - B i,2(n) - Bi+l,l(n))

1- 2a
= 6 B(n) > O.

That is, the plane through the Ci separates the M i from the plane in which S and the

coefficients P32 ,i lie if S = Se. The boundary cubic has therefore an inflection in the BB

polygon and hence in the curve if and only if (3 :::::: 1, i.e. Sen) :::::: P3I ,i(n).

For s > 4, set A(n) =: kB(n), k > 1 and b := I ~ 2 a < O. Since (3 :::::: 1, P33 (n) =

P31 (n) + EbB(n), E :::::: o. Then

[ P

03 PI3 P23 [ ,
b (1 + E)b (1+ €)bjP33 1

P02 P12 P22 P32 () _ "2
b+ ~ (1 + (1 - c)E)b (1 + E)b ()9

b B n.
POI Pn P21 P31] n - ~ + ,', lQ + 1-5a k b+~

36 36 9

POO PIO P20 P30 .! + k I k I .!
2 4 "2 + 12 2 2

We check the four more difficult cases.

a
(1 - C )Eb < 0 < 9

b ~ _ 3 - 4a ~
+ 9 - 18 < 0 < 2

10 - 18 + k - 3k - 5ak 8 +7k 0
36 < - 36 <

6 - 8a - 10 - k +5ak
36 < 0

The last relation is responsible for the extra condition on the normal component of the Ai

and Bij.•

(3.14) Remark on parametric CI continuity, bicubic patches and triangular mesh cells.

Choosing the extension across the boundaries of the biquadratic complex to be para

metrically C I
, i.e. cPi,j to be the identity, leads in general to an inconsistent system of

equations for bicubics. In particular, D 2D I 'l,byJ(O, 0) has to be zero rather than -2c(l- t)

and therefore D I 'l,b~[IJ has to be at least quadratic. This implies that s additional con

straints have to be enforced but there are only two degrees of freedom in addition to S:

17
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+ :i
+--+--+ "' -,;: +

+ ":t:

Figure 3.13: Distribution of the BB coefficients for (left) the G1 join of Section 2

(right) the parametric C 1 join of Remark 3.14.

one tangent coefficient and one twist coefficient may be chosen freely. Therefore, one can

in general not cover an s-sided hole with bicubics that extend a biquadratic patch complex

parametrically C 1 across its boundary.

An exception occurs for s = 3 due to the fact that three points always lie in a plane.

We may choose the common boundary curve of two adjacent patches to be degree-raised

quadratics. Then, after extending the patch parametrically C 1
, one can choose

i.e. D1 'l/'PJ rv [O,O,i]. Thus the mesh cell is smoothly covered by setting Pi-l(O,ti-I) =

Pi(O, ti) rv [Mi, 2mi, S] ( with the coordinate system at Mi),

1
mi = "2(Ci + Ci+l)

1 1
S = 3(m1 + m2 + m3) = 3(C1 + C2 + C3)

21,
P32,i = S + 3(mi - S) = g(4Ci + 4Ci+1 +Ci-l)

2 1
P22 ,i = L(-l)j(P32 ,i+j + "6(mi - Mi))

j=O

1 11
2

.

= g(7Ci + Ci+l + Ci-I) + "6 Ci - 12 L( -1)J(Bj,2 + B j+1 ,I).
j=O

18
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Since cPi,j is the identity, this solution can also be applied if the surrounding patch com

plex is bicubic. (This is the construction in [Gregory,Zhou '90, Figs 4.1-3].) Figure 3.15

compares the distribution of the BB coefficients for the two connecting maps.
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The three steps of the preceding construction combine a number of techniques, some

known and some new. Known is the interpretation of the regular mesh as a mesh of

control points for a tensor-product spline in Step A2. Also known is the Doo-Sabin type

refinement of the input mesh in Step Al of the algorithm. However, it is used for a new

and different purpose. Rather than iterating to the limit, it only serves to give an intuitive

handle for distributing curvature on the surface and to separate irregularities in the mesh.

Also new is the choice of a quadratic reparametrization to connect the bicubic patches with

the biquadratic spline complex in Step A3a. Finally, the explicit solution to the vertex

enclosure problem for a non 4-valent vertex in the form of a simple averaging mask for the

mixed derivatives is new and should be helpful for similar control mesh based algorithms.

Even though the examples are encouraging, the characterization and proof of the

shape properties of the construction is at this point limited to relatively simple cases. The

strong points of the algorithm are its low degree, standard tensor-product representation

and the simplicity of the construction as an application of masks to control points. It may

be interpreted as generating a spline space with additional interpolation properties.
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