
Constructing Constrained-Version of
Magic Squares Using Selection

Hyper-heuristics

Ahmed Kheiri and Ender Özcan

University of Nottingham, School of Computer Science
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK

Email: {axk,exo}@cs.nott.ac.uk

A square matrix of distinct numbers in which every row, column and both
diagonals has the same total is referred to as a magic square. Constructing
a magic square of a given order is considered as a difficult computational
problem, particularly when additional constraints are imposed. Hyper-heuristics
are emerging high level search methodologies that explore the space of heuristics
for solving a given problem. In this study, we present a range of effective
selection hyper-heuristics mixing perturbative low level heuristics for constructing
the constrained version of magic squares. The results show that selection hyper-
heuristics, even the non-learning ones deliver an outstanding performance, beating

the best known heuristic solution on average.

Keywords: Magic Square; Hyper-heuristic; Late Acceptance; Computational Design

Received 09 April 2013; revised 00 Month 2009

1. INTRODUCTION

Hyper-heuristics are search methodologies which build
or select heuristics automatically to solve a range of
hard computational problems [1, 2, 3, 4]. Selection
hyper-heuristics, which were initially defined as
”heuristics to choose heuristics” in [5], are used in
this study. The idea of mixing existing heuristics
(neighbourhood structures) during the search process
in order to exploit their strengths dates back to
the 1960s [6]. Selection hyper-heuristics have been
successfully applied to many different problems ranging
from timetabling [7] to vehicle routing [8].
There are different types of single point-based search

selection hyper-heuristic frameworks [9]. Still, two
common consecutive stages can be identified in almost
all such hyper-heuristics: heuristic selection and move
acceptance. An initial solution is iteratively improved
passing through these stages. After a heuristic
is selected, it is applied to the candidate solution
producing a new solution at each step. Then a move
acceptance method decides whether to accept or reject
the new solution. This whole process repeats until
some termination criteria are satisfied as illustrated
in Figure 1. [10] showed that different combinations
of selection hyper-heuristic components yield different
performances on examination timetabling problem.
A square matrix of distinct positive integers in

which every row, column and diagonal has the same

sum is called a magic square. The history of magic
squares dates back to 2200 B.C. (see [11] for more).
Constructing a magic square is a computationally
demanding task. Constraint version of the magic
squares problem was the subject of a recent competition
with the goal of finding the quickest approach.
The winner approach emerged among hundreds of
competing algorithms as a hill climbing algorithm [12]
which handles a given instance in two separate ways
based on its size. The approach mixes two heuristics
with a certain probability for problems larger than a
certain size and uses a different algorithm for smaller
instances. In this study, we extend the framework of the
winning approach to enable the use of selection hyper-
heuristics for any given constraint version of the magic
square problem. We investigate into the performance of
a variety of selection hyper-heuristics, including the best
known hyper-heuristic managing the same set of low
level heuristics for constructing magic squares. Then
the best selection hyper-heuristic is compared to the
winning approach.

Section 2 provides the description of the magic square
problem and overviews the late acceptance hill-climbing
algorithm and selection hyper-heuristics. Section 3
describes the selection hyper-heuristic components that
are tested for solving the magic square problem. Section
4 provides the empirical results. Finally, Section 5
presents the conclusions.

The Computer Journal, Vol. ??, No. ??, ????

2 A. Kheiri and E. Özcan

Select a

heuristic

 Apply heuristic Generate

an initial

solution

s0 → snext

snext snew → snext snew

snext,snew

s0

accept(snew)

?

snext

low level

heuristics

terminate

?

return snext

yes

no

no

yes

FIGURE 1. Illustration of how a single point based selection hyper-heuristic operates.

2. BACKGROUND

2.1. Magic Square Problem

A magic square of order n is a square matrix of size
nxn, containing each of the numbers 1 to n2 exactly
once, in which the n numbers in all columns, all rows,
and both diagonals add up to the magic number M(n).
This constant is given by:

M(n) = n(n2 + 1)/2 (1)

As an example, the magic square of order 3 is shown
below: 4 9 2

3 5 7
8 1 6

A formal formulation of the magic square problem is

as follows. Given a magic square matrix A of order n
such that

An×n =

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

where ai,j ∈ {1, 2, ..., n2} for 1 ≤ i, j ≤ n and ai,j ̸= ap,q
for all i ̸= p and j ̸= q

subject to

n∑
i=1

ai,j = M(n),

n∑
j=1

ai,j = M(n),

n∑
i=1

ai,(n+1−i) = M(n) and
n∑

i=1

ai,i = M(n)

Constructing the magic square using the modern
heuristics was the idea of the competition hosted by
SolveIT Software1. A constraint version of the magic

1http://www.solveitsoftware.com/competition.jsp

squares problem is used in the competition which
requires for a given instance of size n ≥ 10 that the
solution matrix must have a contiguous sub-matrix
S3×3 to be placed at a given location (i, j) in An×n:

S3×3 =

1 2 3
4 5 6
7 8 9

The largest magic square that an algorithm constructs
in one minute was considered to be the best algorithm.
This was the performance measure used to determine
the winner approach.

The objective (cost) function measures the sum of
absolute values of the distance from the Magic number
for each column, row and diagonal. Hence, the problem
can be formulated to a minimisation problem in which
the goal is to minimise the objective function value in
Equation 2. The magic square is found if the objective
function value is 0.

g(An×n) =
n∑

i=1

∣∣∣∣∣∣
n∑

j=1

ai,j −M(n)

∣∣∣∣∣∣+
n∑

j=1

∣∣∣∣∣
n∑

i=1

ai,j −M(n)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

ai,(n+1−i) −M(n)

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

ai,i −M(n)

∣∣∣∣∣
(2)

Equation 3 describes the objective function value
after imposing the contiguous sub-matrix S3×3.

f(An×n, i, j) =

 g(An×n) if S3×3 placed at the
position (i, j) in A;

∞ otherwise.

(3)

In the competition hosted by SolveIT, the winner
approach which was able to construct the constrained
version of 2600x2600 magic square was a solver designed
by Yuri Bykov based on a late acceptance strategy.
Geoffrey Chu developed a solver in which a random

The Computer Journal, Vol. ??, No. ??, ????

Constructing Constrained-Version of Magic Squares Using Selection Hyper-heuristics 3

square is transformed into the magic square by the
iterative heuristic improvement of rows and columns.
Chu’s solver ranked the second on the competition
and it was able to construct the constrained version
of 1000x1000 magic square in one minute. The multi-
step iterative local search took the third place on the
competition. It was developed by Xiao-Feng Xie and
it was able to construct the constrained version of
400x400 magic square in one minute. The detailed
descriptions of the top three solvers are available online
at http://www.cs.nott.ac.uk/~yxb/IOC/.

2.2. Late Acceptance Hill-Climbing Approach

The Late Acceptance Hill-Climbing was introduced
recently, in 2008, as a metaheuristic strategy [13].
The approach has been successfully applied to many
different hard-computational problems, including exam
timetabling [13, 7], course timetabling [14], travelling
salesman, constructing magic squares [12] and lock
scheduling [15]. Most of the hill climbing approaches
modify the current solution and guarantee an equal
quality or improved new solution at a given step. The
Late Acceptance Hill-Climbing guarantees an equal
quality or improved new solution with respect to a
solution which was obtained fixed number of steps
before.
Algorithm 1 provides the pseudocode of Late

Acceptance Hill-Climbing assuming a minimisation
problem. Late Acceptance Hill-Climbing requires
implementation of a queue of size L which maintains
the history of solution/objective function values of L
consecutive visited states for a given problem. At
each iteration, algorithm inserts the solution into the
beginning of the array and removes the last solution
from the end. The size of the queue L is the only
parameter of the approach which reflects the simplicity
of the strategy.

2.3. Related Work

Selection hyper-heuristics explore the space of heuris-
tics during search process. They are high level method-
ologies that are capable of selecting and applying an
appropriate heuristic given a set of low-level heuristics
for a problem instance [1]. A selection hyper-heuristic
based on a single point search framework attempts to
improve a randomly created solution iteratively by pass-
ing it through firstly heuristic selection and then move
acceptance processes at each step as illustrated in Fig-
ure 1 [9]. The heuristic selection method is in charge
of choosing an appropriate heuristic from a set of low
level heuristics at a given time. The chosen heuristic is
applied to a candidate solution producing a new one,
which is then either accepted or rejected by the move
acceptance method.
The selection hyper-heuristic framework used in this

study assumes perturbative low level heuristics which

Algorithm 1 Pseudo-code of the Late Acceptance Hill-
Climbing (LAHC).

1: procedure LAHC
2: S = Sinitial; ◃ Generate random solution
3: f0 ← Evaluate(S); ◃ Calculate initial objective

function value
4: for i← 0, L− 1 do
5: f(i)← f0;
6: end for
7: i← 0;
8: repeat
9: S′; ◃ Generate candidate solution

10: f ′ ← Evaluate(S′); ◃ Calculate objective
function value

11: c← i mod L;
12: if f ′ ≤ f(c) then
13: S ← S′;
14: end if
15: f(c)← Evaluate(S); ◃ Include objective

value in the list
16: i← i+ 1;
17: until (termination criteria are satisfied);
18: end procedure

deal with complete solutions, as opposed to constructive
heuristics which process partial solutions. [5] describe
different selection methods, including Simple Random
(SR) randomly selects a low level heuristic; Random
Descent (RD) randomly chooses a low level heuristic
and applies it to the solution in hand repeatedly
until there is no further improvement. Random
Permutation (RP) generates a permutation of low
level heuristics, randomly, and applies a low level
heuristic in the provided order sequentially. Random
Permutation Descent (RPD) same as RP, but proceeds
in the same manner as RD. The Greedy (GR) allows
all low level heuristics to process a given candidate
solution and chooses the one which generates the largest
improvement.

Selection hyper-heuristics could learn from their
previous experiences by getting feedback during the
search process. For example, [5] use a learning
mechanism Choise Function (CF) that scores low
level heuristics based on their individual and pair-wise
performances. [16] uses Reinforcement Learning (RL)
to select from low level heuristics. [17] describe a
dominance based heuristic selection method which aims
to reduce the set of low level heuristics based on the
trade-off between the number of steps has taken by a
heuristic and the quality of solution generated during
these iterative steps. The authors report that this is
one of the most successful selection hyper-heuristics
across multiple problem domains. Tabu [18] ranks the
heuristics to determine which heuristic will be selected
to apply to the current solution, while the tabu list holds
the heuristics that should be avoided.

The Computer Journal, Vol. ??, No. ??, ????

4 A. Kheiri and E. Özcan

There is a variety of simple and elaborate determin-
istic and non-deterministic acceptance methods used as
a move acceptance component within selection hyper-
heuristics. For example, accepting all moves and some
other simple deterministic acceptance methods are de-
scribed in [5]. There are a number of deterministic and
non-deterministic acceptance methods allowing the ac-
ceptance of worsening solutions. The non-deterministic
näıve move acceptance accepts a worsening solution
with a certain probability [19]. [7] use Late Acceptance
[13], which maintains the history of objective values of
previously visited solutions in a list of a given size and
decides to accept a worsening solution by comparing the
objective value to the oldest item in that list. [10] re-
ported the success of the Simulated Annealing move
acceptance method. Simulated annealing accepts non-
improving moves with a probability provided in Equa-
tion 4.

pt = e
− ∆f

∆F (1− t
T

) (4)

where ∆f is the quality change at step t, T is the
maximum number of steps, ∆F is an expected range
for the maximum quality change in a solution after
applying a heuristic.
[20] used the Greate Deluge as a move acceptance

strategy. It accepts non-improving moves if the
objective value of the solution is better or equal to an
expected objective value, named as level at each step.
The objective value of the first generated candidate
solution is used as the initial level and the level is
updated at a linear rate towards a final objective value
as shown in Equation 5.

τt = f0 +∆f × (1− t

T
) (5)

where τt is the threshold level at step t in a minimisation
problem, T is the maximum number of steps, ∆F is an
expected range for the maximum fitness change and f0
is the final objective value. More on hyper-heuristics
can be found in [4, 21].

3. METHODOLOGY

A candidate solution is encoded using a direct
representation in the form of a matrix. The objective
(cost) function is described in Equation 3.

3.1. The LAHC Approach

The winner approach of the magic squares competition,
denoted as LAHC, employed two different approaches
each with a different set of heuristics based on the size of
a given problem. The first set is used on small problems,
where magic square of odd order less than or equal 23,
and a magic square of even order less than or equal 18.
The second set is used on large problems where magic
square of order 20, 22 or larger than 23.

3.1.1. Small Problems
L is set to 1000. Initially, the square is filled randomly
and the constraint sub-matrix S3×3 is fixed at its right
location (i, j). Only one heuristic is applied and it is
designed so as not to violate the proposed constraint2,
which swaps two randomly selected entries.

3.1.2. Large Problems
The approach uses a nested mechanism to construct the
magic square. The square is divided into several sub-
matrices called Magic Frames with size of l × l and
l ≤ n, where only border two rows and two columns
are non-zero. The sum of numbers at the border rows
and columns are equal to the magic number M(l). The
sum of numbers in other rows, columns and diagonals
are equal to l× l+1. The magic square constructed by
recursively inserting the magic frames or by placing a
smaller magic square inside the magic frame. Example
of magic frame of size l = 4:

7 2 14 11
16 0 0 1
5 0 0 12
6 15 3 10

Initially, the magic frame is filled randomly with the

necessary set of numbers and their counterparts (e.g. 16
and its counterpart 1 as shown in the above example).
The constraint sub-matrix S3×3 is fixed at its right
location (i, j) if the frame contains some of them. The L
is set to 50000. The evaluation function of constructing
the magic frames measures the sum of absolute values
of the distance from the Magic number from the sum of
the first row and the sum of the first column numbers.
The heuristics are designed so as not to violate the
constraint. The heuristics are described as follows:

• H1: Swap randomly with its counterpart (e.g.
swap 16 and 1 shown in the above magic frame).

• H2: Swap randomly two entries and their
counterparts (e.g. swap 3 with 5 and 12 with 14
shown in the above magic frame).

The LAHC approach selects one of the two heuristics
randomly with H2 has a higher probability to be
selected.

If the contiguous submatrix S3×3 is closed to the
border, then we only need to construct magic frames
starting from the outer border until we cover the
contiguous submatrix, then apply the well known magic
square construction methods to fill the unfilled matrix.
The construction methods are: Siamese method for
odd squares of order n, LUX method for singly even
order, and for doubly even order, the LAHC is applied
to construct one outer magic frame then applying the
LUX method to fill the remaining (for more about
Siamese and LUX methods, see [11]). If the contiguous

2http://www.cs.nott.ac.uk/~yxb/IOC/LAHC_MSQ.pdf

The Computer Journal, Vol. ??, No. ??, ????

Constructing Constrained-Version of Magic Squares Using Selection Hyper-heuristics 5

submatrix is placed deeply inside, then the following
swap moves is applicable. Considering four vertices of
the matrix P1, P2, P3 and P4, if P1+P2=P3+P4 and
they are not in any of the both diagonals, then it is
possible to swap P1 with P3 and P2 with P4 without
violating the magic constraints. By using this property,
the contiguous submatrix S3×3 can be placed close to
the border and then moved into the location (i, j)3.

3.2. Hyper-heuristic Methods

A set of selection hyper-heuristics combining different
heuristic selection methods and acceptance criteria are
applied to solve the constraint-version magic squares
problem. Similar to the LAHC approach, two different
set of low level heuristics based on the size of the
problem are employed. The first set is applicable to the
small size of the problem (magic square of odd order
less than or equal 23, and a magic square of even order
less than or equal 18); and the second set to large size
of the problem.

3.2.1. First Set of Low Level Heuristics
Initially, the square is filled randomly and the constraint
sub-matrix S3×3 is fixed at its right location at (i, j).
Nine low level heuristics are implemented. The low
level heuristics randomly modify a complete solution
in different ways while respecting the given constraint.

• LLH1: Swap two entries that fixes the magic
number violation by trying to select an entry that
is not in a row, column or diagonal satisfying the
magic rule. Then swap this entry with another
entry so as to satisfy, hopefully, the magic rule for
the selected row, column or diagonal.

• LLH2: Select two rows, columns or diagonals
randomly to swap as a whole.

• LLH3: Select largest sum of row, column or
diagonal and smallest sum of row, column or
diagonal and swap the largest element from the first
with smallest in the second.

• LLH4: Similar to LLH1. The only difference is
that the process is repeated until satisfying the
magic rule for the selected row, column or diagonal;
or until no improvement is observed.

• LLH5: Select two rows randomly k and l, fix
violations by swapping entries on a single column
s for the rows [11]. The swap occurs if and only if:

n∑
j=1

ak,j −M(n) = M(n)−
n∑

j=1

al,j = ak,s − al,s

k ̸= l

Similarly, for two randomly selected columns k and

3http://www.cs.nott.ac.uk/~yxb/IOC/LAHC_MSQ.pdf

l, the swap will occur if:
n∑

i=1

ai,k −M(n) = M(n)−
n∑

i=1

ai,l = as,k − as,l

k ̸= l

• LLH6: Swap two randomly selected entries which
are not on the row, column or diagonal that satisfy
the magic number rule.

• LLH7: Select two rows randomly k and l, fix the
violations by swapping entries on two columns s
and t separately for the rows [11], where k ̸= l,
s ̸= t and a swap occurs if and only if:

n∑
j=1

ak,j −M(n) = M(n)−
n∑

j=1

al,j

= ak,s − al,s + ak,t − al,t

Similarly, for two randomly selected columns k and
l, the swaps will occur if:

n∑
i=1

ai,k −M(n) = M(n)−
n∑

i=1

ai,l

= as,k − as,l + at,k − at,l

• LLH8: Fix violations on a diagonal as much as
possible. Mathematically [11]: for i, j = 1, 2, ..., N
and i ̸= j:
Swap ai,i with aj,i and ai,j with aj,j if:

ai,i + ai,j = aj,i + aj,j and

(ai,i + aj,j)− (ai,j + aj,i) =

n∑
i=1

ai,i −M(n)

Swap ai,j with a(n+1−j),j and ai,(n+1−i) with
a(n+1−j),(n+1−i) if:

ai,j + ai,(n+1−i) = a(n+1−j),j + a(n+1−j),(n+1−i) and

(ai,(n+1−i) + a(n+1−j),j)− (ai,j + a(n+1−j),(n+1−i))

=

n∑
i=1

a(n+1−i),i −M(n)

Swap row i and j if:

(ai,i + aj,j)− (ai,j + aj,i) =

n∑
i=1

ai,i −M(n) and

(ai,(n+1−i) + aj,(n+1−j))− (ai,(n+1−j) + aj,(n+1−i))

=
n∑

i=1

a(n+1−i),i −M(n)

Swap column i and j if:

(ai,i + aj,j)− (ai,j + aj,i) =
n∑

i=1

ai,i −M(n) and

(a(n+1−i),i + a(n+1−j),j)− (a(n+1−j),i + a(n+1−i),j)

=
n∑

i=1

a(n+1−i),i −M(n)

The Computer Journal, Vol. ??, No. ??, ????

6 A. Kheiri and E. Özcan

Swap row i and (n+ 1− i) if:

(ai,i + a(n+1−i),(n+1−i))− (ai,(n+1−i) + a(n+1−i),i)

=
n∑

i=1

ai,i −M(n) = M(n)−
n∑

i=1

a(n+1−i),i

• LLH9: Select the row, column or diagonal with
the largest sum and row, column or diagonal
with the lowest sum and swap each entry with a
probability of 0.5.

3.2.2. Second Set of Low Level Heuristics
The second set of the low level heuristics has only
two low level heuristics and are applicably to relatively
large size of the problems. The same construction and
evaluation methods developed by the winner approach
are used. The approach uses a nested mechanism to
construct the magic square by dividing the matrix into
magic frames just as explained previously. The same
heuristics which are used by LAHC to construct the
magic frames are used as a low level heuristics for the
hyper-heuristic framework, LLH1 is H1 and LLH2 is
H2.

4. COMPUTATIONAL EXPERIMENTS

4.1. Experimental Design

A set of selection hyper-heuristics combining different
heuristic selection methods and acceptance criteria
are applied to the constraint-version magic squares
problem. The seven heuristic selection methods {GR,
SR, RD, RP, RPD, CF, TABU} are combined with
six move acceptance methods {accepting all moves,
accepting only improving moves, accepting improving
and equal moves, simulated annealing, great deluge,
näıve move acceptance} producing a total of 42
selection hyper-heuristics for experimentation. All
computational experiments are performed on small
instances from n=10 up to 23 with increments of 1 and
large instances from n=25, 50, 75, 100 up to 2600 with
increments of 100, unless mentioned otherwise. 2600
is chosen as the maximum order for the magic squares
problem, as the winning approach of the magic square
competition was able to solve a magic squares problem
of order 2600 as the largest instance under a minute
on the competition computer. Since the specification of
the competition computer is not known, we performed
our experiments on an i3 CPU M330 at 2.13GHz with a
memory of 4.00GB and each one is repeated for 50 trials.
A trial is terminated, as soon as a solution is found
under one minute on our computer. The placement
of the upper left-hand corner of the sub-matrix S3×3

within the main matrix has been arbitrarily selected to
be at the position (1,4). A final set of experiments are
performed for some n, using different random locations.

TABLE 2. Pairwise performance comparison of hyper-
heuristics based on Mann-Whitney-Wilcoxon test for small
n (upper triangle) and large n (lower triangle)

HH SR RD RP RPD CF TABU

SR - ≤ ≤ ≤ ≥ ≤
RD ≤ - ≤ ≥ ≥ ≥
RP > > - > > ≥
RPD ≥ ≥ ≤ - ≥ ≥
CF < < < < - ≤

TABU < < < < > -

The Mann-Whitney-Wilcoxon test [22, 23] is per-
formed at a %95 confidence level in order to compare
pairwise performance of two given algorithms, statisti-
cally. The following notation is used: Given A (row
entry) versus B (column entry), > (<) denotes that A
(B) is better than B (A) and this performance variance
is statistically significant, while A ≥ B (A ≤ B) indi-
cates that A (B) performs slightly better than B (A).

4.2. Comparison of Selection Hyper-heuristics

All selection hyper-heuristics are tested with the goal
of detecting the quickest one. Greedy based hyper-
heuristics and any hyper-heuristic using one of the move
acceptance methods in {accepting all moves, accepting
only improving moves, accepting improving and equal
moves, simulated annealing, great deluge} failed to
construct the constraint-version magic squares within
the time limits. The experiments show that hyper-
heuristics using the näıve move acceptance method
which accepts a worsening solution with a probability
of %0.004 is the most successful approach. The
threshold value of %0.004 is obtained after a series of
parameter tuning experiments using different values in
{%1, %0.1, %0.01, %0.001, %0.0001, %0.002, %0.003,
%0.004, %0.005 and %0.006}. Table 1 provides the
average execution time and the standard deviation
in millisecond over 50 trials of arbitrarily chosen 10
sample instances from small and large orders of n for
each. Hyper-heuristics using the selection methods
from {SR, RD, RP, RPD, CF, TABU } combined with
the näıve move acceptance are considered. From this
point onward we will refer to a hyper-heuristic by its
heuristic selection component, as its move acceptance
component are the same. For small instances, CF and
RPD perform the worst. RP and RD perform better
than the other hyper-heuristics on average. Table 2
confirms all these observations. CF performs worse
than all other hyper-heuristics and this performance
difference is also statistically significant. RP is the
best approach for large instances and this performance
difference is statistically significant on all instances,
except for n = 100.

The Computer Journal, Vol. ??, No. ??, ????

Constructing Constrained-Version of Magic Squares Using Selection Hyper-heuristics 7

TABLE 1. The average execution time (avr.) and the standard deviation (s.d.) in millisecond of 50 trials to construct magic
squares of different orders (n)

SR RD RP RPD CF TABU

n avr. s.d. avr. s.d. avr. s.d. avr. s.d. avr. s.d. avr. s.d.

10 212 181 231 228 250 456 272 259 230 173 211 178
11 174 134 210 204 164 142 222 222 191 156 172 141
13 224 176 240 153 241 160 216 144 280 200 280 247
14 309 190 270 172 327 250 283 253 320 209 339 227
15 370 273 410 382 308 231 371 312 358 256 400 343
16 460 361 392 335 397 313 428 296 554 522 328 235
18 591 405 623 468 684 632 631 478 651 370 794 517
19 892 767 785 670 659 461 788 442 915 705 777 548
21 1279 1178 953 777 819 657 1224 1234 1052 783 1202 957
23 1500 1325 1308 1030 1446 1256 1306 821 1823 1626 1274 700

25 22 14 21 19 14 13 17 18 28 30 21 20
50 50 34 45 30 39 28 44 33 78 41 69 45
100 61 39 73 45 56 49 53 39 106 70 70 45
200 130 89 164 124 113 85 137 92 177 111 201 121
400 305 187 270 210 260 188 328 229 452 299 369 275
800 633 363 822 467 556 290 786 326 1329 671 941 525
1000 861 488 758 462 692 464 911 534 1206 678 961 526
1500 1505 924 1348 685 1252 649 1637 907 1874 1268 1844 1158
2000 2377 1374 2726 1219 2036 881 2660 1263 4691 3218 3232 1893
2600 4433 2135 4544 2097 3684 155 3987 1780 6828 4876 4591 2616

4.3. Comparison of RP to the Best Known
Heuristic Approach

Table 3 summarises the performance comparison of RP
to the best previously proposed solution methodology
(LAHC) which is the winner of the magic squares
competition on some selected instances of order n.
The RP based hyper-heuristic outperforms the LAHC
approach in all the performance measures, including
average execution time, maximum and minimum time
in millisecond for all n. Moreover, the standard
deviation associated with the average execution time
of RP is lower than LAHC in all cases.
Figure 2 provides the sample box plots of run times

obtained by LAHC and RP for the problem when n=21,
23, 2000 and 2600. The Mann-Whitney-Wilcoxon test
confirms that the RP based hyper-heuristic performs
significantly better than the LAHC approach within a
confidence interval of %95 for any given n.
The inclusion of multiple low level heuristics and

the stochastic nature of the hyper-heuristic makes
it extremely difficult to compute the running time
complexity of the overall algorithm. Hence, a regression
model is formed based on large n. 50 trials to construct
magic square of various orders form n=1000 to 2900
with increments of 100 have been considered for the
regression model. Table 4 provides the Root Mean
Square Error (RMSE) to indicate the quality of the fit.
The random permutation based hyper-heuristic and the
LAHC runs in O(n) time. RP has a smaller constant
multiplier and RMSE values when compared to LAHC,
showing that RP runs predictably faster than LAHC.
A final set of experiments are performed to observe

TABLE 4. Regression models to predict the running time
complexity of the random permutation hyper-heuristic and
the RMSE.

Apprach General Model Coefficients RMSE

RP a · n a = 1.359 1523
LAHC a · n a = 3.311 4745

the behaviour of RP and LAHC approach for the
instances of orders n=21, 23, 2000 and 2600 varying
the placement of the upper left-hand corner of the sub-
matrix S3×3 at (i, j). We generated 100 and 2000
random locations of (i, j) for small n=21, 23 and large
n=2000, 2600, respectively. Figure 3 provides the box
plots obtained from LAHC and RP for their running
times showing that RP still performs significantly better
than the LAHC approach for those n values.

4.4. A Performance Analysis of Low Level
Heuristics under RP

Different low level heuristics contribute to the
improvement of a solution in hand at different levels.
Utilisation rate of a low level heuristic is the ratio of
the number of low level heuristic invocations to the
total number of heuristic invocations during a search
process [9]. In both set of low level heuristics, it is
observed that LLH1 generates more improving moves as
compared to other heuristics. In the first set of low level
heuristics, LLH1 and LLH4 are more successful with
high utilisation rates in improving a candidate solution
as compared to others, in general. Similarly, LLH2,
LLH3, LLH6, LLH7 and LLH9 perform better than the
rest in this respect. LLH5 and LLH8 do not seem to

The Computer Journal, Vol. ??, No. ??, ????

8 A. Kheiri and E. Özcan

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

n=21

tim
e

in
 m

ill
is

ec
on

d

LAHC RP

(a)

0

2

4

6

8

10

x 10
4

n=23

tim
e

in
 m

ill
is

ec
on

d

LAHC RP

(b)

0

2000

4000

6000

8000

10000

12000

14000

16000

n=2000

tim
e

in
 m

ill
is

ec
on

d

LAHC RP

(c)

0

0.5

1

1.5

2

2.5

x 10
4

n=2600

tim
e

in
 m

ill
is

ec
on

d

LAHC RP

(d)

FIGURE 2. Box plots of execution time (in millisecond) from 50 runs for each hyper-heuristic constructing a constrained
magic square for (a) n=21, (b) 23, (c) 2000 and (d) 2600.

0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

n=21

tim
e

in
 m

ill
is

ec
on

d

LAHC RP

(a)

0

1

2

3

4

5

6

7

8

9

10

x 10
4

n=23

tim
e

in
 m

ill
is

ec
on

d

LAHC RP

(b)

0

0.5

1

1.5

2

2.5

x 10
4

n=2000

tim
e

in
 m

ill
is

ec
on

d

LAHC RP

(c)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
4

n=2600

tim
e

in
 m

ill
is

ec
on

d

LAHC RP

(d)

FIGURE 3. Box plots of execution time (in millisecond) from all runs for each hyper-heuristic constructing a constrained
magic square using various randomly decided (i, j) locations for (a) n=21, (b) 23, (c) 2000 and (d) 2600.

The Computer Journal, Vol. ??, No. ??, ????

Constructing Constrained-Version of Magic Squares Using Selection Hyper-heuristics 9

TABLE 3. The average execution time (avr.), the standard deviation (s.d.), the maximum (max.) and the minimum (min.)
in millisecond over 50 trials to construct magic squares of different orders (n)

LAHC RP

n avr. s.d. max. min. avr. s.d. max. min.

10 3825 3221 13717 955 250 456 3204 41
11 3409 4070 21623 1104 164 142 649 23
13 4823 4595 26268 1282 241 160 842 41
14 7841 8284 45049 1823 327 250 1197 71
15 7026 5603 25355 2170 308 231 1029 87
16 8356 8106 39394 2162 397 313 1544 112
18 8268 5905 23708 2652 684 632 2950 154
19 11325 10572 57327 2966 659 461 2463 165
21 16061 12340 48495 3640 819 657 3140 279
23 27399 25735 111373 4434 1446 1256 7210 267

25 157 26 214 90 14 13 61 1
50 366 252 1595 229 39 28 122 6
100 415 351 1622 195 56 49 305 8
200 1249 1140 6377 364 113 85 395 13
400 1790 1498 6700 456 260 188 750 36
800 3960 2722 12628 533 556 290 1396 117
1000 4620 2775 11088 724 692 464 2265 141
1500 5676 3957 16717 889 1252 649 3304 316
2000 6161 3822 16570 1166 2036 881 4572 579
2600 8142 4971 25284 1628 3684 1559 7126 1099

be that useful at the first glance, but considering that
a portion of the worsening moves are accepted after
the application of this low level heuristic, it seems to
serve as a ”good” diversification component possibly
in combination with the other heuristics. Figure 4
provides the utilisation rate of each low level heuristic
considering improving moves only using a sample run
for n=21, 23, 2000 and 2600. Under RP, each low level
heuristic is invoked 50% of the overall time for large
n, but LLH1 achieved more improvement than LLH2.
Moreover, it has been observed in almost all cases that
60-65% and 35-40% of the moves are improving when
LLH1 and LHH2 are used, respectively.

It is possible to obtain different magic squares of a
given order. The following squares are the examples
of two constrained version of magic square of order 10
generated by the described hyper-heuristic approach:

82 46 71 1 2 3 44 72 93 91
69 63 98 4 5 6 94 62 18 86
95 77 33 7 8 9 52 92 74 58
96 45 41 90 31 57 47 17 39 42
56 88 78 36 70 48 79 13 21 16
34 30 24 100 65 76 64 22 55 35
27 61 14 43 68 81 29 97 59 26
12 20 32 73 84 99 37 23 38 87
15 50 60 85 89 75 10 40 28 53
19 25 54 66 83 51 49 67 80 11

LLH1

39%

LLH2

4%LLH3

5%

LLH4

34%

LLH5

0%

LLH6

3%
LLH7

7%

LLH8

0%

LLH9

8%

(a)

LLH1

45%

LLH2

3%

LLH3

4%

LLH4

35%

LLH5

1%

LLH6

3%

LLH7

4%

LLH8

0%

LLH9

5%

(b)

LLH1

62%

LLH2

38%

(c)

LLH1

62%

LLH2

38%

(d)

FIGURE 4. Utilisation rates of the low level heuristics
based on improving moves only for (a) n=21, (b) 23, (c)
2000, and (d) 2600.

80 35 97 1 2 3 98 70 99 20
73 62 53 4 5 6 74 56 88 84
83 38 23 7 8 9 96 77 72 92
52 61 31 95 54 82 29 13 24 64
45 65 91 75 93 66 12 22 17 19
28 37 39 57 89 30 14 76 87 48
41 63 33 21 90 78 11 50 47 71
27 86 55 100 15 79 69 46 10 18
42 26 67 60 68 58 59 51 25 49
34 32 16 85 81 94 43 44 36 40

The Computer Journal, Vol. ??, No. ??, ????

10 A. Kheiri and E. Özcan

5. CONCLUSION

Hyper-heuristics have been shown to be effective
solution methods across many problem domains. It
has been observed that the performance selection
hyper-heuristics may vary depending on the choice of
heuristic selection and move acceptance components.
[9] showed that the move acceptance is more influential
on the performance of a selection hyper-heuristic if
the number of low level heuristics is low and they
are mutational. Then, the choice of move acceptance
component becomes more crucial. In this study,
different hyper-heuristics combining different selection
and move acceptance methods are implemented as
search methodologies to solve the constraint magic
square problem. Unlike previous studies on hyper-
heuristics, the performance of a hyper-heuristic is
measured with its run-time rather than the quality of
solutions obtained for the given problems. Still, the
results confirm the previous observations. The random
permutation based selection hyper-heuristic combined a
näıve acceptance method (RP −NAM) turns out to be
an extremely effective and efficient approach which runs
faster than all other hyper-heuristics using different
move acceptance methods. Learning requires time
slowing down a selection hyper-heuristic and so hyper-
heuristics with no learning using the näıve acceptance
method are more successful than the learning hyper-
heuristics regardless of whether the learning occurs
within the heuristics selection or move acceptance
component. RP − NAM outperforms the best known
heuristic approach based on Late Acceptance for
constructing a constrained magic squares.

REFERENCES

[1] Burke, E. K., Hart, E., Kendall, G., Newall, J., Ross,
P., and Schulenburg, S. (2003) Hyper-heuristics: An
emerging direction in modern search technology. In
Glover, F. and Kochenberger, G. (eds.), Handbook of
Metaheuristics, pp. 457–474. Kluwer.

[2] Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan,
E., and Woodward, J. (2009) A classification of hyper-
heuristics approaches. Handbook of Metaheuristics.
Springer - in press.

[3] Burke, E. K., Hyde, M. R., Kendall, G., Ochoa,
G., Özcan, E., and Woodward, J. R. (2009)
Exploring hyper-heuristic methodologies with genetic
programming. In Kacprzyk, J., Jain, L. C.,
Mumford, C. L., and Jain, L. C. (eds.), Computational
Intelligence, Intelligent Systems Reference Library, 1,
pp. 177–201. Springer Berlin Heidelberg.

[4] Ross, P. (2005) Hyper-heuristics. In Burke,
E. K. and Kendall, G. (eds.), Search Methodologies:
Introductory Tutorials in Optimization and Decision
Support Techniques, chapter 17, pp. 529–556. Springer.

[5] Cowling, P., Kendall, G., and Soubeiga, E. (2001) A
hyperheuristic approach to scheduling a sales summit.
Selected papers from the Third International Conference
on Practice and Theory of Automated Timetabling,
London, UK, pp. 176–190. Springer-Verlag.

[6] Fisher, H. and Thompson, G. L. (1963) Probabilistic
learning combinations of local job-shop scheduling
rules. In Muth, J. F. and Thompson, G. L.
(eds.), Industrial Scheduling, New Jersey, pp. 225–251.
Prentice-Hall, Inc.

[7] Özcan, E., Bykov, Y., Birben, M., and Burke, E. (2009)
Examination timetabling using late acceptance hyper-
heuristics. Evolutionary Computation, 2009. CEC ’09.
IEEE Congress on, may, pp. 997 –1004.

[8] Pisinger, D. and Ropke, S. (2007) A general heuristic
for vehicle routing problems. Computers and
Operations Research, 34, 2403– 2435.

[9] Özcan, E., Bilgin, B., and Korkmaz, E. E. (2008) A
comprehensive analysis of hyper-heuristics. Intelligent
Data Analysis, 12, 3–23.

[10] Bilgin, B., Özcan, E., and Korkmaz, E. (2007)
An experimental study on hyper-heuristics and final
exam scheduling. Practice and Theory of Automated
Timetabling VI, pp. 394–412. Springer.

[11] Xie, T. and Kang, L. (2003) An evolutionary algorithm
for magic squares. Evolutionary Computation, 2003.
CEC ’03. The 2003 Congress on, dec., pp. 906 – 913.

[12] Burke, E. K. and Bykov, Y. (2012) The late
acceptance hill-climbing heuristic. Technical Report
Technical Report No. CSM-192. Computing Science
and Mathematics, University of Stirling.

[13] Burke, E. K. and Bykov, Y. (2008) A Late Acceptance
Strategy in Hill-Climbing for Exam Timetabling
Problems. PATAT ’08 Proceedings of the 7th
International Conference on the Practice and Theory
of Automated Timetabling.

[14] Abuhamdah, A. (2010) Experimental result of late
acceptance randomized descent algorithm for solving
course timetabling problems. IJCSNS-International
Journal of Computer Science and Network Security, 10,
192–200.

[15] Verstichel, J. and Vanden Berghe, G. (2009) A late
acceptance algorithm for the lock scheduling problem.
In Voss, S., Pahl, J., and Schwarze, S. (eds.), Logistik
Management, pp. 457–478. Physica-Verlag HD.

[16] Nareyek, A. (2003) Choosing search heuristics by non-
stationary reinforcement learning. In Resende, M.
G. C. and de Sousa, J. P. (eds.), Metaheuristics:
Computer Decision-Making, chapter 9, pp. 523–544.
Kluwer.

[17] Özcan, E. and Kheiri, A. (2012) A hyper-heuristic
based on random gradient, greedy and dominance.
In Gelenbe, E., Lent, R., and Sakellari, G. (eds.),
Computer and Information Sciences II, pp. 557–563.
Springer London.

[18] Burke, E. K., Kendall, G., and Soubeiga, E. (2003)
A tabu-search hyperheuristic for timetabling and
rostering. Journal of Heuristics, 9, 451–470.

[19] Burke, E. K., Curtois, T., Hyde, M. R., Kendall, G.,
Ochoa, G., Petrovic, S., Rodŕıguez, J. A. V., and
Gendreau, M. (2010) Iterated local search vs. hyper-
heuristics: Towards general-purpose search algorithms.
IEEE Congress on Evolutionary Computation, pp. 1–8.

[20] Kendall, G. and Mohamad, M. (2004) Channel assign-
ment optimisation using a hyper-heuristic. Proceedings
of the 2004 IEEE Conference on Cybernetic and Intelli-
gent Systems (CIS2004), Singapore, 1-3 December, pp.
790–795.

The Computer Journal, Vol. ??, No. ??, ????

Constructing Constrained-Version of Magic Squares Using Selection Hyper-heuristics 11

[21] Burke, E. K., Gendreau, M., Hyde, M., Kendall, G.,
Ochoa, G., Özcan, E., and Qu, R. (2013) Hyper-
heuristics: A survey of the state of the art. Journal
of the Operational Research Society, to appear , ?

[22] Fagerland, M. W. and Sandvik, L. (2009) The
wilcoxon–mann–whitney test under scrutiny. Statistics
in Medicine, 28, 1487–1497.

[23] Kruskal, W. H. (1957) Historical notes on the wilcoxon
unpaired two-sample test. Journal of the American
Statistical Association, 52, pp. 356–360.

The Computer Journal, Vol. ??, No. ??, ????

