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Constructing convex energy landscapes for atomistic structure optimization
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We propose a global optimization strategy for atomistic structure determination based on two new concepts:
a few-atom complementary energy landscape and atomic role models. Global optimization of costly energy
expressions may be aided by performing some of the optimization on model energy landscapes. These are
often based on a sum-of-atomic-contributions form that accurately reproduces every local energy minimum
of the true energy expression. However, we propose that, by not including all atomic contributions, the resulting
energy landscapes may become more convex, making the search for the global optimum more facile. A role
model is someone we aspire to be more like; in the same vein we define the role model of an atom to be
another atom whose local environment the first atom seeks to obtain itself. Basing a complementary energy
landscape on the distance of some atoms from their role models in a feature space, we arrive at a useful
few-atom complementary energy landscape. We show that relaxation in this landscape is an effective mutation
when employed in an evolutionary algorithm used to identify the bulk cristobalite structure of SiO2 and the
(1 × 4) surface reconstruction of anatase TiO2(001).

DOI: 10.1103/PhysRevB.100.235436

I. INTRODUCTION

Computational screening and property prediction have be-
come important methods for novel materials design [1–4].
For some problems, dynamic and entropic effects may be
of importance for making reliable predictions [5], but often,
knowing the minimum energy configuration of the material
is sufficient for making reliable predictions. This typically
means that the lowest minimum in a high-dimensional poten-
tial energy surface must be identified.

The prevailing strategy for solving such global optimiza-
tion problems consists of an algorithm that creates new
possible candidate configurations and a method to evaluate
whether these new configurations are more stable. There
are many successful algorithms such as simulated anneal-
ing [6], basin and minima hopping [7,8], evolutionary algo-
rithms [9–16], particle-swarm algorithms [17,18], and random
structure searching [19]. The method of choice for evaluating
the energy has been first-principles density functional theory
(DFT), as it is adequately accurate while being computation-
ally feasible for many systems of interest. However, replacing
the DFT calculations with something less expensive is an
appealing prospect and has recently become feasible with
the adoption of machine learning methods (for reviews, see
Refs. [20,21]). This has made it possible to replace DFT
calculations with database-trained machine learning models,
based on, for example, kernel methods [22–24] or neural
networks [25–33]. A database of calculations is expensive to
generate and therefore methods have been developed to gener-
ate the required data for surrogate models on the fly, minimiz-
ing the amount of data required, for applications in potential
fitting [34–36], molecular dynamics [37–39], nudged elastic
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band calculations [40–42], and indeed local [43–45] and
global optimization [46–51].

Machine learning methods rely on descriptors that trans-
form the Cartesian coordinates defining the atomic structure
into vectors that can be fed into these models. Such feature
vectors should encode the symmetries (translational, rota-
tional, and permutational) that the potential energy obeys—
symmetries that are not respected by the Cartesian coordi-
nates. A range of such descriptors has been introduced in two
main categories: local descriptors [25,52–56] that describe the
local environment (e.g., density of atoms in a neighborhood)
and global descriptors [23,57–60] that describe an entire
structure.

Global optimization algorithms, such as basin-hopping
and evolutionary algorithms, rely on updates to the atomic
coordinates to escape local minima and discover other more
stable local minima, eventually finding the global minimum.
This could be a rattling of all the atomic coordinates, where
the direction and magnitude of the individual displacements
are random. The stochastic nature of the coordinate updates
ensures exploration of the configuration space [61–63]. The
performance of these global optimization techniques can thus
be increased by using updates that, by incorporating the
available information, maximize the chance of finding new
more stable minima. This is what is done by evolutionary
algorithms that utilize sophisticated crossover operations be-
tween members of a population of locally optimal structures.

Local relaxation uses the atomic forces to direct struc-
tures towards a local minimum. If the potential energy sur-
face (PES) being optimized were convex, there would be
only one minimum, the global one, and local optimization
would lead to it. However, as PESs have in general many
local minima, local optimization techniques usually only
lead to the global minimum if the searches are started from
within the hypervolume of the global minimum. In a recent
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paper, Pickard proposed to add extra dimensions that become
increasingly unfavorable to occupy, allowing atoms to pass
through each other during relaxation, effectively increasing
the hypervolume of the global minimum [64]. This can be
viewed as performing the relaxation in a different landscape
where the extra dimensions allow barriers to be circumpassed.

In this paper we propose that for energy landscapes defined
as a sum of local contributions an efficient global minimiza-
tion strategy is to locally optimize—not according to the total
energy, but rather according to the sum over a subset of the
local energies. This removes some local minima, effectively
creating a more convex landscape that is easier to globally
optimize. Quantum mechanical (QM) methods only supply
the total energy and no unique way exists to decompose the
total energy into a sum of atomic contributions [65]. However,
many machine learning methods for reproducing quantum
mechanical energies have been proposed in the form of a
sum of atomic contributions [22,25,26], which opens up for
the use of the method we propose here. We demonstrate the
usefulness of the method when applied in combination with
a recently proposed method, cluster regularization [66]. The
cluster regularization method builds on the observation that
as more and more stable configurations are identified during
an evolutionary structure search, more and more clustering is
observed of the atoms when represented in a feature space.
Sørensen et al. [66] showed that this may be reversed into:
by enforcing clustering of atoms in feature space, stable
structures emerge faster during the evolutionary search. A
cluster-distance expression was introduced that measures the
sum of distances between the feature representation of all
local atomic environments and their corresponding cluster
centers. It was shown that this expression correlates with the
energy causing its minimization to lead to effective coordinate
updates. During these updates, the atoms are moved towards
their local cluster centers that thus act as attractors. In the
present work, we generalize this expression to what we call a
complementary energy (CE). Rather than using cluster centers
as the points in feature space that distances are measured from,
we randomly pick attractors among the atoms in any given
structure. We coin those atoms role models.

The paper is outlined as follows. First, the complementary
energy landscape is explored in Sec. II along with the def-
inition of role models and an example of how to apply the
idea of only including certain terms in the energy expression.
In Sec. III an evolutionary algorithm (EA) that incorporates
the complementary energy landscape with few-atom mini-
mizations as a mutation is presented. This is followed by
demonstration runs of the EA on one SiO2 system and three
TiO2 systems of increasing difficulty in Sec. IV. The paper
ends with a concluding Sec. V.

II. COMPLEMENTARY ENERGY

A common approach when modeling potential energy sur-
faces is to express the total energy as a sum of local energy
contributions, e.g., as a sum of atomic energies. In such a setup
the total energy can be written as

E =
∑

i

Ei. (1)

A wide variety of models can be written in this way, such
as pair potentials but also highly accurate machine learning
models, be it neural networks [25] or kernel methods [22].
We propose that for the purpose of global optimization it
can be beneficial to not necessarily include all terms in such
an expression when evaluating the gradient. In doing so, the
model potential changes character from being a surrogate
energy landscape mimicking every aspect of the true energy
landscape to being a landscape that hopefully shares a global
minimum with the true energy landscape. We call this kind of
landscape a complementary energy landscape.

The construction of potentials is facilitated by descriptors,
as a way to mathematically represent atomic structures, that
encode symmetries present in the Hamiltonian governing the
system. The outputs of such descriptors are typically feature
vectors that describe the local environment around an atom. In
order to easily illustrate our findings in this work, we choose
an exceedingly simple feature representation. The feature
vectors we use to describe the local environment of atoms in a
two-component system, with atomic types A and B, are simply

fi =
[

ρA
i , ρB

i , Zi

]

, (2)

where Zi is the atomic number of atom i and where ρZ
i

describes the atomic density of species Z in the neighborhood
of atom i given as

ρZ
i =

∑

j �=i,Z j=Z

e−ri j/λgc(ri j ), (3)

where ri j is the distance between atoms i and j, λ is a length
scale, and gc(r) is a cutoff function that smoothly goes to zero
at the cutoff radius rc given by

gc(r) =

{ 1
2 cos(π r

rc
) + 1

2 , r � rc

0, r > rc.
(4)

For all figures and results presented in this work we have
chosen λ = 1 Å and rc = 11.9 Å.

Having chosen an expression for the feature vectors, a CE
landscape can be formulated as

CEall =
∑

i

|fi − Ai|, (5)

where fi is the feature vector of atom i and Ai is the at-
tractor assigned to atom i. The key to the usefulness of a
complementary energy landscape obviously lies in the choice
of attractors. Assuming a set, J , of attractors has been decided
on, the assignment may be done so that every atom has its
nearest neighbor assigned to it:

CEall =
∑

i

min
j∈J

|fi − A j |. (6)

The gradient of CEall with respect to the Cartesian coor-
dinates of the atoms can be evaluated and CEall may thus
be minimized using gradient descent methods. During these
minimization steps, we keep the assignments of attractors
fixed and hence avoid cusps in the complementary energy
landscape that would otherwise potentially develop if some
atoms were to obtain new nearest attractors in the course of
the minimization.

235436-2



CONSTRUCTING CONVEX ENERGY LANDSCAPES FOR … PHYSICAL REVIEW B 100, 235436 (2019)

FIG. 1. (a, b) A hexagonal boron nitride nanoribbon where a boron atom has been removed from a bulk position. Coloring indicates the
energy calculated from DFT and CE, respectively, the DFT energy has been cropped at the global minimum energy plus 30 eV, and both DFT
and CE energies have been rescaled to be between zero and 1. Insets show the energy profiles along the relaxation paths in these landscapes.
As the DFT relaxation gets stuck in the local minimum energy configuration indicated by the star, the energy beyond this point is shown along
a straight line from the star to the global minimum configuration indicated by the triangle. (c) The feature-space representation of the CE
relaxation procedure is shown; here ρN and ρB are feature coordinates that measure the density of nitrogen and boron atoms. The movement
of a single atom in real space results in changes to the feature-space representation of several atoms. The same rescaling as in (b) has been
applied.

Given Eq. (6), it still remains to decide on the set of at-
tractors. The feature vectors of atoms appearing in the sought-
after global minimum energy structure would be the optimum
choice as they could lead to a zero right-hand side in Eq. (6).
Obviously, these feature vectors are not available until the
search has completed, and the attractors must be chosen from
what is at hand during the search. In Ref. [66] the attractors
were chosen as a small number of cluster centers emerging
from an unsupervised clustering of all atoms in three parent
structures present in the population of an evolutionary search.
In this work, we rather propose to establish the set of attractors
from the actually occurring atomic features in a single parent
structure. We denote such atoms role models and the attractors
are the features of the role models. An atom aspires to become
more like its role model (in terms of the similarity of their lo-
cal environments), and Eq. (6) gives a formal way of realizing
that aspiration. An advantage of the method proposed in this
work is that the attractors are points in feature space that are
indeed realizable (they already exist in some structure), which
is not guaranteed if cluster centers are used as in Ref. [66].
An obvious example of this is clustering points distributed on
the surface of a sphere that yields a cluster center close to the
center of the sphere, but far away from all the points.

Since the complementary energy is of the form of Eq. (1),
the idea of only including certain terms in the summation
can further be applied. To do so, one would only sum over
atoms in some set I , and the few-atom complementary energy
landscape takes the form

CEfew =
∑

i∈I

min
j∈J

|fi − A j |. (7)

We discuss below how the set of atoms may be chosen, but
we start with an exceedingly simple example where only one
atom is misplaced.

Example with one misplaced atom

To illustrate how the method works in a case where the
optimum attractor can be inferred, we present in Fig. 1 an

S1 : Select

Structure

S2 : Select

RM’s

S3 : CE relaxS4 : QM relax

S5 :

If

i ≤ imax

S6 :
Accept/

Reject

S7 : Update

Population

S0 : Initial

Population

St : Stop

Yes
i = i + 1

if
re

je
ct

ed

i = 1

No

if accepted

FIG. 2. Flow chart of the complementary energy assisted evo-
lutionary algorithm. Algorithm starts with step S0, proceeds in a
loop (steps S1–S7), and stops if the number of iterations reaches a
maximum (imax). After selecting a structure, a set of role models is
chosen and a CE relaxation is performed followed by a relaxation
with the quantum mechanical energy, which is repeated until the
energy no longer improves.
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FIG. 3. (a) Potential energy as a function of iteration, along with best energy found. Feature space representation of structures at (b) 0,
(c) 23, and (d) 76 iterations along with corresponding geometries in the insets. (e) Success rate for cluster regularization and CEall applied on
a SiO2 cristobalite-type structure.

example where a boron atom has been removed from the bulk
of a hBN nanoribbon and placed outside of it. In Fig. 1(a)
the true DFT energy is used to relax the atom, but there is
an energy barrier blocking the path to the global minimum.
With a single-atom CE relaxation method, Eq. (7), the global
minimum structure is reachable as shown in Fig. 1(b), where
the role model acting as the attractor is a boron atom in
a bulk position. Finally Fig. 1(c) shows the feature-space
representation of the CE relaxation. Note that only one boron
atom is allowed to move in real space but this causes other
atoms to move in feature space. The local minimum that the
DFT relaxation finds is likely due to obtaining bonds to two
nitrogen atoms, a similar bonding configuration as that of an
edge atom; the CE relaxation also moves through this position
but does not recognize it as a local minimum due to the convex
property of the CE as seen from the feature-space view in
Fig. 1(c). The CE is able to move the boron atom to its optimal
position effectively, whereas relaxations with the real energy
encounters barriers and standard perturbations, such as a rattle
mutation, are unlikely to move the boron atom to a position
where a normal relaxation would lead to the optimal bulk
position.

In Fig. 1, the role model was decided on manually to make
the best possible case for the illustration. In practice, role
models will not be known before a search is initialized, but
may, as illustrated in the next section, be chosen stochastically
during the search.

III. EVOLUTIONARY ALGORITHM

The complementary energy relaxation has been employed
as a mutation in an evolutionary algorithm; the flow chart for
this algorithm is shown in Fig. 2. The algorithm is initialized
by generating ten locally relaxed structures that are employed
as the initial population (S0 in the flow chart). The main
loop of the algorithm consists of picking a structure from the
population and applying CE and QM relaxations sequentially.
The CE relaxation steps require the selection of a number
of role models. These are taken from the feature vectors of
a number of atoms appearing in the single structure picked
from the population. In order to avoid choosing essentially
equivalent role models, a filter is applied requiring a 0.01
minimum distance in feature space. After filtering, R1 role
models are picked randomly from the remaining features as
attractors for the next CE step, where R1 is a random number
between a predefined lower and upper bound that should be
decided upon based on the system studied. The change in
number of role models in each iteration allows the algorithm
to escape from local minima. In the present work, both few-
atom CE and all-atom CE have been employed; in the case
of few-atom relaxation, a random number R2 between 1 and
the total number of atoms is chosen and the R2 atoms with
the highest local CE are included in the relaxation with the
remaining constrained to their current positions. This results
in a new candidate structure that is relaxed with the QM
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FIG. 4. (a) Potential energy as a function of iteration, along with best energy found. Feature space representation of structures after (b) 0,
(c) 4, (d) 181, and (e) 230 iterations along with corresponding geometries in the insets.

method of choice. If the energy of the resulting structure is
lower than before the CE relaxation another CE-QM step is
performed; if not, the most recently accepted structure (if any)
is added to the population and the most energetic member
of the population is discarded. Finally, the process may be
repeated, starting the CE-QM relaxations for a new parent
structure chosen at random. The algorithm continues to update
the population members for a predetermined number of steps,
and may be started a great number of times to establish
reliable statistics on its performance.

IV. RESULTS

The evolutionary algorithm described in the previous sec-
tion has been applied on two kinds of systems: (i) a bulk
system, namely, cristobalite-type SiO2, and (ii) a TiO2-anatase
surface reconstruction with increasing number of layers.
For both systems our proposed CE method is compared to
the cluster regularization method. In the case of a SiO2

cristobalite-type structure, the experimental cell parameters
(a = b = 4.52 Å, c = 7.10 Å, and α = β = γ = 90◦) were
optimized with linear combination of atomic orbitals DFT
with the Perdew-Burke-Ernzerhof functional as implemented
in GPAW, which is also the level of theory used for QM re-
laxations [67,68]. The optimized cell parameters are a = b =

4.75 Å, c = 6.85 Å, and α = β = γ = 90◦ with a 2 × 2 × 2
k-point grid for Brillouin zone sampling. The number of role
models is chosen randomly between 2 and 4. The success

curves are shown in Fig. 3(e) for both the methods. Along
with success curves, the energy vs iteration plots for one of the
restarts with feature representation at 0, 23, and 76 iterations
are provided in Figs. 3(a)–3(d). For the initial structure, the
feature space is scattered and, after a few iterations, it converts
to the fewer number of features as shown in Figs. 3(b)
and 3(c). In Fig. 3(a), the algorithm starts finding the global
minimum after 76 iterations, containing only two distinct
features shown in Fig. 3(d). The success curves shown in
Fig. 3(e) indicate that CEall achieves 75% success around 180
iterations whereas cluster regularization [66] only achieved
30% success around 220 iterations. The minimum number of
iterations required before finding the global minimum in one
restart is the same for both algorithms. The lower success rate
for cluster regularization may be due to slow convergence of
cluster centers in feature space.

Our second test system is the anatase TiO2(001)-(1 × 4)
surface reconstruction with one, two, and three atomic layers.
For this system density-functional tight binding (DFTB) as
implemented in DFTB+ is used [69]. DFTB has been used
to study TiO2 systems previously, in cases where either the
system size or the number of calculations has been too large
for a full DFT treatment [70,71]. We use DFTB parameters
from Dolgonos et al. and lattice parameters a = 3.94 Å and
c = 9.47 Å together with a 2 × 1 k-point grid for Brillouin
zone sampling [72]. We refrain, however, from using the
self-consistent-charge correction. The number of role models
is chosen randomly between 4 and 6. To understand the
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FIG. 5. Cumulative success rate for (a) two-layer, (b) three-layer,
and (c) four-layer anatase TiO2 systems. The CE role model method
outperforms the cluster regularization method especially for the most
difficult four-layer system.

mechanism of the algorithm we first analyze a trajectory for
one run of the algorithm on the two-layer anatase-TiO2-(001)
surface in Fig. 4. The energy as a function of the number
of iterations is shown in Fig. 4(a) along with the lowest
energy found thus far. Initially the energy is very high, and
the feature representation of the structure is scattered. The
algorithm quickly enforces a less scattered feature space by
moving atoms towards environments equivalent to that of their
role models, as seen from the structure in Fig. 4(c), which
has a much less scattered feature space, even though the
found structure is separated from the fixed bottom layer. As
the algorithm progresses, the feature representation becomes
less scattered while the best energy found decreases. The

global minimum structure is found after 230 iterations. This
structure has a well-ordered feature representation with six
distinct clusters of features, as shown in Fig. 4(e), which the
CE relaxation efficiently enforces.

In order to validate the performance of the complementary
energy assisted evolutionary algorithm we benchmarked it
against the previously used cluster regularization method [66]
utilizing either the all-atom CE or the few-atom CE approach.
Both methods were used in predicting the structure of a
reconstructed two-, three-, and four-layer anatase TiO2(001)
surface and the resulting success plots are shown in Fig. 5.
The success plots are obtained from 100 restarts for each TiO2

system for all three algorithms. The number of iterations is
varied depending on the system size; thus 1000, 1500, and
2000 iterations are carried out for two-, three-, and four-layer
TiO2 systems, respectively.

As illustrated in Fig. 5(a) for the two-layer system, both CE
methods achieve 85% success, whereas cluster regularization
saturates around 65% success. For this small system the CEall

method has a steeper success curve than the CEfew. The
performance gain is due to choosing attractors from role mod-
els, as both few- and all-atom CE relaxations obtain similar
success rates. However, for the case of the three-layer TiO2

system, the CEfew method reaches a higher success rate than
CEall as well as cluster regularization as shown in Fig. 5(b).
The cluster regularization method achieves a 40% success
rate whereas the CEfew method achieves an ∼80% success
rate and both methods start finding the global minimum
after the same number of iterations. The success curve for
the four-layer TiO2 system is shown in Fig. 5(c); here the
CEfew method starts finding the global minimum sooner than
the CEall method and both methods convincingly outperform
the cluster regularization method. These results show that,
especially for large systems, the few-atom CE strategy is
beneficial.

V. CONCLUSION

In conclusion, a method of generating candidate structures
for global optimization searches has been presented. The
method relies on a complementary energy landscape defined
through distances in a feature space. The method is aided by
only including a subset of the atoms in the complementary en-
ergy expression. The concept of atomic role models has been
introduced as a way to choose the attractors that parametrize
the complementary energy. The role models need not be
known prior to a search, but may be chosen stochastically
among atoms in a population of favorable structures encoun-
tered during an ongoing search. The method has been imple-
mented in an evolutionary algorithm and applied to systems
of varying difficulty, where it leads to increased performance.
The method can be used in any global optimization algorithm
that relies on perturbing the atomic coordinates to generate
new candidate structures. The complementary energy can be
viewed as an intentionally inaccurate approximate potential
energy landscape; however, the few-atom relaxation method
could also be applied to more accurate surrogate potentials,
e.g., those produced by neural networks or kernel methods
that can be written as a sum of local contributions. This also
opens the possibility of choosing which atoms to include in
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the complementary energy relaxation based on “real” local
energies from a surrogate model rather than based on the
local complementary energies, possibly further increasing the
performance of the method.
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