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Abstract In this paper we construct convex solutions for certain elliptic boundary
value problems via Perron’s method. The solutions constructed are weak solutions
in the viscosity sense, and our construction follows work of Ishii (Duke Math. J.,
55 (2) 369–384, 1987). The same general approach appears in work of Andrews
and Feldman (J. Differential Equations, 182 (2) 298–343, 2002) in which they
show existence for a weak nonlocal parabolic flow of convex curves. The time
independent special case of their work leads to a one dimensional elliptic result
which we extend to two dimensions. Similar results are required to extend their
theory of nonlocal geometric flows to surfaces.

The two dimensional case is essentially different from the one dimensional
case and involves a regularity result (cf. Theorem 3.1), which has independent in-
terest. Roughly speaking, given an arbitrary convex function (which is not smooth)
supported at one point by a smooth function of prescribed Hessian (which is not
convex), one must construct a third function that is both convex and smooth and
appropriately approximates both of the given functions.
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1 Introduction

There has been considerable interest recently in spatially convex viscosity solu-
tions for elliptic and parabolic pde. We mention specifically the paper [1] of Al-
varez, Lazry and Lions which gives a method for showing convexity of solutions
once the existence has been established. In the absence of apriori existence (when
there is no comparison principle, for example) or when one has a family of in-
terrelated equations Lu= f = ut , it is useful to establish the existence of convex
solutions directly. This was the point of view taken in [2] and the point of view we
take in this paper.

Generally, we consider a convex domain ˝ ⊂ Rn and an elliptic equation of
the form

F(x,u,Du,D2u) = 0 (1.1)

where the operator F : ¯̋ ×R×Rn×S n×n → R is assumed to be continuous.
Ellipticity, in this context, means that F(x, z, p,A)≥ F(x, z, p,B) whenever A and
B are symmetric matrices and A−B is nonnegative semidefinite (i.e., A ≥ B). We
will also assume the A-L-L condition from [1] that for fixed p the map

(x, z,A) �→ F(x, z, p,A−1) is convex on ˝×R×S n×n
+ , (1.2)

whereS n×n
+ denotes the positive definite symmetric matrices.

A subsolution (following [3]) is a function u ∈C0(˝) for which

F(x,u(x),Du(x),D2u(x)) ≥ 0

weakly. That is to say, whenever, x ∈ ˝ and � ≥ u is a smooth function with
�(x) = u(x), then

F(x,u(x),D�(x),D2�(x)) ≥ 0.

Supersolutions are defined similarly, and a solution is a continuous function which
is both a subsolution and a supersolution.

The situation in which a smooth function � has graph touching the graph of a
continuous function u from one side will arise many times in the discussion below.
We use the following notation:

If �≤ u is smooth with �(x) = u(x), we write � ∈�−u(x).

Writing � ∈�+u(x) indicates the similar situation in which �≥ u.

If (p,A) ∈ Rn ×S n×n and there is some � ∈ �±u(x) with (p,A) =
(D�(x),D2�(x)), we write (p,A) ∈ J±u(x), the second order super/sub
jet of u at x.

We will also consider the closure of jets as follows:

We write (p,A)∈ clos[J±u(x)] if there are sequences x j→ x and (p j,A j)→
(p,A) with (p j,A j) ∈ J±u(x j).

A function u satisfies state constraints on ∂˝ if for every x∈ ∂˝ and (p,A) ∈
J−u(x), one has

F(x,u(x), p,A)≤ 0. (1.3)

Finally, u satisfies strong state constraints on ∂˝ if either
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(a) the subjet of u at each point in ∂˝ is empty, or
(b) u satisfies state constraints and F is totally degenerate on ∂˝, i.e.,

F = F(x,u,Du).

We remark that (a) holds if the outward normal derivative of u (exists and) is
+∞ or if u satisfies state constraints and F is uniformly elliptic on ∂˝, i.e.,
F(x, z, p,A+B) ≥ F(x, z, p,A)+�trB for B ≥ 0. To see that the latter conditions
imply (a), suppose, without loss of generality, that x= 0 ∈ ∂˝ and ˝⊂ {x1 ≤ 0}.
If � ∈�−u(0), then set p = D�(0) and �̃ = u(0)+ p · x+ x1+Mx2

1. It follows
that �̃ ∈�−u(0) for any M > 0 and

F(0,u(0), p+ e1,2Me1et
1)≥ F(0,u(0), p+ e1,0)+2�M.

This last assertion violates (1.3) when M is sufficiently large. A similar reasoning
applies without uniform ellipticity for equations of Monge-Ampere type det D2u=
�(Du), if for each x ∈ ∂˝, there is a ball B with ˝ ⊂ B and x ∈ ∂B. In this case,
we take �̃= u(0)+ p · x+ x1 +�(x2

2+ · · ·+ x2
n)+Mx2

1 and obtain a contradiction
for � small and M large.

We prove the following result for n≤ 2.

Theorem 1.1 If the equation (1.1) admits

(i) a supersolution v0 ∈C0( ¯̋ ) satisfying strong state constraints on ∂˝, and
(ii) a convex subsolution u0 ∈C0( ¯̋ ) with u0 = v0 on ∂˝,

then there exists a convex solution of (1.1) on ˝.

It should be noted that the solution given by Theorem 1.1 is not obtained using a
comparison principle as in [1]. Therefore, the theorem applies to a broader range
of equations and, in particular, solutions may not be unique.

We note that any quasilinear elliptic equation tr[a(Du)D2u] = �(Du) satisfies
(1.2) as do Monge-Ampere equations of the form detD2u= �(Du).

2 Perron’s Procedure

In the classical Perron procedure [4], one sets

u1(x) = sup{u(x) : u ∈C0( ¯̋ ) is a subsolution with u|∂˝ ≤ g} (2.1)

for some given boundary values g and argues that u= u1 is a solution. One makes
the same definition in the analogous argument for weak solutions in the viscosity
sense [5]. Our assumption allows us to restrict the supremum to convex subsolu-
tions:

u1(x) = sup{u(x) : u ∈C0( ¯̋ ) is a convex subsolution with u≤ v0}. (2.2)

In all three cases, it is fairly straightforward to see that u = u1 is a subsolution.
In our case, furthermore, it is clear that u = u1 is convex. Thus, it only remains
to show that u= u1 is a supersolution. The remainder of the paper is devoted to
proving this point.

If one sets convexity aside, then the proof is completed via some form of the
following fundamental lemma.
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Lemma 2.1 (Ishii’s Lemma) If u is a subsolution, and � ∈�−u(x0) with

A. F(x0,u(x0),D�(x0),D2�(x0))> 0, and
B. �(x)< u(x), x �= x0,

then for ı small, û=max{u,�+ı} is a subsolution with û|∂˝ ≤ g.

In fact, the assumption that u= u1 is not a supersolution is exactly equivalent to
the existence of a smooth function � satisfying all conditions of the lemma except
the strict inequality B: �(x)< u(x) for x �= x0. Replacing � with �−�|x− x0|2, it
is clear from continuity that all the requirements of Ishii’s lemma can be assumed.
The conclusion of the lemma, then, is a direct contradiction of the definition of u1
given in (2.1).

In the convex case we are considering, there is no way to know that û =
max{u,�+ ı} is convex unless some care is taken in obtaining the smooth sup-
porting function �. In fact, it is not generally possible to choose such a function
in �−u(x0). Nevertheless, we have recourse to the following somewhat technical
generalization of Lemma 2.1.

Lemma 2.2 (New Fundamental Lemma) If u ≤ v0 is a convex subsolution,
(p0,A0) ∈ Rn×S n×n with

A. F(x0,u(x0), p0,A0)> 0,

for any ı0,�0 > 0 there is a smooth convex function  defined on a subset U ⊂
Bı0(x0) such that

B. maxx∈U [ (x)−u(x)] > 0,
C. | − 0|C1(U) < �0 where  0(x) = u(x0)+ p0 · (x− x0),

D2 (x)≥ A0−�0I for x ∈U, and

D.  |∂U
< u|∂U

,

then for ı0,�0 small, û= max{u, } is a convex subsolution and û≤ v0.

Remark 2.1 If the domain U is not convex, then we require  to be defined (and
convex) on a convex domain W ⊃U .

Remark 2.2 In order to verify condition B it is enough to show maxx∈U [ (x)−
u(x)] ≥ 0. (Replacing  by  +ı1 for some small ı1, one sees that all hypotheses
hold.) Similarly, one can relax the strict inequality in D. (Replacing  by  − ı1
one gets the strict inequality with all other conditions still satisfied.)

We refer to the function  appearing in the lemma as a direct modifying function.
Notice that one may subtract an appropriate constant from  to obtain a function
in �−u(x̃0) for some point or points x̃0 ∈˝, but the lemma gives little control on
the location or number of such points, save that they are close to x0.

The proof of Lemma 2.2 is relatively straightforward, and we conclude this
section with that. The construction of a modifying function  satisfying the hy-
potheses of the lemma is fairly involved and will be given in the next section. It
should be noted, however, that if such a function exists, then in light of condi-
tion B, the modification û is nontrivial and gives a contradiction just like Ishii’s
Lemma.
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Proof (of Lemma 2.2.) In light of A, when �0 is small enough, we have

F(x0,u(x0), p0,A0−�0I)> 0.

By the continuity of F , there is some ı1 for which

F(x, z, p,A0−�0I)> 0 whenever |(x, z, p)− (x0,u(x0), p0)| < ı1. (2.3)

By the smoothness of  0 there is some ı2 > 0 for which

|(x, 0(x),D 0(x))− (x0,u(x0), p0)| < ı1/10 whenever |x− x0|< ı2. (2.4)

Let

ı0 <min

{
ı1

6
,ı2

}
and �0 <

ı1

4
. (2.5)

Because U ⊂ Bı0 (x0) and condition D holds, we see that Û = {x : û(x)> u(x)} ⊂
Bı0(x0).

If x ∈˝\Û , then û(x) = u(x), and any smooth function � ∈�+û(x) has also
� ∈�+u(x). Since u is a subsolution, we have

F(x, û(x),D�(x),D2�(x)) ≥ 0.

If, on the other hand, x ∈ Û , then û(x) =  (x), and any � ∈�+û(x) must
satisfy D�(x) = D (x) and D2�(x) ≥ D2 (x) ≥ A0− �0I. The last inequality is
from C. By ellipticity therefore,

F(x, û(x),D�(x),D2�(x)) ≥ F(x, û(x),D (x),A0−�0I). (2.6)

Note, however, that

|(x, û(x),D (x))− (x0,u(x0), p0)| ≤ |x− x0|+ | (x)−u(x0)|+ |D (x)− p0|.

We consider each term on the right separately. Since x ∈ Û ⊂ Bı0(x0), we have by
the choice (2.5) of ı0,

|x− x0|<min
{
ı1

6
,ı2

}
. (2.7)

Estimating the second term,

| (x)−u(x0)| ≤ | (x)− 0(x)|+ | 0(x)−u(x0)|
< �0+ı1/6.

The second inequality uses C and (2.4) along with the fact (2.7) that |x−x0|< ı2.
The third term is similar to the second:

|D (x)− p0| ≤ |D (x)−D 0(x)|+ |D 0(x)− p0|
< �0+ı1/6.
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Summing these estimates and using the choices (2.5) of ı0 and �0, we obtain

|(x, û(x),D (x))− (x0,u(x0), p0)| ≤ ı1

2
+2�0

< ı1.

In light of (2.3) and (2.6), we have

F(x, û(x),D�(x),D2�(x)) ≥ F(x, û(x),D (x),A0−�0I)

> 0.

Thus, û is a subsolution.
The function û, being the maximum of two convex functions, is also convex.
Furthermore, since v0 is a subsolution, it cannot be the case that u(x0)= v0(x0).

By continuity, it follows that û≤ v0 for ı small. 
�

3 Modification

We now embark on the proof of the main result, which is by contradiction. Ac-
cordingly, we make the standing assumption that

u= u1(x) = sup{u(x) : u ∈C0( ¯̋ ) is a convex subsolution with u≤ v0} (3.1)

is not a supersolution. The following result, which holds in the convex case, is
recorded in [1, Lemma 3].

Lemma 3.1 There is some x0 ∈˝ and some � ∈�−u(x0) for which

F(x0,u(x0),D�(x0),D2�(x0))> 0 (3.2)

and
D2�(x0)≥ 0. (3.3)

Remark 3.1 The inequality on the operator is a direct consequence of our assump-
tion that u is not a supersolution. The content of the lemma is (3.3).

Next, we distinguish two possibilities. The first is that

X0 = (x0,u(x0)) is an extreme point of G = graph(u), (3.4)

by which we mean that X0 belongs to the interior of no segment on G (symbol-
ically, if (1− �)X1+ �X2 = X0 for X1,X2 ∈ G and � ∈ [0,1], then X1 = X0 or
X2 = X0). The alternative is, of course, that

X0 = (x0,u(x0)) is not an extreme point of G . (3.5)

Since possibility (3.4) will be subsumed under more general considerations taken
up below, we focus for the moment on (3.5).
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In this case, there are x1, . . .,xk ∈ ¯̋ and �1, . . .,�k ∈ (0,1) with ∑�i = 1 such
that Xi = (xi,u(xi)) is an extreme point for each i,

x0 =
k

∑
i=1
�ixi,

and

u(x0) =
k

∑
i=1

�iu(xi).

Furthermore, as described in [2, Proposition 28], there exist Ai ≥ 0 with (p,Ai) ∈
clos[J−u(xi)] where p=D�(x0). A key estimate from [1] then asserts that for any
�> 0, the Ai can be chosen to satisfy

D2�(x0)−�[D2�(x0)]
2 ≤ lim

ı→0

[
k

∑
i=1

�i(Ai+ıI)−1

]−1

. (3.6)

We claim that at one of the points xi we have

F(xi,u(xi), p,Ai)> 0. (3.7)

Were the reverse inequality to hold at all points, then

F(x0,u(x0),D�(x0),D2�(x0)−�[D2�(x0)]
2)

≤ F

(
∑�ixi,∑�iu(xi), p, lim

ı→0

[
∑�i(Ai+ıI)−1]−1

)

≤ lim
ı→0

∑�iF(xi,u(xi), p,Ai+ıI)

=∑�iF(xi,u(xi), p,Ai)

≤ 0.

The first inequality uses (3.6) and ellipticity; the second follows from the convex-
ity property (1.2) of F; the last inequality uses the negation of (3.7). Letting � tend
to 0, we obtain a contradiction to (3.2).

The particular point xi for which (3.7) holds, owing to the strong state con-
straints, must be an interior point of ˝. We now focus our attention on what hap-
pens near xi and, accordingly, drop the i-subscript, rename the point x0, and write
p= p0, Ai = A0. Condition (3.7) becomes

F(x0,u(x0), p0,A0)> 0. (3.8)

It is important to note that we no longer have a smooth function � ∈�−u(x0).
On the other hand, the situation in which we find ourselves covers possibility (3.4)
as suggested above. We are now in a position to formulate our main modification
result which handles both cases.

Theorem 3.1 Let u be a convex function defined in a neighborhood of x0 ∈ R2.
Assume that A0 ≥ 0 and (p0,A0) ∈ clos[J−u(x0)]. If X0 = (x0,u(x0)) is an extreme
point for G = graph(u), then for any ı0,�0 > 0, there exists a smooth convex
function  defined in a domain V ⊂ Bı0(x0) such that
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B1. maxx∈V [ (x)−u(x)] > 0,
C1. for every x ∈ V̂ = {x ∈V :  (x)> u(x)},

| (x)−u(x0)|+ |D (x)− p0|< �0,

D2 (x) ≥ A0−�0I, and

D1.  |∂ V̂
≤ u|∂ V̂

.

If we take (p0,A0) in Theorem 3.1 to be the pair in clos[J−u(x0)] satisfying
(3.8), then all the hypotheses of Lemma 2.2 may be verified as follows. Let ı0,�0
be given from Lemma 2.2. Take �̃0, ı̃0 < 1 from Theorem 3.1 such that

�̃0 ≤ �0/4

and
ı̃0 ≤ min{ı0,�0/(|p0|+1)}/2.

Taking  to be the function given by Theorem 3.1 and U = V̂ , we see that B
follows from B1. Next, we see that

| − 0|C1(U) = sup
x∈V̂

| (x)− 0(x)|+ sup
x∈V̂

|D (x)− p0|

≤ sup
x∈V̂
| (x)−u(x0)|+ sup

x∈V̂
|D (x)− p0|+ sup

x∈V̂
|p0||x− x0|

≤ 2�̃0+ |p0|ı̃0

< �0.

This is the first requirement of C; the second requirement is given verbatim in
Theorem 3.1. Finally, condition D1 is exactly the weakened form of condition D,
which is enough by Remark 2.2.

Proof (of Theorem 3.1) By definition there is a sequence x j → x0 with corre-
sponding � j ∈�−u(x j) and (u(x j),D� j(x j),D2�i(xi))→ (u(x0), p0,A0). While
we know A0 ≥ 0, we do not know D2� j(x j)≥ 0. Our first task will be to obtain an
alternative sequence of points at which to make our modification. In the process,
we will give up the convergence of the Hessian.

Lemma 3.2 For any ˛0 > 0, there is some x̃ ∈˝ and �̃ ∈�−u(x̃) satisfying

(i) D2�̃(x̃)≥ 0
(ii) |x̃− x0|+ |D�̃(x̃)− p0|< ˛0,

(iii) D2�̃(x̃)≥ A0−˛0I.

We use Jensen’s distance convolution to prove Lemma 3.2. The following
proposition records the relevant properties [3,6,7]. Recall that G = graph(u).

Proposition 3.1 For � > 0 set

G� = {(x, z) ∈˝× (−∞,u(x)] : dist[(x, z),G ] = �}.
a. G� is the graph of a function ǔ= ǔ� on ˝. Clearly, ǔ converges uniformly on

compact subsets to u as �→ 0.
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b. The function ǔ is convex and, consequently, twice differentiable almost every-
where.

c. G� is locally touchable, i.e., for any x̌ ∈ ˝, r,ı > 0, and �̌ ∈�−ǔ(x̌) with
�̌(x) < ǔ(x) for x �= x̌, the set

{� ∈ Br(x̌) : �̌+ �̌ ∈�−ǔ(�) for some �̌= p̌ · (x−�)+ ž with p̌ ∈ Bı(0)}
has positive measure. (Note that ž= ǔ(�)− �̌(�) is prescribed when � is in the
set).

Proof (of Lemma 3.2) There is some ˛1 > 0 for which

|A−A0|< ˛1 =⇒ A ≥−˛0

2
I. (3.9)

By taking j large enough, we have � j ∈�−u(x j) with

|x j− x0|+ |D� j(x j)− p0|+ |D2� j(x j)−A0|<min{˛0

3
,
˛1

2
}. (3.10)

Replacing � j(x) with � j(x)−|x− x j|2/ j if necessary, we may also assume

� j(x)< u(x) for x �= x j. (3.11)

If follows from (3.11) and Proposition 3.1a that we may take � small enough
and find a point x̌ ∈˝ and a smooth function �̌ ∈�−ǔ(x̌) such that

|x̌−x j|+ |D�̌(x̌)−D� j(x j)|+ |D2�̌(x̌)−D2� j(x j)|+�<min{˛0

3
,
˛1

2
}. (3.12)

In fact, since ǔ converges uniformly to u and u(x) > � j(x) for x �= x j, we have for
fixed r,

C= {x : � j(x)≥ ǔ(x)} ⊂ Br(x j)

if � is small enough; see Figure 1. Taking some x̌∈C such that m=� j(x̌)− ǔ(x̌) =
max(� j− ǔ), we set �̌= � j−m, and (3.12) follows by continuity.

u

u

φ

φ

x j

Fig. 1 The subjet of Jensen’s Convolution
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Replacing �̌(x) with �̌(x)−|x− x̌|2/k for k large enough, we may also assume
�̌(x) < ǔ(x) for x �= x̌. Therefore, Proposition 3.1c applies. Coupling this with
Proposition 3.1b, we obtain a point of twice differentiability �̂ such that

 ̌(x) = �̌(x)+ p̌ · (x− �̌)+ ǔ(�̌)− �̌(�̌)

satisfies  ̌ ∈�−ǔ(�̌). Furthermore, we may take the r and ı of Proposition 3.1 so
small that

|�̌− x̌|+ |D ̌(�̌)−D�̌(x̌)|< ˛0

3
(3.13)

and

D2 ̌(�̌)≥ D2�̌(x̌)− ˛0

2
I. (3.14)

Since �̌ is a point of twice differentiability of ǔ, there is a smooth function
 ̃ ∈�−ǔ(�̌) with

D2 ̃(�̌) = D2ǔ(�̌)≥D2 ̌(�̌); (3.15)

see [9].
Let X̌ = (�̌, ǔ(�̌)). It follows from the convexity of u that there is a unique

X̃ = (x̃,u(x̃)) ∈ G with

|X̃− X̌ |= �; (3.16)

see Figure 2. Again referring to Figure 2, we set

�̃(x) =  ̃(x− x̃+ �̌)+u(x̃)− ǔ(�̌). (3.17)

We claim that x̃ and �̃ satisfy the assertions of Lemma 3.2.

φ~

u

u

~ψX

X
~

Fig. 2 A twice differentiable point on Jensen’s Convolution

We first verify that �̃ ∈�−u(x̃). Equality at x̃ is clear since  ̃ ∈�−ǔ(�̌). If
we assume �̃(x) > u(x), then

u(x)− ǔ(x− x̃+ �̌) < �̃(x)− ǔ(x− x̃+ �̌)

=  ̃(x− x̃+ �̌)− ǔ(x− x̃+ �̌)+u(x̃)− ǔ(�̌)

≤ u(x̃)− ǔ(�̌).
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Therefore,

dist[(x− x̃+ �̌),G ] ≤ [(x̃− �̌)2+(u(x)− ǔ(x− x̃+ �̌))2]1/2

< [(x̃− �̌)2+(u(x̃)− ǔ(�̌))2]1/2

= �

by (3.16), which is a contradiction.
Next we verify that (i) holds. In fact,

D2�̃(x̃) = D2 ̃(�̌)

= D2ǔ(�̌) (3.18)

according to (3.15). Since ǔ is convex, D2ǔ(�̌)≥ 0. Thus, we have condition (i).
Continuing from (3.18) and using (3.15) again, we see that

D2�̃(x̃) ≥ D2 ̌(�̌)

≥ D2�̌(x̌)− ˛0

2
I.

On the other hand,

|D2�̌(x̌)−A0| ≤ |D2�̌(x̌)−D2� j(x j)|+ |D2� j(x j)−A0|
< ˛1

by (3.10) and (3.12). Therefore, we see from (3.9) that

D2�̃(x̃)≥ A0−˛0I

which is assertion (iii).
Finally, we consider assertion (ii). From (3.16), we have

|x̃− x0| ≤ |x̃− �̌|+ |�̌− x̌|+ |x̌− x j|+ |x j− x0|
≤ |�̌− x̌|+ |x̌− x j|+�+ |x j− x0|.

Also, since �̌ is a point of twice differentiability with  ̃,  ̌ ∈�−ǔ(�̌), we have
from definition (3.17)

|D�̃(x̃)− p0| = |D ̃(�̌)− p0|
= |D ̌(�̌)− p0|
≤ |D ̌(�̌)−D�̌(x̌)|+ |D�̌(x̌)−D� j(x j)|+ |D� j(x j)− p0|.

Adding these inequalities and using (3.13), (3.12), and (3.10), we get

|x̃− x0|+ |D�̃(x̃)− p0|< ˛0

which completes the proof of Lemma 3.2. 
�
Forgetting the original sequence x j→ x0 that came from the definition of the

closure of the subject, we use Lemma 3.2 in the following form.
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Corollary 3.1.1 There is a sequence x j→ x0 with corresponding � j ∈�−u(x j)

such that D2� j(x j)≥ 0,

(u(x j),D� j(x j))→ (u(x0), p0), (3.19)

and for any ˛0 > 0, there is some j0 such that

D2� j(x j)≥ A0−˛0I (3.20)

whenever j ≥ j0.

In light of (3.19), (3.20), the ellipticity of F, and (3.8), we may also assume

F(x j,u(x j),D� j(x j),D2� j(x j))> 0.

Preliminary Cases

If A0 = 0, then since D� j(x j) = p j → p0 and �̃ j(x) = u(x j)+ p j · (x− x j) is a
support plane for G , we see that �0(x) = u(x0)+ p0 · (x− x0) is a support plane
for G . That is, �0 ∈�−u(x0). Furthermore,

F(x0,u(x0),D�0(x0),D
2�0(x0)) = F(x0,u(x0), p0,0) = F(x0,u(x0), p0,A0)> 0.

It is not difficult to see that the support hyperplane at the extreme point X0 =
(x0,u(x0))may be tilted to obtain for any˛> 0 an alternative point X̃0=(x̃0,u(x̃0))
and support plane �̃0(x) = u(x̃0)+ p̃0 · (x− x̃0) with

{x : �̃0(x) = u(x)} ⊂ B˛(x0)

and
| p̃0− p0|< ˛.

We prove this assertion under more general circumstances below; see Lemma 3.3.
Given x̃0 and �̃0, however, we may take ˛ and ı small enough so that  = �̃0+ı
satisfies the assertions of Theorem 3.1. In fact, by continuity, there is some ı̃> 0
such that

|u(x)−u(x0)| < �0/2 for x ∈ Bı̃(x0).

Also by continuity, we can assume

V = {x :  (x) = �̃0(x)+ı≥ u(x)} ⊂ B2˛(x0)⊂ Bı̃(x0)∩Bı0(x0).

It follows that for x ∈V ,

| (x)−u(x0)|+ |D (x)− p0| ≤ |�̃0(x)−u(x0)|+ı+ | p̃0− p0|
< |u(x̃0)−u(x0)|+ | p̃0 · (x− x̃0)|+ı+˛
< �0/2+ | p̃0 · (x− x0)|+ | p̃0 · (x0− x̃0)|+ı+˛
< �0/2+4| p̃0|˛+ı+˛
≤ �0/2+4| p̃0− p0|˛+4|p0|˛+ı+˛
< �0/2+4˛2+4|p0|˛+ı+˛
< �0,
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as long as 4˛2+(4|p0|+1)˛+ı< �0. From this and the fact that D2 ≡ 0= A0
we obtain C1. Since we may nevertheless take ı > 0 and  (x̃0) = u(x̃0)+ ı, we
see that B1 holds. Finally, ∂V̂ = {x :  (x) = u(x)}, so D1 clearly holds. 
�

This discussion serves to rule out the case A0 = 0. The following more gen-
eral considerations treat the case in which some subsequence of the � j satisfies
D2� j(x j) = 0. In this case, we may set p j = D� j(x j) and assume, in light of the
ellipticity, that � j(x) = u(x j)+ p j · (x− x j).

Conspicuously absent from the assertions of Corollary 3.1.1 is a statement
that Xj = (x j,u(x j)) is an extreme point. We have, however, that Xj→ X0 which
is an extreme point. This observation will be used repeatedly below. As an initial
application, we prove the tilting lemma mentioned above.

Lemma 3.3 For any ˛> 0, if j is large enough, then there is some X̃ j≡ (x̃ j,u(x̃ j))

and support plane �̃ j(x) = u(x̃ j)+ p̃ j · (x− x̃ j) with

{x : �̃ j(x) = u(x)} ⊂ B˛(x j) (3.21)

and
| p̃ j− p j|< ˛. (3.22)

Remark 3.2 If the point at which one wishes to apply this tilting lemma is an ex-
treme point (take X0 for example), then a much stronger assertion holds. Namely,
there is an arbitrarily close exposed point X̃ with support plane �̃(x) = u(x̃)+ p̃ ·
(x− x̃) such that | p̃− p0| is small and �̃(x)< u(x) for x �= x̃. One may use a mod-
ification of the reasoning found in the proof of Straszewicz’s Theorem in [8] to
prove this.

Proof (of Lemma 3.3) Set Fj = {x : � j(x) = u(x j)+ p j · (x− x j) = u(x)} for j =
0,1,2, . . .. Note that F0 is a convex set with x0 an extreme point. There is some
p ∈ Sn−1 such that

{x ∈ F0 : p · (x− x0)≥ 0} ⊂ B˛/4(x0). (3.23)

The existence of p follows from the following more general statement which we
prove by induction.

Sublemma 3.1 If ˘ is an m-dimensional affine subspace of Rn containing a
closed convex subset F with extreme point x0, then for any ˛ > 0, there is some
q ∈ Sn−1 and some � > 0 such that x0+ q ∈˘ and if p ∈ Sn−1 and |p− q|< �,
then

{x ∈ F : p · (x− x0)≥ 0} ⊂ B˛(x0). (3.24)

Proof If m = 1, then F is an interval, {(1−�)x1+�x2 : 0 ≤ � ≤ 1}, and either
x0 = x1 or x0 = x2. In the former case, q = (x0− x2)/|x0− x2|; in the latter q =
(x0− x1)/|x0− x1|.

If m> 1, then there is some q0 such that x0+q0 ∈˘ and q0 · (x− x0)≤ 0 for
every x ∈ F. Note that ˇ̆ = {x ∈˘ : q0 · (x− x0) = 0} is an (m−1)-dimensional
support plane for F with respect to ˘; see Figure 3.
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q0

F

δ/4
q̌

Fig. 3 The neighborhood of an extreme point

Applying the inductive hypothesis to F̌ = F ∩ ˇ̆ , we obtain a vector q̌ ∈ Sn−1

with x0+ q̌ ∈ ˇ̆ and

{x ∈ F̌ : q̌ · (x− x0)≥ 0} ⊂ B˛/2(x0). (3.25)

Let q= q0+aq̌. We claim that when a is small enough, then the assertion of
the sublemma holds. If this is not the case, then we obtain sequences a,�a↘ 0,
vectors p�a → q= q0+aq̌, and points x�a ∈ F\B˛(x0) with

p�a · (x�a − x0)≥ 0. (3.26)

On the one hand, since F is convex and x0 ∈F , we may assume that |x�a−x0|=
˛. Therefore, taking a subsequence, we may assume that x�a → za ∈ F ∩∂B˛(x0)
and from (3.26) we find

q · (za− x0)≥ 0. (3.27)

Taking another subsequence, we may also assume za → z0 ∈ F ∩ ∂B˛(x0), and
from (3.27)

q0 · (z0− x0)≥ 0.

It follows then, from the definition of q0, that q0 · (z0− x0) = 0. Therefore, z0 ∈
ˇ̆ ∩F = F̌ , and by the inductive hypothesis (see (3.25)) we have

q̌ · (z0− x0)< 0. (3.28)

On the other hand, directly from (3.27) we obtain

0≤ q0 · (za− x0)+aq̌ · (za− x0),

so that

q̌ · (za− x0)≥ −1
a

q0 · (za− x0)≥ 0.

It follows that q̌ · (z0 − x0) ≥ 0, and this contradicts (3.28). This completes the
proof of Sublemma 3.1. 
�



Constructing convex solutions via Perron’s method 79

We now take p= q and return to the proof of Lemma 3.3.
Setting p� = p0+�p and

E� = {x : u(x0)+ p� · (x− x0)≥ u(x)}
we claim that for � small E�⊂B˛/2(x0). If this is not the case, then using convexity
we obtain a sequence of points z�→ z0 ∈ ∂B˛/2(x0) with

u(x0)+ p0 · (z0− x0)≥ u(z0).

That is, z0 ∈ F0. Since |z0− x0|= ˛/2> ˛/4, we conclude from (3.23) that

p · (z0− x0)< 0. (3.29)

On the other hand, since �0 ∈�−u(x0), we have

�p · (z�− x0)≥ u(z�)− [u(x0)+ p0 · (z�− x0)]

= u(z�)−�0(z�)

≥ 0.

From this we see that p · (z0− x0)≥ 0, which contradicts (3.29). Therefore, E� ⊂
B˛/2(x0), and

ı� = max{u(x0)+ p� · (x− x0)−u(x) : x ∈ E�}
is well defined, finite, and attained at some x� ∈ E� ⊂ B˛/2(x0). It follows that

��(x) = u(x0)+ p� · (x− x0)−ı� = u(x�)+ p� · (x− x�)

defines a support plane for G and

F� = {x : ��(x) = u(x)} ⊂ B˛/2(x0).

Taking � small enough so that |p�− p0| < ˛/2, then j large enough so that x j ∈
B˛/2(x0) and |p j− p0| < ˛/2, we may set x̃ j = x�, p̃ j = p�, and �̃ j = ��; it is
easily verified that these choices fulfil the requirements of Lemma 3.3. 
�
Corollary 3.1.2 If for some subsequence D2� j(x j) = 0 and �̃ j are the affine func-
tions given in Lemma 3.3, then  = �̃ j+ı satisfies the assertions of Theorem 3.1
when j is large enough and ı is small enough depending on j.

Proof We may take ˛0 < min{�0/2,ı0/4} and j large enough in Corollary 3.1.1
so that |x j− x0| < ı0/2. By continuity, taking ı< �0/4 small enough will ensure
by (3.21) that

V̂ = {x : �̃ j(x)+ı> u(x)} ⊂ B2˛0(x j)⊂ Bı0(x0).

It follows that on V̂ we have

|�̃ j(x)+ı−u(x)| ≤ ı< �0/4.

Also by continuity, there is some � > 0 such that |x− x0| < � implies |u(x)−
u(x0)| < �0/4.
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As long as ı> 0, we know that B1 holds. We may assume ı0 < � and | p̃ j−
p0|< �0/2. Therefore,

| (x)−u(x0)|+ |D (x)− p0| ≤ | (x)−u(x)|+ |u(x)−u(x0)|+ | p̃ j− p0|
< �0,

and C1 holds. Finally, ∂V̂ = {x :  (x) = u(x)}, so D1 holds. 
�
Another preliminary case is that in which A0 > 0. This implies that for j large,

D2� j(x j) > 0. More generally, we consider the possibility that D2� j(x j) > 0 is
satisfied along some subsequence.

If this occurs, we may take j large enough so that x j ∈ Bı0/2(x0). Also, from
Corollary 3.1.1 we may assume

F(x j,u(x j),D� j(x j),D2� j(x j))> 0,

|� j(x j)−u(x0)|+ |D� j(x j)− p0|< �0/2,

and
D2� j(x j)≥ A0− (�0/2)I.

Notice that � j is strictly convex near x j, and for � small enough �̃(x) = � j(x)−
�|x− x j|2 satisfies

�̃(x)< u(x), x �= x j,

|�̃(x j)−u(x0)|+ |D�̃(x j)− p0| < �0/2,

and
D2�̃(x j)≥ A0−�0I.

It follows that for ı small enough,  (x) = �̃(x)+ı satisfies the assertions of The-
orem 3.1.

This completes our discussion of preliminary cases.

3.1 Moving to the Origin

From our discussion so far, we may assume A0,D2� j(x j) �= 0 and detA0,
detD2� j(x j) = 0 for all j. We claim now that by an affine change of variables,
we may assume

(x0,u(x0), p0,A0) =

(
0,0,0,

(
1 0
0 0

))
.

In fact, there is a rotation matrix P such that

P−1A0P=

(
�2 0
0 0

)
.

Set

ũ(x̃) = u(x0+
P
�

x̃)−u(x0)− p0 · P
�

x̃.
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One easily checks that ũ satisfies the hypotheses of Theorem 3.1 and our desired
normalization. Thus, let us assume that for any ı̃0, �̃0 > 0, we obtain a smooth
convex function  ̃ : Ṽ → R satisfying the assertions of Theorem 3.1 (with the
appropriate˜’s inserted).

We may then set

 (x) = u(x0)+ p0 · (x− x0)+  ̃
(
�P−1(x− x0)

)
on V = P(Ṽ )/�+ x0.

Let ı0,�0 be given in (0,1). Since � is fixed, it is clear that V ⊂ Bı0(x0) if ı̃0
is small enough. Furthermore, we may take �̃0 < 1 small enough so that

�̃0 < �0/(1+�+�
2). (3.30)

We find that

 (x)−u(x) = u(x0)−u(x)+ p0 · (x− x0)+  ̃(�P−1(x− x0))

=  ̃(x̃)− ũ(x̃),

where x̃ = �P−1(x− x0). Therefore, condition B1 holds. Using the same calcula-
tion, we see that for x= x0+(P/�)x̃ ∈ V̂ ,

| (x)−u(x)|+ |D (x)− p0| = | ̃(x̃)− ũ(x̃)|+ |�PD ̃(x̃)|
< �̃0+��̃0

< �0.

By direct calculation,

D2 (x) = �2PD2 ̃(x̃)P−1

≥ P

(
�2 0
0 0

)
P−1−�2�̃0I

= A0−�2�̃0I

> A0−�0I.

We have established condition C1. Finally, for x ∈ ∂V̂ , we have  ̃(x̃) ≤ ũ(x̃). Re-
arranging this inequality yields  (x)≤ u(x) as required by D1.

We now pause to summarize our position in respect to the proof of Theo-
rem 3.1. We have a convex function u in a neighborhood of 0 ∈ R2. The origin is
an extreme point for G = graph(u), and

(p0,A0) =

(
0,

(
1 0
0 0

))
∈ clos[J−u(0)].

We have a sequence � j ∈�−u(x j), from Corollary 3.1.1, with

(x j,D� j(x j))→ (0,0), (3.31)

D2� j(x j)≥ 0,
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and

D2� j(x j)≥
(

1 0
0 0

)
−˛0I

where ˛0 > 0 is arbitrary, but j must be large enough. We may also assume
D2� j(x j) �= 0 but detD2� j(x j) = 0 for all j. Notice that since u(x) ≥ u(x j) +
D� j(x j) · (x− x j) and (3.31) holds, we may take a limit as j→ ∞ and conclude
u≥ 0.

We now proceed to construct the direct modification of Theorem 3.1 for this
function in a neighborhood of the origin.

Remark 3.3 The following argument quickly becomes notationally unpleasant.
The reader is encouraged to assume, on the first reading, that � j ≡ �0 ∈�−u(0).

In light of the last mentioned normalization, for each j there is a rotation

� j =

(
cos	 j − sin	 j
sin	 j cos	 j

)

with 	 j ∈ [−
,
] such that

�−1
j D2� j(x j)� j =

(
�2

j 0
0 0

)
. (3.32)

Lemma 3.4

lim
j→∞

sin	 j = 0; lim
j→∞
|cos	 j|= 1; lim

j→∞
�2

j ≥ 1. (3.33)

Proof If we assume by way of contradiction that lim
j→∞

sin	 j �= 0, then by taking a

subsequence, we may assume 	 j→ 	0 with sin	0 �= 0. Substituting D2� j(x j) =

�2
j� jA0�

−1
j from (3.32) into (3.20), we obtain

�2
j

(
cos2	 j cos	 j sin	 j

cos	 j sin	 j sin2 	 j

)
−A0+˛0I ≥ 0. (3.34)

Taking the determinant, this implies

(�2
j cos2	 j−1+˛0)(�

2
j sin2 	 j+˛0)−�4

j cos2 	 j sin2	 j =

−�2
j(sin2	 j−˛0)− (1−˛0)˛0 ≥ 0,

which is a contradiction when ˛0 < sin2 	 j.
Thus, sin	 j → 0 and |cos	 j| → 1. To see the last assertion of Lemma 3.4,

assume that �2
j → �2

0 < 1 in a subsequence. Taking first the limit j→ ∞ in (3.34)
and then ˛0→ 0, we see

(�0−1)A0 ≥ 0,

which is a contradiction. 
�



Constructing convex solutions via Perron’s method 83

By adjusting our initial change of variable if necessary, and taking a subse-
quence, we may assume

lim
j→∞

	 j = 0. (3.35)

Also, setting

�̃2
j =min{�2

j,1}, (3.36)

we have from Lemma 3.4

lim
j→∞

�̃2
j = 1.

As mentioned in regard to the tilting lemma (Lemma 3.3), we do not know that
Xj = (x j,u(x j)) is an extreme point but only that Xj tends to the extreme point at
the origin. An indication of how close Xj is to being an extreme point is given by

d j =max{d : ∃v∈ Sn with Xj+�v ∈ G for all |�| ≤ d}.

We now make a simple but important observation.

Lemma 3.5 lim
j→∞

d j = 0.

Proof If d j ≥ d0 > 0 for some subsequence, then (taking a further subsequence)
we may assume v j → v0 ∈ Sn and Xj+ �v j ∈ G for |�| ≤ d0/2. It follows that
X0+�v0 ∈ G for |�| ≤ d0/2. This contradicts the fact that X0 = (0,0) is an extreme
point. 
�

For each j, we consider

ũ j(x̃) = u(x j+� jx̃)−u(x j)−D� j(x j) ·� jx̃

and

�̃ j(x̃) = � j(x j+� jx̃)−u(x j)−D� j(x j) ·� jx̃.

One easily verifies �̃ j ∈�−ũ j(0), D�̃ j(0) = 0, and

D2�̃ j(0) =

(
�2

j 0
0 0

)
. (3.37)

It is also clear that ũ j is convex, and since D�̃ j(0) = 0, we have

ũ j ≥ 0. (3.38)

Consequently, it is straightforward to check

d j = max{d : ∃v∈ Sn−1 with ũ j(�v) = 0 for |�| ≤ d}. (3.39)
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3.2 The Main Cases

At this point it will be convenient to use the old fashioned (x,y, z) notation for
points in R2 and R3. As above Br(0) is the open ball of radius r. For any domain
D,

D± = D∩{±y≥ 0}.
Br1,r2 ≡ int(B−r1

∪B+r2
).

Since the assertion of Theorem 3.1 is a local one and x j→ 0, we can assume
the common domain of definition for the functions u,� j, ũ j, and �̃ j is a fixed ball
Ba0(0) with a0 < ı0 and that each of the functions ũ j and �̃ j is continuous on the
closure of Ba0(0).

It will be convenient to suppress some of the˜’s and j’s, but the reader should
keep in mind the change of variables x = x j+� jx̃ which will reappear later, n.b.,
(3.55). Thus, for example �̃(x,y)means �̃ j(x̃, ỹ) and it is implicit in results 3.6-3.9
that the assertions only hold for j adequately large.

We will use the existence of the smooth supporting function �̃ in various ways,
the most basic of which is the following.

Lemma 3.6 For any � > 0, there is an r = r j > 0 such that

(
1− �

2

)
�̃(x,0)>

�̃2
j−�
2

x2, 0< |x|< r,

where �̃ j is given in (3.36).

Proof By Taylor’s formula,

(
1− �

2

)
�̃(x,y) =

�̃2
j

2

(
1− �

2

)
x2+◦(x2+ y2).

Therefore,

(
1− �

2

)
�̃(x,0)− �̃

2
j−�
2

x2 =
�

2

(
1− �̃

2
j

2

)
x2+◦(x2)

= x2

(
�

2

(
1− �̃

2
j

2

)
+
◦(x2)

x2

)

> 0

if 0< |x| is small enough depending on j. 
�
Recalling that �0 is given in the statement of Theorem 3.1, let us fix �< �0/16

and set

� j(x,y) = � j(x) =
�̃2

j−�
2

x2

where �̃ j is given in (3.36). We then have for j large

|D2� j−A0|< �0/8. (3.40)
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Under the conditions of Lemma 3.6 we have

ũ(x,0)≥ �̃(x,0)≥
(

1− �
2

)
�̃(x,0)> � j(x) =

�̃2
j−�
2

x2. (3.41)

The following elementary observation will also be used several times.

Lemma 3.7 If (x,y)→ 0 and ũ(x,y)≤ � j(x,y)+◦(x2+ y2), then x/y→ 0.

Proof Since �̃(x,y)≤ ũ(x,y), we have from Taylor’s formula,

�̃2
j

2
x2 ≤ �̃2

j −�
2

x2+◦(x2+ y2). (3.42)

If y= 0, we obtain an immediate contradiction, so we may assume that y> 0. We
may also assume without loss of generality that x ≥ 0. If limsup(x/y) > 0, then
we can assume y ≤Mx for some M > 0. We see then from (3.42)

�

1+M2 ≤
�x2

x2+ y2 ≤
◦(x2+ y2)

x2+ y2

which is a contradiction. 
�
Lemma 3.8 The functions ũ are nonnegative and can be zero only along the y-
axis.

Proof The nonnegativity of ũ follows from the fact that ũ is convex, �̃ ∈�−ũ(0),
and D�̃(0) = 0. (Therefore, the plane z= 0 supports ũ.)

If we assume ũ(x,y) = 0 at some point with x �= 0. Then by convexity ũ(p) = 0
for p = ˛(x,y) with 0 < ˛ < 1. It follows that the second directional derivative
Dvv�̃(0)≤ 0 in the direction v= p/|p|. In light of (3.33), this contradicts (3.37).


�
Corollary 3.1.3 ũ(�e2) = 0 for |�| ≤ d j where e2 = (0,1).

Proof If d j = 0, then there is nothing to prove. If d j > 0, then according to (3.39)
there is some v ∈ Sn−1 with ũ(�v) = 0 for |�| ≤ d j. According to Lemma 3.8, all
such �v must lie along the y-axis. Therefore, v=±e2. 
�

Without loss of generality, we may assume

ũ j(−�e2)> 0 for �> d j. (3.43)

Setting
ı j =max{� : ũ j(�e2) = 0} ≥ d j,

we consider

Case 1. For some subsequence, the ratio d j/ı j→ 0 as j→ ∞.
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This case assumes, naturally, that ı j > 0 along the subsequence.
In this case, ũ j(0,ı j) = 0, and we consider the focal graph based on the curve

{z = (�̃2
j −�)x2/2,y = 0} with focal point (0,ı j,0). By this we mean the ruled

surface all of whose ruling lines pass through the focal point and the given curve.
One finds the focal graph to be the graph of the function f = f j given by

f j(x,y) =
�̃2

j −�
2
· ı j

ı j− y
· x2 (3.44)

which we may restrict to the rectangular domain Cj = [−r j, r j]× [−ı j,ı j).

δj

D

−dj

0

Fig. 4 Rectangular domain along normalized sequence

One easily verifies that f is smooth and convex for y< ı j . In fact,

D f (x,y) = (�̃2
j −�)

(
ı j

ı j− y

)(
x,

x2

2(ı j− y)

)
; D f (0) = 0, (3.45)

and

D2 f (x,y) = (�̃2
j −�)

(
ı j

ı j− y

)⎛⎜⎝
1

x
ı j− y

x
ı j− y

x2

(ı j− y)2

⎞
⎟⎠ ; D2 f (0) = (�̃2

j −�)A0.

(3.46)
Recall that ı0,�0 are given in the statement of Theorem 3.1, and � is fixed

with 0< �< �0/16. Because 	 j→ 0, we know � j→ I, and we may assume

� j

(
1 0
0 0

)
�−1

j ≥
(

1 0
0 0

)
− �0

8
I. (3.47)

Also, from (3.31) we may assume

|x j|+ |u(x j)|+ |D� j(x j)| <min
{
ı0

2
,
�0

4
,1
}
. (3.48)
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We take a smaller domain Ca,b = [−a,a]× [−b,b]with a< d j, 2d j < b< 3d j.
Returning to the expressions (3.45) and (3.46), we observe that for (x,y) ∈

Ca,b, ∣∣∣∣1− ı j

ı j− y

∣∣∣∣ =
∣∣∣∣ y
ı j− y

∣∣∣∣ ≤ 3d j

ı j−3d j
=

3d j/ı j

1−3d j/ı j
→ 0,

and ∣∣∣∣ x
ı j− y

∣∣∣∣ ≤ d j

ı j−3d j
→ 0

as j → ∞. Therefore, we may take j large enough so that Ca,b ⊆ Bı0/2(0), and
f = f j satisfies

D2 f (x,y)≥
(

1 0
0 0

)
− �0

8
I (3.49)

and
| f (x,y)|+ |D f (x,y)| ≤ �0

8
(3.50)

for (x,y) ∈Ca,b.
We now make essential use of the convexity of u.

Lemma 3.9

f j(x,y)< ũ j(x,y) for (x,y) ∈ D=C−a,b\{(0,y) : y ∈ [−d j,0]}. (3.51)

Proof Let (x,y) ∈ D; see Figure 4. The line segment connecting (x,y) and (0,ı j)
intersects the x-axis in a unique point (�,0) with �= ı jx/(ı j− y). Assuming

ũ(x,y)≤ f j(x,y), (3.52)

we have from the convexity of ũ that

ũ(�,0) ≤ ı j

ı j− y
ũ(x,y)− y

ı j− y
ũ(0,ı j)

≤ ı j

ı j− y
f j(x,y)− y

ı j− y
ũ(0,ı j)

=
�̃2

j −�
2

�2.

Since |�| < a < r j , this contradicts (3.41) unless |�| = 0. If |�| = 0, then y <
−d j, and we find from (3.43) that f j(x,y) = 0 < ũ(x,y) which contradicts our
assumption (3.52). 
�

In light of (3.51) and (3.50) we have that for > 0 small

f (x,y)−y< ũ j(x,y) for (x,y) ∈ ∂C−a,b\{0},
and

| f (x,y)−y|+ |D f (x,y)− (0,)|< �0

4
for (x,y) ∈Ca,b.
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We claim there is some r′ < a such that

f (x,y)−y < ũ j(x,y) on (∂Br′(0))
+ . (3.53)

Otherwise, we can take (x,y)→ 0 for which y > 0 and �̃ j(x,y) ≤ ũ j(x,y) ≤
f j(x,y)−y. It is clear that x �= 0, and we may assume without loss of gener-
ality that x > 0. We show, in this case, that y/x→ 0. If limsup(y/x)> 0, then we
can find some M and a subsequence for which x≤My. Using the first order Taylor
formula to express �̃ j and f = f j, we have

◦(x+ y)≤−y+◦(x+ y).

It follows that /(M+1) ≤ y/(x+ y) ≤ ◦(x+ y)/(x+ y), which is a contradic-
tion. Thus, y/x→ 0.

On the other hand, the second order Taylor formula shows that f (x,y)−y<
f (x,y) = (�̃2

j − �)x2/2+ ◦(x2 + y2). Thus, Lemma 3.7 applies, and we have
x/y → 0. This contradicts our contention that y/x → 0, and establishes the
claim.

The above assertions combine to imply ,

 ̃(x,y) = f (x,y)−y+�

satisfies
| ̃|+ |D ̃|< �0

2
(3.54)

and

D2 ̃ ≥
(

1 0
0 0

)
− �0

8
I

on Ṽ = int(C−a,b∪B+r′ ) and  ̃|∂ Ṽ
< ũ j|∂ Ṽ

, if � is small enough.
Finally, we take (abandoning for the moment the old fashioned x,y-notation)

 (x) = u(x j)+D� j(x j) · (x− x j)+  ̃(�
−1
j (x− x j)) (3.55)

on V = � j(Ṽ ) + x j. Note that Ca,b ⊆ Bı0/2(0) and |x j| < ı0/2, so V ⊆ Bı0(0).
Also,  (x j) = u(x j)+�, so B1 holds.

Next, we observe that

D2 (x) = � jD2 ̃(x̃)�−1
j = � jD2 f (x̃)�−1

j

where x̃= �−1
j (x− x j). Therefore, referring back to (3.49) and (3.47) we get

D2 (x)≥ � j

[(
1 0
0 0

)
− �0

8
I

]
�−1

j ≥
(

1 0
0 0

)
−�0I = A0−�0I.

Also, in regard to C1, we have from (3.48) and (3.54)

| (x)|+ |D (x)| = |u(x j)+D� j(x j) · (x− x j)+  ̃(x̃)|+ |D� j(x j)−�−1
j D ̃(x̃)|

≤ |u(x j)|+2|D� j(x j)|+ | ̃(x̃)|+ |D ̃(x̃)|
< �0.
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Finally, since  |∂V
= u(x j) +D� j(x j)(x− x j)|∂V

+  ̃|∂ Ṽ
< u(x j) +D� j(x j)(x−

x j)|∂V
+ ũ

j
∣∣

∂ Ṽ

= u|∂V
, we see immediately that D1 holds. This completes

Case 1.

The reasoning of Case 1 applies in any circumstances under which the conclu-
sion of Lemma 3.9 holds for any focal graph. More precisely, we have

Corollary 3.1.4 Let u and (p0,A0) satisfy the hypotheses of Theorem 3.1and the
normalization

(p0,A0) =

(
0,

(
1 0
0 0

))
.

Assume that for some x j as constructed above, we find

f ≤ ũ j on C−a,b (3.56)

where b> d j and f is given by (3.44) or f = � j. Assume f (0,y) < ũ j(0,y) when
y ∈ [−b,−d j). If f is given by (3.44) rather than � j, assume also that d j/ı j→ 0.
Then the conclusion of Theorem 3.1 holds.

Proof Choose a ≤ r j if necessary and ı̃ j ∈ (min{ı j/2,1},ı j) (where ı j = ∞ if
f = � j). One observes that

f̃ (x,y) =
1−�

2
· ı̃ jx2

(ı̃ j− y)
≤ f (x,y)≤ u(x,y)

when y < 0. The first inequality is strict unless x = 0. The second inequality is
strict when x = 0 unless y ∈ [−d j,0). Thus, the conclusion of Lemma 3.9 holds
with the new focal function f̃ in place of f .

One can then follow the reasoning presented above but omit the proof of
Lemma 3.9. 
�
Remark 3.4 It follows from Corollary 3.1.4 that we may assume the existence of
(a sequence of) points (�,�)→ (0,0) satisfying ũ j(�,�) < f (�,�) for any fixed
focal graph f = f j . Note that Lemma 3.7 applies to these points.

3.3 The Other Cases

In all alternatives to Case 1, there is some constant c > 0 for which

ı j ≤ cd j→ 0 as j→ ∞.

In such situations, we consider the sets

Ix = I jx = {y : � j(x) > ũ j(x,y)}.
Notice that I j0= �, and � j(x)< u(x,0) for 0< |x|< r, n.b., (3.41). Since for each
fixed x (with 0 < |x| < r) the function � j(x) is constant and ũ(x,y) is a convex
function of y, we see that Ix is an interval that does not contain y = 0.
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Case 2. Some subsequence (in j) admits � = � j �= 0 with Ix = � for x
between 0 and �.

We may assume �> 0. Fix �1 > � such that �1(x) = �1, j(x) = (�̃2
j−�1)x2/2

satisfies
|D2�1−A0|< �0/4

(for j large). Set m j = max{ı j, r j}. There is some a < r = r j < ı0 and b ∈
(2m j,3m j) such that for all  and � adequately small, we have that

 ̃(x) = �1(x)+x+�

satisfies
| ̃|+ |D ̃| < �0

2
and D2 ̃ ≥ A0− �0

4
I (3.57)

on the rectangle Ca,b.

δj

a

b−δj

Fig. 5 Rectangular domain for several of the latter cases

Set V1 = {(x,y) ∈Ca,b : 0≤ x< �}. Since �1 < ũ on E = ∂V1\{(0,y) :−ı j ≤
y≤ ı j}, we see that for  small enough

�1(x)+x < ũ(x,y) for (x,y) ∈ E.

On the other hand, for every > 0 there is some a′ < a for which

�1(x)+x < 0< ũ(x,y).

for (x,y) ∈V2 = {(x,y) ∈Ca,b :−a′ ≤ x < 0}.
Setting Ṽ = int(V1∪V2) = (a′,min{a,�})× (−b,b) and

{
V = � j(Ṽj)+ x j,

 (x) = u(x j)+D� j(x j) · (x− x j)+  ̃(�
−1
j (x− x j)),

(3.58)

we see that choosing j large and then � small,

V ⊂ Bı0(0),

 (x j)−u(x j) =  ̃(0) = �> 0,

V̂ = {x : u(x)<  (x)} ⊂⊂V,
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| (x)|+ |D (x)| ≤ |u(x j)|+2|D� j(x j)|+ | ̃|+ |D ̃|
< �0

and

D2 (x) = � jD
2 ̃(x̃)�−1

j

≥ A0−�0I.

This completes the proof of Theorem 3.1 in Case 2.

Case 3. For some subsequence of the x j, there are sequences �1= �
j
1k,�2=

� j
2k→ 0 (as k→ ∞) with �1�2 > 0 and I�1 = � �= I�2 .

In this case, we may assume �1,�2↘ 0 (as k→ ∞). We take  ̃ = � j and  
given by (3.55) as usual. By previous calculations, we may assume

| |+ |D |< �0 and D2 ≥ A0−�0I (3.59)

on all domains Vk = � j(Ṽk)+ x j where Ṽk = [0,�1]× [−2ı j,2ı j]. We claim that
for k large enough, the pair ( ,V ) = ( ,Vk) just described fulfills the requirements
of Theorem 3.1. We may clearly assume V = Vk ⊂ Bı0(0) and that C1 holds. It
remains to verify B1 and D1 (for some fixed large j).

Let us first show that  |∂V
≤ u|∂V

. This is equivalent to showing  ̃|∂ Ṽ
≤ ũ|∂ Ṽ

.
Note that ∂Ṽ is the union of

A = {(0,y) :−2ı j ≤ y ≤ 2ı j},
B = {(�1,y) :−2ı j ≤ y≤ 2ı j},

and
C± = {(x,±2ı j) : 0≤ x ≤ �1}.

The desired inequality clearly holds on A. Furthermore, since I�1 = �, we have
that ũ(�1,y)≥ � j(�1) =  ̃(�1,y). This is the desired inequality on B. Assume that
the inequality fails on C± = Ck for every k. Then there are points �→ 0 with
ũ(�,±2ı j) < � j(�). Taking the limit as k→ 0, we find that ũ(0,2ı j) = 0, which
contradicts the definition of ı j . Thus, for k large, assertion D1 of Theorem 3.1
holds.

A slight modification of the reasoning just given for C± yields that for k large
enough, ũ(x,y)≥ � j(x) whenever 0 ≤ x ≤ �1 and |y| ≥ 2ı j. In fact, if ũ(�,�)<
� j(�) for �→ 0 and |�| ≥ 2ı j, then ũ(�,2ı j)≤ ũ(�,�)→ 0 and we have the same
contradiction. Therefore, the fact that I�2 �=� for some �2 < �1 assures us that B1
holds. This completes Case 3.

It follows from the fact that Ix is always an interval not containing 0, that either
Ix = I+x = {y ∈ Ix : y≥ 0} or Ix = I−x = {y ∈ Ix : y≤ 0}.
Lemma 3.10 (a) If �1 �= �2, �1�2 > 0, I�1 = I+�1

�=�, and I�2 = I−�2
�=�, then there

is some x between �1 and �2 with Ix = �.
(b) If I±x �= � and |x|< a, then K∓x = � where Kx = {y : � j(x)≥ ũ(x,y)}.
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Proof We may assume 0 < �2 < �1. It is easy to see that {� : I� = I+� �= �} and
{� : I� = I−� �= �} are disjoint open sets. Therefore, x= inf{�> �2 : I� = I−� �= �}
has Ix = �.

Part (b) follows from the convexity of u and (3.41), n.b., the proof of
Lemma 3.9. 
�
Corollary 3.1.5 If none of Cases 1, 2 or 3 hold, then for j large enough, there is
some t j > 0 for which either

Case 4a. Ix = I+x �= � for 0< |x|< t j,
Case 4b. Ix = I−x �= � for 0< |x|< t j,
Case 5a. Ix = I+x �= � for −t j < x < 0 and Ix = I−x �= � for 0< x< t j, or
Case 5b. Ix = I−x �= � for −t j < x< 0 and Ix = I+x �= � for 0< x < t j.

Proof We may consider, at the outset, j large enough so that none of the subse-
quentially postulated conditions of Cases 1, 2, or 3 apply (at any j).

Assume there is no t j for which Ix = I+x �= � for −t j < x< 0 and there is no t j
for which Ix = I−x �= � for −t j < x< 0.

If there is a sequence �1 = �
j
1k↗ 0 (as k→ ∞) with I�1 = I+�1

�= �, then either

there is a sequence �2 = �
j
2k↗ 0 with I�2 = � or there is a sequence �2↗ 0 with

I�2 = I−�2
�= �. The second possibility reduces to the first by Lemma 3.10, and the

first is covered by Case 3. We conclude that there is no sequence �1 ↗ 0 with
I�1 = I+�1

�= �.

The same reasoning implies there is no sequence �1↗ 0 with I�1 = I−�1
�= �.

Thus, Ix = � for all x small enough and negative. But this is covered by Case 2.
From this contradiction, we conclude that there is some t j for which either

Ix = I+x �= � for −t j < x < 0 or Ix = I−x �= � for −t j < x < 0. A similar statement
holds for x> 0, and the remaining cases, listed in the corollary, are simply a listing
of the possibilities. 
�

Case 4. We may assume Ix = I+x �= � for 0< |x|< t j.

Since Ix = I+x , we know that I−x = �. Therefore, � j(x) ≤ ũ(x,y) for (x,y) ∈
C−t j ,b

, so Corollary 3.1.4 applies.

Case 5. We may assume Ix = I−x �= � for −t j < x < 0 and Ix = I+x �= � for
0< x< t j.

According to Lemma 3.10(b) � j(x)< ũ(x,y) for −t j < x< 0 and y≥ 0.
We set

 ̃(x,y) = �˛(x,y) =
�̃2

j−�
2
(x−˛y)2 .

We can see easily that �˛ is smooth and convex. In fact,

�˛(0) = 0.

D�˛(x,y) = (�̃
2
j −�)(x−˛y)(1,−˛); D�˛(0) = 0.
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and

D2�˛(x,y) = (�̃
2
j−�)

⎛
⎝ 1 −˛

−˛ ˛2

⎞
⎠ .

Moreover, �˛ converges uniformly and smoothly on compact subsets to � j as
˛→ 0.

We take a< r j < ı0 and 2ı j < b< 3ı j so that

|� j(x,y)|+ |D� j(x,y)|< �0

4
and D2� j(x,y)> A0− �0

4
I

whenever (x,y) ∈Ca,b. For all ˛ small enough, we have

|�˛(x,y)|+ |D�˛(x,y)|< �0

2
and D2�˛(x,y)> A0− �0

2
I (3.60)

when (x,y) ∈Ca,b.

δj b

D

B

−ξ

ξ

A

C

Fig. 6 Modified domain for Case 5

Setting this aside for a moment, we take a sequence �= � j
k↘ 0 and set

A = {(x,0) :−�≤ x≤ 0},
B = {y(˛,1) : 0≤ y ≤ b},
C = {(x,b) :−�≤ x≤ �},
D = {(−�,y) : 0≤ y≤ b}.

It is clear that  = �˛ ≤ ũ on A∪B. (Note that �˛ = 0 on B.)
Moreover according to Lemma 3.10, � j < ũ for −� < x < 0 and y ≥ 0. This

includes D in particular. Also, if � is small enough, then � j < ũ on C = Ck. To
see this, assume there are points (�1,b) with −�≤ �1 ≤ � and ũ(�,b)≤ � j(�,b).
Since �→ 0, we can take a limit and find u(0,b) = 0 which is a contradiction.
Thus, we can fix � small enough that

� j < u on C∪D.
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Since C∪D is a compact set and �˛→ � j, we find that for ˛ small enough, in
addition to (3.60) we have

�˛ < ũ on C∪D.

We now choose Ṽ = Ṽ˛ = {(x,y) ∈C+a,b :−� < x< ˛y}. Choosing ˛ smaller

once more if necessary, we see that ∂Ṽ˛ ⊂ A∪B∪C ∪D, so that  ̃|∂ Ṽ
≤ ũ|∂ Ṽ

.
With the usual definitions for V and  given in (3.58), we see as usual that D1
holds. Also, C1 follows from (3.60) and the usual estimates. It only remains to
find a point in V̂ or equivalently a point in (x,y) ∈ Ṽ for which ũ(x,y)<  ̃(x,y) =
�˛(x,y).

Consider any sequence �1 = �
j
1k↘ 0. Since I�1 = I+�1

�= �, there exist �1 > 0
for which

ũ(�1,�1)< � j(�1).

We first observe that �1 → 0, for if not, we can take a subsequence for which
�1→ �0 > 0, and by continuity obtain ũ(0,�0) = 0 (a contradiction). Therefore,
Lemma 3.7 applies, and we see that �1/�1 → 0. It follows that there are points
(�1,�1) ∈ Ṽ for which ũ(�1,�1)< � j(�1) and

0< �1 ≤ ˛

2
�1 < ˛�1.

We observe,

 ̃(�1,�1) = �˛(�1,�1)

=
�̃2

j −�
2
(�1−˛�1)

2

>
�̃2

j −�
2

�2
1

> u(�1,�1).

Thus, x j+� j(�1,�1) ∈ V̂ �= �.
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