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Abstract. To enable effective cross-organizational collaborations, pro-
cess providers have to offer views on their internal processes to con-
sumers. A process view hides details of an internal process that are secret
to or irrelevant for the consumer. This paper describes a formal two-step
approach for constructing customized process views on structured pro-
cess models. First, a non-customized process view is constructed from
an internal structured process model by aggregating internal activities
the provider wishes to hide. Second, a customized process view is con-
structed by aggregating and omitting activities from the non-customized
view that are not requested by the consumer. To show the feasibility
of the approach, an existing architecture for setting up dynamic virtual
enterprises is extended.

1 Introduction

In today’s networked society, more and more companies collaborate with each
other in a virtual way through the internet. Each partner in such a collabora-
tion network has its own private business process. Coordination of these local
business processes takes place through the network. However, process-oriented
collaboration in a network can only occur if partners reveal some details of their
business processes to the network. These revealed details can be captured in an
external or public view on the private business process [12]. A public view is like
a window through which the network can monitor the operation of an underlying
private business process of a partner.

Now, for each partner providing a process to the network, there is a trade off
in the level of detail shown in the process view. On the one hand, if the process
view reveals too few details of the underlying private business process, then the
other partners of the network cannot effectively detect the local state of the
business process, which might prevent an effective operation of the network. For
example, if some partner responsible for producing a customer made component
does not reveal any details of its internal production process, the main contractor
cannot monitor the progress at the partner’s site and therefore cannot coordinate
the overal networked production process in a proper way. On the other hand, if
the process view reveals all private details, including business secrets, then the
provider runs the risk of loosing its competitive edge. Other partners might copy
then its way of working, turning from collaborators into competitors.
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Moreover, other partners in the network might not be interested in every
detail of the private provider process. Some details may be irrelevant for them
or simply be noise in the business relationship. In the example of the production
network given above, the main contractor is likely not interested in detailed infor-
mation about the production process, but only in high-level status information.
Thus, process views need to be customized to the needs of the consumers.

This paper proposes a formal approach to construct a customized process
view on a business process. The approach consists of two main phases. In the
first phase, process providers construct process views that are independent of
any specific consumer. These non-customized process views contain aggregate
activities that hide activities of the internal business process. This way, a pro-
cess view hides private details from the underlying process model. In the sec-
ond phase, consumers tailor these process views to their needs. The resulting
customized view reveal only those activities requested by the consumer; the re-
maining activities of the underlying process view are hidden or omitted. This
way, a customized process view filters noise from the underlying process view.
Though the first phase needs input from the provider and the second phase from
the consumer, the actual construction of the views in both phases is done fully
automatically. The two-phase approach supports the interests of both providers
and consumers.

We now explain these two phases, aggregation and customization, in more
detail, using the example in Figure 1. The internal, private process model is
shown on the bottom while the customized process view is shown on the top. In
the aggregation phase, the process provider first has to identify which activities
of the business process have to be aggregated to hide private process details. In
Figure 1, these activities to be aggregated are B and D, indicated with a double
line. Next, the aggregate activity is constructed. This aggregate contains the
identified activities, but possibly also some additional activities, to ensure that
the derived process view is consistent with the underlying process model. In the
non-customized process view in Figure 1, activity C has been added to the ag-
gregate BCD. We define the procedure for constructing aggregate activities both
declaratively (by construction rules) and operationally (by algorithms) and show
the equivalence of both definitions. The declarative definition is useful to explain
computed aggregates to end users, while the operational definition is more easy
to implement. Finally, an external process view is constructed by replacing the
aggregated activities with the aggregate. These steps can be repeatedly applied
(not shown in the figure).

In the second phase, a consumer selects a set of activities that it wishes to
see from the non-customized process view. In Figure 1 these activities are A and
F, indicated with a double line. Next, fully automatically a customized process
view containing these activities is constructed. All the other activities of the non-
customized process view are either hidden or omitted in the customized view.
In the customized view in Figure 1, activities BCD and E of the non-customized
view are hidden by abstract activity BCDE.
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Fig. 1. Illustration of approach for generating customized process views

Customers can select the activities to be shown in the customized view by
referring to organization-independent activities, which could come for example
from industry standards like SCOR [27] or RosettaNet [25]. Providers can im-
plement their own variant of such standard activities. To capture this, we use
an inheritance relation on activities, to indicate that an activity at a company
side inherits from (or implements) an abstract activity defined by an industry
standard. For example, a consumer can request compound RosettaNet activity
Request shipping order cancellation while the provider has implemented this ac-
tivity as an activity Cancel order. The customized process view would then show
Request shipping order cancellation instead of Cancel order. Using this inheritance-
based approach, adherence to reference models is easily obtainable.

In the remainder of this paper, we focus on block-structured process mod-
els [9, 17, 20], or structured process models for short. In such models, each block
has a unique entry and a unique exit point, and blocks are properly nested. If
a structured process model is sequential, its structure is similar to that of a
structured program. Many existing process description languages, including in-
dustry standard BPEL [3] and OWL-S [21], are structured into blocks. We show
that the block-structure allows for a simple and efficient (tractable) procedure
for constructing customized views. Unstructured process models may contain
structural errors such as deadlocks, for example if an OR split is followed by an
AND join. Block-structured process models require that splits and subsequent
joins have the same type, and thus they do not have this drawback [17].
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In sum, the main contribution of the paper is the definition of an approach
that helps process providers and consumers to construct tailored process views
on private processes in an efficient way taking process standards into account.
Providers can construct process views by hiding those parts of their business
processes that have to remain secret. Consumers can construct customized pro-
cess views by hiding or omitting irrelevant parts of process views offered by the
providers. This allows an efficient setup of dynamic business-to-business collab-
orations with a strong process-orientation [10]. Examples of such collaborations
are virtual enterprises whose key operations are process-oriented, like logistics
chains [11], financial and insurance networks [8], and industrial networks [7].

Structure. The remainder of this paper is organized as follows. Section 2 defines
structured process models. Section 3 defines the first phase of the approach: how
a non-customized view can be derived from a conceptual-level process, given a
set of nodes to be aggregated. The construction procedure defines which nodes,
next to the given nodes, need to be aggregated in order to get a process view that
is consistent with the conceptual process. The construction procedure is defined
both declaratively (by construction rules) and operationally (by algorithms) and
the equivalence of both definitions is shown. Section 4 defines the second phase
of the approach: how, given a set of abstract activities that a consumer wants
to be visible, a process view can be customized to show only the relevant ac-
tivities in full detail. The constructed customized view will contain concrete
activities that are specializations of the abstract activities. Section 5 shows how
our approach can be architecturally supported by extending an existing software
architecture for setting up and enacting dynamic virtual enterprises. Section 6
discusses related work. Section 7 wraps up with conclusions and further work

2 Preliminaries

We first define structured process models and then fix an inheritance relation on
activities. We also give some auxiliary definitions that we use in Section 3.

Structured Process Models. A process model specifies how a given set Act of
activities (atomic unit of works) are ordered. The used ordering constructs are
sequence, choice, parallelism, and structured loop. To simplify the exposition,
we abstract from data.

Let P denote the set of all structured process models. A structured process
model P ∈ P is a tuple (A,N , child , type, label) where

– A ⊆ Act is a set of activities,
– N is a set of nodes,
– child : N × N is a predicate that defines the hierarchy relation. We have

child(n,n ′) if and only if n is a child (sub) node of n ′.
– type : N

� {SEQ ,PAR,XOR,LOOP ,BASIC} is a function that assigns to
each node its type. Type SEQ indicates that all children of the node execute
in sequence, PAR that they execute in parallel, XOR that one of them is
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executed at a time, and LOOP that the children execute zero or more times.
We require that each SEQ , XOR, and PAR node has more than one child
and that each LOOP node has only a single child, which is no LOOP node.
A node has type BASIC if and only if it is a leaf node, i.e. it has no children.

– label : N
�

A∪{τ} is a function labeling a node with an activity. Note that
the same activity can label different nodes. The τ symbol is used to denote an
aggregate activity, i.e., an activity in a process view that aggregates activities
from a lower level1.

We use an auxiliary function children : N
���

N that defines for each node
its set of child nodes. For a leaf node, this set is empty. The definition of children

makes use of predicate child :

children(n)
df

= {n ′ ∈ N | child(n ′,n)}.

If c ∈ children(n), node n is parent of c, written parent(c). By children+

and children∗ we denote the irreflexive-transitive closure and reflexive-transitive
closure of children, respectively. So children∗(n) = children+(n) ∪ {n}. If n ∈
children∗(n ′), we say that n is a descendant of n ′ and that n ′ is an ancestor of
n. Note that each node is ancestor and descendant of itself.

To ensure that the child predicate indeed arranges nodes in a hierarchy, we
require that each node has one parent, except one node r , which has no parent.
Next, we require that r is ancestor of every node in N . These constraints ensure
that node are structured in a tree with root r . Leaves of the tree are the BASIC

nodes. Internal nodes have type SEQ , PAR, XOR, or LOOP .

To indicate the ordering of children of nodes of type SEQ , we use a partial
function rank : N

��� . The ranks of two nodes are only compared if the nodes
share the same parent that has type SEQ . We require that two different nodes
with the same parent have different ranks, and that for a node n with l children,
for any child c of n, rank(c) ∈ {0, . ., l − 1). Using an overloading of notation,
we use rank(n, i), where 0 ≤ i ≤ l − 1, to indicate the unique child c of n for
which rank(c) = i .

In the remainder of this paper, we will show structured process models graph-
ically, using a variant of the UML activity diagram notation [28]. Figure 2 shows
the business process of a logistics organization that delivers cellular phones (GSM
phones) from a warehouse to a customer. We use node containment to indicate
hierarchy. The root node is never shown. Sequence nodes have an incoming and
outgoing arrow crossing their border, whereas choice and parallel nodes have
a diamond and bar, respectively, on their border. Within a sequence node, the
ordering relation is specified by means of arrows. Loop nodes have no dedicated
symbol, but are indicated by drawing a self edge for the unique child of the
loop node. For example, in Figure 2 node Pick GSM from stock is child of a loop
node. To distinguish nodes from activities, in the remainder nodes are written

1 The τ symbol comes from the field of process algebra, where it is used to denote an
invisible action [22].
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Fig. 2. Logistics process (adapted from [29])

in sans serif whereas non-τ activities are written in italic. To simplify the expo-
sition, we assume in each example that the activity has the same name as the
corresponding node.

Least common ancestors. To define the construction of process views in Section 3,
we will make use of some auxiliary functions on the syntax of structured process
models. The definitions are inspired by formal statechart semantics [15, 24].

For a set X of nodes, the least common ancestor (lca) of X , denoted lca(X )
is the node x such that x is ancestor of each node in X , and every other node y

that is ancestor of each node in X , is ancestor of x :

– X ⊆ children∗(x ), and
– For every y ∈ N such that X ⊆ children∗(y), we have that x ∈ children∗(y).

Since nodes are arranged in a tree, every set of nodes has a unique least common
ancestor. For example, in Fig. 2 the lca of Deliver regular and Deliver express is
Deliver, whereas the lca of Deliver regular and Hand over parcel is Deliver parcel.
Note that the lca of a single node is the node itself, i.e. lca({x}) = x .

Based on the notion of lca, we define some additional relations on nodes.
The before relation < denotes temporal ordering. Given two nodes n,n ′ ∈ N ,
we have n before n ′, written n < n ′, if and only if

– node l = lca({n,n ′}) has type SEQ , and
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– for the children cn , cn′ of l such that n is descendant of cn and n ′ is descen-
dant of cn′ , we have rank(cn) < rank(cn′).

For example, in Fig. 2 we have Determine region < Deliver express.

Given two nodes n,n ′ ∈ N , we have n orthogonal to n ′, written n⊥n ′, if and
only if n 6= n ′ and the type of lca({n,n ′}) is not SEQ . Since we require that a
node of type LOOP has only a single child, if n⊥n ′ then their lca is either a PAR

or a XOR node. For example, in Fig. 2 we have Deliver regular⊥Deliver express.

Inheritance of activities. Above we introduced a set Act of activities. Let ≤
⊆Act × Act be an inheritance relation on activities. If a ≤ a ′ than a is more
specific than a ′ and a can replace a ′, since a has all features of a ′. For example,
activity Handover parcel from Figure 2 inherits from SCOR [27] activity Receive

and Verify Product at Customer Site. Relation ≤ is a partial order, so if a ≤ b

and b ≤ a then a = b. We allow multiple inheritance, so it might be that a ≤ b

and a ≤ c yet b and c are incomparable, so b 6≤ c and c 6≤ b. For example, in
SCOR [27] we have that activity Enable return is a specialization of both Enable

and Return, but these activities are incomparable. Since ≤ is a partial order, the
inheritance relation is acyclic, so an activity cannot inherit indirectly from itself.

3 Constructing Process Views

This section defines the first phase of our approach: how process views can be
constructed from structured process models. First, we define how a given set of
nodes from the process model can be aggregated in a correct way into a single
node in the process view. Second, we define how, given a computed aggregate
and a structured process model, a structured process view can be derived. These
two steps can be repeated arbitrarily often, so a process view can itself be further
aggregated into a more abstract process view.

3.1 Constructing aggregates

An aggregate is a set of nodes from the process model that is represented in
the process view by a single node n , i.e. node n hides the nodes contained in
the aggregate. The user must specify which set of nodes has to be aggregated.
However, the aggregate might need to contain some additional nodes as well, in
order to get a process view that is consistent with the underlying process model.
The view and the process model are consistent if the orderings of the process
model are respected by the view and no additional orderings are introduced
in the view. We specify the consistency constraints as construction rules, to
be satisfied by the constructed aggregated. Next, we define an algorithm for
constructing aggregates. We show that both definitions are equivalent.
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Construction rules. Let X be the set of conceptual-level nodes that have to be
aggregated. Denote by agg(X ) the set of nodes that the aggregate constructed for
X should contain in order to derive a process view consistent with the underlying
process model. Naturally, all nodes of X should be in agg(X ), which leads to
the first rule for constructing aggregates:

Rule 1 X ⊆ agg(X )

The other rules are defined to ensure that after constructing the aggregate,
the resulting process view is consistent with the underlying structured process
model. Rule 2 states that if two nodes x , y are aggregated such x is before y , then
every intermediary node i , so x < i < y , should be contained in the aggregate
as well. Otherwise, if an intermediary node i is not included, the aggregate will
not be atomic anymore in the process view. Then the aggregate will be on the
one hand before agg(X ), since x < i , but also after agg(X ), since i < y . For
example, aggregating in Figure 3 nodes B and D without aggregating C would
result in a view in which the aggregate is before and after C. Thus, a loop is
created which is not present in the original model. Therefore, we require that i

is included in the aggregate:

Rule 2 if x , y ∈ agg(X ) and i ∈ N such that x < i < y

then i ∈ agg(X ).

Rule 3 states that if a composite node is included in the aggregate, all its
children are included as well. This ensures that in the process view aggregates
have no children, i.e. no internal details of the aggregate are revealed. For exam-
ple, if in Figure 4 node X is to be aggregated, then B and C must be aggregated
as well. Otherwise, the process view would be the same as the original process,
with X replaced by τ .

Rule 3 if x ∈ agg(X ) then children(x ) ⊆ agg(X ).

Rule 4 requires that if a node is in the aggregate and its parent is a strict
descendant of lca(X ), so x 6= lca(X ), then its parent node has to be aggregated
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as well. Not using this rule can lead to inconsistent process views. For example,
Figure 5 shows a view constructed by aggregating A and B without aggregating
X, even though X is strict descendant of lca({A,B}), which is root r . Since in the
structure process model node A is before X, in the view AB is before X. Since
X contains AB, then there is a self loop for X. This loop is not present in the
original process model, so the view is not consistent.

To see why the parent node needs to be a strict descendant of lca(X ), rather
than a descendant, consider the example in Figure 6. If A and D are to be
aggregated, then lca({A,D}) = Z should not be aggregated. Otherwise, in that
case the parallel branch Y would be aggregated as well. As the view shows,
however, that branch can still be exposed.

Rule 4 if x ∈ agg(X ) and parent(x ) ∈ children+(lca(X ))

then parent(x ) ∈ agg(X )

Note that for a given set X of nodes to be aggregated in a structured process
model P , there can be multiple sets which satisfy the construction rules. We
formally define the notion of a minimal aggregate, which is the minimal set
satisfying the four construction rules. Given a set X of nodes to be aggregated
in process model P , the minimal aggregate for X , written min agg(P ,X ), is the
smallest set S satisfying:

– X ⊆ S
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– if x , y ∈ S and i ∈ N such that x < i < y then i ∈ S

– if x ∈ S then children(x ) ⊆ S

– if x ∈ S and parent(x ) ∈ children+(lca(X )) then parent(x ) ∈ S

This declarative definition suggests an iterative algorithm for computing the
minimal aggregate for a set of nodes X : start with the nodes in X , and repeatedly
add nodes to resolve violations of the last three construction rules. However,
this requires computation of the < and ⊥ relations, which is cumbersome. We
therefore define a more efficient algorithm for computing minimal aggregates.

Algorithm. The algorithm Aggregate for constructing an aggregate is listed
in Fig. 7. It expects a structured process model P and a set X of nodes to be
aggregated, and returns an aggregate.

The algorithm first computes the least common ancestor l of the set X of
nodes to be aggregated. If l ∈ X then all descendants of l need to be aggregated
(l. 4). Otherwise, all children of l which have some descendant in X are put in
set C (l. 6). Next, the set of all descendant of nodes in C are put in aggC (l. 7).
These descendants are to be contained in the aggregate by Rule 3 and Rule 4.

Next, the type of l is tested (l. 8):

– If l has type SEQ , then the set C ′ of “intermediate” children of n are
computed. Set C ′ contains a child c of n if and only if there are children
c1, c2 ∈ C such that c1 < c < c2. The set of all descendant of nodes in C ′



11

1: procedure Aggregate(P ,X )
2: l := lca(X )
3: if l ∈ X then

4: agg := children∗(l)
5: else

6: C := {c ∈ children(l) | X ∩ children∗(c) 6= � }
7: aggC :=

⋃
c∈C children∗(c)

8: if type(l) = SEQ then

9: C ′ := {c ∈ children(l) | ∃ a, b ∈ C : a < c < b}
10: aggC ′ :=

⋃
c′∈C ′ children∗(c′)

11: agg := aggC ∪ aggC ′

12: else

13: agg := aggC
14: end if

15: end if

16: return agg
17: end procedure

Fig. 7. Algorithm for constructing aggregates

is put in aggC ′ (l. 10). All descendants of these intermediate children of n

must be contained in the aggregate by Rule 2 and Rule 3. The aggregate is
therefore the union of sets aggC and aggC ′ (l. 11).

– If l has type PAR or XOR, then the aggregate only contains all descendants
of C (l. 13).

Finally, the constructed aggregate is returned (l. 16).
Note that computing the least common ancestor can be done in linear time [16].

Using this observation, it is easy to see that the algorithm is tractable (polyno-
mial).

Correctness. The correctness of the algorithm is shown by the following the-
orem, which states that the algorithm yields a minimal aggregate that satisfies
all four construction rules.

Theorem 1. Given a conceptual process model P and a set X of nodes to be

aggregated. Then min agg(P ,X ) = Aggregate(P ,X ).

Proof. Denote by agg the set returned by Aggregate(P ,X ). We prove the
claim in two steps: first we show that agg complies with the construction rules
(i), and next we show that agg is minimal (ii).

i. We only show the proof for Rule 2; the proofs for the other rules are by
similar reasoning.

Let x , y ∈ agg such that there is a z ∈ N with x < z < y . We will show that
z ∈ agg .

Since x < z < y , we have lx ,y,z = lca({x , y , z}) is of type SEQ . If lx ,y,z = l ,
by l. 11 of Aggregate, we have z ∈ agg . If lx ,y,z is a strict descendant of l , so
lx ,y,z 6= l , there are two cases:
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– l is of type PAR or XOR. Let c be the child of l that is ancestor of lx ,y,z .
Then c ∈ C and so z ∈ agg by l. 13.

– l is of type SEQ . Let cz be the child of l such that z is descendant of cz .
Since x < z < y , cz ∈ C ∪ C ′. The claim then follows from l. 11.

ii. We prove the claim by contradiction. Suppose there is another set agg ′,
with agg ′ ⊂ agg , such that X ⊆ agg ′ and agg ′ does not violate the construction
rules 2, 3, and 4.

Let n be a node in agg \ agg ′, so n is superfluously added to agg by the
algorithm. We now examine the cases where n might have been added to agg by
the algorithm:

– l. 4. Since l ∈ X , by assumption l ∈ agg ′. Let n ′ be the node in agg \ agg ′

such that n ′ is descendant of l and n ′ is ancestor of n and parent(n ′) ∈ agg ′.
Since n ′ 6∈ agg ′, Rule 3 is violated for agg ′.

– l. 11. Then the lca of X is of type SEQ . Then n is a descendant of either
some child c′ ∈ C ′ (l. 10) or of some child c ∈ C (l. 7). In the first case,
n 6∈ agg ′ violates Rule 2. In the second case, there is a node x ∈ X such
that x is descendant of c (l. 6). Since n ∈ agg \ agg ′, n 6= x . There are three
subcases now

• n is strict descendant of x . Let n ′ be the node in agg \ agg ′ such that
n ′ is a strict descendant of x and ancestor of n and parent(n ′) ∈ agg ′.
Since n ′ 6∈ agg ′, Rule 3 is violated.

• n is strict ancestor of x . Let n ′ be the node in agg \ agg ′ such that n ′ is
descendant of n and a strict ancestor of x and children(n ′) ∩ agg ′ 6= � .
Since n ′ 6∈ agg ′, Rule 4 is violated.

• n < x or n < x or n⊥x . Let ln,x = lca({n, x}). Since ln,x is a strict
ancestor of x but a descendant of c, node ln,x is in agg ′ by the previous
case. Let n ′ be the node in agg \agg ′ such that n ′ is a (strict) descendant
of ln,x and parent(n ′) ∈ agg ′. Since n ′ 6∈ agg ′, Rule 3 is violated.

– l. 13. Let x ∈ X be a node such that x ∈ aggC . By assumption (Rule 1),
x ∈ agg ′. So n 6= x . Let cx be the child of l that is ancestor of x .

• n is strict descendant of x . Let n ′ ∈ agg \ agg ′ be a descendant of x that
is ancestor of n such that parent(n ′) ∈ agg ′. Since n ′ 6∈ agg ′, then agg ′

violates Rule 3.
• n is strict ancestor of x . Let n ′ ∈ agg \ agg ′ be a descendant of n that

is ancestor of x such that children(n ′) ∩ agg ′ 6= � . Since n ′ 6∈ agg ′, then
agg ′ violates Rule 4.

• n⊥x . Let ln,x = lca({n, x}). Since ln,x is strict ancestor of x , by the
previous case ln,x ∈ agg ′. Let n ′ ∈ agg \agg ′ be a descendant of ln,x that
is ancestor of n such that parent(n ′) ∈ agg ′. Since n ′ 6∈ agg ′, then agg ′

violates Rule 3.

Thus, in each case agg ′ violates a construction rule, which contradicts the
assumption. ut
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3.2 Extension

Given a set X of nodes to be aggregated, the least common ancestor lca(X )
is only aggregated if lca(X ) ∈ X . Sometimes, this can lead to process views
which are correct, but counter intuitive. For example, aggregating B and C in
Fig. 8 according to the four construction rules results in the middle process view.
Here, Z is not aggregated, because Z = lca({B,C}). All of the children of Z are
aggregated, so Z only has a single child, which is the new aggregate. But in
this case it would make sense to aggregate Z, since all of the children of Z are
aggregated as well.

Therefore we define an additional rule, which states that if all children of
lca(X ) are included in the aggregate, node lca(X ) itself should be included as
well.

Rule 5 if children(lca(X )) ⊆ agg(X ) then lca(X ) ∈ agg(X )

The algorithm needs to be modified slightly to take into account this new
construction rule. Between lines 14 and 15, the following lines needs to be in-
serted:

if children(l) ⊆ agg then

agg := agg ∪ {l}
end if

The theorem of the previous subsection can be easily extended to deal with
this new construction rule and the modified algorithm.
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3.3 Generating process views

Above, we have outlined a declarative and operational approach for constructing
an aggregate, which is a set of nodes that have be represented by a single node
in the process view. Now we define a function gen : (P×N ) � P that generates
from a given structured process model and an aggregate the resulting process
view, which is again a structured process model. If there are multiple aggregates,
the function can be repeatedly applied.

If agg is the constructed aggregate for process model P = (A,N , child , type, label),
so agg ⊆ N , then the process model P ′ = gen(P , agg) is constructed by replac-
ing agg with a new node nagg 6∈ N that does not get any children in the process
view P ′ and gets label τ .

Now the problem is that the new node nagg needs to be attached as child to
some node N \ agg , i.e., some node l ∈ N \ agg has to act as parent of nagg in
the process view P ′. Let l be the lowest node in N \ agg that is ancestor (in P)
of all nodes in agg . So agg ⊆ children∗(l) and for every other node l ′ ∈ N \ agg

for which agg ⊆ children∗(l ′), we have l ∈ children∗(l ′). From the algorithm,
it follows that if lca(agg) 6∈ agg then l = lca(agg); otherwise, l is the parent of
lca(agg) (l. 4). Thus, the construction procedure ensures that node l exists and
is unique. Therefore, l can be the unique parent of nagg in P ′.

Formally, P ′ = (A′,N ′, child ′, type ′, label ′) where

– A′ = {y | (x , y) ∈ label ′}
– N ′ = N \ agg ∪ {nagg}
– child ′ = (child ∩ (N ′ × N ′)) ∪ {(nagg , l)}
– type ′ = type ∩ (N ′ × {SEQ ,PAR,XOR,BASIC}) ∪ {(nagg ,BASIC )}
– label ′ = (label ∩ (N ′ × A)) ∪ {(nagg , τ)}

Instead of labelling the new aggregate node with τ , the user (provider) can
also decide to create a new activity. In the examples shown in this section, each
aggregate of a consistent process view was labelled with a new activity, rather
than τ .

Figure 9 shows the process view for Figure 2 if Determine region and Deliver

express are selected for aggregation.

4 Customizing Process Views

This section defines the second phase of our approach: how constructed process
views can be customized. Input is a process view P ∈ P plus a set I of activi-
ties which the consumer wishes to be visible for monitoring the progress of the
process. We require that all activities in I are incomparable, so there are no two
activities such that one is descendant of the other. Output is a customized view,
which is again a structured process model P ′ ∈ P. In P ′ irrelevant parts of P

with respect to I are omitted or aggregated. A part is irrelevant if none of the
contained nodes executes an activity that implements some activity in I . Not
every activity i ∈ I needs to be implemented in P ′. However, the approach can
be easily modified and extended to deal with additional constraints.
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Get 
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parcel

Pick GSM from stock

Deliver parcel

Schedule & Deliver

Fig. 9. Example process view for Figure 2

We define the customization algorithm declaratively as a function, customize :
(P × � Act) � P, which transforms a structured process model P and a given
set I of activities into a structured process model customize(P , I ) = P ′. We now
define the individual components of P ′ = (A′,N ′, child ′, type ′, label ′), given the
input model P = (A,N , child , type, label).

The set A′ of activities contains the requested activities in I plus the activities
from A that are actually used in the new labelling function label ′, which is defined
later:

A′ = { a | a ∈ A ∪ I ∧ ∃n ∈ N ′ : (n, a) ∈ label ′ }.

Before we define N ′, we fix some terminology. A node n is relevant if one
of its descendant nodes is labelled with an activity that implements an activity
i ∈ I :

relevant(n, I )
df

⇔ there is a n ′ ∈ children∗(n) and i ∈ I : label(n ′) ≤ i .

For example, for Figure 2, if I = {Determine Transport} then among others node
Deliver parcel is relevant.

When customizing a process view, we have to ensure that each relevant node
in the process view occurs in the customized view, since the external party wishes
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to monitor relevant nodes. So all relevant nodes of P should be in P ′. The set
of relevant nodes in the customized view is defined as:

N ′

rel = {n ∈ N | relevant(n, I )}.

Naturally, N ′ should contain N ′

rel . However, N ′ should also contain new
abstract nodes, not in N , that hide irrelevant nodes in N . These abstract nodes
are needed in P ′ to get a valid process view. For example, in the customized
view in Fig. 1 there is an abstract node BCDE that hides irrelevant nodes B, C,
D, and E. Omitting BCDE would result in an invalid process view.

An abstract node only has to be created to hide the irrelevant children of
a compound node that also has relevant children. For example, in Figure 1
the abstract node BCDE is created for compound node root r , which has both
relevant and irrelevant children. If a relevant node has only irrelevant children,
it needs no children in the customized view. If a relevant node has only relevant
children, all these children are shown in the customized view. So in these last
two cases, an abstract child node is not needed.

The predicate relevant compound formally defines for which compound nodes
of N an abstract child node needs to be created:

relevant compound(n, I ) ⇔ relevant(n, I )

∧ ∃n ′ ∈ children(n) : relevant(n ′
, I )

∧ ∃n ′ ∈ children(n) : ¬ relevant(n ′
, I ).

Note that relevant compound(n, I ) is true implies n is compound, since only
compound nodes have children.

We now define per type t of compound nodes, which concrete nodes of this
particular type get a new abstract child in the customized view to hide irrelevant
children from the input model. These newly created nodes are put in set N ′

t . More
precisely, if n ∈ N is a node such that relevant compound(n, I ), then we denote
by nt ∈ N ′

t a new (fresh) abstract node, so nt 6∈ N . In the customized view,
nt hides all irrelevant descendants of n. However, not every relevant compound
node n needs such a node nt . For certain types of nodes, irrelevant child nodes
of a relevant compound node can also be completely omitted, rather than being
represented by some abstract node.

Before we define N ′

XOR, we observe that omitting irrelevant children from a
relevant XOR node can result in a model with illegal states. For example, suppose
for Figure 2 the external party wishes to monitor node Deliver express. Omitting
in the customized process view Deliver regular would result in an illegal state
at the external level if in the internal state Deliver regular were executed. The
external state would show that XOR node Deliver is performed, but the external
party can also see that none of its children (i.e., Deliver express) is performed.
So for the irrelevant children, i.e. Deliver regular, a new abstract node must
be created in the customized process view, say Other delivery, i.e., non-express
delivery. Therefore, for each relevant XOR node n a new abstract node nxor is
created, which leads to the following definition of N ′

XOR:

N ′

XOR = {nxor | n ∈ N ∧ type(n) = XOR ∧ relevant compound(n, I ) }.
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Fig. 10. Example to illustrate the customization of sequential nodes

The parents of the newly created nodes in N ′

XOR are defined below by the child ′

relation.
For a relevant PAR node, in principle both abstraction and omission of irrel-

evant children are possible. Omission is possible because the execution states are
still well defined through the children that are relevant. In this paper, we choose
to omit these irrelevant children, to show as little detail as possible, but the
alternative (abstraction) can be easily defined. Thus, each relevant parallel node
has no (abstracted) irrelevant children in the customized view. For example, if
in Figure 2 the consumer wishes to monitor activity Determine transport, node
Determine region can be safely omitted, because the execution state is well de-
fined through Determine transport. Consequently, each relevant PAR node does
not need an abstract child node in the customized view, and therefore set N ′

PAR

is empty:

N ′

PAR = � .

For sequential nodes, the situation is more complex. Given a relevant se-
quential node, omission of its irrelevant children is not possible, since then not
all internal states would have valid external representations. Only abstraction
is therefore feasible. For a sequential node that has some relevant children, all
irrelevant children cannot be grouped into one node, since there might be an
intermediate relevant child. Thus, only irrelevant children which are not inter-
rupted by relevant children can be grouped (see Figure 10). For each SEQ node
n, we therefore create for each maximal interval (i , j ) of irrelevant children an
abstract node nseq(i,j ). In an interval (i , j ) of irrelevant child nodes, each node
rank(n, k) is irrelevant, for i ≤ k ≤ j . In a maximal irrelevant interval, either
rank(n, i) is the first node of n, so i = 0, or node rank(n, i − 1) is relevant, and
either rank(n, j ) is the last node of n, so j = |children(n)| − 1, or rank(n, j + 1)
is relevant.

The set N ′

SEQ of abstract child nodes created to hide irrelevant children of
SEQ nodes in the customized view is therefore defined as:

N ′

SEQ = {nseq(i,j ) | n ∈ N ∧ type(n) = SEQ ∧ relevant compound(n, I )

∧ 0 ≤ i < j ≤ |children(n)| − 1

∧ (i = 0 ∨ relevant(rank(n, i − 1), I ))
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∧ (j = |children(n)| − 1 ∨ relevant(rank(n, j + 1), I ))

∧ ∀ i ≤ k ≤ j : ¬ relevant(rank(n, k), I ) }.

Note that irrelevant begin and start activities of a sequence node are aggregated.
If these irrelevant parts are at the top-level of the process, they can be omitted.

Finally, we have to define N ′

LOOP . Since a LOOP node n has a single child,
we have ¬ relevant compound(n, I ). Thus, a LOOP node has does not have an
aggregate child in the customized view, and therefore set N ′

LOOP is empty:

N ′

LOOP = � .

We now define N ′ as the union of N ′

rel plus the sets containing all new
abstract nodes:

N ′ = N ′

rel ∪ N ′

XOR ∪ N ′

PAR ∪ N ′

SEQ ∪ N ′

LOOP .

Next, we have to define the remaining three predicates and functions. Pred-
icate child ′ is defined by restricting child to relevant nodes in N ′

rel and adding
for each XOR and SEQ node the constructed aggregate child nodes:

child ′ = { (c, p) | (c, p) ∈ child ∧ c ∈ N ′

rel ∧ p ∈ N ′

rel }

∪ { (nxor ,n) | nxor ∈ N ′

xor ∧ n ∈ N ′

rel }

∪ { (nseq(i,j ),n) | nseq(i,j ) ∈ N ′

seq ∧ n ∈ N ′

rel }.

Function type ′ is defined to be the same as type for relevant nodes. Con-
structed abstract nodes have no children, so they are BASIC .

type ′ = { (n, t) | n ∈ N ′

rel ∧ t = type(n) }

∪ { (n,BASIC ) | n ∈ N ′

XOR ∪ N ′

SEQ }.

Finally, function label ′ labels each relevant node n ∈ N ′

rel either with an activity
in I or in A. A relevant node n is labelled with an activity i ∈ I if and only
if label(n) implements i . This way, the consumer will see the activities on the
level of detail it requires. If label(n) does not implement i , node n gets labelled
with label(n). The constructed abstract nodes have no visible activity, i.e. they
are labelled τ . Alternatively, the user (consumer) can create a new activity for
a new abstract node.

label ′ = { (n, i) | n ∈ N ′

rel ∧ i ∈ I ∧ label(n) ≤ i }

∪ { (n, l) | n ∈ N ′

rel ∧ l = label(n) ∧ @i ∈ I : label(n) ≤ i }

∪ { (n, τ) | n ∈ N ′

agg }.

Finally, we illustrate the customization algorithm by means of an example. If
the process view in Figure 9 is customized for activities Get GSM and Hand over

parcel, the customized view shown in Figure 11 is obtained. The label HIDDEN
stands for τ . Note that Get GSM serialnr and Wrap up parcel have been merged
into one abstract node in the customized view.
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Get 
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HIDDENHIDDEN

Hand over
parcel

Pick GSM from stock

Deliver parcel

HIDDEN

Fig. 11. Example customized process view for Figure 9

5 An Architecture for Constructing Process Views

In this section we explain how the approach can be supported by an architecture.
The architecture supports the construction of views, not the actual enactment.
This latter aspect is addressed in other work [26]. The proposed architecture is an
extension of an existing architecture that supports the formation and enactment
of dynamic virtual enterprises [14].

Before we show the architecture, we give a straightforward functional ar-
chitecture that supports the construction of customized views from structured
process models (Fig. 12). The aggregator and customizer module support the
first and second phase, respectively, of the construction approach. The reposi-
tory with the structured process models and the aggregator are located at the
provider’s site. The repository with the non-customized process views is a public

AggregatorAggregatorProcess
Model

Process
View CustomizerCustomizer Customized

View

Fig. 12. Functional architecture for generating customized process views
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Fig. 13. Constructing customized views in CrossWork architecture

repository accessible to consumers. It can be located either at a provider site or
at some public site. The customizer module and the repository containing the
customized views can be located at the provider’s site, but they can also be
public components.

We now show how this generic functional architecture can be embedded in an
existing architecture for forming and enacting virtual enterprises using agents
and cross-organizational workflows. This existing architecture was created in
the scope of the IST CrossWork project [7], which developed IT support for the
dynamic formation of Networks of Automotive Excellence. Each network consists
of a number of suppliers of moderate size. Together, the suppliers form a network
(virtual enterprise) that can deliver to an Original Equipment Manufacturer
(OEM) like BMW or MAN.

Figure 13 shows the extended CrossWork architecture. The basic CrossWork
system has the following functionality. The system starts with the goal decom-
position module. This module takes an order specification from an OEM and
decomposes it into a required set of components and services, using a prod-
uct knowledge base. Next, the team formation module finds for each identified
component and service a partner using a market and infrastructure knowledge
base [4]. The market knowledge base stores per organization the services and
components it delivers and which activities it offers, while the infrastructure
knowledge base stores information about the legacy systems of organizations.
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The team formation module composes the retrieved partners into a team that
can cooperate according to the market and infrastructure knowledge base. Then
the workflow formation module queries the team members for their local work-
flow models (not shown) and composes these into a global process model. The
ordering constructs used to compose the workflows are based on workflow pat-
terns [2]. This constructed global workflow model can be verified and validated.
Finally, the global workflow model can be enacted. The global workflow coor-
dinates the local workflows of the team partners. The process language used
to model processes is a structured process language based on XRL [1]. For the
enactment, this language is mapped to BPEL [3].

The following extension of the CrossWork architecture supports the construc-
tion of customized views. The market knowledge base stores for each organization
which organization-independent (e.g. SCOR [27], RosettaNet [25]) activities it
offers. Each potential team partner stores the description of its local workflows in
a private repository and can construct process views using the aggregator mod-
ule. The constructed views can be stored locally at each provider’s site or in a
public repository. The workflow formation module can retrieve these constructed
views as input by querying the team partners or searching the repository. Before
the composition is started, however, the process views can be customized using
a list of organization-independent activities that the team is supposed to imple-
ment. This list is provided by the team formation module. Then, the workflow
formation module can compose the customized views into a global workflow. To
support the enactment of the local views, also extensions are needed but these
are outside the scope of this paper. See for example [26] for an existing approach
that supports the enactment of process views.

6 Related Work

The most relevant work related to ours is that by Liu and Shen [18, 19]. In [18],
they focus on deriving a process view from a given structured process definition.
They concentrate too on defining for a conceptual process definition aggregate
activities (virtual in their terminology) from a given set of conceptual-level ac-
tivities (called essential). However, these activities must be basic, so they cannot
contain other activities. They define rules on aggregates to ensure consistency
between an external process view and a conceptual process model. They also
present an algorithm that derives a minimal virtual activity from a set of essen-
tial activities. Based on this algorithm, from a given structured process model,
a set of virtual activities can be derived that appear in the process view. The
ordering of these virtual activities in the view can be inferred from the underly-
ing process model. Next, they show that some consistency requirements between
the process view and the original process hold. This work is extended in [19] by
considering data flow as well.

This paper improves and extends the work of Liu and Shen [18] in several
ways. Basically, their work coincides with our first phase. However, our formal-
ization of structured process models is much more simple than theirs, leading to
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more simple construction rules and a more efficient algorithm as well. Especially
their consistency rules for models containing loops are quite complex, and their
algorithm has a high complexity (it contains two nested loops). Next, we sup-
port the aggregation of composite nodes, while they only focus on aggregation
of activities which have no subactivities. In addition to improving their work, we
extend their work by allowing views to be customized. Customization involves
inheritance of activities and omission of activities, something which is not con-
sidered by Liu and Shen. To simplify the exposition, we have ignored data flow,
but it can be incorporated along similar lines as described in [19].

Chiu et al. [6] use process views to support interoperability of multiple work-
flows across organizations. They present a meta model and an interoperation
model for workflow views, consisting of communication scenarios between these
views, and a set of interoperation parameters. Consistency constraints are de-
scribed to ensure that a workflow view is consistent with its underlying workflow,
and that the communication between workflow views, as specified by communica-
tion scenarios, is consistent. Finally, they show how the approach can be realized
using web services and XML technology. There are several differences with our
work. First, we focus on the actual construction of consistent customized process
views from a given business process, while they focus on consistency of a given
workflow view and a given workflow. Second, they do not consider customization
of views. Third, they consider unstructured process models while we focus on
structured ones.

Next, there are approaches that use views for enabling inter-organizational
workflow cooperation [5, 30]. The approach of Chebbi et al. [5] consists of three
main steps: workflow advertisement, workflow interconnection, and workflow co-
operation. The main focus of the paper is on the second step. They present
reduction rules to derive from an internal process model an abstract process
model which only contains tasks that cooperate with partner workflows outside
the organization. On this public process, partner-specific views can be defined
that are linked with an access contract. Zhao et al. [30] use visibility constraints
on internal process models to derive partner-specific workflow views. Each part-
ner can combine the workflow views of its partner with its internal process into
what Zhao et al. call a relative workflow model. Next, they discuss how an
organizational can use a relative workflow model to track the progress of its
indirect partners, e.g. how a consumer can track the progress of the process of
the provider of the provider.

There are several differences between [5, 30] and our work. First, they do not
consider consistency criteria between a public process and internal one, whereas
we have formalized these criteria as construction rules. Consequently, they do
not give any proof of correctness of their approach. Second, they do not consider
customization of views. Third, they consider unstructured process models while
we focus on structured ones.

Schulz and Orlowska [26] focus on architectural support for workflow (pro-
cess) views. They look into possible interactions that can occur between workflow
views and between workflow views and private workflows. Next, they analyze
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how such interactions can be supported by describing different ways of coupling
workflow views and private workflows. Finally, they define a cross-organizational
workflow architecture that supports the execution of workflow views. Our work
complements their work, since we focus on how customized process can be con-
structed from a given business process, which is not considered in [26]. The
customized process views obtained with our approach can be executed using the
technology described by Schulz and Orlowska [26].

This paper builds on earlier research. In the CrossFlow project [11, 29], which
developed technology to support the execution of cross-organizational workflows
in dynamic virtual enterprises, already a distinction was made between exter-
nal and internal level process models. There, an external level process model
was specified in a contract, but no support was provided for constructing this
external process model, i.e., the CrossFlow approach relies on manual construc-
tion of external process views. In follow-up research, Grefen et al. [12] defined
a three-level framework for process outsourcing. In this work, also a distinction
between external and internal models is made, but only abstract construction
rules are presented. This paper complements that work by showing how external
process views can be automatically constructed from conceptual process models.
Moreover, customization of process views is not addressed in [12]. In a follow-up
paper [13], Grefen et al. examined how enactment of (non-customized) process
views can be supported using web service technology. A similar enactment in-
frastructure can be used to enact customized process views.

Some existing industrial standard, notably BPEL [3], distinguish between
an abstract and a concrete process. The abstract process is a nondeterministic
protocol describing possible interactions, whereas a concrete process is actually
executable by a process engine. However, no consistency constraints between
these notions are defined. Also, customization is not addressed.

7 Conclusion

We have presented a two-phase approach for constructing process views from
structured process models. The main contribution of the approach is that it
supports both providers and consumers. Providers can hide private details from
their internal process models and consumers can remove noise from provider
process views. The approach is formally defined, which enables an automated
implementation. This allows an efficient way of constructing customized views.
Since we consider structured process models, the approach fits well with the
industrial process standard BPEL [3], which is mainly structured.

Next, we have shown that the approach can be architecturally supported
by embedding it into an existing architecture for forming dynamic virtual en-
terprises. This shows how the approach can be used in architectures support-
ing dynamic business-to-business collaborations that are process-oriented rather
than function-oriented. In today’s business world, such dynamic cooperations
between autonomous organizations becomes increasingly important. In the past,
organizations cooperated with each other in rather static networks. To comply
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with current market settings, however, organizations have to shift their priority
to flexibility and ability to change if they want to survive [23]. As a consequence,
dynamic cooperation between organizations is often required to meet market de-
mands [10]. Our approach can aid in establishing such dynamic collaborations
in an efficient way.

There are several directions for further work. First, we are currently imple-
menting the aggregator and customizer module in a BPEL editor tool. Next, the
approach can be extended to deal with multilateral views. These are especially
useful in a choreography setting. Finally, the approach can be used to study
agent-based negotiation of views between consumers and providers. For exam-
ple, a provider agent may get a request from a consumer agent to show certain
activities from its internal process model. The provider agent can compute a
process view fulfilling this request, using the approach of this paper, and then
decide on whether or net the offer is profitable enough to accept the process
view.
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