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Abstract

One of the main obstacles in applying data mining techniques to large, real-

world databases is the lack of integration between applications and the database

management system where the collection of target data is stored. In these

applications, data are obtained by applying an SQL query to that database and

then stored in flat files for further processing. As a result, these applications

cannot benefit from previously implemented functionalities of the accessed

database management system. In this paper, we present an architecture for rule

extraction applications development. This architecture is constructed by adding

the functionalities required in order to accomplish the extraction of rules from a

database. Moreover, this architecture enables the standard and efficient

construction of data mining applications for rule extraction.
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1 Introduction

In our days, technology has made it considerably easy to gather and

store raw data, but the analysis of such material tends to be slow and

expensive. On the other hand, there is the suspicion that this not

analyzed stored data can hide useful information. This leads to the

urgent need of designing semi-automated methods to discover this sort

of hidden information. The research area that has been developed to

meet such requirement is known as Data Mining (DM), or Knowledge

Discovery in Databases (KDD). The goal of this research field is to

extract useful knowledge (patterns from data) from large sets of data

stored in database management systems (DBMS).

Researchers and practitioners in DM have focused on the

construction of efficient algorithms for the extraction of patterns from

data. However, little emphasis has been given to the problem of the

interaction among data mining applications and the DBMS. Neither has

much attention been paid to the development of ways to integrate the

extracted patterns and the domain knowledge (Section 3.2.2) in the

DBMS itself. Indeed, current data mining techniques could be described

as file mining, since they assume a weak coupling between the DM

mechanism and the DBMS [10].

Since the beginning of this decade, several tools for data mining

have been developed according to this approach. The result is that these

tools access the DBMS in a non-standard. This motivates the

construction of a set of functionalities common to all data mining tasks

in the DBMS itself. These functionalities are embedded in an API

(Application Programming Interface) for data mining. By using this

API, data mining applications could communicate with the DBMS,

either to extract novel patterns or to run queries on (and manipulate)

previously extracted patterns.

In [10], the concept of data mining as a being equivalent to a

querying process to a database and the first step towards efficient

development of data mining applications are discussed. The main

characteristics of a KDDMS (Knowledge and Data Management

System), a system to manage data mining applications just DBMSs

manage business applications, are also described.

In [8], the design and implementation of an two-level

architecture for a data mining environment is presented. It consists of a

mining tool and a parallel DBMS server. The mining tool organizes and

controls the search process, while the DBMS provides optimal response

times for the few query types being used by the tool.
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In [9] Holsheimer et al. present a study of how well one can

manage by using general a purpose database management systems for

the discovery of association rules. A simple algorithm is presented,

consisting of only union and intersection operations. Their method can

incorporate inheritance hierarchies to the association rule algorithm.

In this article, we describe a data mining API to be used in the

extraction of a special kind of knowledge: rules. The construction of this

API is done in an object manager in conformity with the ODMG

standard [4], the GOA++ object manager. GOA++ is extended by

adding a module, that implement the additional functionalities required

for the generation of rules and for their manipulation and storage. Our

approach also enables domain knowledge to be defined in the GOA++

system.

In Section 2, we discuss the need of a different approach for the

construction of DM applications. The data mining API implemented

according to this different approach is described in Section 3. In Section

4, a toy example of an application communicating with the data mining

API is presented. Finally, in Section 5, we present our conclusions and

propose future developments.

2 Problems in the Current Approach

The current generation of DBMSs, particularly those that use the

relational model, has been designed mainly to support information

systems applications. The success of SQL language can be attributed to a

small number of primitives that give support to the large majority of

such database applications.

Current data mining applications for rule extraction also use DBMSs to

access the set of target data during the extraction process. Figure 1

depicts the steps comprising data access scheme followed by such

applications. In this scheme, data that will be analyzed by the rule

extraction algorithm is returned from the database by a query expression

that is written in the DBMSs native data manipulation language (SQL,

for example). This data is stored in flat files, in the input format required

by the algorithm used. The algorithm is run and the extracted rules are

displayed to the user. A data mining algorithm usually presents an

atypical data access behavior during its execution and may need to store

partial results. If the algorithm has no access to the DBMS internal

functionalities, they must be created in the application in order to run the
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algorithm. Obviously, this is quite undesirable from the software

engineering and performance points of view.

As illustrated in Figure 1, we can see that the database is used

solely as the source of the target data set. Once obtained this set, the

whole processing is done by the application (tool). Besides that, the

result of this processing (i.e. the extracted patterns) are not stored in the

database, in order to be available for further use by the applications, in

the same way as the data.

According to [11], an analogy can be drawn between the current

situation of these tools and the situation of the applications designed for

information systems in the beginning of the sixties. At that time, the

applications had to be constructed from the very beginning, each one

having its own method of data access. Those applications could not

benefit from the functionalities of the primitives, or APIs, and from the

query languages provided by current DBMS.

As a result, productivity in the construction of those applications

is very low. Similarly, current DM tools, in general, and rule extraction

tools in particular, access data in a non-standard way. This data, in its

turn, must be organized according with the requirements of the

particular algorithm used.

3. Extracted patterns

Figure 1. Current approach for database mining

Even in rule extraction applications that do have direct access to

data (without using flat files) there is the assumption that data mining is

only the use of machine learning algorithms to extract rules from large

data sets. Moreover, the database component has the unique function of
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improve the algorithm execution performance [5, 3J. However, only the

performance improvement of such algorithms is not sufficient to bring

forth a qualitative change in the capabilities of those applications.

Once more, an analogy with the first steps of the DBMS research is

opportune: we can say that only the search for performance

enhancement in database applications could not have started the

research in DBMSs, in the early sixties. Instead, query languages, query

optimization and transaction processing were the driving forces behind

the huge development of database research. For example, the ad hoc

nature of the query process has cleared the way for the study and

development of general-purpose query optimizers. Were the queries pre-

defined or were their number limited, it would suffice to construct

specialized routines for their execution.

Using the functionalities provided by a DBMS, the information

systems applications can be constructed in a more uniform and swift

way, since all the work of data management is implemented in the

DBMS, not in the application. Its is reasonable to suppose that the

construction of data mining applications can benefit of the same

advantages if the functionalities that are common to a certain data

mining task are available in the DBMS.

3 Another Approach for Rule Extraction

Figure 2 describes our approach for the interaction between a DM

application and the DBMS. In this approach, the DM application can

manipulate patterns in much the same way as the information systems

applications manipulate data. Thus, the DM application does not

implement the data mining algorithm(s) itself. This functionality is

implemented in the DBMS that communicates with this application.

This DBMS provides a standard API to be used in the construction of

DM applications in analogy with the API for data manipulation provided

by most DBMSs. In this approach, DM applications have no concern

with the extraction of patterns itself. Thus, they can dedicate themselves

to other equally important aspects of the data mining process, such as

giving graphical support to the data mining query construction and to

the visual displaying of the results in a form that is the most adequate

for the user.

The rule extraction functionalities are implemented within

GOA++ system [12]. In fact is not a complete object oriented DBMS (it

does not have mechanisms for transaction processing and failure
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recover, for example), but an object manager. However, its data model

is ODMG (an object-oriented database standard [4]) compliant: GOA++

has ODMG's ODL (object definition language) and OQL (object query

language) languages, as well as an interface for C++ language.

In the ODMG standard, the communication between an

application and the database is accomplished through the coupling

mechanism, comprised of a library that provides database classes and

functions (defined in one of the languages for which the standard is

defined: C++, Java or Smalltalk). The implementation of rule extraction

functionalities within GOA++ adds some functions to this library in

order support the communication between a data mining application and

the database. Additionally, the ODL language is extended to enable the

definition of domain knowledge on the database schema.

The rule extraction functionality is implemented in one of the

GOA++'s modules, named data mining module (DMM). The rules

manipulated by DMM are statements Cj -> Cj, where Cy and C^ are

the rule's antecedent and consequent, respectively, which can be

composed of conjunctions of predicates. Predicates are relationships

between objects and object values in a database, in the form X.Attr ® v

or X.Attr ® X.Attr, where X.Attr refers to the attribute Attr of object X, v

is any value in the domain of X.Attr, and ® is a binary operator. A

predicate can also be user-defined (see Section 3.3.2).

Rule extraction request

Figure 2. Interaction between DM application and GOA++
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In the next sections, we describe the interactive process between

a DM application and GOA++ system, This process begins with a rule

extraction request being sent to GOA++ and ends up with the sending of

the extracted rules to the application. In the description of this process,

consider Figure 2, where there are numbered arrows (//). Consider, also,

the following function signatures, which make part of the rule extraction

API implemented by DMM (the purpose of each one is described in the

next sections):

RuleSet& dm_query( String expression );

int dm_persist( RuleSet & );

RuleSet& dm_retrieve( String RuleSetName );

int dm_delete( String RuleSetName );

int dm_delete( RuleSet&);

3.1 Sending a rule extraction request

The process begins when an application sends a rule extraction request

to the GOA++ system. This request is made through the dm_query

function. This function receives a String object as a parameter. This

object defines a query expression for rule extraction, whose general

syntax is the following:

RuleQuery ::= extract RuleType rules RuleSetName in

TargeDataQuery

[using DomainKnowledgeName]

[template RuleTemplate]

[with RuleParametersSpec]

This expression is part of the GOA++'s data mining query

language [12]. Once the query expression is received through dm_query

function (arrow/o), DMM parses this expression and gets the values of

each non-terminal of the expression.

3.2 Retrieving the target data set

The target data set to be used in the rule extraction is specified,

in the rule extraction request, by the non-terminal TargeDataQuery.

373

                                                Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517 



This non-terminal can be specified in the expression by an OQL query.

This OQL query can be (1) a select...from...where query or (2) the name

of a database collection (previously defined in the database schema).

In both cases, the task of retrieving corresponding objects from

the database is done by the GOA++'s query resolution module (QRM)

[12]. All the DMM has to do is to convey the OQL query to this module

(arrow/;). Once determined by the QRM, these objects are sent to the

DMM (arrow /2). QRM uses the services of another GOA++ module,

the schema manager module (SMM), which manages domain

knowledge and schema information.

3.3 Extracting rules

3.3.1 Choosing the rule extraction algorithm

Once the DMM has received the target data subset, it has to know what

type of rule is to be extracted from the data, in order to choose correct

rule extraction algorithm. This information is provided by the value of

RuleType. The rule types that can be currently extracted by DMM are

discriminant rules, characteristic rules, classification rules and

association rules. See [7] for a more detailed description about these rule

types.

3.3.2 Input information for the rule extraction algorithm

The algorithms for rule extraction implemented in the DMM require

some input information to accomplish their task:

1. algorithm's specific parameters (RuleParametersSpec)

2. shape of the extracted rules (RuleTemplate)

3. domain knowledge (using DomainKnowledgeName)

Once this information has been determined by parsing the query

expression (sent to the DMM through the function dm_query), the DMM

can run the particular rule extraction algorithm. The rule extraction

algorithms implemented in the DMM are well known and have been

studied extensively in the literature [1,2, 6].
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The remaining of this section describes each one of these input

information, and the how they are obtained and manipulated by the

DMM.

The algorithm's specific parameters are specified in the non-

terminal RuleParameterSpec, which describes pairs (parameter, value)

that shall be used by the rule extraction algorithm to bind the search

space. These parameters vary according to the rule type specified in

Rule Type.

The non-terminal RuleTemplate specifies the general form of the

rules to be extracted. By using this, one can both bind the rule search

space and improve the interestingness of extracted rules.

The schema of a GOA++ database contains information about

the form of this database's content, such that the specification of class

names, its properties, attribute types, etc. This kind of information is

used by GOA++'s QRM to resolve OQL queries.

Analogously, the rule extraction algorithm can use domain

knowledge. Domain Knowledge can be described as some type of

additional information on the application domain, which is provided by

the domain specialist. Its main functions are (1) bind the pattern search

space and (2) express the user preference by some type of generalization

whose presence would be interesting in the patterns being generated.

In our approach, one can define domain knowledge in GOA++

database schema, along with class definitions. Thus, the DMMs

algorithms can access this domain knowledge in the same way QRM

access class definitions in order to solve an ordinary OQL query.

In order to define domain knowledge in the database schema, we

use a domain knowledge module (DKM). By using a DKM, the data

mining application developer can, for example, (1) define a predicate

(concept), or (2) define generalization and/or specialization concepts

from other defined concepts. The DKM general syntax is presented

bellow:

DomainKnowledgeModule ::= DomainKnowledgeName '{'

DomainKnowledgeltem , ...

The ellipses in syntax point out to the fact that a DKM may contain

several domain knowledge items (DKI). A DKI defines a concept that

can be used by the rule extraction algorithm in the generation of rules.

By using the clause [using DomainKnowledgeName} of the rule

extraction request, we can specify the DKM to be used in the rule

extraction task.
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Consider, as an example, the definition of DKM named

DKjCustomer, shown bellow:

DK Customer!

good_customer: x in Customer,

sum( coll( x.boughtProducts, price ) ) > 100,000;

For the sake of simplicity, only one OKI has been defined in this DKM.

This item defines the predicate good_customer over the class Customer

(assumedly already defined in the same database schema where this

DKM is being defined). This predicate is a concept that defines good

customers as those for whom the sum of products purchased surpasses

100,000. Once defined, this DKM can be referenced in a rule extraction

request and its DKIs can be used in the extracted rules definition. An

example of rule that uses the item good_customer is X.good_customer

->X.age>30

3.3.3 Representing rules as database objects

Once extracted from the target data set, the rules must be sent to the data

mining application in a format that can be easily manipulated. To solve

this, we define a class for the representation of a rule set: RuleSet. The

definition, in ODL language [4], of this class is given bellow:

class RuleSet

{

attribute String name; // rule set name.

attribute Set< GenericRule > ruleSet; // rule set.

attribute RuleType type; // type of rules.

We also define a class to represent a generic rule, named

GenericRule, from which all the classes for specific types of rule derive:

class GenericRule

{
attribute List< Predicate > antecedent;

attribute List< Predicate > consequent;
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The pre-defined classes for the representation of specific rules (one for

each rule type enumerated in Section 3.3.1) are AssociationRule,

CharacteristicRule, ClassificationRule, and DiscriminantRule. For

example, the definition of the class AssociationRule is the following:

class AssociationRule: GenericRule

i

attribute double confidence;

attribute double support;

All these class definitions presented above (RuleSet, GenericRule,

AssociationRule, etc) have global scope, which means that they are

visible by any schema defined in GOA++.

In order to send the result of the rule extraction to the

application, an object of the class RuleSet is instanciated by the DMM.

Its attribute named ruleSet is filled with objects pertaining to one of the

specific classes designed for rule representation.

3.4 Sending mining results to the application

The RuleSet object is sent to the data mining application (arrow /j) in

order to enable the application to access each one of the extracted rules.

3.5 Storing mining results

By the time the application finishes processing the rules, the set

of rules can be stored permanently in the database. This is accomplished

through a call to the function dm_persist by the application. This

function has a parameter of type RuleSet (Section 3.3.2), which

identifies the rule set to be stored. In this case, the rule set remains in the

database when the application finishes. This rule set can be further

retrieved (by calling the dm_retrieve function) or removed (dm_delete

function) by the application. If the application doesn't call function

dm_persist, the rule set is removed from GOA++ when the application

disconnects from the database.
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4 A Toy Example

Let us give an example of the communication process between a DM

application and the GOA++'s data mining module. In this example, the

data mining task done by the application is that of extracting association

rules [2]. An association rule describes dependency relationships among

objects.

In this example, assume the user of the data mining application

has constructed a query to assess the relation between a company's male

good customer (see definition of the predicate good_customer in Section

3.3.2) and his age.

The way in which the user constructs this query depends on the

application. It can be constructed, for example, using a QBE (Query By

Example) interface, where the query is defined graphically. Once the

user issues the rule extraction command, the application maps the

graphical representation of the rule query to the rule extraction request

described in Section 3.1. The application, then, sends the rule extraction

request to the GOA++'s data mining module through the function

dm_query. The following shows a possible call to this function:

dm_query("extract association rules AssocCustomer as

select x from x in Customers where x.sex = 'M'

template consequent contains x.age,

antecedent contains x.good_customer

using DK_Customer

with support >= .01, confidence >= 0.5");

In this call, the target data set is specified through an OQL query that

selects all male customers (x.sex = 'M*) in the Customers database

collection. From this target data set, the DMM extracts association rules

relating the attribute age of class Customer and the predicate

good_customer, defined in DK_Customer. Moreover, the request

specifies minimum values of support and confidence to be used by the

rule extraction algorithm.

Once the rule extraction request is sent to GOA++, the process

described in Section 3 takes place and eventually leads to the extraction

of rules according to the rule extraction request. Finally, the results

(database objects representing the extracted rules) are sent back to the

application.
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5 Conclusions

In this article, we have analyzed the disadvantages of the current

approach used by most data mining applications about the interaction

with the DBMS. A different approach is described, by implementing

syntactic and functional extensions (data mining API) to the GOA++

object manager, in order to give a more effective support to such

applications. Parts of the data mining API have already been

implemented over the GOA++ object manager, proving the feasibility of

our approach. The idea of constructing a data mining API in a DBMS is

not new and the literature lists some works on this subject (see Section

1). However, the approach here presented can incorporate generated

rules in the database itself. Besides, domain knowledge can also be

defined in the database schema. None of the previous works present this

possibility. This approach provides an efficient and effective mechanism

for learning various kinds of rules from a GOA++ database.

With the assistance of domain knowledge about concepts, data

relevance, and expected rule forms, our approach integrates database

operations with the learning process and provides a simple, efficient

way of learning quantitative rules from large databases. Moreover, as

the rule extraction mechanism is incorporated in the DBMS, there is a

higher degree of standardization and productivity in the development of

data mining applications.

However, some questions require further study. Data mining

applications face challenging problems from real-world databases,

which tend to be dynamic, incomplete, redundant, noisy, sparse, and

very large. These problems need some techniques for handling them.

We are currently studying one of these questions: keeping the

consistence between the target data and the rules extracted from them.

Some techniques (used in active and temporal databases) are being

studied to provide the automatic updating and versioning of the rule sets

generated and stored in the database, taking into account the alterations

in the data that originated them.

Additional study is also needed to provide adequate support to

different types of patterns generated by data mining tasks, such as

grouping, deviation, etc. It is still an open question whether it is possible

or not to achieve this integration in a single data mining API.
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