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Abstract

Most Reading Comprehension methods limit

themselves to queries which can be answered

using a single sentence, paragraph, or docu-

ment. Enabling models to combine disjoint

pieces of textual evidence would extend the

scope of machine comprehension methods,

but currently no resources exist to train and

test this capability. We propose a novel task to

encourage the development of models for text

understanding across multiple documents and

to investigate the limits of existing methods.

In our task, a model learns to seek and com-

bine evidence – effectively performing multi-

hop, alias multi-step, inference. We devise a

methodology to produce datasets for this task,

given a collection of query-answer pairs and

thematically linked documents. Two datasets

from different domains are induced,1 and we

identify potential pitfalls and devise circum-

vention strategies. We evaluate two previ-

ously proposed competitive models and find

that one can integrate information across doc-

uments. However, both models struggle to se-

lect relevant information; and providing doc-

uments guaranteed to be relevant greatly im-

proves their performance. While the mod-

els outperform several strong baselines, their

best accuracy reaches 54.5% on an annotated

test set, compared to human performance at

85.0%, leaving ample room for improvement.

1 Introduction

Devising computer systems capable of answering

questions about knowledge described using text has

1Available at http://qangaroo.cs.ucl.ac.uk

The Hanging Gardens, in [Mumbai], also known as Pherozeshah 
Mehta Gardens, are terraced gardens … They provide sunset views 
over the [Arabian Sea] …

Mumbai (also known as Bombay, the official name until 1995) is the 
capital city of the Indian state of Maharashtra. It is the most 
populous city in India …

Q: (Hanging gardens of Mumbai, country, ?)  

Options:  {Iran, India, Pakistan, Somalia, …}

The Arabian Sea is a region of the northern Indian Ocean bounded 
on the north by Pakistan and Iran, on the west by northeastern 
Somalia and the Arabian Peninsula, and on the east by India …

Figure 1: A sample from the WIKIHOP dataset where it

is necessary to combine information spread across multi-

ple documents to infer the correct answer.

been a longstanding challenge in Natural Language

Processing (NLP). Contemporary end-to-end Read-

ing Comprehension (RC) methods can learn to ex-

tract the correct answer span within a given text

and approach human-level performance (Kadlec et

al., 2016; Seo et al., 2017a). However, for exist-

ing datasets, relevant information is often concen-

trated locally within a single sentence, emphasizing

the role of locating, matching, and aligning informa-

tion between query and support text. For example,

Weissenborn et al. (2017) observed that a simple bi-

nary word-in-query indicator feature boosted the rel-

ative accuracy of a baseline model by 27.9%.

We argue that, in order to further the ability of ma-

chine comprehension methods to extract knowledge

from text, we must move beyond a scenario where

relevant information is coherently and explicitly

stated within a single document. Methods with this

capability would aid Information Extraction (IE) ap-

plications, such as discovering drug-drug interac-
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tions (Gurulingappa et al., 2012) by connecting pro-

tein interactions reported across different publica-

tions. They would also benefit search (Carpineto and

Romano, 2012) and Question Answering (QA) ap-

plications (Lin and Pantel, 2001) where the required

information cannot be found in a single location.

Figure 1 shows an example from WIKIPEDIA,

where the goal is to identify the country property

of the Hanging Gardens of Mumbai. This cannot be

inferred solely from the article about them without

additional background knowledge, as the answer is

not stated explicitly. However, several of the linked

articles mention the correct answer India (and other

countries), but cover different topics (e.g. Mumbai,

Arabian Sea, etc.). Finding the answer requires

multi-hop reasoning: figuring out that the Hanging

Gardens are located in Mumbai, and then, from a

second document, that Mumbai is a city in India.

We define a novel RC task in which a model

should learn to answer queries by combining ev-

idence stated across documents. We introduce a

methodology to induce datasets for this task and de-

rive two datasets. The first, WIKIHOP, uses sets of

WIKIPEDIA articles where answers to queries about

specific properties of an entity cannot be located in

the entity’s article. In the second dataset, MEDHOP,

the goal is to establish drug-drug interactions based

on scientific findings about drugs and proteins and

their interactions, found across multiple MEDLINE

abstracts. For both datasets we draw upon existing

Knowledge Bases (KBs), WIKIDATA and DRUG-

BANK, as ground truth, utilizing distant supervi-

sion (Mintz et al., 2009) to induce the data – similar

to Hewlett et al. (2016) and Joshi et al. (2017).

We establish that for 74.1% and 68.0% of the

samples, the answer can be inferred from the given

documents by a human annotator. Still, construct-

ing multi-document datasets is challenging; we en-

counter and prescribe remedies for several pitfalls

associated with their assembly – for example, spuri-

ous co-locations of answers and specific documents.

For both datasets we then establish several strong

baselines and evaluate the performance of two pre-

viously proposed competitive RC models (Seo et al.,

2017a; Weissenborn et al., 2017). We find that one

can integrate information across documents, but nei-

ther excels at selecting relevant information from a

larger documents set, as their accuracy increases sig-

nificantly when given only documents guaranteed to

be relevant. The best model reaches 54.5% on an

annotated test set, compared to human performance

at 85.0%, indicating ample room for improvement.

In summary, our key contributions are as follows:

Firstly, proposing a cross-document multi-step RC

task, as well as a general dataset induction strat-

egy. Secondly, assembling two datasets from dif-

ferent domains and identifying dataset construction

pitfalls and remedies. Thirdly, establishing multiple

baselines, including two recently proposed RC mod-

els, as well as analysing model behaviour in detail

through ablation studies.

2 Task and Dataset Construction Method

We will now formally define the multi-hop RC task,

and a generic methodology to construct multi-hop

RC datasets. Later, in Sections 3 and 4 we will

demonstrate how this method is applied in practice

by creating datasets for two different domains.

Task Formalization A model is given a query q, a

set of supporting documents Sq, and a set of candi-

date answers Cq – all of which are mentioned in Sq.

The goal is to identify the correct answer a∗ ∈ Cq

by drawing on the support documents Sq. Queries

could potentially have several true answers when not

constrained to rely on a specific set of support doc-

uments – e.g., queries about the parent of a certain

individual. However, in our setup each sample has

only one true answer among Cq and Sq. Note that

even though we will utilize background information

during dataset assembly, such information will not

be available to a model: the document set will be

provided in random order and without any metadata.

While certainly beneficial, this would distract from

our goal of fostering end-to-end RC methods that in-

fer facts by combining separate facts stated in text.

Dataset Assembly We assume that there exists a

document corpus D, together with a KB containing

fact triples (s, r, o) – with subject entity s, relation r,

and object entity o. For example, one such fact

could be (Hanging Gardens of Mumbai, country,

India). We start with individual KB facts and trans-

form them into query-answer pairs by leaving the

object slot empty, i.e. q = (s, r, ?) and a∗ = o.

Next, we define a directed bipartite graph, where
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vertices on one side correspond to documents in

D, and vertices on the other side are entities from

the KB – see Figure 2 for an example. A docu-

ment node d is connected to an entity e if e is men-

tioned in d, though there may be further constraints

when defining the graph connectivity. For a given

(q, a∗) pair, the candidates Cq and support docu-

ments Sq ⊆ D are identified by traversing the bipar-

tite graph using breadth-first search; the documents

visited will become the support documents Sq.

As the traversal starting point, we use the node

belonging to the subject entity s of the query q. As

traversal end points, we use the set of all entity nodes

that are type-consistent answers to q.2 Note that

whenever there is another fact (s, r, o′) in the KB,

i.e. a fact producing the same q but with a different

a∗, we will not include o′ into the set of end points

for this sample. This ensures that precisely one of

the end points corresponds to a correct answer to q.

When traversing the graph starting at s, several

of the end points will be visited, though generally

not all; those visited define the candidate set Cq. If

however the correct answer a∗ is not among them we

discard the entire (q, a∗) pair. The documents visited

to reach the end points will define the support docu-

ment set Sq. That is, Sq comprises chains of docu-

ments leading not only from the query subject to the

correct answer candidate, but also to type-consistent

false answer candidates.

With this methodology, relevant textual evidence

for (q, a∗) will be spread across documents along

the chain connecting s and a∗ – ensuring that multi-

hop reasoning goes beyond resolving co-reference

within a single document. Note that including

other type-consistent candidates alongside a∗ as end

points in the graph traversal – and thus into the sup-

port documents – renders the task considerably more

challenging (Jia and Liang, 2017). Models could

otherwise identify a∗ in the documents by simply

relying on type-consistency heuristics. It is worth

pointing out that by introducing alternative candi-

dates we counterbalance a type-consistency bias, in

contrast to Hermann et al. (2015) and Hill et al.

(2016) who instead rely on entity masking.

2 To determine entities which are type-consistent for a

query q, we consider all entities which are observed as object

in a fact with r as relation type – including the correct answer.

DocumentsEntities KB

(s, r, o)

(s, r, o0)

(s0, r, o00)

s

o

o0

o00

Figure 2: A bipartite graph connecting entities and doc-

uments mentioning them. Bold edges are those traversed

for the first fact in the small KB on the right; yellow high-

lighting indicates documents in Sq and candidates in Cq .

Check and cross indicate correct and false candidates.

3 WIKIHOP

WIKIPEDIA contains an abundance of human-

curated, multi-domain information and has sev-

eral structured resources such as infoboxes and

WIKIDATA (Vrandečić, 2012) associated with it.

WIKIPEDIA has thus been used for a wealth of re-

search to build datasets posing queries about a single

sentence (Morales et al., 2016; Levy et al., 2017) or

article (Yang et al., 2015; Hewlett et al., 2016; Ra-

jpurkar et al., 2016). However, no attempt has been

made to construct a cross-document multi-step RC

dataset based on WIKIPEDIA.

A recently proposed RC dataset is WIKIREAD-

ING (Hewlett et al., 2016), where WIKIDATA tu-

ples (item, property, answer) are aligned with

the WIKIPEDIA articles regarding their item. The

tuples define a slot filling task with the goal of pre-

dicting the answer, given an article and property.

One problem with using WIKIREADING as an ex-

tractive RC dataset is that 54.4% of the samples

do not state the answer explicitly in the given arti-

cle (Hewlett et al., 2016). However, we observed

that some of the articles accessible by following hy-

perlinks from the given article often state the answer,

alongside other plausible candidates.

3.1 Assembly

We now apply the methodology from Section 2

to create a multi-hop dataset with WIKIPEDIA as

the document corpus and WIKIDATA as structured

knowledge triples. In this setup, (item, property,

answer) WIKIDATA tuples correspond to (s, r, o)
triples, and the item and property of each sample
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together form our query q – e.g., (Hanging Gardens

of Mumbai, country, ?). Similar to Yang et al. (2015)

we only use the first paragraph of an article, as rel-

evant information is more often stated in the begin-

ning. Starting with all samples in WIKIREADING,

we first remove samples where the answer is stated

explicitly in the WIKIPEDIA article about the item.3

The bipartite graph is structured as follows:

(1) for edges from articles to entities: all articles

mentioning an entity e are connected to e; (2) for

edges from entities to articles: each entity e is only

connected to the WIKIPEDIA article about the entity.

Traversing the graph is then equivalent to iteratively

following hyperlinks to new articles about the an-

chor text entities.

For a given query-answer pair, the item entity

is chosen as the starting point for the graph traver-

sal. A traversal will always pass through the article

about the item, since this is the only document con-

nected from there. The end point set includes the

correct answer alongside other type-consistent can-

didate expressions, which are determined by consid-

ering all facts belonging to WIKIREADING train-

ing samples, selecting those triples with the same

property as in q and keeping their answer expres-

sions. As an example, for the WIKIDATA property

country, this would be the set {France,Russia, ...}.

We executed graph traversal up to a maximum chain

length of 3 documents. To not pose unreasonable

computational constraints, samples with more than

64 different support documents or 100 candidates

are removed, discarding ≈1% of the samples.

3.2 Mitigating Dataset Biases

Dataset creation is always fraught with the risk of

inducing unintended errors and biases (Chen et al.,

2016; Schwartz et al., 2017). As Hewlett et al.

(2016) only carried out limited analysis of their

WIKIREADING dataset, we present an analysis of

the downstream effects we observe on WIKIHOP.

Candidate Frequency Imbalance A first obser-

vation is that there is a significant bias in the answer

distribution of WIKIREADING. For example, in the

majority of the samples the property country has

the United States of America as the answer. A simple

3 We thus use a disjoint subset of WIKIREADING compared

to Levy et al. (2017) to construct WIKIHOP.

majority class baseline would thus prove successful,

but would tell us little about multi-hop reasoning. To

combat this issue, we subsampled the dataset to en-

sure that samples of any one particular answer can-

didate make up no more than 0.1% of the dataset,

and omitted articles about the United States.

Document-Answer Correlations A problem

unique to our multi-document setting is the possibil-

ity of spurious correlations between candidates and

documents induced by the graph traversal method.

In fact, if we were not to address this issue, a model

designed to exploit these regularities could achieve

74.6% accuracy (detailed in Section 6).

Concretely, we observed that certain documents

frequently co-occur with the correct answer, inde-

pendently of the query. For example, if the article

about London is present in Sq, the answer is likely

to be the United Kingdom, independent of the query

type or entity in question.

We designed a statistic to measure this effect

and then used it to sub-sample the dataset. The

statistic counts how often a candidate c is observed

as the correct answer when a certain document is

present in Sq across training set samples. More for-

mally, for a given document d and answer candi-

date c, let cooccurrence(d, c) denote the total count

of how often d co-occurs with c in a sample where

c is also the correct answer. We use this statistic

to filter the dataset, by discarding samples with at

least one document-candidate pair (d, c) for which

cooccurrence(d, c) > 20.

4 MEDHOP

Following the same general methodology, we next

construct a second dataset for the domain of molec-

ular biology – a field that has been undergoing ex-

ponential growth in the number of publications (Co-

hen and Hunter, 2004). The promise of applying

NLP methods to cope with this increase has led to

research efforts in IE (Hirschman et al., 2005; Kim

et al., 2011) and QA for biomedical text (Hersh et

al., 2007; Nentidis et al., 2017). There are a plethora

of manually curated structured resources (Ashburner

et al., 2000; The UniProt Consortium, 2017) which

can either serve as ground truth or to induce training

data using distant supervision (Craven and Kumlien,

1999; Bobic et al., 2012). Existing RC datasets are
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either severely limited in size (Hersh et al., 2007)

or cover a very diverse set of query types (Nentidis

et al., 2017), complicating the application of neu-

ral models that have seen successes for other do-

mains (Wiese et al., 2017).

A task that has received significant attention is

detecting Drug-Drug Interactions (DDIs). Exist-

ing DDI efforts have focused on explicit mentions

of interactions in single sentences (Gurulingappa

et al., 2012; Percha et al., 2012; Segura-Bedmar

et al., 2013). However, as shown by Peng et al.

(2017), cross-sentence relation extraction increases

the number of available relations. It is thus likely

that cross-document interactions would further im-

prove recall, which is of particular importance con-

sidering interactions that are never stated explicitly

– but rather need to be inferred from separate pieces

of evidence. The promise of multi-hop methods is

finding and combining individual observations that

can suggest previously unobserved DDIs, aiding the

process of making scientific discoveries, yet not di-

rectly from experiments, but by inferring them from

established public knowledge (Swanson, 1986).

DDIs are caused by Protein-Protein Interac-

tion (PPI) chains, forming biomedical pathways.

If we consider PPI chains across documents,

we find examples like in Figure 3. Here the

first document states that the drug Leuprolide

causes GnRH receptor-induced synaptic potenti-

ations, which can be blocked by the protein

Progonadoliberin-1. The last document states that

another drug, Triptorelin, is a superagonist of the

same protein. It is therefore likely to affect the po-

tency of Leuprolide, describing a way in which the

two drugs interact. Besides the true interaction there

is also a false candidate Urofollitropin for which,

although mentioned together with GnRH receptor

within one document, there is no textual evidence

indicating interactions with Leuprolide.

4.1 Assembly

We construct MEDHOP using DRUGBANK (Law

et al., 2014) as structured knowledge resource and

research paper abstracts from MEDLINE as docu-

ments. There is only one relation type for DRUG-

BANK facts, interacts with, that connects pairs of

drugs – an example of a MEDHOP query would thus

be (Leuprolide, interacts with, ?). We start

Q:  (Leuprolide, interacts_with, ?)  

Options:  {Triptorelin, Urofollitropin}

Leuprolide ... elicited a long-lasting potentiation of excitatory postsynaptic 

currents… [GnRH receptor]-induced synaptic potentiation was blocked … 

by [Progonadoliberin-1], a specific [GnRH receptor] antagonist…

Analyses of gene expression demonstrated a dynamic response to the 

Progonadoliberin-1 superagonist Triptorelin.

… our research to study the distribution, co-localization of Urofollitropin and 

its receptor[,] and co-localization of Urofollitropin and GnRH receptor…

Figure 3: A sample from the MEDHOP dataset.

by processing the 2016 MEDLINE release using the

preprocessing pipeline employed for the BioNLP

2011 Shared Task (Stenetorp et al., 2011). We re-

strict the set of entities in the bipartite graph to

drugs in DRUGBANK and human proteins in SWISS-

PROT (Bairoch et al., 2004). That is, the graph has

drugs and proteins on one side, and MEDLINE ab-

stracts on the other.

The edge structure is as follows: (1) There is an

edge from a document to all proteins mentioned in it.

(2) There is an edge between a document and a drug,

if this document also mentions a protein known to be

a target for the drug according to DRUGBANK. This

edge is bidirectional, i.e. it can be traversed both

ways, since there is no canonical document describ-

ing each drug – thus one can “hop” to any document

mentioning the drug and its target. (3) There is an

edge from a protein p to a document mentioning p,

but only if the document also mentions another pro-

tein p′ which is known to interact with p according to

REACTOME (Fabregat et al., 2016). Given our dis-

tant supervision assumption, these additionally con-

straining requirements err on the side of precision.

As a mention, similar to Percha et al. (2012), we

consider any exact match of a name variant of a

drug or human protein in DRUGBANK or SWISS-

PROT. For a given DDI (drug1, interacts with,

drug2), we then select drug1 as the starting point

for the graph traversal. As possible end points, we

consider any other drug, apart from drug1 and those

interacting with drug1 other than drug2. Similar to

WIKIHOP, we exclude samples with more than 64

support documents and impose a maximum docu-

ment length of 300 tokens plus title.

Document Sub-sampling The bipartite graph for

MEDHOP is orders of magnitude more densely con-

nected than for WIKIHOP. This can lead to poten-
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tially large support document sets Sq, to a degree

where it becomes computationally infeasible for a

majority of existing RC models. After the traver-

sal has finished, we subsample documents by first

adding a set of documents that connects the drug in

the query with its answer. We then iteratively add

documents to connect alternative candidates until we

reach the limit of 64 documents – while ensuring

that all candidates have the same number of paths

through the bipartite graph.

Mitigating Candidate Frequency Imbalance

Some drugs interact with more drugs than others

– Aspirin for example interacts with 743 other

drugs, but Isotretinoin with only 34. This leads

to similar candidate frequency imbalance issues

as with WIKIHOP – but due to its smaller size

MEDHOP is difficult to sub-sample. Nevertheless

we can successfully combat this issue by masking

entity names, detailed in Section 6.2.

5 Dataset Analysis

Table 1 shows the dataset sizes. Note that WIK-

IHOP inherits the train, development, and test set

splits from WIKIREADING – i.e., the full dataset

creation, filtering, and sub-sampling pipeline is ex-

ecuted on each set individually. Also note that sub-

sampling according to document-answer correlation

significantly reduces the size of WIKIHOP from

≈528K training samples to ≈44K. While in terms of

samples, both WIKIHOP and MEDHOP are smaller

than other large-scale RC datasets, such as SQuAD

and WIKIREADING, the supervised learning signal

available per sample is arguably greater. One could,

for example, re-frame the task as binary path clas-

sification: given two entities and a document path

connecting them, determine whether a given rela-

tion holds. For such a case, WIKIHOP and MED-

HOP would have more than 1M and 150K paths to

be classified, respectively. Instead, in our formula-

tion, this corresponds to each single sample contain-

ing the supervised learning signal from an average

of 19.5 and 59.8 unique document paths.

Table 2 shows statistics on the number of candi-

dates and documents per sample on the respective

training sets. For MEDHOP, the majority of sam-

ples have 9 candidates, due to the way documents

are selected up until a maximum of 64 documents is

Train Dev Test Total

WIKIHOP 43,738 5,129 2,451 51,318

MEDHOP 1,620 342 546 2,508

Table 1: Dataset sizes for our respective datasets.

min max avg median

# cand. – WH 2 79 19.8 14

# docs. – WH 3 63 13.7 11

# tok/doc – WH 4 2,046 100.4 91

# cand. – MH 2 9 8.9 9

# docs. – MH 5 64 36.4 29

# tok/doc – MH 5 458 253.9 264

Table 2: Candidates and documents per sample and doc-

ument length statistics. WH: WIKIHOP; MH: MEDHOP.

reached. Few samples have less than 9 candidates,

and samples would have far more false candidates if

more than 64 support documents were included. The

number of query types in WIKIHOP is 277, whereas

in MEDHOP there is only one: interacts with.

5.1 Qualitative Analysis

To establish the quality of the data and analyze po-

tential distant supervision errors, we sampled and

annotated 100 samples from each development set.

WIKIHOP Table 3 lists characteristics along with

the proportion of samples that exhibit them. For

45%, the true answer either uniquely follows from

multiple texts directly or is suggested as likely. For

26%, more than one candidate is plausibly sup-

ported by the documents, including the correct an-

swer. This is often due to hypernymy, where

the appropriate level of granularity for the an-

swer is difficult to predict – e.g. (west suffolk,

administrative entity, ?) with candidates

suffolk and england. This is a direct conse-

quence of including type-consistent false answer

candidates from WIKIDATA, which can lead to ques-

tions with several true answers. For 9% of the

cases a single document suffices; these samples

contain a document that states enough information

about item and answer together. For example,

the query (Louis Auguste, father, ?) has the

correct answer Louis XIV of France, and French

king Louis XIV is mentioned within the same doc-
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Unique multi-step answer. 36%

Likely multi-step unique answer. 9%

Multiple plausible answers. 15%

Ambiguity due to hypernymy. 11%

Only single document required. 9%

Answer does not follow. 12%

WIKIDATA/WIKIPEDIA discrepancy. 8%

Table 3: Qualitiative analysis of WIKIHOP samples.

ument as Louis Auguste. Finally, although our

task is significantly more complex than most pre-

vious tasks where distant supervision has been ap-

plied, the distant supervision assumption is only vi-

olated for 20% of the samples – a proportion sim-

ilar to previous work (Riedel et al., 2010). These

cases can either be due to conflicting information be-

tween WIKIDATA and WIKIPEDIA (8%), e.g. when

the date of birth for a person differs between WIKI-

DATA and what is stated in the WIKIPEDIA article,

or because the answer is consistent but cannot be

inferred from the support documents (12%). When

answering 100 questions, the annotator knew the an-

swer prior to reading the documents for 9%, and pro-

duced the correct answer after reading the document

sets for 74% of the cases. On 100 questions of a val-

idated portion of the Dev set (see Section 5.3), 85%

accuracy was reached.

MEDHOP Since both document complexity and

number of documents per sample were significantly

larger compared to WIKIHOP, it was not feasible to

ask an annotator to read all support documents for

100 samples. We thus opted to verify the dataset

quality by providing only the subset of documents

relevant to support the correct answer, i.e., those tra-

versed along the path reaching the answer. The an-

notator was asked if the answer to the query “fol-

lows”, “is likely”, or “does not follow”, given the

relevant documents. 68% of the cases were consid-

ered as “follows” or as “is likely”. The majority

of cases violating the distant supervision assumption

were errors due to the lack of a necessary PPI in one

of the connecting documents.

5.2 Crowdsourced Human Annotation

We asked human annotators on Amazon Mechanical

Turk to evaluate samples of the WIKIHOP develop-

ment set. Similar to our qualitative analysis of MED-

HOP, annotators were shown the query-answer pair

as a fact and the chain of relevant documents leading

to the answer. They were then instructed to answer

(1) whether they knew the fact before; (2) whether

the fact follows from the texts (with options “fact

follows”, “fact is likely”, and “fact does not fol-

low”); and (3); whether a single or several of the

documents are required. Each sample was shown to

three annotators and a majority vote was used to ag-

gregate the annotations. Annotators were familiar

with the fact 4.6% of the time; prior knowledge of

the fact is thus not likely to be a confounding effect

on the other judgments. Inter-annotator agreement

as measured by Fleiss’ kappa is 0.253 in (2), and

0.281 in (3) – indicating a fair overall agreement, ac-

cording to Landis and Koch (1977). Overall, 9.5%

of samples have no clear majority in (2).

Among samples with a majority judgment, 59.8%

are cases where the fact “follows”, for 14.2% the

fact is judged as “likely”, and as “not follow” for

25.9%. This again provides good justification for

the distant supervision strategy.

Among the samples with a majority vote for (2)

of either “follows” or “likely”, 55.9% were marked

with a majority vote as requiring multiple docu-

ments to infer the fact, and 44.1% as requiring only

a single document. The latter number is larger than

initially expected, given the construction of samples

through graph traversal. However, when inspecting

cases judged as “single” more closely, we observed

that many indeed provide a clear hint about the cor-

rect answer within one document, but without stat-

ing it explicitly. For example, for the fact (witold

cichy, country of citizenship, poland) with

documents d1: Witold Cichy (born March 15, 1986

in Wodzisaw lski) is a Polish footballer[...] and d2:

Wodzisaw lski[...] is a town in Silesian Voivodeship,

southern Poland[...], the information provided in d1
suffices for a human given the background knowl-

edge that Polish is an attribute related to Poland, re-

moving the need for d2 to infer the answer.

5.3 Validated Test Sets

While training models on distantly supervised data

is useful, one should ideally evaluate methods on a

manually validated test set. We thus identified sub-

sets of the respective test sets for which the correct
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answer can be inferred from the text. This is in con-

trast to prior work such as Hermann et al. (2015),

Hill et al. (2016), and Hewlett et al. (2016), who

evaluate only on distantly supervised samples. For

WIKIHOP, we applied the same annotation strategy

as described in Section 5.2. The validated test set

consists of those samples labeled by a majority of

annotators (at least 2 of 3) as “follows”, and requir-

ing “multiple” documents. While desirable, crowd-

sourcing is not feasible for MEDHOP since it re-

quires specialist knowledge. In addition, the number

of document paths is ≈3x larger, which along with

the complexity of the documents greatly increases

the annotation time. We thus manually annotated

20% of the MEDHOP test set and identified the sam-

ples for which the text implies the correct answer

and where multiple documents are required.

6 Experiments

This section describes experiments on WIKIHOP

and MEDHOP with the goal of establishing the per-

formance of several baseline models, including re-

cent neural RC models. We empirically demonstrate

the importance of mitigating dataset biases, probe

whether multi-step behavior is beneficial for solv-

ing the task, and investigate if RC models can learn

to perform lexical abstraction. Training will be con-

ducted on the respective training sets, and evaluation

on both the full test set and validated portion (Sec-

tion 5.3) allowing for a comparison between the two.

6.1 Models

Random Selects a random candidate; note that the

number of candidates differs between samples.

Max-mention Predicts the most frequently men-

tioned candidate in the support documents Sq of a

sample – randomly breaking ties.

Majority-candidate-per-query-type Predicts the

candidate c ∈ Cq that was most frequently observed

as the true answer in the training set, given the query

type of q. For WIKIHOP, the query type is the prop-

erty p of the query; for MEDHOP there is only the

single query type – interacts with.

TF-IDF Retrieval-based models are known to be

strong QA baselines if candidate answers are pro-

vided (Clark et al., 2016; Welbl et al., 2017). They

search for individual documents based on keywords

in the question, but typically do not combine infor-

mation across documents. The purpose of this base-

line is to see if it is possible to identify the correct an-

swer from a single document alone through lexical

correlations. The model forms its prediction as fol-

lows: For each candidate c, the concatenation of the

query q with c is fed as an OR query into the whoosh

text retrieval engine. It then predicts the candidate

with the highest TF-IDF similarity score:

argmax
c∈Cq

[max
s∈Sq

(TF-IDF(q + c, s))] (1)

Document-cue During dataset construction we

observed that certain document-answer pairs appear

more frequently than others, to the effect that the

correct candidate is often indicated solely by the

presence of certain documents in Sq. This baseline

captures how easy it is for a model to exploit these

informative document-answer co-occurrences. It

predicts the candidate with highest score across Cq:

argmax
c∈Cq

[max
d∈Sq

(cooccurrence(d, c))] (2)

Extractive RC models: FastQA and BiDAF In

our experiments we evaluate two recently proposed

LSTM-based extractive QA models: the Bidirec-

tional Attention Flow model (BiDAF, Seo et al.

(2017a)), and FastQA (Weissenborn et al., 2017),

which have shown a robust performance across sev-

eral datasets. These models predict an answer span

within a single document. We adapt them to a multi-

document setting by sequentially concatenating all

d ∈ Sq in random order into a superdocument,

adding document separator tokens. During training,

the first answer mention in the concatenated docu-

ment serves as the gold span.4 At test time, we mea-

sured accuracy based on the exact match between

the prediction and answer, both lowercased, after re-

moving articles, trailing white spaces and punctu-

ation, in the same way as Rajpurkar et al. (2016).

To rule out any signal stemming from the order of

documents in the superdocument, this order is ran-

domized both at training and test time. In a prelimi-

nary experiment we also trained models using differ-

ent random document order permutations, but found

that performance did not change significantly.

4 We also tested assigning the gold span randomly to any

one of the mention of the answer, with insignificant changes.
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For BiDAF, the default hyperparameters from the

implementation of Seo et al. (2017a) are used, with

pretrained GloVe (Pennington et al., 2014) embed-

dings. However, we restrict the maximum docu-

ment length to 8,192 tokens and hidden size to 20,

and train for 5,000 iterations with batchsize 16 in or-

der to fit the model into memory.5 For FastQA we

use the implementation provided by the authors, also

with pre-trained GloVe embeddings, no character-

embeddings, no maximum support length, hidden

size 50, and batch size 64 for 50 epochs.

While BiDAF and FastQA were initially devel-

oped and tested on single-hop RC datasets, their us-

age of bidirectional LSTMs and attention over the

full sequence theoretically gives them the capacity

to integrate information from different locations in

the (super-)document. In addition, BiDAF employs

iterative conditioning across multiple layers, poten-

tially making it even better suited to integrate infor-

mation found across the sequence.

6.2 Lexical Abstraction: Candidate Masking

The presence of lexical regularities among an-

swers is a problem in RC dataset assembly – a

phenomenon already observed by Hermann et al.

(2015). When comprehending a text, the correct an-

swer should become clear from its context – rather

than from an intrinsic property of the answer ex-

pression. To evaluate the ability of models to rely

on context alone, we created masked versions of

the datasets: we replace any candidate expression

randomly using 100 unique placeholder tokens, e.g.

“Mumbai is the most populous city in MASK7.”

Masking is consistent within one sample, but gen-

erally different for the same expression across sam-

ples. This not only removes answer frequency cues,

it also removes statistical correlations between fre-

quent answer strings and support documents. Mod-

els consequently cannot base their prediction on in-

trinsic properties of the answer expression, but have

to rely on the context surrounding the mentions.

6.3 Results and Discussion

Table 5 shows the experimental outcomes for WIK-

IHOP and MEDHOP, together with results for the

masked setting; we will first discuss the former. A

5 The superdocument has a larger number of tokens com-

pared to e.g. SQuAD, thus the additional memory requirements.

Model Unfiltered Filtered

Document-cue 74.6 36.7

Maj. candidate 41.2 38.8

TF-IDF 43.8 25.6

Train set size 527,773 43,738

Table 4: Accuracy comparison for simple baseline mod-

els on WIKIHOP before and after filtering.

first observation is that candidate mention frequency

does not produce better predictions than a random

guess. Predicting the answer most frequently ob-

served at training time achieves strong results: as

much as 38.8% / 44.2% and 58.4% / 67.3% on the

two datasets, for the full and validated test sets re-

spectively. That is, a simple frequency statistic to-

gether with answer type constraints alone is a rela-

tively strong predictor, and the strongest overall for

the “unmasked” version of MEDHOP.

The TF-IDF retrieval baseline clearly performs

better than random for WIKIHOP, but is not very

strong overall. That is, the question tokens are help-

ful to detect relevant documents, but exploiting only

this information compares poorly to the other base-

lines. On the other hand, as no co-mention of an

interacting drug pair occurs within any single doc-

ument in MEDHOP, the TF-IDF baseline performs

worse than random. We conclude that lexical match-

ing with a single support document is not enough to

build a strong predictive model for both datasets.

The Document-cue baseline can predict more than

a third of the samples correctly, for both datasets,

even after sub-sampling frequent document-answer

pairs for WIKIHOP. The relative strength of this

and other baselines proves to be an important is-

sue when designing multi-hop datasets, which we

addressed through the measures described in Sec-

tion 3.2. In Table 4 we compare the two relevant

baselines on WIKIHOP before and after applying

filtering measures. The absolute strength of these

baselines before filtering shows how vital address-

ing this issue is: 74.6% accuracy could be reached

through exploiting the cooccurrence(d, c) statistic

alone. This underlines the paramount importance of

investigating and addressing dataset biases that oth-

erwise would confound seemingly strong RC model

performance. The relative drop demonstrates that
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WIKIHOP MEDHOP

standard masked standard masked

Model test test* test test* test test* test test*

Random 11.5 12.2 12.2 13.0 13.9 20.4 14.1 22.4

Max-mention 10.6 15.9 13.9 20.1 9.5 16.3 9.2 16.3

Majority-candidate-per-query-type 38.8 44.2 12.0 13.7 58.4 67.3 10.4 6.1

TF-IDF 25.6 36.7 14.4 24.2 9.0 14.3 8.8 14.3

Document-cue 36.7 41.7 7.4 20.3 44.9 53.1 15.2 16.3

FastQA 25.7 27.2 35.8 38.0 23.1 24.5 31.3 30.6

BiDAF 42.9 49.7 54.5 59.8 47.8 61.2 33.7 42.9

Table 5: Test accuracies for the WIKIHOP and MEDHOP datasets, both in standard (unmasked) and masked setup.

Columns marked with asterisk are for the validated portion of the dataset.

WIKIHOP MEDHOP

standard gold chain standard gold chain

Model test test* test test* test test* test test*

BiDAF 42.9 49.7 57.9 63.4 47.8 61.2 86.4 89.8

BiDAF mask 54.5 59.8 81.2 85.7 33.7 42.9 99.3 100.0

FastQA 25.7 27.2 44.5 53.5 23.1 24.5 54.6 59.2

FastQA mask 35.8 38.0 65.3 70.0 31.3 30.6 51.8 55.1

Table 6: Test accuracy comparison when only using documents leading to the correct answer (gold chain). Columns

with asterisk hold results for the validated samples.

the measures undertaken successfully mitigate the

issue. A downside to aggressive filtering is a signif-

icantly reduced dataset size, rendering it infeasible

for smaller datasets like MEDHOP.

Among the two neural models, BiDAF is overall

strongest across both datasets – this is in contrast to

the reported results for SQuAD where their perfor-

mance is nearly indistinguishable. This is possibly

due to the iterative latent interactions in the BiDAF

architecture: we hypothesize that these are of in-

creased importance for our task, where information

is distributed across documents. It is worth empha-

sizing that unlike the other baselines, both FastQA

and BiDAF predict the answer by extracting a span

from the support documents without relying on the

candidate options Cq.

In the masked setup all baseline models reliant on

lexical cues fail in the face of the randomized answer

expressions, since the same answer option has dif-

ferent placeholders in different samples. Especially

on MEDHOP, where dataset sub-sampling is not a

viable option, masking proves to be a valuable alter-

native, effectively circumventing spurious statistical

correlations that RC models can learn to exploit.

Both neural RC models are able to largely retain

or even improve their strong performance when an-

swers are masked: they are able to leverage the tex-

tual context of the candidate expressions. To under-

stand differences in model behavior between WIK-

IHOP and MEDHOP, it is worth noting that drug

mentions in MEDHOP are normalized to a unique

single-word identifier, and performance drops under

masking. In contrast, for the open-domain setting of

WIKIHOP, a reduction of the answer vocabulary to

100 random single-token mask expressions clearly

helps the model in selecting a candidate span, com-

pared to the multi-token candidate expressions in the

unmasked setting. Overall, although both neural RC

models clearly outperform the other baselines, they

still have large room for improvement compared to

human performance at 74% / 85% for WIKIHOP.

Comparing results on the full and validated test
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WIKIHOP MEDHOP

test test* test test*

BiDAF 54.5 59.8 33.7 42.9

BiDAF rem 44.6 57.7 30.4 36.7

FastQA 35.8 38.0 31.3 30.6

FastQA rem 38.0 41.2 28.6 24.5

Table 7: Test accuracy (masked) when only documents

containing answer candidates are given (rem).

sets, we observe that the results consistently improve

on the validated sets. This suggests that the training

set contains the signal necessary to make inference

on valid samples at test time, and that noisy samples

are harder to predict.

6.4 Using only relevant documents

We conducted further experiments to examine the

RC models when presented with only the relevant

documents in Sq, i.e., the chain of documents lead-

ing to the correct answer. This allows us to investi-

gate the hypothetical performance of the models if

they were able to select and read only relevant docu-

ments: Table 6 summarizes these results. Models

improve greatly in this gold chain setup, with up

to 81.2% / 85.7% on WIKIHOP in the masked set-

ting for BiDAF. This demonstrates that RC models

are capable of identifying the answer when few or

no plausible false candidates are mentioned, which

is particularly evident for MEDHOP, where docu-

ments tend to discuss only single drug candidates.

In the masked gold chain setup, models can then

pick up on what the masking template looks like

and achieve almost perfect scores. Conversely, these

results also show that the models’ answer selec-

tion process is not robust to the introduction of un-

related documents with type-consistent candidates.

This indicates that learning to intelligently select rel-

evant documents before RC may be among the most

promising directions for future model development.

6.5 Removing relevant documents

To investigate if the neural RC models can draw

upon information requiring multi-step inference we

designed an experiment where we discard all doc-

uments that do not contain candidate mentions, in-

cluding the first documents traversed. Table 7 shows

the results: we can observe that performance drops

across the board for BiDAF. There is a significant

drop of 3.3%/6.2% on MEDHOP, and 10.0%/2.1%

on WIKIHOP, demonstrating that BiDAF, is able

to leverage cross-document information. FastQA

shows a slight increase of 2.2%/3.2% for WIKIHOP

and a decrease of 2.7%/4.1% on MEDHOP. While

inconclusive, it is clear that FastQA with fewer la-

tent interactions than BiDAF has problems integrat-

ing cross-document information.

7 Related Work

Related Datasets End-to-end text-based QA has

witnessed a surge in interest with the advent of large-

scale datasets, which have been assembled based

on FREEBASE (Berant et al., 2013; Bordes et al.,

2015), WIKIPEDIA (Yang et al., 2015; Rajpurkar

et al., 2016; Hewlett et al., 2016), web search

queries (Nguyen et al., 2016), news articles (Her-

mann et al., 2015; Onishi et al., 2016), books (Hill

et al., 2016; Paperno et al., 2016), science ex-

ams (Welbl et al., 2017), and trivia (Boyd-Graber

et al., 2012; Dunn et al., 2017). Besides Trivi-

aQA (Joshi et al., 2017), all these datasets are con-

fined to single documents, and RC typically does not

require a combination of multiple independent facts.

In contrast, WIKIHOP and MEDHOP are specifi-

cally designed for cross-document RC and multi-

step inference. There exist other multi-hop RC re-

sources, but they are either very limited in size,

such as the FraCaS test suite, or based on synthetic

language (Weston et al., 2016). TriviaQA partly

involves multi-step reasoning, but the complexity

largely stems from parsing compositional questions.

Our datasets center around compositional inference

from comparatively simple queries and the cross-

document setup ensures that multi-step inference

goes beyond resolving co-reference.

Compositional Knowledge Base Inference

Combining multiple facts is common for structured

knowledge resources which formulate facts using

first-order logic. KB inference methods include

Inductive Logic Programming (Quinlan, 1990;

Pazzani et al., 1991; Richards and Mooney, 1991)

and probabilistic relaxations to logic like Markov

Logic (Richardson and Domingos, 2006; Schoen-

mackers et al., 2008). These approaches suffer from
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limited coverage and inefficient inference, though

efforts to circumvent sparsity have been under-

taken (Schoenmackers et al., 2008; Schoenmackers

et al., 2010). A more scalable approach to compos-

ite rule learning is the Path Ranking Algorithm (Lao

and Cohen, 2010; Lao et al., 2011), which performs

random walks to identify salient paths between

entities. Gardner et al. (2013) circumvent these

sparsity problems by introducing synthetic links via

dense latent embeddings. Several other methods

have been proposed, using composition functions

such as vector addition (Bordes et al., 2014),

RNNs (Neelakantan et al., 2015; Das et al., 2017),

and memory networks (Jain, 2016).

All of these previous approaches center around

learning how to combine facts from a KB, i.e., in

a structured form with pre-defined schema. That

is, they work as part of a pipeline, and either rely

on the output of a previous IE step (Banko et al.,

2007), or on direct human annotation (Bollacker et

al., 2008) which tends to be costly and biased in cov-

erage. However, recent neural RC methods (Seo et

al., 2017a; Shen et al., 2017) have demonstrated that

end-to-end language understanding approaches can

infer answers directly from text – sidestepping in-

termediate query parsing and IE steps. Our work

aims to evaluate whether end-to-end multi-step RC

models can indeed operate on raw text documents

only – while performing the kind of inference most

commonly associated with logical inference meth-

ods operating on structured knowledge.

Text-Based Multi-Step Reading Comprehension

Fried et al. (2015) have demonstrated that exploit-

ing information from other related documents based

on lexical semantic similarity is beneficial for re-

ranking answers in open-domain non-factoid QA.

Jansen et al. (2017) chain textual background re-

sources for science exam QA and provide multi-

sentence answer explanations. Beyond, a rich col-

lection of neural models tailored towards multi-step

RC has been developed. Memory networks (We-

ston et al., 2015; Sukhbaatar et al., 2015; Kumar

et al., 2016) define a model class that iteratively

attends over textual memory items, and they show

promising performance on synthetic tasks requiring

multi-step reasoning (Weston et al., 2016). One

common characteristic of neural multi-hop models

is their rich structure that enables matching and in-

teraction between question, context, answer candi-

dates and combinations thereof (Peng et al., 2015;

Weissenborn, 2016; Xiong et al., 2017; Liu and

Perez, 2017), which is often iterated over several

times (Sordoni et al., 2016; Neumann et al., 2016;

Seo et al., 2017b; Hu et al., 2017) and may contain

trainable stopping mechanisms (Graves, 2016; Shen

et al., 2017). All these methods show promise for

single-document RC, and by design should be capa-

ble of integrating multiple facts across documents.

However, thus far they have not been evaluated for a

cross-document multi-step RC task – as in this work.

Learning Search Expansion Other research ad-

dresses expanding the document set available to

a QA system, either in the form of web navi-

gation (Nogueira and Cho, 2016), or via query

reformulation techniques, which often use neural

reinforcement learning (Narasimhan et al., 2016;

Nogueira and Cho, 2017; Buck et al., 2018). While

related, this work ultimately aims at reformulating

queries to better acquire evidence documents, and

not at answering queries through combining facts.

8 Conclusions and Future Work

We have introduced a new cross-document multi-

hop RC task, devised a generic dataset derivation

strategy and applied it to two separate domains. The

resulting datasets test RC methods in their ability to

perform composite reasoning – something thus far

limited to models operating on structured knowledge

resources. In our experiments we found that contem-

porary RC models can leverage cross-document in-

formation, but a sizeable gap to human performance

remains. Finally, we identified the selection of rele-

vant document sets as the most promising direction

for future research.

Thus far, our datasets center around factoid ques-

tions about entities, and as extractive RC datasets,

it is assumed that the answer is mentioned verba-

tim. While this limits the types of questions one can

ask, these assumptions can facilitate both training

and evaluation, and future work – once free-form ab-

stractive answer composition has advanced – should

move beyond. We hope that our work will foster

research on cross-document information integration,

working towards these long term goals.
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