

Constructing Delaunay triangulations along space-filling
curves
Citation for published version (APA):
Buchin, K. (2009). Constructing Delaunay triangulations along space-filling curves. In A. Fiat, & P. Sanders
(Eds.), Algorithms - ESA 2009 (17th Annual European Symposium, Copenhagen, Denmark, September 7-9,
2009. Proceedings) (pp. 119-130). (Lecture Notes in Computer Science; Vol. 5757). Springer.
https://doi.org/10.1007/978-3-642-04128-0_11

DOI:
10.1007/978-3-642-04128-0_11

Document status and date:
Published: 01/01/2009

Document Version:
Author’s version before peer-review

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1007/978-3-642-04128-0_11
https://doi.org/10.1007/978-3-642-04128-0_11
https://research.tue.nl/en/publications/408abe48-dbad-4a23-8a7b-0b315f1d46ae

Constructing Delaunay Triangulations along Space-Filling Curves

Kevin Buchin
∗

Abstract

Incremental construction con BRIO using a space-�lling curve order for insertion is a popular

algorithm for constructing Delaunay triangulations. So far, it has only been analyzed for the

case that a worst-case optimal point location data structure is used which is often avoided in

implementations. In this paper, we analyze its running time for the more typical case that points

are located by walking. We show that in the worst-case the algorithm needs quadratic time, but

that this can only happen in degenerate cases. We show that the algorithm runs in O(n log n)
time under realistic assumptions. Furthermore, we show that it runs in expected linear time for

many random point distributions.

1 Introduction

Delaunay triangulations (DTs) and their dual Voronoi diagrams are frequently used in many ap-
plication areas, such as surface reconstruction, molecular modeling, and geographical information
systems. They have been extensively studied in computational geometry and many di�erent con-
struction algorithms have been devised. Since its introduction in 2003 Incremental Construction

con BRIO (biased randomized insertion order) [1] has been one of the favorite algorithms for con-
structing DTs. Points are inserted in rounds of increasing size which avoids full randomization. In
a round the insertion order can be chosen, for which mostly space-�lling curve (SFC) orders are
used (see Fig. 1(d) for such an order). Already considered in the original article [1] (see also [20]),
these orders have been have been popularized by Liu and Snoeyink [15] who used them in their
program for constructing DTs of �nite-precision input points. A variant of the algorithm is available
as package in the Computational Geometry Algorithms Library1 (CGAL) [6].

In the incremental construction, to insert a point it �rst has to be located in the current tri-
angulation. When inserting points along a SFC order, this is typically done without an additional
point location data structure. Using the spatial coherence of the order, a new point is located by
walking from the previous point in the order, i.e., by traversing the triangulation data structure
starting at this point. Incremental construction con BRIO with SFC orders have been tested thor-
oughly, and their running time on surface, protein, terrain and random data is linear or near-linear
in experiments [1, 4, 15, 20]. The algorithm can be made asymptotically optimal by using a point
location data structure like the con�ict graph, but this not only requires additional space but also
does not make use of the spatial coherence of the order. Without such a data structure non-trivial
bounds on the running time were not known so far.

Most commonly the running time of DT algorithms is analyzed with respect to the worst-
case point distribution. The drawback of such an analysis is that worst-case point sets might be
degenerate and that the worst-case bound might not represent the running time on typical points

∗Department of Mathematics and Computer Science, TU Eindhoven; kbuchin@win.tue.nl
1http://www.cgal.org/

1

well. On the other extreme, some DT algorithms have been analyzed with respect to the average-
case running time on points drawn independently and uniformly from a unit square, or in higher
dimensions from the unit d-cube [3, 8, 9, 10, 13, 16, 19]. This is an insightful alternative to the
worst-case analysis, although such an input might be rather unlikely. Such an analysis can be
strengthened by extending it to further random point distributions. However, except for trivial
extensions to nearly uniform points, this has not been done for DT algorithms.

An alternative to the traditional worst- and average-case analysis are realistic input models. A
global parameter for point sets which can often be bounded (in the size of the set) is its spread,
i.e., the quotient between the largest and the smallest point to point distance. Frequently bounds
on the spread result from minimum separation distances between the points and limited precision.
In many cases the spread can be assumed to be polynomially bounded in the number of points. A
further reason why the spread can be expected to be bounded, in particular when the points come
from measurements, is noise in the data. Smoothed analysis [5, 18] models this by allowing arbitrary
input point sets, but by performing an average-case analysis with the points perturbed by random
noise. In the case of surface reconstruction a realistic assumption is that the surface is well-sampled,
i.e., every surface point has one (but not too many) sample point close to it.

So far, realistic input models have to the best of our knowledge not been used explicitly for ana-
lyzing DT algorithms. They have been used to bound the complexity of DTs in R3. Although most
three-dimensional point sets occurring seem to have DTs of linear size, their worst-case complexity
is quadratic. Point sets in R3 with spread Φ have complexity O(Φ3) [11]. There are many results
on well-sampled surfaces, for instance DTs of (ε, κ)-sampled polyhedra have linear complexity [2].
Recall that a point set is an (ε, κ)-sample of a polyhedron if all points on a facet of the polyhedron
have a sample point on the same facet closer than ε to it, but not more than κ sample points on
the same facet closer than 2ε to it.

Our results. Our aim is to give a theoretical explanation for the linear or near-linear running
time in experiments of incremental construction con BRIO with SFC orders. As we will show, the
worst-case running time is quadratic. We therefore turn to realistic and probabilistic models. We
prove that the running time is O(N log Φ) for an N -point set in the plane with spread Φ. This bound
is tight for worst-case point sets as long as the spread is at least w(

√
N) (and at most exponential).

Thus, if the spread is polynomially bounded then the running time is in O(N logN). This directly
implies a similar bound for the smoothed complexity and can be easily extended to a bound for
well-sampled surfaces. The bound also holds for points drawn from any typical random distribution,
but for this case we even show a stronger bound. For independent identically distributed points
from a large class of distributions a variant of the algorithm runs in linear expected time after
computing a SFC order (which can be computed in linear expected time in a suitable model of
computation). We give the explicit analysis for uniformly and for normally distributed points. Our
results extend to higher dimensions, in which case the running time depends on the structural
change of the incremental construction.

This is the �rst analysis of a DT algorithm for realistic input models. It is also the �rst prob-
abilistic analysis of a DT algorithm that goes beyond uniformly distributed points. Besides the
analysis of incremental search [10] it is the only probabilistic analysis for DT of points in higher
dimensions. Proving linear expected running time for this algorithm also solves an open problem
posed in the original con BRIO paper [1]. It is especially surprising that the algorithm achieves
these running times without a point location data structure. So far, the fastest incremental con-
struction algorithm without point location data structure was the jump & walk algorithm [9, 16]
which runs in O(n3/2) expected time for uniformly distributed points in a square (and close to

2

Algorithm 1: Incremental Construction along Space-Filling Curves

Input: Point set in Rd

Output: Delaunay triangulation of the point set

1 Compute BRIO with SFC in rounds:
1.1 Sample points to rounds (using coin �ips with sampling ratio 1/2),
1.2 Order points in a round using a space-�lling curve order,

for every other round use reversed order.
2 Incrementally construct Delaunay triangulation using order from Step 1:
In each step do

2.1 Locate new point from the previously inserted point by walking,
2.2 Update Delaunay triangulation.

O(n4/3) expected time in a 3-cube), with no worst-case guarantee except for the straightforward
O(n2) bound. In addition to analyzing incremental construction con BRIO with SFC orders, we
also present a generalized analysis of incremental constructions con BRIO which also applies to
settings other than DTs.

2 Algorithm

The algorithm combines a biased randomized insertion order (BRIO) [1] and space-�lling curve

(SFC) orders (see Algorithm 1). In a BRIO points are grouped into rounds. Each point is inde-
pendently assigned to the last round with probability 1/2. Points not assigned to the last round
are assigned to the next to last round with the probability of 1/2 and so on [1]. After a logarithmic
number of rounds an expected constant number of points remain, and we can therefore stop the
sampling and assign the remaining points to the �rst round. If p ∈ Si denotes that the point p is
inserted in round i or before (i ≥ 1) then the assignment can be described in terms of probabilities
as P [p ∈ Si | p ∈ Si+1] = 1

2 for 1 ≤ i < dlog2Ne + 1 and P
[
p ∈ S≤dlog2Ne+1

]
= 1. For the analysis

of the algorithm we will use the fact that the expected structural change, i.e., the total number of
simplices created and deleted, using a BRIO is asymptotically bounded by the expected structural
change using a randomized order (see Section 3.1).

Within a round we sort points along a space-�lling curve. A SFC maps a 1-dimensional space
onto a higher-dimensional space, e.g., the unit interval onto the unit square. We will use SFCs in
the form of the SFC heuristic for the Euclidean traveling salesperson problem [17]. We demonstrate
the SFC heuristic for this task by the example of the two-dimensional Hilbert curve [12]. Consider
the following construction of a map from the unit interval to the unit square: Divide the unit
interval into four intervals, divide the unit square into four squares, and assign each interval to
one of the squares (see Fig. 1(a)). This process can be continued recursively and furthermore it
can be done in such a way that neighboring intervals are assigned to neighboring squares. The
�rst three steps of this construction are shown in Fig. 1(a-c). In the limit this yields a surjective,
continuous map from the unit interval to the unit square. By its recursive construction the Hilbert
curve maps an interval to a region with an area equal to the length of the interval. This is a
property shared by many space-�lling curves referred to as bi-measure-preserving property. Another
property shared by many space-�lling curves including the Hilbert curve is that they are Hölder-1/d
continuous. This means for a space-�lling curve ψ : [0, 1] → [0, 1]d that there is a constant C such
that ‖ψ(s)− ψ(t)‖ ≤ C|s− t|1/d for all s, t ∈ [0, 1].

For our purposes it su�ces to repeat the subdivision process until there is only one point per

3

square of the subdivision. In this example, for one of the squares one more subdivision step is
necessary. Fig. 1(d) shows the resulting order. We call this order of the points a space-�lling curve

order. We will call the graph obtained by connecting the points in this order space-�lling curve

tour. For e�ciently computing the SFC order of a point set in IRd, we do log2d N subdivision steps
at once. This results in Θ(N) cells in the subdivision. The order of the cells and the orientation
of the curve in a cell can be stored in a look-up table. Using the �oor function restricted to logN
bits and radix sort, we can compute a SFC order of a point set with polynomially bounded spread
in linear time since a constant number of rounds are su�cient in this case. In particular this yields
a linear (expected) time2 construction for the point sets we will consider. After computing the
insertion order, we incrementally construct the Delaunay triangulation (DT) using the order. A
point is located by a straight line walk from the previously inserted point, i.e, we trace the line
segment from the previous point to the new point in the DT data structure.

Since we are mostly interested in the point location cost of the DT construction, we will in the
following assume that the points are already given in a SFC order. In our experiments (see [4,
Section 4.5]) the computation of the SFC order made up about 10% of the running time in two
dimensions and less in three dimensions. The experiments also con�rm that a sampling ratio smaller
than 1/2 (in two dimensions between 1/10 and 1/4) speeds up the algorithm as has been already
observed in earlier experiments [15, 20]. Our analysis easily generalizes to other sampling ratios.

3 General Analysis

3.1 Incremental Construction con BRIO revisited

Amenta, Choi, and Rote [1] introduced biased randomized insertion orders in the context of De-
launay triangulations of points sampled from a surface in IR3. They consider point sets for which
the expected complexity of the DT of a random sample of the point set is linear in the size of the
sample. They prove for this case that the expected total update and point location cost with a
history are for BRIOs asymptotically the same as for random orders. For our analysis we need to
generalize their result to points in any dimension. We simplify their analysis by directly linking
the costs for a construction with biased randomized insertion order to the costs for a randomized
construction.

For a d-simplex with vertices in P and with s con�icting points in P let pB(s) and pR(s) denote
the probabilities that the simplex occurs in an incremental construction with biased randomized
insertion order and with randomized insertion order, respectively. For simplicity we assume that the

2Without the restricted �oor function we get an additional factor log N .

1 2 3 4

1

2 3

4

1 2 3 4 . . .5

1 2

34

5

(a) (b) (c) (d)

Figure 1: Hilbert curve and order.

4

sampling to rounds is not stopped after log(n) steps, but when no points remain (see [4, Proposition
3.7] for an analysis without this assumption). We bound pB(s) in terms of pR(s). This directly
yields bounds for the costs determining the expected run-time of the construction, i.e., the expected
structural change

∑n
k=0 kspB(s) and the expected con�ict change

∑n
k=0 skspB(s), where ks denotes

the total number of d-simplices with s con�icts. Note that the following lemma directly generalizes
to arbitrary degree bounded con�guration spaces and sampling ratios 1/α by replacing (in the
lemma and its proof) d+ 1 by the degree bound and 2 by α.

Lemma 3.1 For a point set in IRd it holds that pB(s) ≤ 2d+1pR(s). �3

3.2 Counting Intersections

In the following we develop a general scheme to count the number of intersections of a space-�lling
curve tour with a possibly changing Delaunay triangulation. Viewing this number as a double sum
over the simplices of the DT and the line segments of the tour, there are two natural ways to count
the intersections. In this section we will count for each simplex the number of line segments it
intersects. More speci�cally, we will bound for each vertex of the DT the number of line segments
of the SFC tour that might be intersected by a simplex with this vertex as a corner. This analysis
allows us to focus on the structure of the tour. Alternatively, we could count for each line segment of
the tour the number of simplices it intersects, which shifts the focus of the analysis to the structure
of the DT. We will follow this alternative approach in Section 5.2.

Setup. Let x1, . . . , xn and y1, . . . , ym be points in IRd. Assume that we want to insert y1, . . . , ym
into the Delaunay triangulation DT(x1, . . . , xn) of the points x1, . . . , xn. We insert y1, . . . , ym along
a space-�lling curve tour denoted by T(y1, . . . , ym) which is given by a permutation π : {1, . . . ,m} →
{1, . . . ,m}. Let f(x,DT) denote the number of d-dimensional faces incident to x in the Delaunay
triangulation DT, e.g., in the plane the number of triangles incident to x. Let F (DT) denote the
total number of d-dimensional faces of DT and C(DT,T) the structural change when inserting the
points of the tour T into DT in the order given by the tour. Let Byi,yj denote the ball with the

line segment (yi, yj) as a diameter. Furthermore, let b(x,T(y1, . . . , ym)) :=
∑m−1

i=1 1Byi,yi+1
(x), i.e.,

the number of balls around tour segments in which x lies. In a probabilistic setting we denote
the random variables corresponding to x1, . . . , xn and y1, . . . , ym as X1, . . . , Xn and Y1, . . . , Ym,
respectively.

Counting Scheme. For points in general position the faces of the Delaunay triangulation inter-
sected by tour segments are (d− 1)-dimensional or d-dimensional with these two cases alternating
along the tour segment. Of these, we will count the d-dimensional faces.

Let I be the number of intersections between d-simplices of the current Delaunay triangulation
and line segments of the space-�lling curve tour. We will consider two scenarios: In the �rst, we
directly insert a new point after we located it. This corresponds to the situation in Algorithm 1. For
the line segment yπ(i)yπ(i+1) we count the number of intersections with DT(x1, . . . , xn, yπ(1), . . . yπ(i))
(1 ≤ i < m). In a second scenario, we will simply count the number of intersections between
DT(x1, . . . , xn) and T(y1, . . . , ym). Most of the analysis will handle both scenarios simultaneously.

We split the number of intersections into I = I1 + I2 where

• I1 is the number of intersections where the d-simplex is in con�ict with one of the endpoints
of the tour segment,

3We use � to indicate that the proof has been postponed to Appendix A.

5

• I2 is the number of intersections where the d-simplex is not in con�ict with the endpoints of
the tour segment.

When we want to solely refer to the second scenario, we will use Î2 to denote the second number
instead of I2.

Lemma 3.2 Let ∆ be a d-simplex and s a line segment intersecting ∆. If the endpoints of s lie

outside of the circumsphere of ∆ then the ball with s as diameter contains a vertex of ∆. �

Consider a �xed line segment (yπ(i), yπ(i+1)) on the space-�lling curve tour. By Lemma 3.2 any
d-face of the DT intersecting this segment and not in con�ict with one of the endpoints of the
tour segment must have one vertex in the ball with the tour segment as diameter. Thus, for any
intersection counted in I2 the corresponding Delaunay simplex has a vertex in the ball with the
corresponding tour segment as a diameter. We will use this to bound I2.

Bounding I1. A Delaunay face in con�ict with a vertex of the tour needs to be counted at
most once for each tour segment adjacent to the vertex, i.e., at most twice for the vertex. In the
�rst scenario it is actually only counted once, since it is no longer in the triangulation after the
insertion of the vertex. We can bound the cost induced by these faces by the structural change, i.e.,
I1 ∈ O(C(DT(x1, . . . , xn),T(y1, . . . , ym))).

Bounding I2. We bound I2 by counting for each vertex of the Delaunay triangulation in a ball of
a tour segment the total number of d-simplices at this vertex. In the �rst scenario, i.e., if we insert
points while traversing the tour, we have

I2 ≤
m−1∑
i=1

n∑
j=1

1Byπ(i),yπ(i+1)
(xj)f(xj , DT (x1, . . . , xn, yπ(1), . . . , yπ(i)))

+
m−1∑
i=1

i−1∑
j=1

1Byπ(i),yπ(i+1)
(yπ(j))f(xj , DT (x1, . . . , xn, yπ(1), . . . , yπ(i))).

In the second scenario this bound is simply

Î2 ≤
m−1∑
i=1

n∑
j=1

1Byπ(i),yπ(i+1)
(xj)f(xj , DT (x1, . . . , xn)) =

n∑
j=1

b(xj , T (y1, . . . , ym))f(xj , DT (x1, . . . , xn)).

Proposition 3.3 Let P := {x1, . . . , xn, y1, . . . , ym} and bm := maxz∈P b(z,T(y1, . . . , ym)). Then

I2 ≤ bm(d+ 1)(F (DT (x1, . . . , xn)) + C(DT (x1, . . . , xn), T (y1, . . . , ym))).

Proof: Any vertex is covered by at most bm balls of the tour. Counting a simplex bm times for
each incident vertex counts it bm(d + 1) times. Thus, we can bound I2 by bm(d + 1) times the
total number of simplices occurring. The number of simplices is bounded by F (DT (x1, . . . , xn)) +
C(DT (x1, . . . , xn), T (y1, . . . , ym)).

Proposition 3.3 gives a worst-case bound on I2. The straightforward generalization of the propo-
sition to a probabilistic setting, would replace bm by the expected maximum coverage. In the following
we show that if we turn to the second scenario, i.e., do not insert points directly, we can replace bm
by the typically smaller maximum expected coverage instead.

6

(a) Points with Ω(n2) running
time.

level 1

level 2

level 2

(b) Levels of tour segments

Figure 2: Lower and upper bound constructions.

Proposition 3.4 Let X1, . . . , Xn, Y1, . . . , Ym ∈ D ⊆ IRd be independent random variables.. Let

b̂m := sup
x∈D

E [b(x, T (Y1, . . . , Ym))] and Fn := E [F (DT (X1, . . . , Xn))] .

Then E
[
Î2

]
≤ (d+ 1)b̂m Fn. �

4 Analysis for Bounded Spread

4.1 Lower Bound

In this section we will focus on DTs in the plane. In two dimensions the running time of Algorithm 1
is trivially in O(n2), since the time needed to locate one point is at most linear. Unfortunately, for
worst-case point sets the algorithm indeed needs quadratic time, as we show next. We construct a
point set for the Hilbert curve. Fig. 2(a) shows the point set for N = 9. The �rst point is placed
at (0, 0). All further points are placed on the line y = 2/3− x. Note that by adding a small o�set
to the points, they can be placed in strictly convex position instead. The x-coordinates of these
N −1 = 2K points are 1/8, 1/4+1/(4 ·8), . . . ,

∑K−1
i=1 1/4i+1/(4K−1 ·8) and 2/3−1/8, 2/3− (1/4+

1/(4 · 8)), . . . , 2/3 − (
∑K−1

i=1 1/4i + 1/(4K−1 · 8)). The points are chosen such that the space-�lling
curve tour �rst traverses the points closest to the diagonal (0, 0), (1, 1), going outward from there.
This can be seen from the self-similar structure of the point set, i.e., the situation in a sub-square
is essentially the same as in the original square (with two points less). Now we pair up the points
on the line by their distance to the diagonal. Any such pair has probability 1/4 to be inserted in
the last round, and the ith pair intersects 2(i− 1) lines. Thus the expected number of intersections
is Ω(n2) which dominates the running time.

Our worst-case example is highly degenerate. Most notably it has exponential spread. We
therefore study how the running time parameterizes in terms of the spread. Adapting the worst-
case above yields the following bound.

Proposition 4.1 For Φ(N) ∈ ω(
√
N) ∩ 2O(N) there are point sets of size N for which the spread

is at most Φ(N) and the running time of Algorithm 1 is in Ω(N log Φ(N)).

Proof: We place instances of the construction above with k = log(Φ(N)
√
N) points on a√

N/k ×
√
N/k grid. The total number of intersections occuring in the last round is in Ω(Nk) =

Ω(N log Φ(N)), since Φ(N) ∈ ω(
√
N).

7

4.2 Upper Bound

In the following we show an upper bound matching the lower bound.

Proposition 4.2 Algorithm 1 runs in O(|P | log Φ(P)) time in the plane.

Proof: We assign a level to each edge of T(y1, . . . , ym) according to the highest subdivision level
(counting from coarse to �ne) for which the edge is still contained in a single cell (see Fig. 2(b) for
an example). Any point can be in the ball of at most a constant number of edges per level, for
instance the point in the upper right of Fig. 2(b) cannot be in a ball corresponding to a level-2-edge
with vertices in the lower left square. Further, the number of levels is in O(log Φ(N)), which yields
the claimed running time using Proposition 3.3.

Extensions. Many point sets have polynomially bounded spread, in which case our bound implies
that the algorithm runs in O(N logN) time. In higher dimensions the complexity of the DT is not
necessarily linear, so we get as bound on the running time O(C(P) log Φ(P)), where C(P) denotes
the structural change. In a smoothed analysis the noise added (as long as it is not exponentially
small) will bound the expected smallest point-to-point distance and therefore the expected spread,
if the largest point-to-point distance is bounded. Thus, we again obtain a O(N logN) running time.
For well-sampled domains we can typically restrict the number of levels we need to consider. For
instance for (ε, κ)-sampled polyhedra we can subdivide until cells are covered by a 2ε-ball. We then
know that only κ points per cell remain. Thus, we get a running time of order O(n(log(1/ε) + κ)).

5 Average-Case Analysis

5.1 Structure of Random Space-Filling Curves

In the previous section we obtained a running time of O(N logN) for typical inputs. To prove
even stronger bounds we turn to an average-case analysis. For this we will use Proposition 3.4,
which only holds if we do not insert points directly. We therefore consider the following variant of
Algorithm 1: The point location of a round is done in two steps. First, points are located in the
DT of the points of the previous rounds by a walk along the SFC order. Second, points are located
from the location found by the walk using the history. Note that for this we only need to maintain
the history of the current round. We have the choice of inserting the points in a random order or in
the order given by the space-�lling curve. In the �rst case we directly obtain an expected constant
point location cost [7]. In the second case the same follows from Remark B.1 in the appendix.

Let BT be a ball chosen uniformly at random from the balls along the tour with m vertices.

To prove E
[
Î2

]
∈ O(n) it su�ces to prove that for all x ∈ D it holds that P [x ∈ BT] ∈ O(1/m),

where D is the domain from which the Xi are drawn (1 ≤ i ≤ n). Now, P [x ∈ BT] does not depend
on properties of the Delaunay triangulation, thus we have reduced the problem to a problem on
properties of the tour. To bound P [x ∈ BT] we will now use the Hölder-continuity of space-�lling
curves. Therefore, the following analysis will only hold for space-�lling curve orders.

The following argument suggests that P [x ∈ BT] ∈ O(1/m) for space-�lling curve orders if
the point distribution considered is �su�ciently smooth�: if ψ : [0, 1] → [0, 1]d is the space-
�lling curve used then the probability that the preimage ψ∗(x) of a point x falls into the interval
[ψ∗(Yπ(i)), ψ∗(Yπ(i+1))] between two points de�ning a ball is 1/(m − 1). Thus the probability that
a point lies in the image of the interval under ψ is again 1/(m− 1) and this image covers a similar

8

area as the ball. This notion of �similar area� is di�cult to capture and we will argue directly using
the probability distribution over the space from which the points are drawn.

We want to bound P [x ∈ BT]. First it is important to consider how the space-�lling curve
was computed. If the points come from a certain region we can simply compute the space-�lling
curve based on a subdivision of this region. But for points from an unbounded region, like in
the case of the normal distribution, the bounding cube for the space-�lling curve depends on the
actual points. For simplicity we will assume that the bounding cube is chosen as [−u, u]d where u
is the largest occurring coordinate, i.e., the largest L∞-norm of a point. For a space-�lling curve
ψ : [0, 1] → [0, 1]d we denote by ψ̂ : [0, 1] → [−u, u]d the scaled space-�lling curve. The mapping ψ̂
is Hölder continuous with exponent 1/d and Hölder constant cψ̂ = 2u · cψ , i.e., for t1, t2 ∈ [0, 1]

we have
∥∥∥ψ̂(t1)− ψ̂(t2)

∥∥∥ ≤ cψ̂ ‖t1 − t2‖
1/d . We denote by ψ̂∗ : [−u, u]d → [0, 1] the selection of

preimages according to ψ∗. The following lemma provides a bound on the length of a tour edge in
this setting.

Lemma 5.1 Let Y1, . . . , Ym be independent identically distributed random variables in Rd with

Lebesgue density function gY1. Let ψ : [0, 1] → [0, 1]d be a Hölder continuous and bi-measure pre-

serving space-�lling curve with Hölder constant cψ. Let L be a random tour segment of a space-�lling

curve tour through Y1, . . . , Ym based on ψ̂. Then for all ` > 0

P [|L| > `] ≤
∫

Rd
gY1(y)

(
1− d

cdψ

∫
[0,`]

sd−1 min
{
gY1(y′) |

∥∥y − y′∥∥ < s
}
ds

)m−1

dλd(y).

�

Using Lemma 5.1 we can bound P [x ∈ BT] by

∫
Rd
gY1(y)

(
1− d

cdψ

∫
[0,‖x−y‖]

sd−1 min
{
gY1(y′) |

∥∥y − y′∥∥ < s
}
ds

)m−1

dλd(y).

Two examples for distributions handled by Lemma 5.1 are uniformly distributed points in [0, 1]d

and normally distributed points in the plane. For normally distributed points we apply the lemma
to all points except a few (an expected logarithmic number of points) far away from the center of
the distribution. To handle the remaining points we assume for the sake of the analysis that an
additional point location structure like Kirkpatrick's point location hierarchy [14] is used.

Theorem 5.2 The incremental construction along space-�lling curves (using the history of a

round) computes the Delaunay triangulation of points drawn independently and uniformly from a

d-cube in linear expected time. �

Theorem 5.3 The incremental construction along space-�lling curves (using the history of a round
and an O(log n) point location data structure) computes the Delaunay triangulation of points drawn

independent identically normally distributed in the plane in linear expected time. �

5.2 Structure of Random Delaunay Triangulations

We next give an alternative average-case analysis. It focuses on the structure of the DT rather than
the structure of the SFC. We analyze Algorithm 1 for points drawn independently and uniformly
from a bounded convex region (of area 1) in the plane. To analyze the run-time it su�ces to analyze

9

the run-time of the last round. This bound can then be applied to the other rounds with the number
of points being a random variable depending on the round. We assume that at the beginning of
the last round n points have already been inserted into the DT, while the m points from the last
round are to be inserted. The points are located by traversing the Delaunay triangulation along a
space-�lling curve order. Therefore, the time for locating the points is proportional to the number
of intersections between the order and the Delaunay triangulation. Let L be a line segment that is
not too close (no closer than c

√
log n/n for a suitable constant c) to the boundary of the bounded

convex region and that is independent from the (independently and uniformly distributed) points
of the DT. Then the expected number of intersections between L and the DT is in O(1+

√
n|L|) [9].

Now, a Hölder-1/2 continuous space-�lling curve order of m points in a bounded region in the
plane yields a walk through the points of length O(

√
m) [17]. Combining these two results gives an

expected number of intersections in O(m+
√
nm), but there are two pieces missing in this argument.

First, points close to the boundary are not handled. Second, points are inserted during the walk.
Therefore the DT changes and depends on the points to be inserted and their insertion order. In
this extended abstract we only handle the �rst problem, i.e., points close to the boundary and refer
to [4, Section 3.4.3] for the second.

We handle points close to the boundary by showing that edges in the DT are either short or near
to the boundary. For this we use the following lemma, which generalizes a corresponding lemma for
the case of points in the unit square [8]. See [4, Lemma 3.17] for a proof of the generalized lemma.

Lemma 5.4 Let n > 2 points be distributed independently and uniformly in a bounded convex region

C in the plane. Denote by Dw,` the event that the Delaunay triangulation of the points contains

an edge which has a point on it with distance at least w to the boundary of C and which is longer

than `. For any t > 1 and ` ≥ tw P [Dw,`] ≤ n2e−(n−2)w`
√

1−1/t2/2. In particular, if ` ≥ 3w and

w` ≥ 6
√

2 log n/(n− 2) then P [Dw,`] ≤ 1/n2.

This gives us a bound on the number of Delaunay edges that can intersect the line segments of
the tour:

Lemma 5.5 The expected number of intersections of a Delaunay triangulation of n points and a

tour along a Hölder-1/2 space-�lling curve through m points where the m+ n points are distributed

independently and uniformly in a bounded convex region C is in O(m+
√
mn) and therefore linear

in the total number of points.

Proof: For line segments of the tour not near the boundary we already have an O(m+
√
mn) bound

on the number of intersections with the Delaunay triangulation. We therefore only need to consider
the line segments of the tour near the boundary. Without loss of generality, the area of C is 1.

The expected number of points near the boundary is bounded by m′ := c0 |∂C|m
√

log n/n.
Each of these points can be adjacent to two line segments resulting in an upper bound of k := 2m′

on the expected number of line segments with at least one point near the boundary. Each of these
line segments can contribute one further endpoint resulting in a bound of 3m′ on the expected
number of endpoints. These line segments are also part of a space-�lling curve tour through only
these endpoints. Therefore, by the O(

√
m) bound on the length of the tour through the points

ordered along the space-�lling curve and Jensen's inequality the expected total length of these line
segments is bounded by `Σ := cT

√
3m′ for a constant cT depending on the space-�lling curve.

For n > 2 we choose w := (log n/(n − 2))2/3 and ` := 6
√

2(log n/(n − 2))1/3. Then for n > 2,
` ≥ 3w and w` ≥ 6

√
2 log n/(n − 2). Thus, we have by Lemma 5.4, that with probability at least

1 − 1
n2 line segments are closer than w to the boundary or shorter than l. If this event occurs,

only Delaunay edges with endpoints which have distance at most ` to one of the line segments of

10

the tour, or distance at most w from the boundary can intersect the space-�lling curve tour. If
this event does not occur, then in the worst case a tour segment is intersected by all edges of the
triangulation, which gives O(1/n) intersections in expectation. In total, this contributes at most
O(m/n) expected intersections.

In the case that the event occurs, for a single line segment L the region, in which both endpoints
of an intersecting Delaunay edge must lie, is the union of the `-neighborhood of L and the w-
neighborhood of the boundary of C. The area of this region is bounded from above by |∂C|w +
π`2 + 2`|L|. Therefore the expected number of endpoints of edges that intersect a line segment L is
bounded by n(|∂C|w + π`2 + 2`|L|). Consider the subgraph of the Delaunay triangulation induced
by this vertex set. Because of planarity there are at most three times that many edges intersecting
L as in this subgraph. For k line segments of total expected length LΣ this yields a bound of
3n(|∂C|kw+π`2k+ 2`LΣ) on the number of intersecting edges. Inserting the values for w, `, k, and
`Σ gives that the number of intersections near the boundary can be bounded by

3n(|∂C|2m′w + π`22m′ + 2`cT
√

3m′) ≤ 6nm′(log n/n)2/3(|∂C|+ π) + 18cT
√

6nm′1/2(log n/n)1/3

∈ O

(
m

log7/6 n

n1/6
+m1/2n5/12 log7/12 n

)
⊂ O(m+

√
mn).

As mentioned, Lemma 5.5 does not handle the fact that points are already inserted into the DT
during the walk. Because of space constraints we omit the generalization of the lemma to this case.
The generalized version bounds the expected number of intersections between the space-�lling curve
walk and the DT by O(m2/n + n) even if the DT is updated after walking steps (see [4, Lemma
3.26]). This yields the following theorem.

Theorem 5.6 Using a biased randomized insertion order and, in each round, walking along a

Hölder-1/2, bi-measure preserving space-�lling curve, the incremental construction algorithm runs

in linear expected time for points distributed independently and uniformly at random in a bounded

convex region on a real-RAM with the �oor function available and a word size of at least logN .

For a self-contained account we can use the non-generalized Lemma 5.5 to bound the expected
run-time of a variant of Algorithm 1. In this variant the point location of a round is done again
using the history of a round.

Acknowledgments. The author would like to thank Günter Rote and Scot Drysdale and Maike
Buchin for many helpful ideas.

References

[1] N. Amenta, S. Choi, and G. Rote. Incremental constructions con BRIO. In Proc. 19th Annu.

ACM Sympos. Comput. Geom., pages 211�219. ACM Press, 2003.

[2] D. Attali and J.-D. Boissonnat. A linear bound on the complexity of the Delaunay triangulation
of points on polyhedral surfaces. Discrete Comput. Geom., 31(3):369�384, 2004.

[3] J. L. Bentley, B. W. Weide, and A. C. Yao. Optimal expected-time algorithms for closest-point
problems. ACM Trans. Math. Softw., 6:563�580, 1980.

11

[4] K. Buchin. Organizing Point Sets: Space-Filling Curves, Delaunay Tessellations of Random

Point Sets, and Flow Complexes. PhD thesis, Free University Berlin, 2007. http://www.diss.fu-
berlin.de/diss/receive/FUDISS_thesis_000000003494.

[5] V. Damerow, F. Meyer auf der Heide, H. Räcke, C. Scheideler, and C. Sohler. Smoothed motion
complexity. In Proc. 11th Annu. European Sympos. Algorithms, pages 161 � 171� 2003.

[6] C. Delage. Spatial sorting. In CGAL Editorial Board, editor, CGAL User and Reference

Manual. 2007.

[7] O. Devillers. Randomization yields simple o(n log* n) algorithms for di�cult omega(n) prob-
lems. Int. J. Comput. Geometry Appl., 2(1):97�111, 1992.

[8] L. Devroye, C. Lemaire, and J.-M. Moreau. Expected time analysis for Delaunay point location.
Comput. Geom. Theory Appl., 22:61�89, 2004.

[9] L. Devroye, E. Mücke, and B. Zhu. A note on point location in Delaunay triangulations of
random points. Algorithmica, 22:477�482, 1998.

[10] R. A. Dwyer. Higher-dimensional Voronoi diagrams in linear expected time. Discrete Comput.

Geom., 6(4):343�367, 1991.

[11] J. Erickson. Dense point sets have sparse Delaunay triangulations: or ". . .but not too nasty".
In Proc. 13th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 125�134, 2002.

[12] D. Hilbert. Ueber die stetige Abbildung einer Linie auf ein Flächenstück. Math. Ann., 38:459�
460, 1891.

[13] J. Katajainen and M. Koppinen. Constructing Delaunay triangulations by merging buckets in
quadtree order. Fundam. Inform., 11:275�288, 1988.

[14] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12(1):28�35,
1983.

[15] Y. Liu and J. Snoeyink. A comparison of �ve implementations of 3d Delaunay tesselation. In
J. E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial and Computational Geometry,
volume 52 of MSRI Publications, pages 439�458. Cambridge University Press, 2005.

[16] E. P. Mücke, I. Saias, and B. Zhu. Fast randomized point location without preprocessing in two-
and three-dimensional Delaunay triangulations. Comput. Geom. Theory Appl., 12(1-2):63�83,
1999.

[17] L. K. Platzman and J. J. Bartholdi, III. Space�lling curves and the planar travelling salesman
problem. J. ACM, 36(4):719�737, 1989.

[18] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the simplex algorithm
usually takes polynomial time. J. ACM, 51(3):385�463, 2004.

[19] P. Su and R. Drysdale. A comparison of sequential Delaunay triangulation algorithms. Comput.

Geom. Theory Appl., 7:361�386, 1997.

[20] S. Zhou and C. B. Jones. HCPO: an e�cient insertion order for incremental Delaunay trian-
gulation. Inf. Process. Lett., 93(1):37�42, 2005.

12

A Omitted Proofs

A.1 Proof of Lemma 3.1

Proof: For s = 0 we have pB(s) = 1 = pR(s) ≤ 2d+1pR(s). In the following we consider a d-simplex
∆ with s > 0 con�icts.

• Ui := {All vertices of ∆ appear in the ith to last round or before.},

• Vi = {The �rst point in con�ict with ∆ appears in the ith to last round.},

where i ∈ N, and i = 1 refers to the last round. For instance, V2 is the event that all points in
con�ict with ∆ are inserted in the last two rounds and at least one of them is inserted in the second
to last round. The disjoint union

∑∞
i=1 Vi has probability 1. If Vi holds for an i ∈ N then ∆ can

only appear during the construction if also Ui holds. Now,

pB(s) ≤ P

[∞∑
i=1

(Vi ∩ Ui)

]
=

∞∑
i=1

P [Vi ∩ Ui] =
∞∑
i=1

P [Vi]P [Ui]

where the last equality holds by the independence of Vi and Ui for i ∈ N. Next,

P [Ui+1] = P [Ui+1 ∩ Ui] = P [Ui+1 |Ui]P [Ui] =
1

2d+1
P [Ui]

by the sampling condition. Therefore,

pB(s) ≤
∞∑
i=1

2d+1P [Vi]P [Ui+1] = 2d+1P

[∞∑
i=1

(Vi ∩ Ui+1)

]
,

i.e., pB(s) is bounded by 2d+1 times the probability that all vertices of ∆ are inserted in rounds
strictly after the points con�icting with ∆. This probability does not depend on the order within
rounds. Consider an incremental construction con BRIO with random order within rounds. This
gives a randomized incremental construction. The event that all points con�icting with ∆ appear
in rounds before all vertices of ∆ is included in the event that all con�icting points appear before
all vertices. Thus, we get

P

[∞∑
i=1

(Vi ∩ Ui+1)

]
≤ pR(s) (1)

and therefore pB(s) ≤ 2d+1pR(s).

A.2 Proof of Lemma 3.2

Proof: Let U be the circumsphere of ∆ and let K be the ball with s as a diameter. Without loss of
generality we can assume that the endpoints of s lie on U . Otherwise we can shrink s by which we
also shrink K. We want to show that K contains a vertex of ∆. We can assume that the radius of
K is less than the radius of U . Otherwise we have U = ∂K and all vertices of ∆ lie in K.

Now consider the spherical cap U ∩K. Its boundary lies in a hyperplane H and the cap itself
in a half-space H+ de�ned by H. In particular,

U ∩H+ = (U ∩K) ∩H+ ⊂ K.

13

Since s intersects ∆ there is a vertex x of ∆ in H+. For this vertex we have

x ∈ U ∩H+ ⊂ K.

A.3 Proof of Proposition 3.4

Proof: In the following we abbreviate T (Y1, . . . , Ym) by T and DT (X1, . . . , Xn) by DT . We have

E [I2] ≤ E

[
n∑
i=1

b(Xi, T) · f(Xi, DT)

]

≤
n∑
i=1

E [b(Xi, T) · f(Xi, DT)]

≤
n∑
i=1

E [E [b(Xi, T) |Xi] · f(Xi, DT)] .

Since Xi is independent of Y1, . . . , Ym, we have E [b(Xi, T) |Xi = xi] = E [b(xi, T)] . Since for all
xi E [b(xi, T)] ≤ supx∈D E [b(x, T (Y1, . . . , Ym))] = bm we have E [b(Xi, T) |Xi = xi] ≤ bm. Thus,

E [I2] ≤ bm
n∑
i=1

E [f(Xi, DT)]

= bm(d+ 1)E [F (DT)]
= (d+ 1)bmFn.

A.4 Proof of Lemma 5.1

Proof:

Let Y (from Y1, . . . , Ym) be the �rst point of the random segment L. To bound P [|L| > `] we
�rst consider P [|L| > ` |Y = y]. For this we use the Hölder continuity and bi-measure preserving
property of the space-�lling curve. A tour segment of length ` yields that the empty region has
a volume of order at least `d. In turn, an area of `′d between two points yields that the distance
between the points is at most of order `′.

In the case that |L| > `′ for an `′ > 0 we get

∥∥∥ψ̂∗(Y)− ψ̂∗(Y ′)
∥∥∥ ≥ (

`′

cψ̂

)d
,

i.e., a tour segment longer than `′ implies an interval of length at least (`′/cψ̂)d in which no other
preimage lies. By the bi-measure-preserving property of the space-�lling curve we can consider the
probabilities over [0,1]. Because of the scaling, a density of λ on the side of the points in [−u, u]d

corresponds to a density of (2u)dλ = (cψ̂/cψ)dλ on the side of the preimages in [0, 1].

14

If the measure corresponding to an interval is a then the probability for one point to be outside
of the interval is 1− a and for all m− 1 remaining points is (1− a)m−1.

Using the bi-measure-preserving property, now in the other direction, we can bound the change
of the distribution for t0, t0 + t ∈ [0, 1] by

gY1(ψ̂(t0 + t)) ≥ min
{
gY1(ψ̂(t′)) |

∥∥∥ψ̂(t0)− ψ̂(t′)
∥∥∥ ≤ cψ̂t1/d} .

This yields that

a ≥
∫

[0,(`/cψ̂t)
d]

(
cψ̂
cψ

)d
min

{
gY1(y′) |

∥∥y′ − y∥∥ ≤ cψ̂t 1
d

}
dλ(t).

Substituting the integration variable t by s = cψ̂ · t
1/d we get

a ≥ d

cdψ

∫
[0,`]

sd−1 min
{
gY1(y′) |

∥∥y′ − y∥∥ ≤ s} dλ(s).

Thus we have a bound on a not depending on u. Now

P [|L| > ` |Y = y] ≤

(
1− d

cdψ

∫
[0,`]

sd−1 min
{
gY1(y′) |

∥∥y′ − y∥∥ ≤ s} dλ(s)

)m−1

from which the claim of the lemma follows.

A.5 Proof of Theorem 5.2

Proof: We analyze the cost of the last round. Assume X1, . . . , Xn are the points of the previous
round and Y1, . . . , Ym the points of the last round. Further assume that these points are drawn
independently and uniformly from the unit d-cube. By Proposition 3.4 it su�ces to prove for all
x ∈ [0, 1]d that the expected number of balls corresponding to a space-�lling curve tour through
Y1, . . . , Ym and containing x is constant.

Let L be the tour segment starting at Y , where Y is chosen uniformly at random from Y1, . . . , Ym.
Let BT be the corresponding ball. If x ∈ BT then |L| > ‖x− Y ‖, thus by Lemma 5.1

P [x ∈ BT] ≤ P [|L| > ‖x− Y ‖]

≤
∫

[0,1]d

[
1− d

cdψ

∫
[0,‖x−y‖]

sd−1ds

]m−1

dλd(y)

≤
∫

[0,1]d

[
1−

(
‖x− y‖
cψ

)d]m−1

dλd(y).

Let ωd denote the surface area of the d-sphere and κd the volume of the d-ball. Using polar/spherical

15

coordinates we get

P [x ∈ BT] ≤
∫

Rd

[
1−

(
x

cψ

)d]m−1

dλd(y)

= ωd−1

∫
[0,∞)

rd−1

[
1−

(
r

cψ

)d]m−1

dλ(r)

= −ωd−1

cdψ
m

[
1−

(
r

cψ

)d]m∣∣∣∣∣
∞

r=0

≤ κd
cdψ
m
.

Thus the expected number of balls containing x is bounded by

κdc
d
ψ,

i.e., the volume of a d-ball of radius cψ.

A.6 Proof of Theorem 5.3

Proof: As in the proof of Theorem 5.2 for uniformly distributed points, it su�ces by Proposition 3.4
to bound P [x ∈ BT] for a point x ∈ R2 and BT the ball around a random tour segment L with
starting point Y . Again we bound P [x ∈ BT] ≤ P [|L| > ‖x− Y ‖] using Lemma 5.1.

Without loss of generality we assume that the points are independently and normally distributed
centered at the origin and with the identity matrix as covariance matrix. The density function of a
point is

g(y) =
1

2π
e−

1
2
‖y‖2 .

For a point Yi with 1 ≤ i ≤ m the probability that it is farther than a distance r0 from the
origin is

P [‖Yi‖ > r0] = e−
1
2
r20 .

Therefore, the probability that at least one of m points is farther away than r0 from the origin is
bounded from above by me−

1
2
r20 . Thus, for

r0 := 4
√

logm

the probability that one of the points on the tour is farther than r0 from the origin is bounded from
above by

me−2 logm =
1
m
.

The points farther away therefore contribute at most 1
m to P [x ∈ BT] and can be ignored in the

following.
It remains to bound the probability P [x ∈ BT , ‖Y ‖ < r0], i.e., the case that the starting point

of the segment is closer than r0 to the origin. We �rst bound P [|L| > `0, ‖Y ‖ < r0] for `0 := 1√
logm

.

Using Lemma 5.1 and spherical coordinates we have

P [|L| > `0, ‖Y ‖ < r0] ≤
∫

[0,r0]
re−

1
2
r2

(
1− 2

c2
ψ

∫
[0,`0]

se−
1
2

(r+s)2ds

)m−1

dr. (2)

16

For r < r0 we have (r + `0)2 = r2 + 2`0r + `20 ≤ r2 + 8 + 1
logm , and therefore

e−
1
2

(r+`0)2 ≥ e−
1
2
r2c1 for c1 = e−9.

This yields (
1− 2

c2
ψ

∫ `0

0
se−

1
2

(r+s)2ds

)m−1

≤

(
1− 2

c2
ψ

c1e
− 1

2
r2
∫ `0

0
sds

)m−1

=

(
1− c1

c2
ψ

e−
1
2
r2`20

)m−1

.

Inserting this bound into the bound (2) on P [|L| > `0, ‖Y ‖ < r0] yields

P [|L| > `0, ‖Y ‖ < r0] ≤
∫

[0,r0]
re−

1
2
r2

(
1− c1

c2
ψ

e−
1
2
r2`20

)m−1

dr.

We have

c1

c2
ψ

m`20 · re−
1
2
r2

(
1− c1

c2
ψ

e−
1
2
r2`20

)m−1

=
d

dr

(
1− c1

c2
ψ

e−
1
2
r2`2o

)

and therefore

P [|L| > `0, ‖Y ‖ < r0] ≤
c2
ψ

c1m`20

[(
1− c1

c2
ψ

e−
1
2
r2`20

)m]r0
0

≤
c2
ψ

c1m`20
=

c2
ψ

c1

logm
m

.

Thus there are an expected number of O(logm) points for which we do not have a bound on |L|.
We can handle these points by an additional point location data structure like Kirkpatrick's point
location hierarchy. This avoids the boundary analysis for the space-�lling curve order. The cost
induced by the expected O(logm) points is in O(n+ logm log n) where the linear part comes from
building the point location data structure and the remaining part from the point location queries.

Finally we bound P [|L| > ‖x− Y ‖, |L| < `0, ‖Y ‖ < r0] for x ∈ R2. Since Y is distributed spher-
ically symmetric we may assume that x lies on the positive x-axis, i.e., x = (χ, 0) with χ ≤ 0.
Furthermore, the probability is 0 if χ > l0 + r0, so we can assume

0 ≤ χ ≤ l0 + r0.

Let B(z, r) denote the ball of radius r around z. We have so far

P [|L| > ‖x− Y ‖, |L| < `0, ‖Y ‖ < r0]

≤ 1
2π

∫
B(x,l0)

e−
1
2
‖y‖2

(
1− 2c1

c2
ψ

‖x− y‖2e−
1
2
‖y‖2

)m−1

dλ(y)

=
1

2π

∫
B(0,l0)

e−
1
2
‖x−y′‖2

(
1− 2c1

c2
ψ

‖y′‖2e−
1
2
‖x−y′‖2

)m−1

dλ(y′). (3)

17

Now,

‖x− y′‖2 ≥ (χ− l0)2 = χ2 + l20 − 2χl0
≥ χ2 + l20 − 2(r0 + l0)l0
≥ χ2 − 8

by the de�nition of r0 and l0, and analogously

‖x− y′‖2 ≤ (χ+ l0)2 = χ2 + l20 + 2(r0 + l0)l0
≤ χ2 + 8 + 2l20.

Inserting these bounds on ‖x− y′‖2 in the bound (3) we obtain

P [|L| > ‖x− Y ‖, |L| < `0, ‖Y ‖ < r0]

≤ 1
2π

∫
B(0,l0)

e8/2e−
1
2
χ2

(
1− 2c1

c2
ψ

‖y′‖2e−9/2e−
1
2
χ2

)m−1

dλ(y′)

= e4e−
1
2
χ2

∫ l0

0
r

(
1− 2c1

c2
ψ

r2e−9/2e−
1
2
χ2

)m−1

dr

= −e17/2
c2
ψ

2c1

1
m

[(
1− 2c1

c2
ψ

r2e−9/2e−
1
2
χ2

)m]l0
r=0

≤ e17/2
c2
ψ

2c1

1
m

which proves the theorem.

B History of a Round

We here consider the situation where a history is used to locate a point in the current triangulation
starting at a simplex of the previous round. We can again bound the cost for such a point location
step for a BRIO relative to a randomized insertion order. Let p′B(s) denote the probability that
a given simplex with s stoppers appears in the last round using an arbitrary BRIO. To bound
p′B(s) relative to a randomized insertion order we consider the setting, where points are sampled to
rounds as for the biased randomized insertion order, but are inserted in a random order in a round.
Overall this corresponds to a randomized insertion order. Let p′R(s) denote the probability that a
given simplex with s stoppers appears in the last round of this construction. To bound the cost
of using the history between certain rounds it su�ces to bound p′B(s) relative to p′R(s). Using the
notation from the proof of Lemma 3.1 we have p′B(s) ≤ P [V1] = P [V1]P [U1] ≤ 2d+1P [V1]P [U2] ≤
2d+1P [V1 ∪ U2] ≤ p′R(s).

Remark B.1 For a point set in IRd it holds that p′B(s) ≤ 2d+1p′R(s).

18

	Introduction
	Algorithm
	General Analysis
	Incremental Construction con BRIO revisited
	Counting Intersections

	Analysis for Bounded Spread
	Lower Bound
	Upper Bound

	Average-Case Analysis
	Structure of Random Space-Filling Curves
	Structure of Random Delaunay Triangulations

	Omitted Proofs
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Proposition 3.4
	Proof of Lemma 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.3

	History of a Round

