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Introduction

Two strands of research in NPBayes modelling of random probability measures
(RPMs):

priors that are more expressive than the Dirichlet Process

priors that model more structured data
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Introduction

Two strands of research in NPBayes modelling of random probability measures
(RPMs):

priors that are more expressive than the Dirichlet Process

priors that model more structured data

e.g. power-law behaviour or more uncertainty on number of clusters:
Normalized Random Measures [James et al., 2005, Kingman, 1975]

(e.g. normalized generalized Gamma process)
Poisson-Kingman processes [Pitman, 2003]

(e.g. Pitman-Yor process [Pitman and Yor, 1997])

Chen, Rao, Buntine, and Teh (Duke) Dependent RPMs from CRMs June, 2013 2 / 23



Introduction

Two strands of research in NPBayes modelling of random probability measures
(RPMs):

priors that are more expressive than the Dirichlet Process

priors that model more structured data

Chen, Rao, Buntine, and Teh (Duke) Dependent RPMs from CRMs June, 2013 2 / 23



Introduction

Two strands of research in NPBayes modelling of random probability measures
(RPMs):

priors that are more expressive than the Dirichlet Process

priors that model more structured data

for data violating the assumption of exchangeability:
Time-series, spatial data, conditional density modelling

Research traces back to work of [MacEachern, 1999] on dependent RPMs
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Introduction

Two strands of research in NPBayes modelling of random probability measures
(RPMs):

priors that are more expressive than the Dirichlet Process

priors that model more structured data

This talk:

Flexible constructions for dependent RPMs with flexible marginals
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Relevant work

There is a rich literature on dependent RPMs

the seminal work of [MacEachern, 1999] on dependent DPs

Existing work that is directly relevant [Rao and Teh, 2009, Nipoti, 2010,
Lijoi et al., 2012, Foti et al., 2012, Lin and Fisher, 2012, Griffin et al., 2013]

C. Chen, V. Rao, W. Buntine and Y.W. Teh (2013)
Dependent Normalized Random Measures
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Completely random measures (CRMs)

A random measure µ on some space (X,ΣX ) such that

µ(A) ⊥⊥ µ(B) if A and B are disjoint

The measure µ is atomic:

µ =
∑
i

wiδxi

(xi ,wi ) : events of a Poisson process on the space X×W, where W = [0,∞).

The Poisson process has intensity ν(w , x) = ρ(w)h(x), where
ρ(w) is the Lévy intensity of the CRM, and
h(x) is the base probability density.
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Normalized random measures

Poisson process {wi , xi}

CRM µ ≡ {wi , xi}
Normalize to construct a random probability measure G : G (·) = µ(·)

µ(X)

In the following, we set ρ(w) = αw−σ−1 exp(−τw) corresponding to the
generalized Gamma process.

We want: Dependent normalized random measures, Gt
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Dependent normalized random measures

Define a common latent CRM/Poisson process.

Define dependent measures via transformations of this process.

I Superposition [Rao and Teh, 2009, Griffin et al., 2013]
I Rescaling
I Thinning [Lin et al., 2010, Lin and Fisher, 2012]

Normalize these dependent CRMs to produce dependent NRMs.
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Superposition theorem

The superposition of two independent Poisson processes with intensity
νi (·), i = 1, 2 is a Poisson process with intensity ν1(·) + ν2(·)
The resulting CRM has Lévy measure ρ = ρ1 + ρ2.

The projection of a Poisson process from X×W× A to X×W is a Poisson
process with intensity

∫
A ν(dx ,dw ,da)

If ν(·) factors as ρ(w)h(x)νa(a), then the resulting CRM has Lévy intensity(∫
A νa(a)da

)
ρ(w)h(x).
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The resulting CRM has Lévy measure ρ = ρ1 + ρ2.

The projection of a Poisson process from X×W× A to X×W is a Poisson
process with intensity

∫
A ν(dx ,dw ,da)

If ν(·) factors as ρ(w)h(x)νa(a), then the resulting CRM has Lévy intensity(∫
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A νa(a)da

)
ρ(w)h(x).

Chen, Rao, Buntine, and Teh (Duke) Dependent RPMs from CRMs June, 2013 7 / 23



Spatial Normalized Gamma processes [Rao and Teh, 2009]

A measure-valued stochastic process Gt , t ∈ T is an arbitrary space

Instantiate a Poisson process on some augmented space

Associate each t with a subset X×W× At

Restrict to At , and project onto the original space, defining an NRM

Dependency across NRMs is controlled by amount of overlap of At ’s
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Dependent normalized random measures
([Griffin et al., 2013])
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Dependent normalized random measures
([Griffin et al., 2013])

Gt ∝
R∑

r=1

ztrµr , ztr ∈ {0, 1} (1)
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Mixed normalized random measures

A simple generalization: allow ztr ∈ R+

zµ(·) belongs to the same class of CRMs as µ(·).

Poisson mapping theorem:
I If {wi} is a sample from a Poisson process with intensity ν(w), then {zwi} is

a Poisson process with intensity z−1ν(w/z).

ztr governs how strongly atoms of CRM r contribute to covariate t.

Given a set {ztr}, for each t, Gt is an NRM.
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Thinning theorem

If {wi} is a sample from a Poisson process with intensity ν(w), then

{ziwi}, where zi
i.i.d.∼ Bernoulli(p) is Poisson with intensity pν(w).

Suggests independently thinning atoms of a CRM to form a new CRM
([Lin et al., 2010]).

Corresponds to SNRM with an exponential number of CRM.
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Thinned Normalized Random Measures

Spatial NRM characterized by a set {ztr ∈ {0, 1} ∀t ∈ T , r ∈ R}
ztr specifies whether or not all atoms of CRM r are present at covariate t.

Thinned NRM: introduce indicator variables ztrw ∈ {0, 1} for each atom.

zrtk ∼ Bernoulli(qrt) k = 1, 2, · · ·

Then, the probability measure at covariate t is given by

µt(dθ) =
1

µ̂t(Θ)
µ̂t(dθ), where µ̂t(dθ) =

R∑
r=1

∞∑
k=1

zrtkwrk (2)

Proposition

Conditioned on the set of qrt ’s, each random probability measure µt defined in (2)
is marginally distributed as a normalized random measure with Lévy measure∑

r zrtνr (dw ,dθ).
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Dependent normalized random measures
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Inference

[Lin et al., 2010] have proposed a similar model at NIPS this year.

They provide a marginal sampler for posterior inference.

Unfortunately, this sampler is incorrect.

A similar error exists in [Lin and Fisher, 2012]

At a high level:

I One can superimpose 3 CRMs to construct 2 dependent RPMs, each
marginally an NRM.

I However, given observations from one , the other is no longer an NRM.
I It becomes a mixture of NRMs.
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Inference (a marginal sampling approach)

Following [James et al., 2005], introduce auxiliary variables ut ∀t ∈ T
Conditionally marginalize the CRMs µr to obtain a generalized CRP

Alternately resample partition given {ut}, and then {ut} given partition.

Works for SNRM and MNRM, but impractical for TNRM.
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Inference (a slice sampling approach)

Following [Walker, 2007], introduce auxiliary variables sr ∀r ∈ R
Instantiate atoms of the CRM µr larger than sr

Conditionally sample partition of observations, and associated z′s

Alternately resample µr given {sr}, and then {sr} given µr .
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Application: Document modelling

Four corpora of documents (ICML,
Person, TPAMI, NIPS)

Documents organized by year.

Largest corpus: NIPS
I 17 years, 2483 documents, 3.28M

words and a vocabulary of 14K

Use a nonparametric topic model.
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Application to document modelling
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Application to document modelling
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Application to document modelling
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Thank you!
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