
Constructing Deterministic Finite-State Automata
in Recurrent Neural Networks

CHRISTIAN W. OMLIN

NEC Research Institute, Princeton, New Jersey

AND

C. LEE GILES

NEC Research Institute, Princeton, New Jersey, and UMIACS, University of Maryland,
College Park, Maryland

Abstract. Recurrent neural networks that are trained to behave like deterministic finite-state
automata (DFAs) can show deteriorating performance when tested on long strings. This deteriorating
performance can be attributed to the instability of the internal representation of the learned DFA
states. The use of a sigmoidal discriminant function together with the recurrent structure contribute
to this instability. We prove that a simple algorithm can construct second-order recurrent neural
networks with a sparse interconnection topology and sigmoidal discriminant function such that the
internal DFA state representations are stable, that is, the constructed network correctly classifies
strings of arbitrary length. The algorithm is based on encoding strengths of weights directly into the
neural network. We derive a relationship between the weight strength and the number of DFA states
for robust string classification. For a DFA with n states and m input alphabet symbols, the
constructive algorithm generates a “programmed” neural network with O(n) neurons and O(mn)
weights. We compare our algorithm to other methods proposed in the literature.

Categories and Subject Descriptors: B.2.2 [Arithmetic and Logic Structures]: Performance Analysis
and Design Aids–simulation, verification; F.1.1 [Computation by Abstract Devices]: Models of
Computation–automata; relations among models; self-modifying machine; G.1.0 [Numerical Analysis]:
General–stability; G.1.2 [Numerical Analysis]: Approximation–nonlinear approximation; I.1.2.4 [Arti-
ficial Intelligence]: Knowledge Representation Formalisms and Methods–representations; I.1.5.1
[Pattern Recognition]: Modes–neural nets

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Automata, connectionism, knowledge encoding, neural networks,
nonlinear dynamics, recurrent neural networks, rules, stability

Authors’ present addresses: C. W. Omlin, NEC Research Institute, 4 Independence Way, Princeton,
NJ 08540; C. L. Giles, UMIACS, University of Maryland, College Park, MD 20742, e-mail: [omlin,
giles]@research.nj.nec.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and /or a fee.
q 1996 ACM 0004-5411/96/1100-0937 $03.50

Journal of the ACM, Vol. 43, No. 6, November 1996, pp. 937–972.

1. Introduction

1.1. MOTIVATION. Recurrent neural networks are neural network models that
have feedback in the network architecture and, thus, have the power to represent
and learn state processes. This feedback property enables such neural nets to be
used in problems and applications that require state representation: speech
processing, plant control, adaptive signal processing, time series prediction,
engine diagnostics, etc. (e.g., see the recent special issue on dynamically-driven
recurrent neural networks [Giles et al. 1994]). For enhanced performance, some
of these neural network algorithms are mapped directly into VLSI designs [Mead
1989; Sheu 1995].
The performance of neural networks can be enhanced by encoding a priori

knowledge about the problem directly into the networks [Geman et al. 1992;
Shavlik 1994]. This work discusses how known finite state automata rules can be
encoded into a recurrent neural network with sigmoid activation neurons in such
a way that arbitrary long string sequences are always correctly recognized–a
stable encoding of rules. Such rule encoding has been shown to speed up
convergence time and to permit rule refinement, that is, correction of incorrect
rules through later training. Thus, this encoding methodology permits rules to be
mapped into neural network VLSI chips, offering the potential of greatly
increasing the versatility of neural network implementations.

1.2. BACKGROUND. Recurrent neural networks can be trained to behave like
deterministic finite-state automata (DFAs).1 The dynamical nature of recurrent
networks can cause the internal representation of learned DFA states to
deteriorate for long strings [Zeng et al. 1993]; therefore, it can be difficult to
make predictions about the generalization performance of trained recurrent
networks. Recently, we have developed a simple method for encoding partial
DFAs (state transitions) into recurrent neural networks [Giles and Omlin 1993;
Omlin and Giles 1992]. We demonstrated that prior knowledge can decrease the
learning time significantly compared to learning without any prior knowledge.
The training time improvement was “proportional” to the amount of prior
knowledge with which we initialized networks. Important features of our encod-
ing algorithm are the use of second-order weights, and the small number of
weights that we program in order to achieve the desired network dynamics.
When partial symbolic knowledge is encoded into a network in order to improve
training, programming as few weights as possible is desirable because it leaves
the network with many unbiased adaptable weights. This is important when we
use a network for domain theory revision [Maclin and Shavlik 1993; Shavlik 1994;
Towell et al. 1990], where the prior knowledge is not only incomplete but may
also be incorrect [Giles and Omlin 1993; Omlin and Giles 1996a].
Methods for constructing DFAs in recurrent networks where neurons have

hard-limiting discriminant functions have been proposed [Alon et al. 1991; Horne
and Hush 1996; Minsky 1967]. This paper is concerned with neural network
implementations of DFAs where continuous sigmoidal discriminant functions are
used. Continuous sigmoids offer other advantages besides their use in gradient-
based training algorithms; they also permit analog VLSI implementation, the

1 See, for example, Elman [1990], Frasconi et al. [1991], Giles et al. [1991; 1992], Pollack [1991],
Servan-Schreiber et al. [1991], and Watrous and Kuhn [1992].

938 C. W. OMLIN AND C. L. GILES

foundations necessary for the universal approximation theories of neural net-
works, the interpretation of neural network outputs as a posteriori probability
estimates, etc. For more details, see Haykin [1994].
Stability of an internal DFA state representation implies that the output of the

sigmoidal state neurons assigned to DFA states saturate at high gain; a con-
structed discrete-time network thus has stable periodic orbits. A saturation result
has previously been proven for continuous-time networks [Hirsch 1989]; for
sufficiently high gain, the output along a stable limit cycle is saturated almost all
the time. There is no known analog of this for stable periodic orbits of
discrete-time networks. The only known stability result asserts that for a broad
class of discrete-time networks where all output neurons are either self-inhibiting
or self-exciting, outputs at stable fixed points saturate at high gain [Hirsch 1994].
Our proof of stability of an internal DFA state representation establishes such a
result for a special case of discrete-time recurrent networks.
Our method is an alternative to an algorithm for constructing DFAs in

recurrent networks with first-order weights proposed by Frasconi et al. [1991;
1993]. A short introduction to finite-state automata will be followed by a review
of the method by Frasconi et al. We will prove that our method can implement
any deterministic finite-state automaton in second-order recurrent neural net-
works such that the behavior of the DFA and the constructed network are
identical. Finally, we will compare our DFA encoding algorithm with other
methods proposed in the literature.

2. Finite State Automata

Regular languages represent the smallest class of formal languages in the
Chomsky hierarchy [Hopcroft and Ullman 1979]. Regular languages are gener-
ated by regular grammars. A regular grammar G is a quadruple G 5 ^S, N, T,
P&, where S is the start symbol, N and T are non-terminal and terminal symbols,
respectively, and P are productions of the form A 3 a or A 3 aB, where A,
B [N and a [T. The regular language generated by G is denoted L(G).
Associated with each regular language L is a deterministic finite-state auto-

maton (DFA) M which is an acceptor for the language L(G), that is, L(G) 5
L(M). DFA M accents only strings that are a member of the regular language
L(G). Formally, a DFA M is a 5-tuple M 5^ , Q, R, F, d& where 5
{a1, . . . , am} is the alphabet of the language L, Q 5 {q1, . . . , qn} is a set of
states, R [Q is the start state, F # Q is a set of accepting states and d: Q 3
3 Q defines state transitions in M. A string x is accepted by the DFA M and
hence is a member of the regular language L(M) if an accepting state is reached
after the string x has been read by M. Alternatively, a DFA M can also be
considered a generator that generates the regular language L(M).

3. First-Order Networks

This section summarizes work done by Frasconi et al. on implementing DFAs in
recurrent neural networks. For details of the algorithms and the proofs, see
Frasconi et al. [1991; 1993]. Frasconi and his co-authors extended their work in
Frasconi et al. [1993] compared to their previous work [Frasconi et al. 1991],
which restricted the class of automata that could be encoded into recurrent

939Finite-State Automata in Neural Networks

networks to DFAs without cycles (except self-loops). The authors were focusing
on automatic speech recognition as an application of implementing DFAs in
recurrent neural networks. The constructed recurrent network becomes part of a
K-L (priori-Knowledge and Learning) architecture consisting of two cooperating
subnets devoted to explicit and learned rule representation, respectively, and
whose outputs feed into a third subnet that computes the external output.
Each neuron in the first-order network computes the following function:

Si
(t11) 5 s~ai~t!! 5 tanhSai~t!

2 D , ai~t! 5 O
j

VijSj
(t) 1 O

k

WikIk
(t), (1)

where Sj
(t) and Ik

(t) represent the output of other state neurons and input neurons,
respectively, and Vij and Wik are their corresponding weights. For convenience of
implementing a DFA in a recurrent network, the authors use a unary encoding,
which is used to represent both inputs and DFA states; the state vectors representing
successive DFA states q(t) and q(t 1 1) have a Hamming distance of 1. This requires
a transformation of the original DFA into an equivalent DFA with more states,
which is suitable for the neural network implementation. In addition to the recurrent
state neurons, there are three feed-forward layers of continuous state neurons that
are used to construct the DFA state transitions. These continuous neurons imple-
ment boolean-like AND and OR functions by constraining the incoming weights.
When a DFA state transition d(qj, ak) 5 qi is performed, the neuron corresponding
to DFA state qj switches from a high positive to a low negative output signal and the
neuron corresponding to DFA state qi changes its output signal from a low negative
to a high positive value.
An example of a DFA and its implementation in a recurrent network are

shown in Figures 1 and 2, respectively. The algorithm requires the encoding of
adjacent DFA states (Figure 1(a)) to have Hamming distance 1. This can be
achieved by introducing a temporary state between any two states whose
Hamming distance is larger than 1; the code of that temporary state becomes the
logical OR of the two original DFA states (figure 1(b)). The algorithm may make
further modifications to the original DFA prior to constructing a recurrent
network: Consider two mutually consecutive DFA states qi and qj with d(qi, ak)

FIG. 1. Example of DFA Modification. (a) A DFA with 3 input symbols; state 1 is the start state,
state 3 is the only accepting state. (b) The original DFA (a) has been modified such that the codes of
adjacent DFA states have Hamming distance 1 and any ambiguities due to mutually consecutive
states have been removed.

940 C. W. OMLIN AND C. L. GILES

5 qj and d(qj, ak) 5 qi; then the introduction of temporary states leads to
ambiguity. The algorithm resolves this ambiguity by further increasing the
number of DFA states.
The recurrent network implementation of that DFA is shown in figure 2. The

main characteristic of the constructed neural networks is the variable duration of
the switching of state neurons, which is controlled by the self-recurrent weights
Wii and the input from other neurons. This is a desired property for the intended
application. The authors prove that their proposed network construction algo-
rithm can implement any DFA with n states and m input symbols using a network
with no more than 2mn 2 m 1 3n continuous neurons and no more than m(n2

1 m 1 5n 2 5) 1 6n weights.

4. Second-Order Networks

The algorithm used here to construct DFAs in networks with second-order
weights has also been used to encode partial prior knowledge to improve
convergence time [Giles and Omlin 1992; Omlin and Giles 1992], and to perform
rule correction [Giles and Omlin 1993; Omlin and Giles 1996a].

4.1. NETWORK CONSTRUCTION. We use discrete-time, recurrent networks
with weights Wijk to implement DFAs. A network accepts a time-ordered
sequence of inputs and evolves with dynamics defined by the following equations:

Si
(t11) 5 t~ai~t!! 5

1

11 exp(2ai~t!)
, ai~t! 5 bi 1 O

j,k

WijkSj
~t!Ik

~t! , (2)

FIG. 2. Example of First-Order Network Construction. The nonrecurrent neurons compute Bool-
ean-like AND and OR functions. Signals along recurrent feedback connections are delayed by one
time step. The weights are computed by solving linear constraints whose solutions guarantee that the
neurons compute Boolean-like AND- and OR-functions and desired state changes of the recurrent
neurons.

941Finite-State Automata in Neural Networks

where bi is the bias associated with hidden recurrent state neurons Si; Ik denotes
the input neuron for symbol ak and Wijk is the corresponding weight (figure 3).
The product Sj

(t)Ik
(t) directly corresponds to the state transition d(qj, ak) 5 qi.

The goal is to achieve a nearly orthonormal internal representation of the DFA
states with the desired network dynamics. For the purpose of illustration, we
assume that a unary encoding is used for the input symbols. A special neuron S0
represents the output (accept/reject) of the network after an input string has
been processed. Given a DFA with n states and m input symbols, a network with
n11 recurrent state neurons and m input neurons is constructed. The algorithm
consists of two parts (figure 4): Programming weights of a network to reflect
DFA state transitions d(qj, ak) 5 qi and programming the output of the
response neuron for each DFA state. Neurons Sj and Si correspond to DFA
states qj and qi, respectively. The weights Wjjk, Wijk, W0jk, and biases bi are
programmed with weight strength H as follows:

Wijk 5 H1H
0

if d~qj, ak! 5 qi
otherwise

(3)

Wjjk 5 H1H
2H

if d~qj, ak! 5 qj
otherwise

(4)

W0jk 5 H1H
2H

if d~qj, ak! e F
otherwise

(5)

bi 5 2H/ 2 for all state neurons Si (6)

For each DFA state transition, at most three weights of the network have to be
programmed. The initial state S0 of the network is

FIG. 3. Second-Order Network. The external inputs are encoded across the input neurons Ik
t . The

values of the state neurons Sj
t are fed back in parallel through a unit delay prior to the presentation

of the next input symbol. The weighted sums of products Sj
tIk
t (denoted by R), are fed through a

sigmoidal discriminant function t() to compute the next network state Si
t11.

942 C. W. OMLIN AND C. L. GILES

S0 5 ~S0
0, 1, 0, 0, . . . , 0! .

The initial value of the response neuron S0
0 is 1 if the DFA’s initial state q0 is an

accepting state and 0, otherwise. The network rejects a given string if the value of
the output neuron S0

t at the end of the string is less or equal 0.5; otherwise, the
network accepts the string.
With the above DFA encoding algorithm, Eq. (2) governing the dynamics of a

constructed recurrent neural network takes on the special form

Si
t 5 h~ xi, H! 5

1

1 1 exp~H~1 2 2xi~t 2 1!!/ 2!
, (7)

where xi(t 2 1) is the net input to state neuron Si. For the analysis, it will be
convenient to use the same notation h(.) for sigmoidal discriminants with
different arguments, that is, we will use h(.) to stand for the generic sigmoidal
discriminant function

h~ x, H! 5
1

1 1 exp~H~1 2 2x!/ 2!
. (8)

We will explicitly state what the arguments are in various sections of this paper.

4.2. INTERNAL STATE REPRESENTATION AND NETWORK PERFORMANCE. When
a recurrent network is trained to correctly classify a set of example strings, it can
be observed that the networks’ generalization performance on long strings, which
the network was not explicitly trained on, deteriorates with increasing string
length. This deteriorating performance can be explained by observing that the
internal DFA state representation becomes unstable with increasing string length

FIG. 4. Encoding of Rules in Second-Order Networks. (a) A known DFA transition d(qj, ak) 5 qi
is programmed into a network. (b) Recurrent network unfolded over two time steps t and t 1 1, that
is, the duration of the state transition d(qj, ak) 5 qi. The insertion algorithm consists of two parts:
Programming the network state transition and programming the output of the response neuron.
Neurons Si and Sj correspond to DFA states qi and qj, respectively; Ik denotes the input neuron for
symbol ak. Programming the weights Wijk, Wjjk and biases bi and bj as shown in the figure ensures a
nearly orthonormal internal representation of DFA states qi and qj (active/inactive neurons are
illustrated by shaded/white circles). The value of the weight W0jk connected to the response neuron
S0 depends on whether DFA state qi is an accepting or rejecting state. H denotes the rule strength.
The operation Si z Ik is shown as R.

943Finite-State Automata in Neural Networks

due to the network’s dynamical nature and the sigmoidal discriminant function.
This phenomenon has also been observed by others [Casey 1996; Tino et al.
1995; Zeng et al. 1993].
We encoded a randomly generated, minimized 100-state DFA with alphabet

5 {0, 1} into a recurrent network with 101 state neurons. The graph in figure 5
shows the generalization performance of the network constructed with varying
rule strength H 5 {0.0, 0.1, 0.2, . . . , 7.0} on randomly chosen 1000 strings
each of length 1000. At the end of each string, the network’s classification was
“1” (member of the regular language) if S0

1000 . 0.5, and “0” (not a member of
the regular language) otherwise. We observe that the network performance
monotonically improves with increasing value of H and that the network makes
no classification errors for H . 6.3. The following analysis will show why this is
the case.

5. Analysis

Whether or not a constructed second-order recurrent network implements a
desired DFA, that is, whether the output of the network and the DFA are
identical for all input strings, depends on the value of H. The network dynamics
preserves the internal nearly orthonormal DFA state representation only if the
weights are programmed such that the outputs of all state neurons are close to 0
and 1, respectively. This calls for large values of the rule strength H. Our
experiment has shown that H . 6.3 was sufficient for a particular large network
to classify long strings, that is, the finite-state dynamics remained sufficiently

FIG. 5. Network Classification Performance. The network classification performance on a data set
as a function of the rule strength H (in 0.1 increments) is shown. The data set consisted of 1000
randomly chosen strings of length 1000; their labels were assigned by a randomly generated 100-state
DFA. The classification performance is poor for small values of the rule strength H. The network’s
performance dramatically improves for 5 , H , 6 to perfect classification for H . 6.3.

944 C. W. OMLIN AND C. L. GILES

stable and allowed the network to correctly classify strings based on its state after
1,000 time steps. The goal of this analysis is to demonstrate that a network’s
finite-state dynamics can be made stable with finite weight strength H for strings
of arbitrary length and arbitrary DFAs.

5.1. OVERVIEW. What follows is a description of the analysis and proofs in
this section.
There exist two kinds of signals in a network that implements a given DFA: At

any given time step, exactly one recurrent neuron that represents the current
DFA state has a high output signal; that high signal drives the output state
change of itself and at most one other recurrent neuron at the next time step.
Low output signals of all other recurrent neurons act as perturbations on the
finite-state dynamics, that is, on the intended orthonormal internal DFA repre-
sentation. Thus, we can view the state changes that neurons undergo while a
network is processing a string as component-wise iterations of the discriminant
function (Section 5.2). The key to our DFA encoding algorithm is the use of the
sigmoidal discriminant function, in particular its convergence toward stable fixed
points under iteration. Thus, we discuss in Section 5.3 some relevant properties
of the sigmoidal discriminant function.
In order to quantitatively assess the perturbation caused by the low signals, we

analyze in Section 5.4 all possible neuron state changes, that is, neuron state
changes from low output to high output, high output to high output, high output
to low output, and low output to high output. Two of these transition types
further subdivide into separate cases for a total of six types of neuron state
changes. For a worst case analysis, it will suffice to consider only two of the six
cases, by observing that stability of the internal DFA state representation for
these two cases implies stability of low and high signals for all other types of
neuron state transitions (Section 5.5).
In Section 5.6, we derive upper and lower bounds for low and high signals,

respectively, for arbitrary string lengths. These bounds are obtained by assuming
the worst case of maximal perturbation of the desired finite-state dynamics, that
is, all neurons receive low signals as inputs from all other neurons. The bounds
are the two stable fixed points of the sigmoidal discriminant function. The weight
strength H must be chosen such that low signals converge toward the low fixed
point and high signals converge toward the high fixed point. They represent the
worst cases, that is, low and high signals are usually less and greater than the low
and high fixed points, respectively.
In order for a network to implement the desired finite-state dynamics, it will

suffice to require that the total neuron input never exceed or fall below a certain
threshold for low and high signals, respectively. In Section 5.7, we derive
conditions in the form of upper and lower bounds for the values of low and high
fixed points, respectively, of the discriminant function which guarantee stable
finite-state dynamics for arbitrary string length.
In general, the conditions of Section 5.7 are too strict, that is, a network will

correctly classify strings of arbitrary length for a much smaller value of the weight
strength H. In Section 5.8, we relax the worst-case condition where each neuron
receives inputs from all other neurons by limiting the number of neurons from
which all neurons receive inputs. The proof will proceed as in the worst case
analysis.

945Finite-State Automata in Neural Networks

Finally, in Section 5.9, we discuss the case of fully recurrent networks where
only a small subset of weights are programmed to 1H or 2H and all other
second-order weights are initialized to random values drawn from an interval
[2W, W] with arbitrary distribution where H . W. We give implicit bounds on
the size of W for given weight strength H and network size that guarantee correct
string classification. A comparison of our DFA encoding algorithm with other
methods that have been proposed in the literature and open problems for further
research conclude this paper.

5.2. NETWORK DYNAMICS AS ITERATED FUNCTIONS. When a network pro-
cesses a string, the state neurons go through a sequence of state changes. The
network state at time t is computed from the network state at time t 2 1, the
current input and the weights. Since the discriminant function h(.) is fixed, these
network state changes can be represented as iterations of h(.) for each state
neuron:

Si
t 5 ht~ xi

t, H! 5 HSi0h~ht21~ xi
t21, H! , H!

t 5 0
t . 0

(9)

A network will only correctly classify strings of arbitrary length if its internal
DFA state representation remains sufficiently stable. Stability can only be
guaranteed if the neurons are shown to operate near their saturation regions for
sufficiently high gain of the sigmoidal discriminant function h(.). One way to
achieve stability is thus to show that the iteration of the discriminant function
h(.) converges toward its fixed points in these regions, that is, points for which
we have, say, h(x, H) 5 x. This observation will be the basis for a quantitative
analysis that establishes bounds on the network size and the weight strength H
that guarantee stable internal representation for arbitrary DFAs.

5.3. PROPERTIES OF SIGMOIDAL DISCRIMINANTS. We present some useful
properties of the sigmoidal discriminant function h(x, H) 5 1/1 1 exp (H(1 2
2nx)/ 2), since this special form of the discriminant will occur throughout the
remainder of this paper.

First, we define the concept of fixed points of a function [Barnsley 1988]:

Definition 5.3.1. Let f: X 3 X be a mapping on a metric space (X, d). A
point xf [X such that f(xf) 5 xf is called a fixed point of the mapping.

We are interested in a particular kind of fixed point:

Definition 5.3.2. A fixed point xf is called stable if there exists an interval I 5
]a, b[[X with xf [I such that the iteration of f converges toward xf for any
start value x0 [I.

Continuous functions f: X 3 X have the following useful property:

THEOREM 5.3.3. (BROUWER’S FIXED POINT THEOREM). Under a continuous
mapping f: X 3 X, there exists at least one fixed point.

Thus, the function h(.) has the following property:

COROLLARY 5.3.4. The sigmoidal function h(.) has at least one fixed point.

946 C. W. OMLIN AND C. L. GILES

The following lemma describes further useful properties of the function h(.):

LEMMA 5.3.5

(1) h(x, H) is monotonically increasing
(2) limx32` h(x, H) 5 0 and limx3` h(x, H) 5 1
(3) h9(1/ 2n, H) 5 Hn/4
(4) h0(x, H) , h0(1/ 2n, H) for x Þ 1/ 2n

PROOF:

(1) We have

h9~ x, H! 5
nH exp~H~1 2 2x!/ 2!

~1 1 exp~H~1 2 2x!/ 2!2!
,

which is positive for any choice of x.
(2) The term, exp(H(1 2 2x)/2), goes to 0 as x goes to `. Thus, h(x, H)

asymptotically approaches 1. Similarly, exp(H(1 2 2x)/ 2) goes to ` as x
goes to2`. Thus, h(x, H) asymptotically approaches 0.

(3) Substituting 1/2n for x, it follows that h9(1/ 2n, H) 5 Hn/4.
(4) We compute h0(z, H) by computing the derivative of h9(x, H). For reasons

of simplicity, we set z 5 H(1 2 2nx)/ 2 and obtain

h0~ z, H! 5
nH~ez 2 e3z!

~1 1 e2z!2

In order to find the maximum of h9(z, H), we set h0(z, H) 5 0 and obtain z 5
0. Solving for x, we find a maximum of h9(x, H) for x 5 1/ 2n. e

We will prove the following conjecture in Section 5.6:

Conjecture 5.3.6 There exists a value H0
2(n) such that for any H . H0

2(n),
h(.) has three fixed points 0 , fh

2 , f h
0 , fh

1 , 1.

The fixed points of h(.) have the following useful property:

LEMMA 5.3.7. If the function h(x, H) has three fixed points fh
2 , fh

0 , fh
1,

then the fixed points fh
2 and fh

1 are stable.

PROOF. The lemma is proven by defining an appropriate Lyapunov function
P(.) and showing that P(.) decreases toward the minima fh

2 and fh
1 under the

iteration hp(x, H) [Frasconi et al. 1993]:
Let P(xi) 5 (xi 2 fh

1)2. It follows that DP decreases only if xi approaches the
fixed point fh

1. To see this, we compute

DP 5 P~h~ xi, H!! 2 P~ xi! 5 ~h~ xi, H! 2 fh
1!2 2 ~ xi 2 fh

1!2

5 ~h~ xi, H! 1 xi 2 2fh
1!~h~ xi, H! 2 xi! .

If xi . h(xi, H) . 0, then xi . fh
1. Therefore, the first factor is positive and

consequently DP , 0. Conversely, if 0 , xi , h(xi, H), then xi , fh
1 and h(xi,

947Finite-State Automata in Neural Networks

H) , fh
1. Therefore, the first factor is negative and we have DP , 0 again.

Hence, the stability of fh
1 follows for each xi [(fh

0, `). A similar argument can
be made for the stability of the other fixed point fh

2. e

For the remainder of this paper, we are mainly interested in the two stable
fixed points. The following lemma concerning stable fixed points will be useful:

LEMMA 5.3.8. A point x is a stable fixed point of a continuous function f: X 3
X if and only if uf9(x)u , 1.

PROOF. Let f f be a stable fixed point of some continuous function f. Choose
some value x0 sufficiently close to f f. By definition of the stable fixed point f f,
we have limt3` f

t(x0) 5 f f. However, that is only possible if the distance uxt 2
f u decreases monotonically under the iteration of f, which requires uf9(f f 2 e) u
, 1 and uf9(f f 1 e) u , 1 for an arbitrary small e-neighborhood of f f.
Conversely, with uf9(f f 2 e) u , 1 and uf9(f f 1 e) u , 1, the distance uxt 2 f u
decreases monotonically under the iteration of f; in the limit, the fixed point f f is
reached. e

The above lemma has the following corollary:

COROLLARY 5.3.9. The iteration of the function h(.) converges monotonically to
one of its fixed points fh.

PROOF. As fh
2 and fh

1 are stable fixed points of the function h(.), we have
uh9(fh

2) u , 1 and uh9(fh
1) u , 1. Furthermore, since h(.) is a monotone

continuous function, we have 0 , h9(fh
2) , 1 and 0 , h9(fh

1) , 1. This
precludes the possibility of alternating convergence toward the fixed point fh.
According to Lemma 5.3.7, DP(x) only decreases if the iteration h(x) ap-
proaches a fixed point fh. This concludes the proof of the corollary. e

The following lemma concerning convergence behavior of h(.) will be useful:

LEMMA 5.3.10. If the function h(.) has three fixed points, then the iteration h0,
h1, h2, . . . of the function h(.) converges to the following fixed points:

lim
t3`

ht 5 5fh
2

fh
0

fh
1

for
for
for

h0 , fh
0

h0 5 fh
0

h0 . fh
0

(10)

PROOF. We assume that h(.) has three fixed points. Convergence toward fh
0

for h0 5 fh
0 is trivial since fh

0 is a fixed point of h(.). As h(.) is a bounded
function with limx32` h(.) 5 0 and limx3` h(.) 5 1 (Lemma 5.3.5), it follows
that x . h(x, H) for x [] 2`, fh

2] ø]fh
0, fh

1[and x , h(x, H) for x []fh
2,

fh
0[ø]fh

1, `[. According to Corollary 5.3.9, iteration of h(.) converges mono-
tonically to one of its fixed points. Thus, the iteration h0, h1, h2, . . . of h(.) has
to converge toward fh

2 and fh
1 for h0 , fh

0 and h0 . fh
0, respectively. e

5.4. QUANTITATIVE ANALYSIS OF NETWORK DYNAMICS. For the remainder of
this discussion, we will use Si and Si

t to denote the neuron corresponding to DFA
state qi and the output value (or signal) of neuron Si, respectively. Under the
assumption that all neurons operate near their saturated regions, each neuron
can send two kinds of signals to other neurons:

948 C. W. OMLIN AND C. L. GILES

(1) High signals. If neuron Si
t represents the current DFA state qi, then Si

t will
be high (Si

t : high).
(2) Low signals. Neurons Sj

t that do not represent the current DFA state have a
low output (Sj

t : low).

Recall that the arguments of the discriminant function h(x, H) were the sum of
unweighted signals x and the weight strength H. We now expand the term x to
account for the different kinds of signals that are present in a neural DFA.
We define a new function hD(xi, H) that takes the residual inputs into

consideration. Let Dxi denote the residual neuron inputs to neuron Si
t. Then, the

function hD(xi, H) is recursively defined as

hD
t ~ xi

t, H! 5 H 0h~hD
t21~ xi

t21, H! 1 Dxi
t, H!

t 5 0
t . 0

(11)

The initial values for low and high signals are xi 5 0 and xi 5 1, respectively.
The magnitude of the residual inputs Dxi depend on the coupling between

recurrent state neurons. Neurons that are connected to a large number of other
neurons will receive a larger residual input than neurons that are connected to
only a few other neurons. Consider the neuron Sm, which receives a residual
input Dxm from the most number n of neurons, that is, Dxi # Dxm. In order to
show network stability, it suffices to assume the worst case where all neurons
receive the same amount of residual input for given time index t, that is, Dxm

t .
This assumption is valid since the initial value for all neurons except the neuron
corresponding to a DFA’s start state is 0.
We now turn our attention to the different types of state changes that neurons

in a constructed network can undergo.
Consider the DFA state transition d(qj, ak) 5 qi; let neurons Si and Sj

correspond to DFA states qi and qj, respectively, and assume that d(qi, ak) Þ
qi. There may be other states ql [{ql1, . . . , qlm} that have qi as their successor
state (figure 6(a)), d(ql, ak) 5 qi. Thus, neurons Sl are connected to neuron Si
via weights Wilk 5 H and neuron Si is connected to itself via weight Wiik 5 2H.
Since all network signals Si

t lie in the interval]0, 1[, neuron Si receives input not
only from neuron Sj, but also small, but not negligible inputs from neurons Sl at
the time the network executes the DFA state transition d(qj, ak) 5 qi. Signals Si

t

and Sj
t are low and high, respectively, prior to executing d(qj, ak) 5 qi; after

execution, Si
t11 will be a high signal, whereas Sj

t11 will be a low signal. Thus, the
equation governing the neuron state change low Si

t 3 high Si
t11 can be expressed

as:

Si
t11 5 h~Sj

t 1 O
Sl[Ci,k

Sl
t 2 Si

t, H!~Sj
t ; high, Sl

t, Si
t ; low! , (12)

where

Ci,k 5 $SluWilk 5 H , l Þ i, l Þ j% . (13)

Notice the term 2Si
t that weakens the high signal Si

t11. At the same time, the
terms Sl

t strengthen the high signal if there exist DFA state transitions d(ql, ak)
5 qi. For reasons of clarity, we simplified the products Sj

t z Ik
t to Sj

t since we have
Ix
t 5 dxk where d denotes the Kronecker delta.

949Finite-State Automata in Neural Networks

FIG. 6. Neuron State Changes and Corresponding DFA State Transitions. The figures (a)–(f)
illustrate the DFA state transitions corresponding to all possible state changes of neuron Si; the DFA
state(s) participating in the current transitions are marked with t and t 1 1. (a) low 3 high (no
self-loop on qi) (b) low 3 high (with self-loop on qi), (c) high 3 high (necessarily a self-loop on qi),
(d) high3 low (necessarily no self-loop on qi), (e) low3 low (with self-loop on ql), (f) low3 low (no
self-loop on ql). Notice that, even though state qi is neither the source nor the target of the current
state transition in cases (e) and (f), the corresponding state neuron Si still receives residual inputs
from state neurons Sl1, . . . , Slm.

950 C. W. OMLIN AND C. L. GILES

For the case shown in Figure 6(b), where there exists a DFA transition d(qi,
ak) 5 qi (self-loop) that is not the DFA state transition that the network
currently executes, everything remains the same as above except that neuron Si is
connected to itself via weight Wiik 5 H. This leads to a slightly different form of
the equation governing the neuron state change low Si

t 3 high Si
t11.

Si
t11 5 h~Sj

t 1 O
Sl[Ci,k

Sl
t 1 Si

t, H!~Sj
t ; high; Si

t, Sl
t ; low! . (14)

For the case where the current DFA state transition is d(qi, ak) 5 qi
(self-loop, Figure 6(c)), the output of neuron Si remains high; the equation
governing the neuron state change high Si

t 3 high Si
t11 becomes

Si
t11 5 h~Si

t 1 O
Sl[Ci,k

Sl
t, H!~Si

t ; high, Sl
t ; low! . (15)

The neuron Sj will change from a high signal Sj
t to a low signal Sj

t11 when the
network executes the DFA state transition d(qj, ak) 5 qi with qj Þ qi (Figure
6(d)). Thus, neuron Sj has necessarily a self-connecting weight Wj jk 5 2H. The
equation governing the neuron state change high Sj

t 3 low Sj
t11 then becomes

Sj
t11 5 h~2Sj

t 1 O
Sl[Ci,k

Sl
t, H!~Sj

t ; high, Sl
t ; low! . (16)

Under the assumption of a nearly orthonormal internal DFA state representa-
tion, the neurons Sl with l Þ i, l Þ j will undergo state changes low Sl

t 3 low
Sl
t11. These neurons may also receive residual inputs from other neurons with
low output signals. According to whether neurons Sl have self-connections
programmed to H or 2H, the equations governing neuron state changes low Sl

t

3 low Sl
t11 become

Sl
t11 5 h~Sl

t 1 O
Sl9[Ci,k

Sl9
t , H! ~Sl

t, Sl9
t ; low! (17)

Sl
t11 5 h~2Sl

t 1 O
Sl9[Ci,k

Sl9
t , H! ~Sl

t, Sl9
t ; low! (18)

The above equations account for all possible contributions to the net input of all
state neurons.

5.5. SIMPLIFYING OBSERVATIONS. We will make some observations regarding
Eqs. (12)–(18) that will simplify the stability analysis for recurrent networks.
For the remainder of this discussion, it will be convenient to use the terms

principal and residual inputs:

Definition 5.5.1. Let Si be a neuron with low output signal Si
t and Sj be a

neuron with high output signal Sj
t. Furthermore, let {Sl} and {Sl9} be sets of

neurons with output signals {Sl
t} and {Sl9

t }, respectively, for which Wilk Þ 0 and
Wil9k Þ 0 for some input symbol ak and assume Sj [{Sl}. Then, neurons Si and
Sj receive principal inputs of opposite signs from neuron Sj and residual inputs
from all other neurons Sl and Sl9, respectively, when the network executes the
state transition d(qj, ak) 5 qi.

951Finite-State Automata in Neural Networks

Notice that neuron Si may receive a residual input signal Si
t if there exists a

DFA state transition d(qi, ak) 5 qi that is not the currently executed transition.
Equations (12)–(18) clearly show that principal inputs are the high signals that
drive network state changes whereas residual inputs are the low signals that
perturb these ideal network state changes and can lead to the instability of DFA
encodings.
Consider Eqs. (12) and (14). governing neuron state changes low Si

t 3 high
Si
t11. In both equations, the principal inputs and the terms and the number of
terms in the two sums are identical. They only differ with respect to the sign of
the residual input Si

t. Thus, the high signal Si
t11 in Eq. (12) will be weaker than

Si
t11 in Eq. (14). Hence, if neurons can uphold the condition for stable DFA
encodings under state change Eq. (12), they can certainly also satisfy that
condition under state change Eq. (14) and no separate analysis is necessary.
Now consider the case where neurons undergo state changes high Si

t 3 high
Si
t11 (Eq. (15)). Under the stated assumptions, that equation is identical with Eq.
(14) except for the index of the high signal. Thus, the above argument also
applies to Eq. (15).
Now consider the case where neurons undergo state changes high Si

t 3 low,
Si
t11 (Eq. (16)). That equation is identical with Eq. (18) except that Si

t is smaller
than Sl

t (they are both negative) and thus results in a stronger low signal Si
t11

than in Eq. (18). Thus, stability of low signals for state change Eq. (18) implies
stability of low signals for Eq. (16)).
Consider Eqs. (18) and (17). In both equations, the terms and the number of

terms in the two sums are again identical, but the residual inputs Si
t have

opposite signs. Since the residual input Si
t is negative in Eq. (18), the low signal

Si
t11 will be stronger than the low signal Si

t11 in Eq. (17). Hence, if neurons can
uphold the condition for stable DFA encodings under state change Eq. (17), they
can certainly also satisfy that condition under state change Eq. (18) and no
separate analysis is necessary.
Thus, the stability analysis for all possible neuron state changes reduces to

analyzing stability under neuron state changes governed by the following two
equations:

low Si
t 3 low Si

t11:

Si
t11 5 h~Si

t 1 O
Sl[Ci,k

Sl
t, H!~Si

t, Sl
t ; low! (19)

low Si
t 3 high Si

t11:

Si
t11 5 h~Sj

t 1 O
Sl[Ci,k

Sl
t 2 Si

t, H!~Sj
t ; high, Sl

t, Si
t ; low! (20)

5.6. WORST CASE ANALYSIS. In order to show network stability, it suffices to
assume the worst case where all neurons receive the same amount of residual
input for given time index t, that is, Dxt.
We can quantify Dxt for the case of low signals as follows:

LEMMA 5.6.1. The low signals are bounded from above by the fixed point ff
2 of

the function f

952 C. W. OMLIN AND C. L. GILES

H f0 5 0
f t11 5 h~n z f t!

(21)

that is, we have Dxi
t11 5 n z f t since xi

0 5 0 for low signals in Eq. (11).

PROOF. We prove the lemma by induction on t. For t 5 1, we have hD
0 (xi

0,
H) 5 0 5 f0 since the initial output of all neurons except the neuron
corresponding to the initial DFA state is equal to 0. This establishes the basis of
the induction.
Assume the hypothesis is correct for t . 1, that is, all neurons with low

outputs have value ft. To see that the hypothesis holds for t 1 1, we observe that
the input to all neurons which execute a state transition of type low 3 low during
time step t 1 1 is in the worst case equal to n times the values of the low signals
at the current time step t which is f t. Hence, the output of all neurons which do
not correspond to the target DFA state of the DFA state transition at time t 1 1
is equal to

hD
t11 5 h~hD

t ~ xi
t, H! 1 Dxi

t, H! 5 h~n z hD
t ~ x , H! , H! 5 h~n z f t!

as the principal input hD
t (xi

t, H) to neurons whose output remains low is equal to
zero. This concludes the proof of the lemma. e

It remains to be shown that, for given n, there exists a value H . H0
2(n),

which makes Dx sufficiently small such that f t(x, H) converges toward its fixed
points f f

2. If we choose H , H0
2(n), then f t(x, H) converges toward its only

fixed point f f
1; in this case, the nearly orthonormal internal DFA state represen-

tation is no longer maintained and, as a consequence, such a network will
generally misclassify strings.
It is easy to see that the function to be iterated in Eq. (21) is f(x, n) 5 1/1 1

exp(H/2)(1 2 2nx). The graphs of the function are shown in Figure 7 for
different values of the parameter n. With these properties, we can quantify the
value H0

2(n) such that for any H . H0
2(n), f(x, n) has two stable fixed points.

The low and high fixed points f f
2 and f f

1 will be the bounds for low and high
signals, respectively. The larger n, the larger H must be chosen in order to
guarantee the existence of two stable fixed points. If H is not chosen sufficiently
large, then f t converges to a unique fixed point 0.5 , f f , 1. The following
lemma expresses a quantitative condition that guarantees the existence of two
stable fixed points:

LEMMA 5.6.2. The function f(x, n) 5 1(1 1 exp)((H/2)(1 2 2nx)) has two
stable fixed points 0 , ff

2 , ff
1 , 1 if H is chosen such that

H . H0
2~n! 5

2S 1 1 ~1 2 x!logS 1 2 x

x D D
1 2 x

,

where x satisfies the equation

953Finite-State Automata in Neural Networks

n 5
1

2xS 1 1 ~1 2 x!logS 1 2 x

x D D .
The contour plots in Figure 8 show the relationship between H and x for

various values of n. If H is chosen such that H . H0(n), then two stable fixed
points exist; otherwise, only a single stable fixed point exists.

PROOF. Fixed points of the function f(x, n) satisfy the equation 1(1 1
exp)((H/ 2)(1 2 2nx)) 5 x. Given the parameter n, we must find a minimum
value H0

2(n) such that f(x, n) has three fixed points. We can think of x, n, and
H as coordinates in a three-dimensional Euclidean space. Then the locus of
points (x, n, H) satisfying the relation

f~ x, n! 5
1

1 1 exp~~H/ 2!~1 2 2nx!!
(22)

is a curved surface. What we are interested in is the number of points where a
line parallel to the x-axis intersects this surface.
Unfortunately, Eq. (22) cannot be solved explicitly for x as a function of n and

H. However, it can be solved for either one of the other parameters, giving the
intersections with lines parallel to the n-axis or the H-axis:

FIG. 7. Fixed Points of the Sigmoidal Discriminant Function. Shown are the graphs of the function
f(x, n) 5 1(11exp(H(122nx)/ 2)) (dashed graphs) for H 5 8 and n 5 {1, 2, 4, 10} and the
function g̃(x, u) 5 1(11exp(H(122(x2u))/ 2)) (dotted graphs) for H 5 8 and u 5 {0.0, 0.1,
0.4, 0.9}. Their intersection with the function y 5 x shows the existence and location of fixed points.
In this example, f(x, n) has three fixed points for n 5 {1, 2}, but only one fixed point for n 5 {4,
10} and g̃(x, u) has three fixed points for u 5 {0.0, 0.1}, but only one fixed point for u 5 {0.6,
0.9}.

954 C. W. OMLIN AND C. L. GILES

n 5 n~ x , H! 5
1

2x
2
log~~1 2 x!/x!

Hx
, (23)

H 5 H~n , x! 5
2 log~~1 2 x!/x!

1 2 2nx
. (24)

The contours of these functions show the relationship between H and x when n
is fixed (Figure 8). We need to find the point on each contour where the tangent
is parallel to the x-axis, which will indicate where the transition occurs between
one and three solutions for f(n, x) 5 x. Solving ­n(x, H)/­ x 5 0, we obtain the
conditions of the lemma. e

The number and the location of fixed points depends on the values of n and H.
Thus, we write f f

2(n, H), f f
0(n, H), and f f

1(n, H), to denote the stable low,
the unstable, and the stable high fixed point, respectively.
Similarly, we can quantify high signals in a constructed network:

LEMMA 5.6.3. The high signals are bounded from below by the fixed point fg
1 of

the function

FIG. 8. Existence of Fixed Points. The contour plots of the function f(x, n) 5 x (dotted graphs)
show the relationship between H and x for various values of n. If H is chosen such that H . H0(n)
(solid graph), then a line parallel to the x-axis intersects the surface satisfying f(x, n) 5 x in three
points which are the fixed points of h(x, n). For illustration purposes, contour plots for positive
fractions are also shown even though n can only assume positive integer values in the context of DFA
encoding in recurrent neural networks.

955Finite-State Automata in Neural Networks

H g0 5 1
g t11 5 h~ g t 2 f t!

(25)

PROOF. For the basis of the induction proof, we note that the only neuron
that has a high signal at time t 5 0 is the neuron corresponding to the DFA’s
start state; its value is initialized to g0 5 1.
Assuming the high signal at time step t is equal to g t, we observe that the

neuron whose output is to be driven high on the next time step t 1 1 receives in
the worst case a high input signal Sj

t weighted by 1H and a low signal Si
t

weighted by 2H. Thus, the input to a neuron undergoing a state transition low
3 high receives at time t 1 1 in the worst case the input g t 2 f t. Since the
iteration f t converges toward a fixed point f f, the sequence g

0 . g1 . g2
corresponding to the high signals at subsequent time steps converges monotoni-
cally toward a fixed point fg. This concludes the proof of this lemma. e

Notice that the above recurrence relation couples f t and g t which makes it
difficult if not impossible to find a function g(x, n) which when iterated gives the
same values as g t. However, we can bound the sequence g0, g1, g2, . . . from
below by a recursively defined function g̃ t–that is, t : g̃ t # g t–which decouples
g t from f t.

LEMMA 5.6.4. Let ff denote the fixed point of the recursive function f, that is,
limt3` f

t 5 ff. Then, the recursively defined function g̃

H g̃0 5 1
g̃ t11 5 h~ g̃ t 2 f f!

(26)

has the property that t : g̃ t # g t.

It is obvious that a function of the form g̃(x, u) 5 1(1 1 exp(H(1 2 2(x 2
u))/2)) is being iterated in Eq. (26). The graph of the function g̃(x, u) for some
values of u are shown in figure 7. The lemmas and corollaries of Section 5.3 also
apply to the function g̃(x, u).

PROOF. We prove this lemma by induction on t. For t 5 0, we have g̃0 5 g0.
Let the induction hypothesis be true for t, that is, t i # t : g̃ t # g t. By the
induction hypothesis, we have

1 2 2~ g̃ t 2 f f! $ 1 2 2~ g t 2 f f! (27)

However, f t # f f as the sequence f
0, f1, f2, . . . is monotonically increasing

(Corollary 5.3.9). Thus, we observe that

1 2 2~ g t 2 f f! $ 1 2 2~ g t 2 f t! (28)

It thus follows that g̃ t11 # g t11. By the induction principle, we thus have t : g̃ t

g t. e

The following corollary to Lemma 5.3.7 becomes useful:

COROLLARY 5.6.5. The function h(x, H) 5 1(1 1 exp(H(1 2 2x)/2)) has three
fixed points for H . 4.

956 C. W. OMLIN AND C. L. GILES

PROOF. This represents the special case for n 5 1. From Lemma 5.3.1, it
follows that h9(1/ 2, H) 5 (H/4) . 1 for H . 4. Thus, h(.) crosses the function
y 5 x three times and thus as three fixed points two of which are stable (Lemma
5.3.7). e

The following lemma establishes a useful relationship between the functions
g(x, n) and g̃(x, u):

LEMMA 5.6.6. Let the function g̃(x, u) have two stable fixed points and let t :
g̃t # g t. Then the function g(x, n) has also two stable fixed points.

PROOF. We have established in Lemma 5.6.4 that g̃ t # g t. Because the
sigmoidal function h is monotonically increasing and bounded, it also follows
that g t # h(.). Thus, we have g̃ t # g t # h(.), that is, the function g() is
bounded from below and above by g̃ and h(.), respectively. Since h(.) has two
stable fixed points for any H . 4, it follows that g(.) also has two stable fixed
points if g̃ has two stable fixed points. e

Since we have decoupled the iterated function g t from the iterated function f t

by introducing the iterated function g̃ t, we can apply the same technique for
finding conditions for the existence of fixed points of g̃(x, u) as in the case of f t.
In fact, the function that when iterated generates the sequence g̃0, g̃1, g̃2, . . . is
defined by

g̃~ x, u! 5 g̃~ x, f f
2! 5

1

1 1 exp~~H/ 2!~1 2 2~ x 2 f f
2!!!

5
1

1 1 exp~~H9/ 2!~1 2 2n9x!!)
(29)

with

H9 5 H~1 1 2f f
2! , n9 5

1

1 1 2f f
2
. (30)

Since we can iteratively compute the value of f f for given parameters H and n,
we can repeat the original argument with H9 and n9 in place of H and r to find
the conditions under which g̃(n, x) and thus g(n, x) have two stable fixed points.
This results in the following lemma:

LEMMA 5.6.7. The function

g̃~ x, f f
2! 5

1

1 1 exp~~H/ 2!~1 2 2~ x 2 f f
2!!!

has three fixed points 0 , f g̃
2 , f g̃

0 , f g̃
1 , 1 if H is chosen such that

H . H0
1~n! 5

2~1 1 ~1 2 x!log~~1 2 x!/x!!

~1 1 2f f
2!~1 2 x!

where x satisfies the equation

957Finite-State Automata in Neural Networks

1

1 1 2f f
2

5
1

2x~1 1 ~1 2 x!log~~1 2 x!/x!!
.

The network has a built-in reset mechanism that allows low and high signals to
be strengthened. Low signals Sj

t are strengthened to t(2H/ 2) when there exists
no state transition d(., ak) 5 qj. In that case, the neuron Sj

t receives no inputs
from any of the other neurons; its output becomes less than f2 since t(2H/ 2)
5 h(0, H) , f2. Similarly, high signals Si

t get strengthened if either low signals
feeding into neuron Si on a current state transition d({qj}, ak) 5 qi have been
strengthened during the previous time step or when the number of positive
residual inputs to neuron Si compensates for a weak high signal from neurons
{qj}. Thus only a small number of neurons will have Sj

t ' f2 or Sj
t ' f1. For

the majority of neurons we have Sj
t # f2 and Si

t $ f1 for low and high signals,
respectively. Since constructed networks are able to regenerate their internal
signals and since typical DFAs do not have the worst case properties assumed in
this analysis, the conditions guaranteeing stable low and high signals are gener-
ally much too strong for some given DFA.

5.7. NETWORK STABILITY. We now define stability of recurrent networks
constructed from DFAs:

Definition 5.7.1. An encoding of DFA states in a second-order recurrent
neural network is called stable if all the low signals are less than f f

0(n, H), and
all the high signals are greater than fg

0(n, H).
We have established in the previous section that the fixed points f f

2 and fg
1

are the upper and lower bounds of low and highs signals, respectively. However,
the bounds only hold if each neuron receives total input that does not exceed or
fall below the values f f

0 and fg
0, respectively (Lemma 5.3.10).

Consider Eq. (19). In order for the low signal to remain less than f f
0, the

argument of h(.) must be less than f f
0 for all values of t. Thus, we require the

following invariant property of the residual inputs for state transitions of the type
low 3 low:

2
H

2
1 H nf f

2 , f f
0, (31)

where we assumed that all low signals have the same value and that their
maximum values is the fixed point f f

2. This assumption is justified since the
output of all state neurons with low values are initialized to zero.
A similar analysis can be carried out for state transitions of Eq. (20). The

following inequality must be satisfied for:

2
H

2
1 Hfg

1 2 Hf f
2 . fg

0, (32)

where we assumed that there is only one DFA transition d(qj, ak) 5 qi for
chosen qi and ak, and thus Sl[Ci,k 5 0.

958 C. W. OMLIN AND C. L. GILES

Solving inequalities (31) and (32) for f f
2 and fg

1, respectively, we obtain
conditions under which a constructed recurrent network implements a given
DFA. These conditions are expressed in the following theorem:

THEOREM 5.7.2. For some given DFA M with n states and m input symbols, a
recurrent neural network with n 1 1 sigmoidal state neurons and m input neurons
can be constructed from M such that the internal state representation remains stable
if the following three conditions are satisfied:

(1) ff
2~n, H! ,

1

nS12 1
ff
0~n, H!

H D
(2) fg

1~n, H! .
1

2
1 ff

2~n, H! 1
fg
0~n, H!

H
(3) H . max(H0

2(n), H0
1(n))

Furthermore, the constructed network has at most 3mn second-order weights with
alphabet w 5 {2H, 0, 1H}, n 1 1 biases with alphabet b 5 {2H/ 2}, and
maximum fan-out 3m.

The number of weights and the maximum fan-out follow directly from the
DFA encoding algorithm.
Stable encoding of DFA state is a necessary condition for a neural network to

implement a given DFA. The network must also correctly classify all strings. The
conditions for correct string classification are expressed in the following corol-
lary:

COROLLARY 5.7.3. Let L(MDFA) denote the regular language accepted by a
DFA M with n states and let L(MRNN) be the language accepted by the recurrent
network constructed from M. Then, we have L(MRNN) 5 L(MDFA) if

(1) fg
1~n, H! .

1

2 S1 1
1

n
1
2fg

0~n, H!

H D
(2) H . max(H0

2(n), H0
1(n)).

PROOF. For the case of an ungrammatical strings, the input to the response
neuron S0 must satisfy the following condition:

2
H

2
2 Hfg

1 1 ~n 2 1!Hf f
2 ,

1

2
, (33)

where we have made the usual simplification about the convergence of the
outputs to the fixed points f f

2 and fg
1. Furthermore, we assume that the state qi

of the state transition d(qj, ak) 5 qi is the only rejecting state; then the output
neuron’s residual inputs from all other state neurons is positive, weakening the
intended low signal for the network’s output neuron. Notice that the output
neuron is the only neuron that can be forced toward a low signal by neurons
other than itself.

A similar condition can be formulated for grammatical strings:

959Finite-State Automata in Neural Networks

2
H

2
1 Hfg

1 2 ~n 2 1!Hf f
2 .

1

2
. (34)

The above two inequalities can be simplified into a single inequality:

22Hfg
1 1 2~n 2 1!Hf f

2 , 0. (35)

Observing that f f
2 1 fg

1 , 2 and solving for f f
2, we get the following condition

for the correct output of a network:

f f
2 ,

2

n
. (36)

Thus, we have the following conditions for stable low signals and correct string
classification:

f f
2 , 5

1

n S 12 1
f f
0~n , H!

H D
2

n

~dynamics!
~classification!

(37)

We observe that

1

n S 12 1
f f
0

H D .
1

2n

Choosing f f
2 , 1/ 2n thus implies the condition for stable low signals. Substitut-

ing 1/ 2n for f f
2 in inequality (37) yields condition (1) of the corollary. e

5.8. ANALYSIS FOR PARTIALLY RECURRENT NETWORKS. Although the DFA
encoding algorithm constructs a recurrent network with sparse interconnections,
the above analysis was carried out for a fully interconnected network in which
each neuron receives residual inputs from all other neurons, causing maximal
perturbation to the stability of the internal DFA representation. As a result, the
condition for stable low signals is rather strict, that is, we may empirically find
that a constructed network remains stable for values of the weight strength H
that is considerably smaller than the value predicted by the theory. The question
of how H scales with network size is important. The empirical results in Omlin
and Giles [1996b] indicate that H ' 6 for randomly generated DFAs indepen-
dent of the size of the DFA. However, for DFAs where there exists one or
several states qi with a large number of states qj for which d(qj, ak) 5 qi for
some ak, the value of H scales with the size of the DFA.
We will now show how the results of the above stability analysis can be

improved by considering the stability of networks with sparse interconnections.
Before we analyze the conditions for stable low and high signals, we introduce

the following notations: Let Dik denote the number of states qj that make
transitions to state qi for input symbol ak. We further define Di 5 max{Dik}
(maximum number of transitions to qi over all input symbols) and D 5 max{Di}

960 C. W. OMLIN AND C. L. GILES

(maximum number of transitions to any state over all input symbols). Then, r 5
D/n denotes the maximum fraction of all states qj for which d({qj}, ak) 5 qi.
The analysis of the existence of fixed points of Section 5.6 obviously also

applies to the case of partially recurrent networks with D 5 rn instead of n as
the parameter of the sigmoidal function h(.).
Thus, for the case of partially recurrent neural networks, we have the following

conditions for stable finite-state dynamics:

THEOREM 5.8.1. For some given DFA M with n states and m input symbols, let
D denote the maximum number of transitions to any state over all input symbols of
M, and let r 5 D/n. Then, a sparse recurrent neural network with n 1 1 sigmoidal
state neurons and m input neurons can be constructed from M such that the internal
state representation remains stable if the following conditions are satisfied:

(1) ff
2~rn, H! ,

1

nS12 1
ff
0~rn, H!

H D
(2) fg

1~rn, H! .
1

2
1 ff

2~rn, H! 1
fg
0~rn, H!

H
(3) H . max(H0

2(rn), H0
1(rn))

Furthermore, the constructed network has at most 3mn second-order weights with
alphabet w 5 {2H, 0, 1H} (H . 4), n 1 1 biases bi 5 2H/ 2, and
maximum fan-out 3m.

Stable encoding of DFA state is a necessary condition for a neural network to
implement a given DFA. The network must also correctly classify all strings. The
conditions for correct string classification are expressed in the following corol-
lary:

COROLLARY 5.8.2. For some given DFA M with n states, let D denote the
maximum number of transitions to any state for all input symbols of M, and let r 5
D/n. Let L(MDFA) and L(MRNN) denote the regular languages accepted by DFA M
and a recurrent neural network constructed from M. Then, we have L(MRNN) 5
L(MDFA) if

(1) fg
1~rn, H! .

1

2 S1 1
1

n
1

2fg
0~rn, H!

H D
(2) H . max(H0

2(rn), H0
1(rn)).

PROOF. As in the worst-case analysis, we obtain the following conditions for
stable dynamics and correct string classification:

f f
2 , 5

1

rn S 12 1
f f
0~rn , H!

H D
2

n

~dynamics!
~classification!

(38)

We observe that

961Finite-State Automata in Neural Networks

1

rn S 12 1
f f
0

H D .
1

2rn
.
1

2n

Choosing f f
2 , 1/ 2n thus implies the condition for stable low signals in partially

recurrent networks. Substituting 1/ 2n for f f
2 in inequality (38) yields condition

(1) of the corollary. e

5.9. ANALYSIS FOR FULLY RECURRENT NETWORKS. When recurrent networks
are used for domain theory revision, fully recurrent networks are initialized with
the available prior symbolic knowledge; partial or complete knowledge can be
encoded. In the case of encoding a complete DFA, a small number of weights are
programmed to values 1H and 2H according to the encoding algorithm. All
other weights are usually initialized to small random values; these weights can be
interpreted as noise on the neural DFA encoding. The following definition of
noisy recurrent networks will be convenient:

Definition 5.9.1. A noisy fully recurrent, second-order recurrent network (or
just noisy network) is a constructed network where all weights wijk that are not
programmed to either 1H or 2H are initialized to random values drawn from
an interval [2W, W] according to some distribution.

Notice that the above definition leaves open the possibility that the network is
much larger than required for the implementation of a particular DFA. For the
remainder of this section, we assume that the smallest possible network is to be
constructed, that is, there are no neurons which are not needed for the DFA
encoding. Furthermore, we make the technical assumption that H . W; this is
reasonable since the neural DFA encoding algorithms uses the weight strength H
to achieve the encoding.
An analysis similar to that of Sections 5.6 and 5.7 will examine conditions

under which a noisy recurrent network can implement a given DFA. Unlike in
the case of sparse network, the special response neuron S0 also drives the output
of other neurons and every recurrent neuron receives residual inputs from all
other neurons.
We will now derive conditions for the preservation of low and high signals in

fully recurrent networks.
Consider a DFA transition d(qj, ak) 5 qi. All state neurons Sl which do not

correspond to DFA state qi should be low signals (Figure 9). Assuming the
current state is an accepting state, neuron S0 has a high output signal and is
weighted by 1W. Neuron Sj has a high output since it corresponds to the current
DFA state qj; it is also weighted by 1W. Neuron Si is low since we are dealing
with state transitions of type low Si

t 3 low Sl
t11 only; it has a weight 1H. There

are D 2 1 neurons with low outputs and weights 1H. The remaining n 2 (D 2
1) 2 2 neurons also have low outputs and are weighted by 1W. Thus, the worst
case expression for the net input to neuron Sl becomes:

2
H

2
1WS0

t 1WSj
t 1HSi

t 1H~D2 1!Sp
t 1W~n2 ~D2 1! 2 2!Sq

t (39)

We assume that all neurons that are affected by a transition of type low 3 low
receive in the worst case the same residual input and thus will have equal output

962 C. W. OMLIN AND C. L. GILES

signals fW
t for all t. Similarly, we will assume that the high output signals of the

neuron corresponding to the current DFA state and the signal of a network’s
output neuron are identical and equal to gW

t . We can then rewrite Eq. (39) as

2
H

2
1WgW

t 1WgW
t 1HfW

t 1H~D2 1! fW
t 1W~n2 ~D2 1! 2 2! fW

t . (40)

Similarly, we express the worst case for a state transition of type low 3 high: For
a DFA state transition d(qj, ak) 5 qi, state neuron Sj has a high output signal Sj

t

and Si should change its output from a low signal Si
t to a high signal Si

t11. In the
worst case, neuron Si receives the following net input:

2
H

2
2WS0

t 1HSj
t 2WSi

t 1H~D2 1!Sp
t 2W~n2 ~D2 1! 2 2!Sq

t . (41)

With the same assumption as above where high signals of the neuron corre-
sponding to the current target state and the network’s output neuron have the
same value gW

t , we can rewrite the above equation as

2
H

2
2WgW

t 1HgW
t 2HfW

t 1H~D2 1! f W
t 2W~n2 ~D2 1! 2 2! fW

t . (42)

Since network state changes can be interpreted as iterated functions (Section
5.2), we can give upper and lower bounds on the low and high signals,
respectively, in a noisy fully recurrent network as follows:

LEMMA 5.9.2. The low and high signals fW
t and gw

t , respectively, in a noisy neural
network are bounded from below and above, respectively, by the fixed points of the
recursively defined functions:

5 fW
0 5 0

fW
t11 5 hS2

H

2
1 2WgW

t 1 HDfW
t 1 W~n 2 D 2 1! fW

t D (43)

FIG. 9. Preservation of Low Signals. The figure shows the input fed into neuron Sl
t11 from all other

neurons for a chosen input symbol. For clarity, the operation Sj z Ik is omitted.

963Finite-State Automata in Neural Networks

5gW
0 5 1

gW
t11 5 hS2H2 1 ~H2W!gW

t 1H~D2 2! fW
t 2W~n2D2 1! fW

t D (44)

The induction proof of the above lemma is similar to the proof of Lemmas 5.6.1
and 5.6.2, that is, we assume the worst case where all neurons receive identical
residual inputs. As in Section 5.2, the existence of three fixed points for the
functions fW

t and gw
t are a necessary condition for the stability of DFA encodings

in noisy recurrent networks. However, the above equations couple the low and
high signals fW

t and gW
t , respectively. This makes a fixed-point analysis of these

two functions impossible. Therefore, we will make use of the following lemma,
which will allow us to decouple the iterations of low and high signals and thus
carry out the analysis:

LEMMA 5.9.3. Consider the recursively defined function f̃W
t :

5 f̃W
0 5 0

f̃W
t11 5 hS2

H

2
1 2W 1 HDfW

t 1 W~n 2 D 2 1! fW
t D (45)

If the function f̃W
t has two stable fixed points, then so does the function fW

t .

PROOF. The proof is the same as in Lemma 5.6.4 and we will not repeat it
here. We use the notation f̃W(x, n, D, W, H) to denote the function being
iterated in this lemma. We note the relationship

h~ x, H! 5
1

1 1 exp~H~1 2 2x!/ 2!)
fW~ ! # f̃W~ ! , (46)

where equality holds for D 5 1 and W 5 0. Since h(.) has two stable fixed
points for H . 4 (see Corollary 5.6.5), it thus follows that fw() has two stable
fixed points if f̃W has two stable fixed points. e

Thus, we can analyze the existence of fixed points of the function fW
t indirectly

by examining the existence of fixed points of the function f̃W
t which is indepen-

dent of the function gW
t . Notice that we use the function f̃W

t to examine the
existence of fixed points of fW

t ; for the analysis of network stability, we refer to
the fixed points fW

t .
Fixed points of the function f̃W(x, n, D, W, H) satisfy the equation

f̃W~ x, n, D, W, H!

5
1

1 1 exp(2(2H/ 2 1 2W 1 ~D~H 2 W! 1 W~n 2 1!!) x)
5 x (47)

Solving the above equation for H, we obtain

H~ x, n, D, W! 5 2
log~~1 2 x!/x! 1 xW~n 2 D! 1 W~2 2 x!

1 2 2xD
. (48)

964 C. W. OMLIN AND C. L. GILES

Solving ­H/­ x 5 0 for n and substituting in the above equation, we have proven
the following lemma:

LEMMA 5.9.4. The function f̃W(x, n, D, W, H) 5 1(1 1 exp2(2H/2 1 2W 1
(D(H 2 W) 1 W(n 2 1))x))) has three fixed points 0 , ffw

2 , ffw
0 , ffw

1 , 1 if H
is chosen such that

H . HW
2~n! 5

2~1 1 W 2 2x~1 2 x!log~~1 2 x!/x!

1 2 x
,

where x satisfies the equation

n 5
1 1 Wx~3D~ x 2 1! 2 x! 2 2xD~1 1 ~1 2 x!log~~1 2 x!/x!

Wx~1 2 x!
.

We perform a similar analysis for high signals in noisy recurrent networks.
Recall that the high signals in a noisy recurrent network are bounded from below
by the fixed points of the recursively defined function

5gW
0 5 1

gW
t11 5 hS2H2 1 ~H2W!gW

t 1H~D2 2! fW
t 2W~n2D2 1! fW

t D. (49)

We decouple gW
t11 from fW

t by introducing a new function g̃W:

LEMMA 5.9.5. Consider the recursively defined function g̃W:

5g̃W
0 5 1

g̃W
t11 5 hS2H2 1 ~H2W! g̃W

t 1 ~H~D2 2! 2W~n2D2 1!!f f̃ W

1
tD , (50)

where f f̃
W

1
t is the fixed point of the function f̃W. If the function g̃W

t has two stable
fixed points, then so does the function gW

t .

PROOF. An argument similar to that in the proof of Lemma 5.6.4 can be
given. The only difference is that h() and g̃W may both assume the roles of
either lower or upper bound for gW depending on the value of D.
In order to obtain conditions under which gW has three fixed points, we

examine the existence of fixed points of g̃W.
Fixed points of the function g̃W(x, n, D, W, H) satisfy the equation

g̃W~ x, n, D, W, H!

5
1

1 1 exp(2(2H/ 2 1 ~H 2 W! x 1 ~H~D 2 2! 2 W~n 2 D 2 1!!fgW
1))

5 x .

(51)

Solving the above equation for H, we obtain

965Finite-State Automata in Neural Networks

H~ x, n, D, W! 5 2
log~~1 2 x!/x! 2 W~f g̃W

1 ~n 2 D 2 1! 1 x! 1 g̃w~n 2 D!)

1 2 2~ x 1 2f g̃W
1 ~D 2 2!!

.

(52)

Solving (­H/­ x) 5 0 for n and substituting in the above equation, we have
proven the following lemma:

LEMMA 5.9.6. The function g̃W(x, n, D, W, H) 5 1(1 1 exp2(2(2H/2 1
(H 2 W)x 1 (D(H 2 W) 1 W(n 2 1))fg̃W

1))) has three fixed points 0 , fg̃W
2 , fg̃W

0

, fg̃W
1 , 1 if H is chosen such that

H . HW
1~n! 5

1 1 W~ x~1 2 x!!

x~1 2 x!
,

where x satisfies the equation

n 5
1 1 2Df g̃W

1 1 x~W~2f g̃W
1 ~1 2 x! 2 x! 2 2! 2 2x~1 2 x!log~~1 2 x!/x!

2Wx~1 2 x!f g̃W
1

.

5.10. NETWORK STABILITY. We now turn to the analysis of stable DFA
encodings for noisy recurrent networks:

Definition 5.10.1. An encoding of DFA states in a noisy, second-order recur-
rent neural network is called stable if all the low signals are less than f fW

0 (n, D,
W, H), and all the high signals are greater than fgW

0 (n, D, W, H).

Assuming that all signals converge toward their respective fixed points, we get
the following inequalities for stable low and high signals, respectively:

2H/ 2 1 WfgW
1 1 WfgW

1 1 Hf fW
2 1 H~Dn 2 1!f fW

2

1 W~n 2 ~Dn 2 1! 2 2!f fW
2 , f fW

0 (53)

2H/ 2 2 WfgW
1 1 HfgW

1 2 Hf fW
2 1 W~Dn 2 1!f fW

2

2 W~n 2 ~Dn 2 1! 2 2!f fW
2 . fgW

0 . (54)

FIG. 10. Preservation of High Signals. The figure shows the input fed into neuron Si
t11 from all

other neurons for a chosen input symbol. For clarity, the operation Sj z Ik is not shown.

966 C. W. OMLIN AND C. L. GILES

Solving the above inequalities for f fW
2 and fgW

1 , respectively, we obtain the
following result:

THEOREM 5.10.2. A noisy, fully recurrent neural network RNN with n 1 1
sigmoidal state neurons, m input neurons, at most 3mn second-order weights with
alphabet w 5 {2H, 0, 1H}, n 1 1 biases bi 5 2H/2, maximum fan-out 3m, and
random initial weights drawn from an arbitrary distribution in [2W, W] with W , H
can be constructed from a DFA M with n states and m input symbols such that the
internal state representation remains stable if

(1) ffW
2 ,

2~H2W!ffW
0 2 4WfgW

0 1 H~H2 3W!

2n~~12 3D!W 2 1 H~~12 2D!W1 HD!! 1W~H1W!

(2) fgW
1 . 2~H1 n~W~12 4D!ffW

0 1 ~2W~n~12 D! 2 1! 1 nDH!fgW
0

1 H~H~11 Dn! 1W~n~22 3D! 2 1!!

2n~~12 3D!W2 1 H~~12 2D!W1 HD!! 1W~H1W!

(3) H . max(HW
2(D), HW

1(D)).

Stability of the internal DFA state encoding in noisy recurrent networks for
the correct classification of strings of arbitrary length. We also need to examine
the conditions under which the output of the network is correct. However,
correct labeling of rejecting and accepting network states in noisy recurrent
networks is no different from the case of fully recurrent networks. The following
inequalities, which represent a worst case, must be satisfied for correct classifica-
tion of grammatical and ungrammatical strings, respectively:

2
H

2
1 HfgW

1 2 ~n 2 1!Hf fW
2 .

1

2
(55)

2
H

2
2 HfgW

1 1 ~n 2 1!Hf fW
2 ,

1

2
. (56)

These two equations can be simplified, which yields the condition f fW
2 , 2/n for

correct string classification.
Thus, we have the following corollary for noisy recurrent networks:

COROLLARY 5.10.3. For some given DFA M with n states, let D denote the
maximum number of transitions to any state over all input symbols of M, and let r 5
D/n. Let L(MDFA) and L(MRNN) denote the regular languages accepted by DFA M
and a noisy recurrent neural network constructed from M. Then, we have L(MRNN)
5 L(MDFA) if

(1) ffW
2 ,

2~H2W!ffW
0 2 4WfgW

0 1 H~H2 3W!

2n~~12 3D!W2 1 H~~12 2D!W1 HD!! 1W~H1W!

(2) fgW
1 . 2~H1 n~W~12 4D!ffW

0 1 ~2W~n~12 D! 2 1! 1 nDH!fgW
0

1 H~H~11 Dn! 1W~n~22 3D! 2 1!!

2n~~12 3D!W2 1 H~~12 2D!W1 HD!! 1W~H1W!

967Finite-State Automata in Neural Networks

(3) ffW
2 1 , 2n

(4) H . max(HW
2(D), HW

1(D))

Conditions (1) and (2) achieve stability of the internal DFA state encoding,
condition (3) guarantees correct string classification, and condition (4) guaran-
tees the existence of two stable fixed points. The graphs in Figure 11 show for
different network sizes n the maximal allowable interval [2W, W] from which
values of the randomly initialized weights can be drawn as a function of H such
that the internal DFA representation of constructed recurrent networks remains
stable for strings of arbitrary length. The values of rn for networks of size n were
r10 5 {0.1, 0.2, 0.3, 0.4, 0.5}, r100 5 {0.01, 0.02, 0.03, 0.04}, r1000 5
{0.001, 0.002, 0.003, 0.004}, and r10000 5 {0.0001, 0.0002, 0.0003,
0.0004}. The conditions of Theorem 5.10.2 were no longer satisfied for larger
values of rn. As expected, the size of the interval [2W, W] increases with
increasing value of the weight strength H for given network size n, that is, the
network tolerates more noise from the randomly initialized weights with increas-
ing H. That interval becomes independent of the values of r and H for increasing
network size. For fixed values of H, that interval becomes smaller with increasing
network size, since the number of random weights that interfere with the internal
DFA state representation also increases.
We have shown that a fully recurrent network can be constructed from a DFA

such that the languages accepted by the network and the DFA are identical
independent of the distribution of the randomly initialized weights. The value W
depends on the network size n, the value of r, and the magnitude of H.

FIG. 11. Maximal Random Weight Initialization Interval. The curves show for different network
sizes n the maximal allowable interval [2W, W] from which values of the randomly initialized
weights can be drawn as a function of H and r. The values for rn were r10 5 {0.1, 0.2, 0.3, 0.4, 0.5},
r100 5 {0.01, 0.02, 0.03, 0.04}, r1000 5 {0.001, 0.002, 0.003, 0.004}, and r10000 5 {0.0001, 0.0002,
0.0003, 0.0004}.

968 C. W. OMLIN AND C. L. GILES

T
ab
le
I.

C
om
pa
ri
so
n
of
D
if
fe
re
nt
D
F
A
E
nc
od
in
g
M
et
ho
ds
:

T
he
di
ff
er
en
t
m
et
ho
ds
us
e
di
ff
er
en
t
am
ou
nt
s
an
d
ty
pe
s
of
re
so
ur
ce
s
to
im
pl
em
en
t
a
gi
ve
n
D
F
A
w
it
h
n
st
at
es
an
d
m
in
pu
t

sy
m
bo
ls
.1
,2
T
he
re
al
so
ex
is
t
lo
w
er
bo
un
ds
fo
r
th
e
nu
m
be
r
of
ne
ur
on
s
ne
ce
ss
ar
y
to
im
pl
em
en
t
an
y
D
F
A
.2
T
he
bo
un
ds
fo
r

5
{0
,1
}

ha
ve
be
en
ge
ne
ra
liz
ed
to
ar
bi
tr
ar
y
al
ph
ab
et
si
ze
m
.3
T
he
au
th
or
s
us
e
th
ei
r
ne
tw
or
k
w
it
h
si
gm
oi
da
l
an
d
ra
di
al
ba
si
s
fu
nc
ti
on
s
in

m
ul
ti
pl
e
la
ye
rs
to
tr
ai
n
re
cu
rr
en
t
ne
tw
or
ks
;
ho
w
ev
er
,t
he
ir
ar
ch
it
ec
tu
re
co
ul
d
be
us
ed
to
di
re
ct
ly
en
co
de
a
D
F
A
in
a
ne
tw
or
k.
4
T
he

ru
le
st
re
ng
th
H
ca
n
be
ch
os
en
ac
co
rd
in
g
to
th
e
re
su
lt
s
in
th
is
pa
pe
r.

969Finite-State Automata in Neural Networks

One can view fully recurrent networks as sparse networks with noise in the
programmed weights. From that point of view, the encoding algorithm constructs
sparse networks that are to some extent tolerant to noise in the weights.
All conditions in Theorem 5.10.2 must be satisfied for a stable internal DFA

representation. We cannot guarantee that a network constructed from a given
DFA accepts the same language as the DFA if any one of the conditions is
violated. In fact, we believe that the following conjecture holds true:

CONJECTURE 5.10.4. If any one of the conditions is violated, then the languages
accepted by the constructed network and the given DFA are not identical for an
arbitrary distribution of the randomly initialized weights in the interval [2W, W].

5.11. COMPARISON WITH OTHER METHODS. Different methods2 for encoding
DFAs with n states and m input symbols in recurrent networks are summarized
in Table I. The methods differ in the choice of the discriminant function
(hard-limiting, sigmoidal, radial basis function), the size of the constructed
network and the restrictions that are imposed on the weight alphabet, the neuron
fan-in and fan-out. The results in Horne and Hush [1996] improve the upper and
lower bounds reported in Alon et al. [1991] for DFAs with only two input
symbols. Those bounds can be generalized to DFAs with m input symbols (B.
Horne, personal communication). Among the methods which use continuous
discriminant functions, our algorithm uses no more neurons than the best of all
methods, and consistently uses fewer weights and smaller fan-out size than all
methods.

5.12. OPEN PROBLEMS. One of the theoretical results in Alon et al. [1991]
gives a lower bound of V(=n log n) on the number of hard-limiting neurons
needed to implement a DFA with n states when the weight alphabet and the
neuron fan-in are limited. Our encoding algorithm establishes without optimiza-
tion an upper bound of O(n) for sigmoidal neurons with limited fan-out. It would
be interesting to investigate whether there is a lower bound and whether the
upper bound can be made tighter. Although n states can be encoded in only log
n neurons using a binary encoding scheme, our encoding algorithm cannot
encode arbitrary DFAs with only log n neurons; this can be shown on small
example DFAs.

6. Conclusion

We compared two different methods for encoding deterministic finite-state
automata (DFAs) into recurrent neural networks with sigmoidal discriminant
functions. The method proposed in Frasconi et al. [1993] implements DFAs
using linear programming and explicit implementation of state transitions imple-
menting Boolean-like functions with sigmoidal neurons. The authors give rigor-
ous proofs about their neural network implementation of DFAs. An interesting
characteristic of their approach is that state transitions usually take several time
steps to complete.
We have proven that our encoding algorithm can implement any DFA with n

states and m input symbols in a sparse recurrent network with O(n) state

2 See Alon et al. [1991], Frasconi et al. [1993], Frasconi et al. [1996], Horne and Hush [1996], and
Minsky [1967].

970 C. W. OMLIN AND C. L. GILES

neurons, O(mn) weights, and limited fan-out of size O(m) such that the DFA
and the constructed network accept the same regular language. The desired
network dynamics is achieved by programming some of the weights to values 1H
or 2H. A worst-case analysis has revealed a quantitative relationship between
the rule strength H with which some weights are initialized and the maximum
network size such that the network dynamics remains robust for arbitrary string
length. This is only a proof of existence, that is, we do not make any claims that
such a solution can be learned. For any chosen value H . 4, there exists an
upper bound on the network size that guarantees that the constructed network
implements a given DFA.
Our algorithm for constructing DFAs in recurrent neural networks is more

straightforward compared to the method proposed in Frasconi et al [1993]. By
using second-order weights, we have adjusted the network architecture so that
DFA state transitions are naturally mapped into network state transitions. Our
networks need fewer nodes and weights than the implementation reported in
Frasconi et al [1993]. The network model has not lost any of its computational
capabilities by the introduction of second-order weights.
We are currently investigating how other kinds of knowledge that may be

useful in building hybrid systems can be represented in second-order recurrent
neural networks.

ACKNOWLEDGMENTS. We would like to acknowledge useful discussions with D.
Handscomb (Oxford University Computing Laboratory), and J. A. Giordmaine
and B. G. Horne (NEC Reserach Institute), as well helpful comments from the
reviewers.

REFERENCES

ALON, N., DEWDNEY, A. K., AND OTT, T. J. 1991. Efficient simulation of finite automata by neural
nets, JACM 38, 2 (Apr.), 495–514.

BARNSLEY, M. 1988. Fractals Everywhere. Academic Press, San Diego, Calif.
CASEY, M. 1996. The dynamics of discrete-time computation, with application to recurrent neural
networks and finite state machine extraction, Neural Comput. 8, 6, 1135–1178.

ELMAN, J. 1990. Finding structure in time. Cogn. Sci. 14, 179–211.
FRASCONI, P., GORI, M., MAGGINI, M., AND SODA, G. 1996. Representation of finite state
automata in recurrent radial basis function networks, Mach. Learn. 23, 5–32.

FRASCONI, P., GORI, M., MAGGINI, M., AND SODA, G. 1991. A unified approach for integrating
explicit knowledge and learning by example in recurrent networks. In Proceedings of the Interna-
tional Joint Conference on Neural Networks, vol. 1. IEEE, New York, p. 811.

FRASCONI, P., GORI, M., AND SODA, G. 1993. Injecting nondeterministic finite state automata into
recurrent networks. Tech. Rep. Dipartimento di Sistemi e Informatica, Università di Firenze, Italy,
Florence, Italy.

GEMAN, S., BIENENSTOCK, E., AND DOURSTAT, R. 1992. Neural networks and the bias/variance
dilemma, Neural Comput. 4, 1, 1–58.

GILES, C., CHEN, D., MILLER, C., CHEN, H., SUN, G., AND LEE, Y. 1991. Second-order recurrent
neural networks for grammatical inference. In Proceedings of the International Joint Conference on
Neural Networks 1991, vol. II. IEEE, New York, pp. 273–281.

GILES, C., KUHN, G., AND WILLIAMS, R. 1994. Special issue on Dynamic recurrent neural networks:
Theory and applications, IEEE Trans. Neural Netw. 5, 2.

GILES, C., MILLER, C., CHEN, D., CHEN, H., SUN, G., AND LEE, Y. 1992. Learning and extracting
finite state automata with second-order recurrent neural networks. Neural Comput. 4, 3, 380.

GILES, C., AND OMLIN, C. 1992. Inserting rules into recurrent neural networks. In Neural Networks
for Signal Processing II, Proceedings of the 1992 IEEE Workshop (S. Kung, F. Fallside, J. A.
Sorenson, and C. Kamm, eds.) IEEE, New York, pp. 13–22.

971Finite-State Automata in Neural Networks

GILES, C., AND OMLIN, C. 1993. Rule refinement with recurrent neural networks. In Proceedings
IEEE International Conference on Neural Networks (ICNN’93), vol. II. IEEE, New York, pp.
801–806.

HAYKIN, S. 1994. Neural Networks, A Comprehensive Foundation. MacMillan, New York.
HIRSCH, M. 1989. Convergent activation dynamics in continuous-time neural networks. Neural
Netw. 2, 331–351.

HIRSCH, M. 1994. Saturation at high gain in discrete time recurrent networks. Neural Netw. 7, 3,
449–453.

HOPCROFT, J., AND ULLMAN, J. 1979. Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading, Mass.

HORNE, B., AND HUSH, D. 1996. Bounds on the complexity of recurrent neural network implemen-
tations of finite state machines. Neural Netw. 9, 2, 243–252.

MACLIN, R., AND SHAVLIK, J. 1993. Using knowledge-based neural networks to improve algo-
rithms: Refining the Chou–Fasman algorithm for protein folding. Mach. Learn. 11, 195–215.

MEAD, C. 1989. Analog VLSI and Neural Systems. Addison-Wesley, Reading, Mass.
MINSKY, M. 1967. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Englewood Cliffs,
N.J., pp. 32–66 (Chap. 3).

OMLIN, C., AND GILES, C. 1996a. Rule revision with recurrent neural networks. IEEE Trans.
Knowl. Data Eng. 8, 1, 183–188.

OMLIN, C., AND GILES, C. 1996b. Stable encoding of large finite-state automata in recurrent neural
networks with sigmoid discriminants. Neural Comput. 8, 4, 675–696.

OMLIN, C., AND GILES, C. 1992. Training second-order recurrent neural networks using hints, in
Proceedings of the 9th International Conference on Machine Learning (San Mateo, Calif.), D.
Sleeman and P. Edwards, eds. Morgan-Kaufmann, San Mateo, Calif., pp. 363–368.

POLLACK, J. 1991. The induction of dynamical recognizers. Mach. Learn. 7, 227–252.
SERVAN-SCHREIBER, D., CLEEREMANS, A., AND MCCLELLAND, J. 1991. Graded state machine: The
representation of temporal contingencies in simple recurrent networks. Mach. Learn. 7, 161.

SHAVLIK, J. 1994. Combining symbolic and neural learning. Mach. Learn. 14, 3, 321–331.
SHEU, B. J. 1995. Neural Information Processing and VLSI. Kluwer Academic Publishers, Boston,
Mass.

TINO, P., HORNE, B. AND GILES, C. 1995. Fixed points in two-neuron discrete time recurrent
networks: Stability and bifurcation considerations. Tech. Rep. UMIACS-TR-95-51. Institute for
Advanced Computer Studies, Univ. Maryland, College Park, Md.

TOWELL, G., SHAVLIK, J., AND NOORDEWIER, M. 1990. Refinement of approximately correct
domain theories by knowledge-based neural networks. In Proceedings of the 8th National Conference
on Artificial Intelligence (San Mateo, Calif.) Morgan-Kaufmann, San Mateo, Calif., p. 861.

WATROUS, R., AND KUHN, G. 1992. Induction of finite-state languages using second-order recur-
rent networks. Neural Comput. 4, 3, 406.

ZENG, Z., GOODMAN, R., AND SMYTH, P. 1993. Learning finite state machines with self-clustering
recurrent networks. Neural Comput. 5, 6, 976–990.

RECEIVED MAY 1994; REVISED DECEMBER 1995; ACCEPTED MAY 1996

Journal of the ACM, Vol. 43, No. 6, November 1996.

972 C. W. OMLIN AND C. L. GILES

