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Public-key cryptography in the quantum world

Shor 94: Quantum computers can efficiently
• factor integers
• calculate discrete logarithms (in any group)

This breaks two common public-key cryptosystems:
• RSA
• elliptic curve cryptography



Public-key cryptography in the quantum world

Shor 94: Quantum computers can efficiently
• factor integers
• calculate discrete logarithms (in any group)

This breaks two common public-key cryptosystems:
• RSA
• elliptic curve cryptography

How do quantum computers affect the security of PKC in general?

Practical question: we’d like to be able to send confidential information 
even after quantum computers are built

Theoretical question: crypto is a good setting for exploring the 
potential strengths/limitations of quantum computers



Isogeny-based elliptic curve cryptography

Not all elliptic curve cryptography is known to be quantumly broken!

Best known classical algorithm:              [Galbraith, Hess, Smart 02]O(q1/4)

Couveignes 97, Rostovstev-Stolbunov 06, Stolbunov 10: Public-key 
cryptosystems based on the assumption that it is hard to construct an 
isogeny between given elliptic curves over Fq



Isogeny-based elliptic curve cryptography

Main result of this talk:

Lq(α, c) := exp
[
(c+ o(1))(ln q)α(ln ln q)1−α

]
Quantum algorithm that constructs an isogeny in time                 
(assuming GRH), where

Lq(
1
2 ,

√
3
2 )

Not all elliptic curve cryptography is known to be quantumly broken!

Best known classical algorithm:              [Galbraith, Hess, Smart 02]O(q1/4)

Couveignes 97, Rostovstev-Stolbunov 06, Stolbunov 10: Public-key 
cryptosystems based on the assumption that it is hard to construct an 
isogeny between given elliptic curves over Fq



Elliptic curves
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y2 = x3 − x+ 1

Example (          ):F = R

An elliptic curve E is the set of points in        satisfying an equation of 
the form

PF
2

y2 = x3 + ax+ b

Let    be a field of characteristic different from 2 or 3F
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This defines an abelian group with additive identity ∞

Geometric definition of a binary 
operation on points of E:
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This defines an abelian group with additive identity ∞

Geometric definition of a binary 
operation on points of E:

λ :=
yQ − yP
xQ − xP

xP+Q = λ2 − xP − xQ

yP+Q = λ(xP − xP+Q)− yP

for               ,xP �= xQ

Algebraic definition:

(similar expressions for 
other cases)



Elliptic curves over finite fields

Cryptographic applications use a finite field

Example: y2 = x3 + 2x+ 2

Fq
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Elliptic curve isogenies

Let            be elliptic curvesE0, E1

φ(x, y) =

(
fx(x, y)

gx(x, y)
,
fy(x, y)

gy(x, y)

)An isogeny                     is a rational mapφ : E0 → E1

(                    are polynomials) that is also a group homomorphism:fx, fy, gx, gy

φ((x, y) + (x′, y′)) = φ(x, y) + φ(x′, y′)



Elliptic curve isogenies

Let            be elliptic curvesE0, E1

E1 : y2 = x3 + 34x+ 45

Example (              ):

E0 : y2 = x3 + 2x+ 2

φ(x, y) =

(
x3 + 20x2 + 50x+ 6

x2 + 20x+ 100
,
(x3 + 30x2 + 23x+ 52)y

x3 + 30x2 + 82x+ 19

)
φ−→

F = F109

φ(x, y) =

(
fx(x, y)

gx(x, y)
,
fy(x, y)

gy(x, y)

)An isogeny                     is a rational mapφ : E0 → E1

(                    are polynomials) that is also a group homomorphism:fx, fy, gx, gy

φ((x, y) + (x′, y′)) = φ(x, y) + φ(x′, y′)



Deciding isogeny

Theorem [Tate 66]: Two elliptic curves over a finite field are isogenous 
if and only if they have the same number of points.

Thus a classical computer can decide isogeny in polynomial time.

There is a polynomial-time classical algorithm that counts the points 
on an elliptic curve [Schoof 85].



The endomorphism ring

The set of isogenies from E to itself (over    ) is denoted End(E)F̄
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The endomorphism ring

If                                  then we say      and      are endomorphicEnd(E0) = End(E1) E0 E1

The set of isogenies from E to itself (over    ) is denoted End(E)F̄

Let                  denote the set of elliptic curves over     with n points 
and endomorphism ring       (up to isomorphism of curves)

Fq

OΔ

Ellq,n(OΔ)

We assume E is ordinary (i.e., not supersingular), which is the typical 
case; then                                           is an imaginary quadratic order 
of discriminant Δ < 0

End(E) ∼= OΔ = Z[Δ+
√
Δ

2 ]



Representing isogenies

Thus we cannot even write down the rational map explicitly in 
polynomial time

The degree of an isogeny can be exponential (in        )log q

Example:  The multiplication by m map,

m2is an isogeny of degree

(x, y) �→ (x, y) + · · ·+ (x, y)︸ ︷︷ ︸
m



Representing isogenies

Thus we cannot even write down the rational map explicitly in 
polynomial time

The degree of an isogeny can be exponential (in        )log q

Fact:  Isogenies between endomorphic elliptic curves can be 
represented by elements of a finite abelian group, the ideal class group 
of the endomorphism ring, denoted Cl(OΔ)

Example:  The multiplication by m map,

m2is an isogeny of degree

(x, y) �→ (x, y) + · · ·+ (x, y)︸ ︷︷ ︸
m



A group action

Thus we can view isogenies in terms of a group action

where      is the elliptic curve reached from E by an isogeny 
corresponding to the ideal class  

Eb

[b]

∗ : Cl(OΔ)× Ellq,n(OΔ) → Ellq,n(OΔ)

[b] ∗ E = Eb



A group action

Thus we can view isogenies in terms of a group action

where      is the elliptic curve reached from E by an isogeny 
corresponding to the ideal class  

Eb

[b]

This action is regular [Waterhouse 69]:
for any           there is a unique     such that[b]E0, E1 [b] ∗ E0 = E1

∗ : Cl(OΔ)× Ellq,n(OΔ) → Ellq,n(OΔ)

[b] ∗ E = Eb



The abelian hidden shift problem

Let A be a known finite abelian group

Let                    be an injective function (for some finite set R)f0 : A → R

Problem:  find s

Let                    be defined by                        for some unknownf1 : A → R f1(x) = f0(xs) s ∈ A

f0

f1



The abelian hidden shift problem

For A cyclic, this is equivalent to the dihedral hidden subgroup 
problem

More generally, this is equivalent to the HSP in the generalized dihedral 
group A� Z2

Let A be a known finite abelian group

Let                    be an injective function (for some finite set R)f0 : A → R

Problem:  find s

Let                    be defined by                        for some unknownf1 : A → R f1(x) = f0(xs) s ∈ A

f0

f1



Isogeny construction as a hidden shift problem

Define                                               byf0, f1 : Cl(OΔ) → Ellq,n(OΔ)

f0([b]) = [b] ∗ E0

f1([b]) = [b] ∗ E1

E0, E1 [s]           are isogenous, so there is some     such that [s] ∗ E0 = E1



Isogeny construction as a hidden shift problem

• Since    is a group action, ∗ f1([b]) = f0([b][s])

• Since    is regular,     is injective∗ f0

Cl(OΔ)Therefore this is an instance of the hidden shift problem in             
with hidden shift    :[s]

Define                                               byf0, f1 : Cl(OΔ) → Ellq,n(OΔ)

f0([b]) = [b] ∗ E0

f1([b]) = [b] ∗ E1

E0, E1 [s]           are isogenous, so there is some     such that [s] ∗ E0 = E1



Kuperberg’s algorithm

Theorem [Kuperberg 03]:  There is a quantum algorithm that solves 
the abelian hidden shift problem in a group of order N with running 
time                                          .exp[O(

√
lnN)] = LN ( 12 , 0)
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Kuperberg’s algorithm

Theorem [Kuperberg 03]:  There is a quantum algorithm that solves 
the abelian hidden shift problem in a group of order N with running 
time                                          .exp[O(

√
lnN)] = LN ( 12 , 0)

Thus there is a quantum algorithm to construct an isogeny with 
running time

where c(N) is the cost of evaluating the action

LN ( 12 , 0)× c(N)

But previously it was not known how to compute the action in 
subexponential time
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Direct computation (using modular polynomials) takes time
for an ideal of norm  
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Problem:  Given E,     ,             , compute [b] ∗ E

Instead we use an indirect approach:

• Choose a factor base of small prime ideals
• Find a factorization                           where                 are small
• Compute            one small prime at a time

p1, . . . , pf
[b] = [pe11 · · · peff ] e1, . . . , ef

[b] ∗ E
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Computing the action

Δ b ∈ OΔ

Direct computation (using modular polynomials) takes time
for an ideal of norm  

O(�3)
�

By optimizing the size of the factor base, this approach can be made to 
work in time                (assuming GRH)L( 12 ,

√
3
2 )

Note:  This assumes only GRH (previous related algorithms required 
stronger heuristic assumptions)

Problem:  Given E,     ,             , compute [b] ∗ E

Instead we use an indirect approach:

• Choose a factor base of small prime ideals
• Find a factorization                           where                 are small
• Compute            one small prime at a time

p1, . . . , pf
[b] = [pe11 · · · peff ] e1, . . . , ef

[b] ∗ E



Polynomial space

Kuperberg’s algorithm uses space exp[Θ(
√
lnN)]

Regev 04 presented a modified algorithm using only polynomial space 
for the case              , with running time                           

exp[O(
√
n lnn)] = L2n(

1
2 , O(1))

A = Z2n

Combining Regev’s ideas with techniques used by Kuperberg for the 
case of a general abelian group (of order N), and performing a careful 
analysis, we find an algorithm with running time LN ( 12 ,

√
2)

Thus there is a quantum algorithm to construct elliptic curve isogenies 
using only polynomial space in time Lq(

1
2 ,

√
3
2 +

√
2)



Conclusions

Given two isogenous, endomorphic, ordinary elliptic curves over     , 
there is a quantum algorithm that constructs an isogeny between them 
in time                 (or in time                          using                  space)
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Conclusions

Given two isogenous, endomorphic, ordinary elliptic curves over     , 
there is a quantum algorithm that constructs an isogeny between them 
in time                 (or in time                          using                  space)

• Isogeny-based cryptography may be less secure than more 
mainstream cryptosystems (e.g., lattices)

Consequences:
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- Can we break isogeny-based cryptography in polynomial time?
- Computing properties of a single curve (e.g., endomorphism ring)
- Generalizations: non-endomorphic curves, supersingular curves

• Computing properties of algebraic curves may be a fruitful direction 
for new quantum algorithms


