Constructing elliptic curve isogenies in quantum subexponential time

Andrew Childs
David Jao

Vladimir Soukharev
IQC, C\&O
C\&O
University of Waterloo

MITACS

Public-key cryptography in the quantum world

Shor 94: Quantum computers can efficiently

- factor integers
- calculate discrete logarithms (in any group)

This breaks two common public-key cryptosystems:

- RSA
- elliptic curve cryptography

Public-key cryptography in the quantum world

Shor 94: Quantum computers can efficiently

- factor integers
- calculate discrete logarithms (in any group)

This breaks two common public-key cryptosystems:

- RSA
- elliptic curve cryptography

How do quantum computers affect the security of PKC in general?
Practical question: we'd like to be able to send confidential information even after quantum computers are built

Theoretical question: crypto is a good setting for exploring the potential strengths/limitations of quantum computers

Isogeny-based elliptic curve cryptography

Not all elliptic curve cryptography is known to be quantumly broken!
Couveignes 97, Rostovstev-Stolbunov 06, Stolbunov 10: Public-key cryptosystems based on the assumption that it is hard to construct an isogeny between given elliptic curves over \mathbb{F}_{q}

Best known classical algorithm: $O\left(q^{1 / 4}\right)$ [Galbraith, Hess, Smart 02]

Isogeny-based elliptic curve cryptography

Not all elliptic curve cryptography is known to be quantumly broken!
Couveignes 97, Rostovstev-Stolbunov 06, Stolbunov 10: Public-key cryptosystems based on the assumption that it is hard to construct an isogeny between given elliptic curves over \mathbb{F}_{q}

Best known classical algorithm: $O\left(q^{1 / 4}\right)$ [Galbraith, Hess, Smart 02]

Main result of this talk:
Quantum algorithm that constructs an isogeny in time $L_{q}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ (assuming GRH), where

$$
L_{q}(\alpha, c):=\exp \left[(c+o(1))(\ln q)^{\alpha}(\ln \ln q)^{1-\alpha}\right]
$$

Elliptic curves

Let \mathbb{F} be a field of characteristic different from 2 or 3
An elliptic curve E is the set of points in $\mathbb{P F}^{2}$ satisfying an equation of the form $y^{2}=x^{3}+a x+b$

Example $(\mathbb{F}=\mathbb{R})$:

Elliptic curve group

Geometric definition of a binary operation on points of E :

This defines an abelian group with additive identity ∞

Elliptic curve group

Geometric definition of a binary operation on points of E :

Algebraic definition:
for $x_{P} \neq x_{Q}$,
$\lambda:=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}$
$x_{P+Q}=\lambda^{2}-x_{P}-x_{Q}$
$y_{P+Q}=\lambda\left(x_{P}-x_{P+Q}\right)-y_{P}$
(similar expressions for other cases)

This defines an abelian group with additive identity ∞

Elliptic curves over finite fields

Cryptographic applications use a finite field \mathbb{F}_{q}
Example: $y^{2}=x^{3}+2 x+2$

$$
\mathbb{F}=\mathbb{R}
$$

$$
\mathbb{F}=\mathbb{F}_{109}
$$

Elliptic curve isogenies

Let E_{0}, E_{1} be elliptic curves
An isogeny $\phi: E_{0} \rightarrow E_{1}$ is a rational map

$$
\phi(x, y)=\left(\frac{f_{x}(x, y)}{g_{x}(x, y)}, \frac{f_{y}(x, y)}{g_{y}(x, y)}\right)
$$

($f_{x}, f_{y}, g_{x}, g_{y}$ are polynomials) that is also a group homomorphism:

$$
\phi\left((x, y)+\left(x^{\prime}, y^{\prime}\right)\right)=\phi(x, y)+\phi\left(x^{\prime}, y^{\prime}\right)
$$

Elliptic curve isogenies

Let E_{0}, E_{1} be elliptic curves
An isogeny $\phi: E_{0} \rightarrow E_{1}$ is a rational map

$$
\phi(x, y)=\left(\frac{f_{x}(x, y)}{g_{x}(x, y)}, \frac{f_{y}(x, y)}{g_{y}(x, y)}\right)
$$

($f_{x}, f_{y}, g_{x}, g_{y}$ are polynomials) that is also a group homomorphism:

$$
\phi\left((x, y)+\left(x^{\prime}, y^{\prime}\right)\right)=\phi(x, y)+\phi\left(x^{\prime}, y^{\prime}\right)
$$

Example $\left(\mathbb{F}=\mathbb{F}_{109}\right)$:

$$
E_{0}: y^{2}=x^{3}+2 x+2 \quad \xrightarrow{\phi} \quad E_{1}: y^{2}=x^{3}+34 x+45
$$

$$
\phi(x, y)=\left(\frac{x^{3}+20 x^{2}+50 x+6}{x^{2}+20 x+100}, \frac{\left(x^{3}+30 x^{2}+23 x+52\right) y}{x^{3}+30 x^{2}+82 x+19}\right)
$$

Deciding isogeny

Theorem [Tate 66]:Two elliptic curves over a finite field are isogenous if and only if they have the same number of points.

There is a polynomial-time classical algorithm that counts the points on an elliptic curve [Schoof 85].

Thus a classical computer can decide isogeny in polynomial time.

The endomorphism ring

The set of isogenies from E to itself (over $\overline{\mathbb{F}}$) is denoted $\operatorname{End}(E)$

The endomorphism ring

The set of isogenies from E to itself (over $\overline{\mathbb{F}}$) is denoted $\operatorname{End}(E)$
We assume E is ordinary (i.e., not supersingular), which is the typical case; then $\operatorname{End}(E) \cong \mathcal{O}_{\Delta}=\mathbb{Z}\left[\frac{\Delta+\sqrt{\Delta}}{2}\right]$ is an imaginary quadratic order of discriminant $\Delta<0$

The endomorphism ring

The set of isogenies from E to itself (over $\overline{\mathbb{F}}$) is denoted $\operatorname{End}(E)$
We assume E is ordinary (i.e., not supersingular), which is the typical case; then $\operatorname{End}(E) \cong \mathcal{O}_{\Delta}=\mathbb{Z}\left[\frac{\Delta+\sqrt{\Delta}}{2}\right]$ is an imaginary quadratic order of discriminant $\Delta<0$

If $\operatorname{End}\left(E_{0}\right)=\operatorname{End}\left(E_{1}\right)$ then we say E_{0} and E_{1} are endomorphic

The endomorphism ring

The set of isogenies from E to itself (over $\overline{\mathbb{F}}$) is denoted $\operatorname{End}(E)$
We assume E is ordinary (i.e., not supersingular), which is the typical case; then $\operatorname{End}(E) \cong \mathcal{O}_{\Delta}=\mathbb{Z}\left[\frac{\Delta+\sqrt{\Delta}}{2}\right]$ is an imaginary quadratic order of discriminant $\Delta<0$

If $\operatorname{End}\left(E_{0}\right)=\operatorname{End}\left(E_{1}\right)$ then we say E_{0} and E_{1} are endomorphic
Let $\operatorname{Ell}_{q, n}\left(\mathcal{O}_{\Delta}\right)$ denote the set of elliptic curves over \mathbb{F}_{q} with n points and endomorphism ring \mathcal{O}_{Δ} (up to isomorphism of curves)

Representing isogenies

The degree of an isogeny can be exponential (in $\log q$)
Example: The multiplication by m map,

$$
(x, y) \mapsto \underbrace{(x, y)+\cdots+(x, y)}_{m}
$$

is an isogeny of degree m^{2}
Thus we cannot even write down the rational map explicitly in polynomial time

Representing isogenies

The degree of an isogeny can be exponential (in $\log q$)
Example: The multiplication by m map,
is an isogeny of degree m^{2}

$$
(x, y) \mapsto \underbrace{(x, y)+\cdots+(x, y)}_{m}
$$

Thus we cannot even write down the rational map explicitly in polynomial time

Fact: Isogenies between endomorphic elliptic curves can be represented by elements of a finite abelian group, the ideal class group of the endomorphism ring, denoted $\mathrm{Cl}\left(\mathcal{O}_{\Delta}\right)$

A group action

Thus we can view isogenies in terms of a group action

$$
\begin{aligned}
*: \mathrm{Cl}\left(\mathcal{O}_{\Delta}\right) \times \operatorname{Ell}_{q, n}\left(\mathcal{O}_{\Delta}\right) & \rightarrow \operatorname{Ell}_{q, n}\left(\mathcal{O}_{\Delta}\right) \\
{[\mathfrak{b}] * E } & =E_{\mathfrak{b}}
\end{aligned}
$$

where $E_{\mathfrak{b}}$ is the elliptic curve reached from E by an isogeny corresponding to the ideal class $[\mathfrak{b}]$

A group action

Thus we can view isogenies in terms of a group action

$$
\begin{aligned}
*: \mathrm{Cl}\left(\mathcal{O}_{\Delta}\right) \times \operatorname{Ell}_{q, n}\left(\mathcal{O}_{\Delta}\right) & \rightarrow \operatorname{Ell}_{q, n}\left(\mathcal{O}_{\Delta}\right) \\
{[\mathfrak{b}] * E } & =E_{\mathfrak{b}}
\end{aligned}
$$

where $E_{\mathfrak{b}}$ is the elliptic curve reached from E by an isogeny corresponding to the ideal class $[\mathfrak{b}]$

This action is regular [Waterhouse 69]: for any E_{0}, E_{1} there is a unique $[\mathfrak{b}]$ such that $[\mathfrak{b}] * E_{0}=E_{1}$

The abelian hidden shift problem

Let A be a known finite abelian group
Let $f_{0}: A \rightarrow R$ be an injective function (for some finite set R)
Let $f_{1}: A \rightarrow R$ be defined by $f_{1}(x)=f_{0}(x s)$ for some unknown $s \in A$
Problem: find s

The abelian hidden shift problem

Let A be a known finite abelian group
Let $f_{0}: A \rightarrow R$ be an injective function (for some finite set R)
Let $f_{1}: A \rightarrow R$ be defined by $f_{1}(x)=f_{0}(x s)$ for some unknown $s \in A$
Problem: find s

For A cyclic, this is equivalent to the dihedral hidden subgroup problem

More generally, this is equivalent to the HSP in the generalized dihedral group $A \rtimes \mathbb{Z}_{2}$

Isogeny construction as a hidden shift problem

Define $f_{0}, f_{1}: \mathrm{Cl}\left(\mathcal{O}_{\Delta}\right) \rightarrow \operatorname{Ell}_{q, n}\left(\mathcal{O}_{\Delta}\right)$ by

$$
\begin{aligned}
f_{0}([\mathfrak{b}]) & =[\mathfrak{b}] * E_{0} \\
f_{1}([\mathfrak{b}]) & =[\mathfrak{b}] * E_{1}
\end{aligned}
$$

E_{0}, E_{1} are isogenous, so there is some $[\mathfrak{s}]$ such that $[\mathfrak{s}] * E_{0}=E_{1}$

Isogeny construction as a hidden shift problem

Define $f_{0}, f_{1}: \mathrm{Cl}\left(\mathcal{O}_{\Delta}\right) \rightarrow \operatorname{Ell}_{q, n}\left(\mathcal{O}_{\Delta}\right)$ by

$$
\begin{aligned}
f_{0}([\mathfrak{b}]) & =[\mathfrak{b}] * E_{0} \\
f_{1}([\mathfrak{b}]) & =[\mathfrak{b}] * E_{1}
\end{aligned}
$$

E_{0}, E_{1} are isogenous, so there is some $[\mathfrak{s}]$ such that $[\mathfrak{s}] * E_{0}=E_{1}$
Therefore this is an instance of the hidden shift problem in $\operatorname{Cl}\left(\mathcal{O}_{\Delta}\right)$ with hidden shift [s]:

- Since $*$ is regular, f_{0} is injective
- Since $*$ is a group action, $f_{1}([\mathfrak{b}])=f_{0}([\mathfrak{b}][\mathfrak{s}])$

Kuperberg's algorithm

Theorem [Kuperberg 03]: There is a quantum algorithm that solves the abelian hidden shift problem in a group of order N with running time $\exp [O(\sqrt{\ln N})]=L_{N}\left(\frac{1}{2}, 0\right)$.

Kuperberg's algorithm

Theorem [Kuperberg 03]: There is a quantum algorithm that solves the abelian hidden shift problem in a group of order N with running time $\exp [O(\sqrt{\ln N})]=L_{N}\left(\frac{1}{2}, 0\right)$.

Thus there is a quantum algorithm to construct an isogeny with running time

$$
L_{N}\left(\frac{1}{2}, 0\right) \times c(N)
$$

where $c(N)$ is the cost of evaluating the action

Kuperberg's algorithm

Theorem [Kuperberg 03]: There is a quantum algorithm that solves the abelian hidden shift problem in a group of order N with running time $\exp [O(\sqrt{\ln N})]=L_{N}\left(\frac{1}{2}, 0\right)$.

Thus there is a quantum algorithm to construct an isogeny with running time

$$
L_{N}\left(\frac{1}{2}, 0\right) \times c(N)
$$

where $c(N)$ is the cost of evaluating the action
But previously it was not known how to compute the action in subexponential time

Computing the action

Problem: Given $E, \Delta, \mathfrak{b} \in \mathcal{O}_{\Delta}$, compute $[\mathfrak{b}] * E$

Computing the action

Problem: Given $E, \Delta, \mathfrak{b} \in \mathcal{O}_{\Delta}$, compute $[\mathfrak{b}] * E$

Direct computation (using modular polynomials) takes time $O\left(\ell^{3}\right)$ for an ideal of norm ℓ

Computing the action

Problem: Given $E, \Delta, \mathfrak{b} \in \mathcal{O}_{\Delta}$, compute $[\mathfrak{b}] * E$

Direct computation (using modular polynomials) takes time $O\left(\ell^{3}\right)$ for an ideal of norm ℓ

Instead we use an indirect approach:

- Choose a factor base of small prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{f}$
- Find a factorization $[\mathfrak{b}]=\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{f}^{e_{f}}\right]$ where e_{1}, \ldots, e_{f} are small
- Compute $[\mathfrak{b}] * E$ one small prime at a time

Computing the action

Problem: Given $E, \Delta, \mathfrak{b} \in \mathcal{O}_{\Delta}$, compute $[\mathfrak{b}] * E$

Direct computation (using modular polynomials) takes time $O\left(\ell^{3}\right)$ for an ideal of norm ℓ

Instead we use an indirect approach:

- Choose a factor base of small prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{f}$
- Find a factorization $[\mathfrak{b}]=\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{f}^{e_{f}}\right]$ where e_{1}, \ldots, e_{f} are small
- Compute $[\mathfrak{b}] * E$ one small prime at a time

By optimizing the size of the factor base, this approach can be made to work in time $L\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ (assuming GRH)

Computing the action

Problem: Given $E, \Delta, \mathfrak{b} \in \mathcal{O}_{\Delta}$, compute $[\mathfrak{b}] * E$
Direct computation (using modular polynomials) takes time $O\left(\ell^{3}\right)$ for an ideal of norm ℓ

Instead we use an indirect approach:

- Choose a factor base of small prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{f}$
- Find a factorization $[\mathfrak{b}]=\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{f}^{e_{f}}\right]$ where e_{1}, \ldots, e_{f} are small
- Compute $[\mathfrak{b}] * E$ one small prime at a time

By optimizing the size of the factor base, this approach can be made to work in time $L\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ (assuming GRH)

Note: This assumes only GRH (previous related algorithms required stronger heuristic assumptions)

Polynomial space

Kuperberg's algorithm uses space $\exp [\Theta(\sqrt{\ln N})]$
Regev 04 presented a modified algorithm using only polynomial space for the case $A=\mathbb{Z}_{2^{n}}$, with running time

$$
\exp [O(\sqrt{n \ln n})]=L_{2^{n}}\left(\frac{1}{2}, O(1)\right)
$$

Combining Regev's ideas with techniques used by Kuperberg for the case of a general abelian group (of order N), and performing a careful analysis, we find an algorithm with running time $L_{N}\left(\frac{1}{2}, \sqrt{2}\right)$

Thus there is a quantum algorithm to construct elliptic curve isogenies using only polynomial space in time $L_{q}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}+\sqrt{2}\right)$

Conclusions

Given two isogenous, endomorphic, ordinary elliptic curves over \mathbb{F}_{q}, there is a quantum algorithm that constructs an isogeny between them in time $L_{q}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ (or in time $L_{q}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}+\sqrt{2}\right)$ using poly $(\log q)$ space)

Conclusions

Given two isogenous, endomorphic, ordinary elliptic curves over \mathbb{F}_{q}, there is a quantum algorithm that constructs an isogeny between them in time $L_{q}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ (or in time $L_{q}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}+\sqrt{2}\right)$ using poly $(\log q)$ space)

Consequences:

- Isogeny-based cryptography may be less secure than more mainstream cryptosystems (e.g., lattices)

Conclusions

Given two isogenous, endomorphic, ordinary elliptic curves over \mathbb{F}_{q}, there is a quantum algorithm that constructs an isogeny between them in time $L_{q}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ (or in time $L_{q}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}+\sqrt{2}\right)$ using poly $(\log q)$ space)

Consequences:

- Isogeny-based cryptography may be less secure than more mainstream cryptosystems (e.g., lattices)
- Computing properties of algebraic curves may be a fruitful direction for new quantum algorithms
- Can we break isogeny-based cryptography in polynomial time?
- Computing properties of a single curve (e.g., endomorphism ring)
- Generalizations: non-endomorphic curves, supersingular curves

