
Constructing Exponential-size Deterministic

Zielonka Automata

Blaise Genest1,2 and Anca Muscholl1

1 LIAFA, Université Paris 7 et CNRS, 75251 Paris Cedex 05, France
2 IRISA, Université Rennes I et CNRS, 35042 Rennes Cedex, France

Abstract. The well-known algorithm of Zielonka describes how to trans-
form automatically a sequential automaton into a deterministic asyn-
chronous trace automaton. In this paper, we improve the construction of
deterministic asynchronous automata from finite state automaton. Our
construction improves the well-known construction in that the size of the
asynchronous automaton is simply exponential in both the size of the se-
quential automaton and the number of processes. In contrast, Zielonka’s
algorithm gives an asynchronous automaton that is doubly exponential
in the number of processes (and simply exponential in the size of the
automaton).

1 Introduction

A challenging problem concerning concurrent systems is to design distributed
algorithms or, even simpler, distributed finite state devices. The problem is that
it is easier to think in a sequential rather than a concurrent way, and easier to
model the global behavior of a system. In general it is much harder to synthesize
local devices, since they only have a local view of the global behavior. Local
control of a single process has to deal with partial information, consisting of
local behaviors plus information exchanged with other processes.

In this paper we reconsider the problem of synthesizing deterministic asyn-
chronous (trace) automata. These are basically (deterministic) local automata
that exchange information using shared (state) variables. The underlying math-
ematical theory is the theory of Mazurkiewicz traces [10], which has brought a
large number of beautiful results in the theory of automata and logics (see [5]
for a survey). The basic idea of trace theory is to model actions in a concurrent
system by explicitly providing an independence relation between actions that do
not share any resource.

A fundamental and difficult result for Mazurkiewicz traces is Zielonka’s the-
orem [16], which states that (diamond) finite state automata can be effectively
transformed into deterministic asynchronous automata. This result is all the
more fundamental since it has been used for several other closely related prob-
lems, as synthesis of communicating automata, with bounded communication
channels [13, 7, 8], or existentially-bounded channels [6] or causal memory [1].

The main drawback of Zielonka’s theorem is that it yields an asynchronous
automaton of doubly exponential size in the size of the alphabet [16, 4]. The

paper [14] gives a more direct proof of Zielonka’s theorem, with a complexity
which is doubly exponential in the number of processes (instead of the size of
the alphabet). Similarly, [7] synthesizes bounded communicating automata, and
their construction is of size doubly exponential in the number of processes.

We propose here a simple improvement of Zielonka’s algorithm in order to
lower the complexity by one exponent. We obtain a deterministic asynchronous
automaton of size exponential in the size of the input, that is both in the size of
the finite state automaton and the number of processes. For applications e.g. in
verification it is worth to note that the size of the automaton is exponential
only because the memory needed by each process is of polynomial size. The time
needed to compute any transition of the automaton is also only polynomial,
which can be used in practice whenever we need only to simulate the automa-
ton on-the-fly. Moreover, this construction is tight, since the determinization of
sequential automata requires exponential size.

Related work. There were several attempts to simplify Zielonka’s construc-
tion as described in [16, 12]. In some special cases the construction can be indeed
simplified (see e.g . [5] Ch. 8), but the complexity is still exponential (the starting
point there is a monoid homomorphism in place of an automaton). Our construc-
tion also reduces the complexity of other works [12, 15] using Zielonka’s theorem
or its variant for communicating processes [1, 13, 7] to produce a distributed au-
tomaton with local final states or without deadlock. Very recently, [2] proposed

a construction of non-deterministic asynchronous automata of size |A|2
|Σ|

while
we produce a deterministic one. Their complexity is thus polynomial in |A| but
still doubly exponential in Σ, while our construction is of simply exponential
complexity in both |A| and |Σ|.

Overview of the paper. We first recall some basics of Mazurkiewicz traces
in Section 2. Then we recall the main ingredients of Zielonka’s construction in
Section 3. In Section 4 we present the new idea of decomposing into zones,
and in Section 5 we present the new construction of deterministic asynchronous
automata.

2 Preliminaries

We assume that there is a set P of processes and an alphabet Σ which are fixed.
Each letter a ∈ Σ is an action associated with the set of processes dom(a) ⊆ P in-
volved in a. A pair (Σ, dom) is called distributed alphabet. A (non-deterministic)
automaton over the alphabet Σ is a tuple A = (V, Σ,→, v0, F) with a finite set
of states V , a set of final states F , an initial state v0 and a non-deterministic
transition function →: V ×Σ → 2V . The size of an automaton is the number of
states.

Concurrent systems with shared actions given by a distributed alphabet
(Σ, dom), are readily modeled by Mazurkiewicz traces. The idea is that the
distribution of the alphabet defines an independence relation among actions
I ⊆ Σ × Σ, by setting (a, b) ∈ I if and only if dom(a) ∩ dom(b) = ∅. We call
(Σ, I) an independence alphabet. The complementary relation D = Σ ×Σ \ I is

2

called a dependence relation. The independence relation induces a congruence ∼
on Σ∗ by setting u ∼ v if there exist words u1, . . . , un ∈ Σ∗ with u1 = u, un = v
and such that for every i < n we have ui = xaby, ui+1 = xbay for some x, y ∈ Σ∗

and (a, b) ∈ I. An ∼-equivalence class is simply called a (Mazurkiewicz) trace
[10]. We denote by [u] the trace associated with the word u ∈ Σ∗ (for simplicity
we do not refer to I, neither in ∼ nor in [u], simply because the independence
alphabet is fixed). Trace prefixes and trace factors are defined as usual, with [p]
a trace prefix (trace factor, resp.) of [u] if p is a word prefix (word factor, resp.)
of some v ∼ u.

A (non-deterministic) automaton A is called I-diamond if for all (a, b) ∈ I,

and all states r, s, t of A with r
a
−→ s and s

b
−→ t, there also exists a state s′

with t
b
−→ s′ and s′

a
−→ t. Note that the I-diamond property implies that the

language L(A) of A is I-closed : that is, u ∈ L(A) if and only if v ∈ L(A) for
every u ∼ v.

We use asynchronous automata as distributed models with finite control.
Our definition is slightly different from the usual definitions for asynchronous
and asynchronous cellular automata [5], see the remark below.

Definition 1 A deterministic asynchronous automaton over the distributed al-
phabet (Σ, dom) is a tuple B = ((Kp, δp, k

0
p)p∈P ,Acc) such that for any p ∈ P:

– Kp is the finite set of local states of process p.
– δp : (Σ ×

∏
q∈P Kq) → Kp is the local transition function of process p,

satisfying the following conditions for all actions a ∈ Σ and local states
sq ∈ Kp, q ∈ P:
• for p /∈ dom(a), we have δp(a, s1, . . . , sn) = sp.
• for p ∈ dom(a), the state δp(a, s1, . . . , sn) depends only on (sq)q∈dom(a),

that is δp(a, s1, . . . , sn) = δp(a, s1, . . . , s
′
q, . . . , sn) for q /∈ dom(a).

– k0
p ∈ Kp is the local initial state of process p.

– Acc ⊆
∏

p∈P Kp is a set of (global) accepting states.

An asynchronous automaton accepts a regular language with the following
global semantics:

Definition 2 The language of an asynchronous automaton B = ((Kp, δp, k
0
p)p∈P ,

Acc) is defined as L(B) = L(A), where A = (K, δ, k0,Acc) is the following au-
tomaton, called the global automaton of B:

– The global state space is K =
∏

p∈P Kp.

– The initial state is k0 = (k0
p)p∈P .

– The global transition function δ : Σ×K → K is defined for all a ∈ Σ, k ∈ K
by δ(a, k) = (k′

p)p∈P with k′
p = δp(a, k) for all p.

Remark 1. Our definition of asynchronous automaton differs from the usual one
in that we define transitions on processes instead of letters. Moreover, the transi-
tions corresponding to processes are like transitions in a cellular automaton, that
is, only the local state associated with the process executing a transition changes.

3

The definition thus corresponds to a shared-read, owner-write mode (the transi-
tion function reads the states of all other processes involved in the current action
and writes its local state). However, the difference wrt asynchronous automata is
merely syntactical, since in the global behavior of the automaton we synchronize
all processes from dom(a) when executing an action a.

For several purposes it is convenient to represent traces by (labeled) pomsets.
Formally, a trace T = [a1 · · · an] (ai ∈ Σ for all i) corresponds to a labeled pomset
(E, λ,≤) defined as follows: E = {e1, . . . , en} is a set of events (or nodes), one
for each position in T . Event ei is labeled by λ(ei) = ai, for each i. The relation
≤ is the least partial order on E with ei ≤ ej whenever (ai, aj) ∈ D and i ≤ j.
In terms of graphs it is convenient to identify a trace T with its dependence
graph, by defining an edge from ei to ej iff (ai, aj) ∈ D and i ≤ j. A total order
e1 · · · en that is compatible with ≤ is called a linearization of T . Since all these
formalisms are equivalent, we will refer to graph nodes as events for convenience.
Moreover, we will use for convenience set operations on traces, interpreting them
on the associated graphs. For instance, assume that T1, T2 are both prefixes of
some trace T . In other words, each Ti is a downward closed subgraph of T . Then
we write T1 ∩ T2 (T1 ∪ T2, resp.) for the least (greatest, resp.) common prefix of
T1, T2. Also, we write ei ∈ T for denoting that ei is a vertex of (the graph of) T .

For any trace factor T ′ of T , we denote by alph(T ′) =
⋃

e∈T ′ λ(e) the letters
occurring in T ′, resp. by dom(T ′) =

⋃
e∈T ′ dom(λ(e)) the processes occurring in

T ′. For a ∈ Σ we call any event e with λ(e) = a an a-event.

We have in Figure 1 a trace T with (a, b), (a, c) ∈ D and (a, d) ∈ I. Hence,
cbadcbadb ∼ cbdacbdab are two representing words of T . Process p can read the
state of q when executing action a, but not when executing action c.

p

q

r

c c

d d

a a

b b b

Fig. 1. The pomset associated with the trace T = [c b a d c b a d b], with dom(a) = {p, q},
dom(b) = {q, r}, dom(c) = {p}, dom(d) = {r}.

4

3 Zielonka’s Theorem

We recall the main ingredients in Zielonka’s construction of deterministic asyn-
chronous automata. Our presentation is based on [5, 14, 4]. Let T be a trace and
p ∈ P a process, then we denote by prefp(T) the minimal trace prefix of T which
contains all events of T on process p. Hence, prefp(T) has a unique maximal
event which is the last event of T on process p. That is, prefp(T) corresponds to
the history of process p after executing T , that we also refer to as p-view. For
instance, in Figure 1 we have prefp(T) = [cbadcba]. For a set of processes P ⊆ P ,
let prefP (T) = ∪p∈P prefp(T) be the P -view of T .

Zielonka’s construction starts with a regular, I-closed language, that is pre-
sented either through a monoid homomorphism or an automaton satisfying the
I-diamond property, [4]. In most applications we are interested in the second
case, where we start with a (non-deterministic) I-diamond automaton.

Theorem 1 [16] Let A be an I-diamond automaton over the independence
alphabet (Σ, I). An equivalent deterministic asynchronous automaton B with

2O(|A|2(2|Σ|)) states can be obtained applying the construction from [4]. An equiv-

alent deterministic asynchronous automaton with 2O(|A|2(2|P|)) states can be ob-
tained applying [14].

3.1 General idea and timestamping

We first describe informally how Zielonka’s construction works. LetA = (V, Σ,→
, v0, F) be an I-diamond automaton. When an action a ∈ Σ is executed after T
by the processes in dom(a), each process of dom(a) reads the states of the other
processes in dom(a) and changes its own state accordingly. At this step, each
process p ∈ dom(a) computes the events of dom(a) that were not in its p-view,
that is prefp(Ta) \ prefp(T), or equivalently,

⋃
q∈dom(a) prefq(T) \ prefp(T) plus

the last a. First, events are labeled by timestamps in order to recover which
events are in prefq(T)∩prefp(T) and which events are in prefq(T) \ prefp(T), by
simply comparing the timestamps. For instance, in Figure 1, when the last b is
executed, then process q reads the state of process r and vice-versa. They find
that the second b is the only maximal event in their common past, q discovers
that action d was executed in prefr(T) \ prefq(T), and r that ca was executed in
prefq(T) \ prefr(T).

The problem is that the number of events that have to be stored is arbitrarily
large. Zielonka’s construction explains that only a bounded set S1 of events
needs to be timestamped. Finally a finite representation of the behavior of the
given sequential automaton A on prefq(T)\prefP (T) is needed. To this purpose,
transition relations ∆X are used for X ∈ Σ?, where ∆X(R) = {s ∈ V | ∃r ∈

R, r
X
−→ s} for any subset R of states of A. That is, ∆X(R) is the set of states of

A reached after reading the word X from any state in R. Zielonka’s construction
explains how process q remembers relations ∆X only for an exponential number
of sequences X . A global state of the asynchronous automaton is then accepting
if and only if the ∆ relation associated with it satisfies ∆T (v0) ∩ F 6= ∅.

5

In order to explain the construction in more detail, we define now the sets
of events S1, S2 used by Zielonka’s timestamping and the set of factors X for
which we remember the function ∆X . We will not provide the definition of the
timestamping, which is the usual one (the reader is referred to [4, 5, 14] instead).
First, the set S1 simply consists of the last event on process p, for every p ∈ P :

Definition 3 Let T = (E, λ,≤) be a trace. The primary information of T is
S1(T) = {e ∈ E | ∃p ∈ dom(e), ∀f ∈ E, p ∈ dom(f) =⇒ f ≤ e}.

The following crucial property of S1 can be found in [14] (Lemma 1, page 9)
and can be quickly obtained from [5] (Proposition 8.3.5, page 259).

Lemma 1. Let T be a trace and P, Q ⊆ P two subsets of processes. Then
max(prefP (T) ∩ prefQ(T)) ⊆ S1(prefP (T)) ∩ S1(prefQ(T)).

That is, the maximal events of the intersection of the views of the sets
P, Q ⊆ P belong to the primary information of each of these two views.. How-
ever, knowing the events in S1(prefP (T)) and S1(prefQ(T)) is not enough for
computing max(prefP (T) ∩ prefQ(T)).

Notice that during the execution of an asynchronous automaton, every event
is created as an event of S1 and can eventually be removed from S1. Note also
that {e} ⊆ S1(Te) ⊆ S1(T) ∪ {e} for every event e ∈ E.

After the trace T ′ = [cbadcbad] is executed, S1(prefr(T
′)) = S1([cbadbd])

contains the first a (for process p), the second b (for q) and the second d (for r),
as shown in Figure 2. The common past of the views of q, r has the second b as
unique maximal event. If an event b is then executed (as in Figure 1), we have
that S1(T

′b) contains the second a (for p) and the third b (for q and r).
The timestamping function TS in Zielonka’s construction [16, 5, 14] labels

every event in S1(prefp(T)). It allows to compute S1(prefp(T)) ∩ S1(prefq(T))
for every p, q ∈ P . For this, the timestamping labels events wrt. the so-called
secondary information, that contains the last event on process q before the last
event on p for every p, q ∈ P (these two events can be equal).

Definition 4 Let T = (E, λ,≤). The secondary information of T is the set
S2(T) = {e ∈ E | ∃g ∈ S1(T), q ∈ dom(e), ∀f ≤ g, q ∈ dom(f) =⇒ f ≤ e}.

p

q

r

c c

d d

a a

b b

Fig. 2. Trace T ′, where the distinguished events are those in S1(pref
r
(T ′)).

6

In particular, S1(T) ⊆ S2(T). The primary information S1 is of size |P|, the
secondary information has at most |P|2 events, and the timestamping is of size
2|P|3 log(|P|) [14]. In Figure 2, the secondary information S2(prefr(T

′)) contains
the first two b, the first a and the second d. The first c is not in S2(prefr(T

′)).
Let T = (E, λ,≤) be a trace. For every subset W ⊆ S1(prefp(T)), we define

the suffix XW (T) = {e ∈ E | ∀s ∈ W : e 6≤ s} of T . In particular, X∅(T) = T .
For instance, in Figure 2 with prefr(T) = [cbadbd], if we fix W to be the first
a, then XW (prefr(T)) consists of the first and second d and of the second b.
For every set P ⊆ P and every subset W ⊆ S1(prefP (T)) of primary events
of the P -view, we remember the transition relation ∆W which associates with

every state r of A the set of states ∆W (r) = {s ∈ V | r
XW−→ s} that can be

reached from r by the trace XW (T). Process p thus remembers an exponential
number (wrt. the number of processes |P|) of relations in V × V . Note that we
can compute on-the-fly ∆W (R) =

⋃
r∈R ∆W (r) for any subset R of states of A.

3.2 The asynchronous automaton

We describe now how a deterministic asynchronous automaton updates the state
information wrt. the I-diamond automaton, as done e.g. in [16, 5, 14]. A transi-
tion of process p in the asynchronous automaton B consists of reading the states
of other processes, and adding a new event e. For instance, if λ(e) = a and
dom(a) = {p, q, r}, then we can decompose the a-transition of process p as first
reading the local state of process q and updating its local state, then doing it
again with process r, and finally adding the event e.

The state reached on a trace prefP (T), P ⊆ P , is a tuple (S1, TS, (∆W)W⊆S1
),

containing the primary information S1 of the P -view prefP (T), the timestamping
TS, and the transition relations (∆W)W⊆S1

.
We do not describe here the update of S1 and TS, since we use the same

timestamping algorithm as in [16, 5, 4, 14].
Assume that the current state reached on prefdom(a)(T) is (S1, TS, (∆W) W⊆S1

)

and we add the event e with λ(e) = a. The new state will be (S′
1, TS′, (∆′

W)W⊆S′
1
).

For every W ⊆ S′
1 we have two cases, depending on whether or not e ∈W :

– Either W ⊆ S1, and then ∆′
W =

a
−→ ◦∆W .

– Else we have e ∈ W , hence XW = ∅ and ∆W = Id.

We now look at the local state modifications. Assume that q ∈ dom(a) and
that the local state of process q, say (Sq

1 , TSq, (∆q
W)W∈S

q

1
), is added to the

state (S1, TS, (∆W)W⊆S1
) reached on prefP (T), P ⊆ dom(a), q /∈ P . The state

reached on prefP∪{q}(T), say (S′
1, TS′, (∆′

W)W⊆S′
1
) is computed as follows. For

every W ′ ⊆ S′
1 we set:

– Let W = W ′ ∩ S1 and W q = (W ′ ∪ S1) ∩ Sq
1 .

– Set ∆′
W ′ = ∆q

W q ◦∆W . Thus, the XW ′ -suffix of prefP∪{q}(T) is the union of
two suffixes (over disjoint sets of processes), namely the XW -suffix consisting
of events of the P -view that are not below some event in W ′; and the XW q -
suffix consisting of events from prefq(T) \ prefP (T) that are not below some
event in W ′.

7

A global state(S1, TS, (∆W)W⊆S1
) is accepting if and only if ∆∅(v

0)∩F 6= ∅.
Let us comment on the complexity of the construction. At each event e ∈ E,

updating the primary and secondary information takes polynomial time. Updat-
ing the relations ∆ may take an exponential time in the number of processes
|P|. Hence, Zielonka’s construction gives a transition function which needs ex-
ponential time (and space) to compute the next state. Overall there are doubly
exponentially many different memory configurations, which is why the automa-
ton is doubly exponential.

The exponential memory comes only from the straightforward use of ∆. In
the rest of the paper we explain how we can achieve a better complexity by
using new transition relations ∆, still keeping the primary information and the
timestamping.

4 Zone Decomposition

The idea of this paper is to define transition relations ∆ on zones of the p-views
prefp(T). When the transition relation on some factor of T is needed, we compose
the transition relations of the zones included in the factor. Zones are defined as
equivalence classes of the following relation:

Definition 5 Let T = (E,≤, λ) be a trace. For an event e ∈ E we define the set
of events S(e) = {f ∈ S1(T) | e ≤ f}. We say that two events e, f are equivalent
(denoted as e ≡ f) if and only if S(e) = S(f). The equivalence classes of ≡ are
called zones.

Let Z be a zone and define S(Z) = S(e) for some event e ∈ Z. Let also Z, Z ′

be two zones of some trace T . We write Z < Z ′ if Z 6= Z ′ and if e < e′ for some
events e ∈ Z, e′ ∈ Z ′. By dom(Z) we denote the set of processes occurring in
the zone Z, i.e., dom(Z) = ∪e∈Zdom(e). The following lemma is easy to show:

Lemma 2. 1. A zone of T is a factor of T and contains at most one event
from the secondary information S1(T).

2. The set of zones partitions the set of events of T .
3. The relation < on zones is acyclic. It induces the least partial order such

that S(Z)) S(Z ′) and dom(Z) ∩ dom(Z ′) 6= ∅ implies Z < Z ′.

Proof of 3). Assume that Z1 ≤ Z2 ≤ · · · ≤ Zk = Z1, say with ei ∈ Zi and
fj ∈ Zj+1 (1 ≤ i, j < k) such that ei < fi for all i. Hence, S(Z1) ⊇ S(Z2) ⊇
· · · ⊇ S(Zk) = S(Z1), thus S(Zi) = S(Zj) and Zi = Zj for all i, j.

Figure 3 depicts the same trace T = [cbadcbad] as Figure 2. Recall that
S1(prefr(T)) consists of the first a, the second b and the second d. There are
three zones in prefr(T): Z1 is the first a, b and c, Z2 is the first d and the second
b, and Z3 is the second d (see also Figure 3). We have Z1 < Z2 < Z3. Also,
S(Z2) consists of the second b and the second d.

Zones enjoy some crucial properties, that are stated in the following.

8

Proposition 1 Let T be a trace, P, Q ⊆ P sets of processes, and Z a zone of
prefP (T). Then either Z ⊆ prefP (T)∩prefQ(T), or Z∩(prefP (T)∩prefQ(T)) = ∅.

Proof. Assume by contradiction that Z is a zone that violates the state-
ment of the proposition. Consider the factor Z1 = Z ∩ prefP (T) ∩ prefQ(T).
By assumption we can write the trace factor Z as Z ∼ Z1Z2 with Z1, Z2 both
non-empty. Let e ∈ Z1 and f ∈ Z2. Since e ∈ prefP (T) ∩ prefQ(T), there ex-
ists a maximal event g of prefP (T) ∩ prefQ(T) such that e ≤ g. By Lemma 1,
g ∈ S1(prefP (T)). Since e, f ∈ Z, we have e ≡ f and thus f ≤ g. This implies
f ∈ prefP (T) ∩ prefQ(T), a contradiction. 2

Proposition 2 Let T be a trace. There are at most |P|2 + |P| zones in T .

Proof. Assume by contradiction that there are more than |P|(|S1(T)| + 1)
zones. Hence we can find a process p involved in at least k = |S1(T)|+ 2 zones.
Since these zones have intersecting domains, they are strictly ordered, let us say
Z1 < · · · < Zk. Hence S(Z1)) · · ·) S(Zk). This implies |S(Z1)| ≥ k − 1 =
|S1(T)| + 1. This is a contradiction since there are at most |S1(T)| events in
S(Zi) for all i. 2

The last property is crucial when the zone partition is updated.

Proposition 3 Let T be a trace, P ⊆ P a set of processes, q /∈ P a process and
e, f two events of prefP (T). Let us write S for the function of Def. 5 on prefP (T)
and S′ for the function on prefP∪q(T). If S(e) = S(f), then S′(e) = S′(f).

Proof. Assume that S(e) = S(f). Let g ∈ S′(e). The first case is where
g ∈ S1(prefP (T)), hence g ∈ S(e) = S(f) and f ≤ g by definition of S(f).

Else, g /∈ S1(prefP (T)), hence g ∈ S1(prefq(T)) and g /∈ prefP (T). Let h
be a maximal event in prefP (T) with e ≤ h ≤ g. There exists h′ in prefq(T)
with h l h′ ≤ g. That is dom(h) ∩ dom(h′) 6= ∅, and let r be a process in this
intersection. By maximality of h, we have h′ /∈ prefP (T). That is, h is the last
event on process r of prefP (T). By definition of S, we have h ∈ S(e) = S(f),
hence f ≤ h ≤ g. We conclude by symmetry between e and f . 2

p

q

r

c c

d d

a a

b b

Fig. 3. The three zones of pref
r
(T). The distinguished nodes are those in S1(pref

r
(T)).

9

For each zone Z, the function ∆Z requires space ≤ |A|2, and there are at
most |P|2 + |P| zones. The transition function constructed in the next section
gives:

Theorem 2 Let A be a (non-deterministic) I-diamond automaton over the in-
dependence alphabet (Σ, I). We can construct an equivalent deterministic asyn-

chronous automaton B with less than 2|A|2×(|P|2+|P|)+2|P|4 states. Each process
has a memory of size O(|A|2 × |P|2 + |P|4), and computes its next state in time
O(|A|2 × |P|2 + |P|4).

5 The new construction

0ur construction follows Zielonka’s construction, up to the ∆ relations which are
remembered only for the zones of prefp(T), p ∈ P . Of course, we have to adapt
the transition function of the asynchronous automaton accordingly.

Let A = (V, Σ,→, v0, F) be a non-deterministic I-diamond automaton. We
explain in the following how to build a deterministic asynchronous automaton
B with the same language. The local p-state of B reached on a prefix prefp(T)
is the tuple (S1, TS, 〈dom(Zi), S(Zi), ∆(Zi)〉i=0,...m), where:

– {Z1 . . . , Zm} is the set of zones of prefp(T).
– S1 is the primary information of prefp(T).
– The timestamping TS associates every event of S1 with its timestamp.
– For a zone Z, dom(Z) denotes the set of processes occurring in Z.
– For a zone Z, S(Z) ⊆ P corresponds to Definition 5. That is, q ∈ S(Z)

means that the last event on q in prefp(T) is above an event of Z.
– The transition relation ∆Z gives for each state v of A the set of states

∆Z(v) that can be reached in A from v by reading some linearization of Z
(remember that since A is I-diamond, this corresponds to the set of states
reached by any linearization of Z).

We define now the local transition function δp of the asynchronous automa-
ton B. We do not recall how to update the primary information S1 and the
timestamping TS, though the update of S-values includes the update of the sec-
ondary information S2. Recall that the order on zones Zi < Zj can be computed
from the knowledge of S(Zi) and of dom(Zi), for all zones Zi (see Lemma 2).

Assume that the action a with p ∈ dom(a) is added to the current p-state
(S1, TS, 〈dom(Zi), S(Zi), ∆(Zi)〉i=0,...,m).

The new p-state is (S′
1, TS′, 〈dom(Z ′

i), S(Z ′
i), ∆(Z ′

i)〉i=0,...,m+1), with:

1. Let dom(Z ′
m+1) = dom(a), ∆Z′

m+1
=

a
−→, and S(Z ′

m+1) = dom(a) (actually

S(Z ′
m+1) consists of the unique maximal a event).

2. Let 〈dom(Z ′
j), S(Z ′

j), ∆Z′
j
〉j=1,...,m = 〈dom(Zj), S(Zj), ∆Zj

〉j=1,...,m.

3. For all Z ′
i, let S(Z ′

i)← S(Z ′
i) ∪ {dom(a)}.

4. If S(Z ′
i) = S(Z ′

j) with Zj 6< Zi then we merge Z ′
i, Z

′
j and let ∆Z′

i
= ∆Z′

j
◦∆Z′

i

and dom(Z ′
i) = dom(Z ′

j) ∪ dom(Z ′
i) and we delete Z ′

j .

10

That is, a new zone Z ′
m+1 is created representing the new event a (line 1) and

the other zones are copied (line 2). We then update the S-values in line 3 and
merge zones with equal S-value in line 4.

Assume that the process q is in local state (Sq
1 , TSq, 〈dom(Zq

i), S(Zq
i),

∆Z
q

i
〉i=1,...,n) with history prefq(T). Moreover, process p in current state

(S1, TS, 〈dom(Zi), S(Zi), ∆Zi
〉i=1,...,m〉 and history prefP (T) reads the state of

q (as usual, p, q ∈ dom(a) where a is the new action). The updated state of p is
(S′

1, TS′, 〈dom(Z ′
i), S(Z ′

i), ∆Z′
i
〉i=1,...,k), with prefP∪q(T) as history, where:

1. Let J = {i | 1 ≤ i ≤ n, TSq(S(Zq
i)) ∩ TS(S1) = ∅} and k = m + |J |,

2. Let 〈dom(Z ′
j), S(Z ′

j), ∆Z′
j
〉j=1,...,m = (dom(Zj), S(Zj), ∆Zj

〉j=1,...,m,

3. 〈dom(Z ′
m+j), S(Z ′

m+j), ∆Z′
m+j
〉j=1,...,|J| = 〈dom(Zq

i), S(Zq
i), ∆Z

q

i
〉i∈J ,

4. The partial order <′ on the new zones is given by the transitive closure of
the relation < ∪ <q ∪{(Z ′

i, Z
′
j) | i ≤ m < j, dom(Z ′

i) ∩ dom(Z ′
j) 6= ∅},

5. For all Z ′
i <′ Z ′

j , S(Z ′
i)← S′(Z ′

i) ∪ S′(Z ′
j),

6. If S(Z ′
i) = S(Z ′

j) and Zj 6< Zi, then we merge Z ′
i and Z ′

j and set dom(Z ′
i) =

dom(Z ′
j) ∪ dom(Z ′

i) and ∆Z′
i
= ∆Z′

j
◦∆Z′

i
, and we delete Z ′

j .

The update operations consists in copying the zones that form a parti-
tion of prefP (T) (line 2) and adding in line 3 the zones (Zq

i)i∈J that par-
tition prefq(T) \ prefP (T). We then update the S-values in line 5. The last
line merges zones with equal S-value. We say that a global state with local
p-component Sp

1 , TSp, 〈dom(Zp
i), S(Zp

i), ∆Z
p

i
)i=1,...,np

) is accepting if we have

∆Zn
◦ · · · ◦∆Z1

(v0) ∩ F 6= ∅ for Z1 · · ·Zn a linearization of (Zi, <)i=1,...,n.

Example: Consider the same trace T = [cbadcbad] as in Figure 3. Then
prefq(T) = [cbadcba] has two zones (see also Figure 4): zone Zq

1 consisting of
the first c, a, d, and the first two b, and zone Zq

2 consisting of the second c and
a. Assume that the letter b is now executed, which means that process r can
read the state of process q. For instance, we have S(Zq

2)) = {p, q} and with
Figure 3, S(Z2) = {q, r}, that is Z2 is not before the last event on p. Also,
S(Z1) \ S(Z2) = {p}.

p

q

r

c c

d d

a a

b b

Fig. 4. Zones of pref
q
(T). The distinguished nodes are the primary events of pref

q
(T).

11

First, with the timestamping, process r computes the maximal event of
prefq(T) ∩ prefr(T), which is the second b. Thus J = {2}, and the new set of
zones is {Z ′

1, Z
′
2, Z

′
3, Z

′
4} with Z ′4 = Zq

2 . Process r then computes Z ′
1 < Z ′

2 < Z ′
4

and that Z ′
3 and Z ′

4 are incomparable. Thus Z ′
2 < Z ′

4, then p is added to S′(Z ′
2).

It means that S′(Z ′
1) = S′(Z ′

2), and hence it merges Z ′
2 with Z ′

1. The new set
of zones is then {Z ′

1, Z
′
3, Z

′
4}. Then the letter b is added as a new zone Z ′′

5 , and
we get S′′(Z ′′

1) = {p, q, r}, S′′(Z ′′
3) = {q, r}, S′′(Z ′′

4) = {p, q, r}, S′′(Z ′′
5) = {q, r},

thus we merge zones and we keep two zones Z ′′
1 = Z ′′

1 ∪ Z ′′
4 and Z ′′

3 = Z ′′
3 ∪ Z ′′

5 .

Acknowledgement We would like to thank Dietrich Kuske for simplifying
the definition of zones.

References

1. B. Adsul, M. Mukund, K. Narayan Kumar and V. Narayanan. Causal closure for
MSC languages. Proc. of FSTTCS’05, LNCS 3821, pp. 335-347, 2005.

2. N. Baudru and R. Morin. Unfolding Synthesis of Asynchronous Automata. In-
ternational Computer Science Symposium in Russia, CSR 2006. Available at
http://www.cmi.univ-mrs.fr/˜morin/papers/CSR.pdf.

3. D. Brand and P. Zafiropulo. On communicating finite-state machines. In J. of the

ACM, 30(2):323-342, 1983.
4. R. Cori, Y. Métivier and W. Zielonka. Asynchronous Mappings and Asynchronous

Cellular Automata. In Inf. and Comput., 106(2):159-202, 1993.
5. V. Diekert and G. Rozenberg, editors. The Book of Traces. Chapter 8 by V. Diekert

and A. Muscholl. World Scientific, Singapore, 1995.
6. B. Genest, D. Kuske and A. Muscholl. A Kleene Theorem and Model Checking

for a Class of Communicating Automata. Proc. of DLT’04, LNCS 3340, pp. 30-48,
2004. Journal version to appear in Inf. and Comput., 2006.

7. J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni and P. S. Thiagarajan.
A Theory of Regular MSC Languages. In Inf. and Comput. 202(1):1-38, 2005.

8. D. Kuske. Regular sets of infinite message sequence charts. In Inf. and Comput.,
187(1):80-109, 2003.

9. M. Lohrey and A. Muscholl. Bounded MSC communication. In Inf. and Comput.,
(189):135–263, 2004.

10. A. Mazurkiewicz. Concurrent program schemes and their interpretation. Technical
report, DAIMI Report PB-78, Aarhus University, 1977.

11. P. Madhusudan and B. Meenakshi. Beyond Message Sequence Graphs. Proc. of
FSTTCS’01, LNCS 2245, pp. 256-267, 2001.

12. M. Mukund. From global specification to local implementations. In Synthesis and

Control of Discrete Event Systems, Kluwer, pp. 19-34, 2002.
13. M. Mukund, K. Narayan Kumar and M. Sohoni. Synthesizing Distributed Finite-

State Systems from MSCs. TCS 290(1):221-239 (2003). Extended abstract in CON-

CUR’00, LNCS 1877 , pp. 521-535, 2000.
14. M. Mukund and M. Sohoni. Keeping Track of the Latest Gossip in a Distributed

System. In Distr. Computing 10(3):137-148, 1997.
15. A. Stefanescu, J. Esparza, and A. Muscholl. Synthesis of distributed algorithms

using asynchronous automata. Proc. of CONCUR’03, LNCS 2761, pp. 27-41, 2003.
16. W. Zielonka. Note on finite asynchronous automata. In R.A.I.R.O. - Informatique

Théorique et Applications, 21:99-135, 1987.

12

