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Constructing Fuzzy Models with Linguistic Integrity from Numerical
Data-AFRELI Algorithm
Jairo Espinosa and Joos Vandewalle

Abstract—This paper presents an algorithm to extract rules re-
lating input/output data and including prior knowledge. The rules
are created in the environment of fuzzy systems. The fuzzy sets
describing the system are constructed within a framework oflin-
guistic integrity to guarantee its interpretability in the linguistic
context. Two algorithms are presented in this paper. The main al-
gorithm is the autonomous fuzzy rule extractor with linguistic in-
tegrity (AFRELI). This algorithm is complemented with the use
of the FuZion algorithm created to merge consecutive member-
ship functions, while guaranteeing the distinguish ability between
fuzzy sets. Comparisons with other proposed methods show a good
tradeoff between accuracy and interpretability.

Index Terms—Data mining, function approximation, fuzzy mod-
eling, knowledge extraction.

I. INTRODUCTION

M ODELS are key elements for humans or human be-
havior. Models enable human beings to predict the

impact of their actions. Causality is an intrinsic assumption
that makes models useful. Causality is reflected in language
as IF-THEN rules (IFcause-happensTHEN a consequence
is foreseen). A set of these IF-THEN rules is nothing more
than the linguistic representation of the mental model created
inside the brain about a certain system by means of experience.
The development of new systems to gather massive amounts
of data (instrumentation and computers) has expanded our
capacity to interact with nature beyond our five senses. But
in the other hand our brain and senses are unable to extract
“knowledge” out of massive amounts of numerical data. This
situation motivates the development of computer techniques
that can extract the knowledge and represent it in a linguistic
way using IF-THEN rules.

There is a well-known tradeoff between numerical accuracy
and linguistic interpretability. This tradeoff is the consequence

Manuscript received August 31, 1999; revised December 27, 1999. This
work was supported by the Flemish Government Concerted Research Action
GOA-MIPS; the FWO Fund for Scientific Research—Flanders Project
G.0262.97, Learning and Optimization: An Interdisciplinary Approach; the
FWO Research Communities, ICCoS and Advanced Numerical Methods for
Mathematical Modeling; IWT Action Program on Information Technology
(ITA/GBO/T23)—Federal Office for Scientific, Technical, and Cultural Af-
fairs—Interuniversity Poles of Attraction Program (IUAP P4-02 (1997–2001),
Modeling, Identification, Simulation, and Control of Complex Systems; and
IUAP P4-24 (1997–2001), IMechS, the European Commission, TMR project,
System Identification.

The authors are with ESAT-SISTA Katholieke Universiteit Leuven, B-3001
Heverlee, Belgium (e-mail: espinosa@esat.kuleuven.ac.be).

Publisher Item Identifier S 1063-6706(00)08461-7.

of a well-known limitation of the human brain to represent a
limited number of categories on a given domain. A clear con-
sequence of this limitation is reflected in language where the
number of linguistic labels that a human being can generate to
represent some categories, normally will not exceed nine and it
will typically be seven [1].

On the other hand, the numerical accuracy is very important
in the implementation of policies and control actions oriented to
obtain a desired result from the system. This issue of accuracy
is very critical when the models are used in a dynamic way,
where the predicted value is fed back and the small errors will be
propagated and reflected as errors in the long term prediction.

Classical algorithms for rule extraction have been proposed.
Initially the so-called neuro-fuzzy algorithms [2], [3] have been
oriented to minimize the numerical error, but parameters such as
initial description and number of membership functions, must
be provided by the designer. These algorithms are optimized
using gradient descent techniques. The use of these techniques
sometimes generates fuzzy sets with “too much” or “absolutely
no” overlap, thereby making the interpretation of the model
cumbersome.

To overcome the drawback of the initial selection of the fuzzy
sets, several methods have been proposed, some of them based
on local error approximation [4], [5] and some others based on
clustering techniques [6]–[8]. These methods generate multidi-
mensional fuzzy sets and project them into the input spaces. The
projections again exhibit unsatisfactory overlap making the in-
terpretation and the labeling of the fuzzy sets a difficult task.

This paper presents the algorithm autonomous fuzzy rule ex-
tractor with linguistic integrity (AFRELI); the algorithm is able
to fit input/output data while maintaining the semantic integrity
(interpretability) of the rule base. The issue of interpretability
was mentioned by Janget al. in [9, end ch. 12], where they
only mention some basic ideas about how to constrain the opti-
mization of the adaptive network based fuzzy inference system
(ANFIS) scheme to preserve the interpretability. In [10], Va-
lente presents a formulation of some constraints to guarantee
semantic integrity. This formulation assumes a number of sets
on each input domain and then constrains the optimization of
the membership functions to guarantee the semantic integrity
of the resulting fuzzy sets. In [11], the tradeoff between pre-
cision and transparency is mentioned and some examples are
presented where the consequences of the rules use two terms,
one numeric and one linguistic term. In [12], an algorithm to
reduce the complexity of fuzzy models was presented. This al-
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gorithm used a similarity measure as a criteria to reduce the
number of fuzzy sets in the antecedents of the rules, but no other
constraints were imposed to the fuzzy sets to guarantee their se-
mantic integrity. The AFRELI algorithm presented in this paper
is a two-step approach. The first step uses clustering and pro-
jection techniques to find a good initial position for the fuzzy
sets in the input domains. The second step reduces the com-
plexity of the model using the concept of semantic integrity as
a framework. The FuZion algorithm is introduced as a tool to
carry out the complexity reduction process. A rule base is con-
structed using the reduced representation of the fuzzy sets and
the consequences are initialized and calculated with a method
that improves generalization and avoids the problems due to the
lack of excitation in some rules. Finally, the consequences of the
rules are represented by two fuzzy sets with different strength.
The number of terms in the consequences of the fuzzy rules is
reduced again using the FuZion algorithm.

The paper is structured as follows. Section II presents the
structure of the fuzzy model using the concept of semantic in-
tegrity to justify the selection of the parameters, Section III in-
troduces the AFRELI algorithm, Section IV presents the FuZion
algorithm to preserve the semantic integrity of a given domain,
Section V shows some application examples, and, finally, Sec-
tion VI gives the conclusions.

II. STRUCTURE OF THEFUZZY MODEL

A fuzzy inference system has many degrees of freedom
(shape and number of membership functions,-norms, ag-
gregation methods, etc.). This fact gives high flexibility to the
fuzzy system, but also demands systematic criteria to make
these choices. For the present case, some choices are made by
taking into account the concept of optimal interface design [13]
and semantic integrity [14].

• Optimal interface design
— Error-free reconstruction: In a fuzzy system, a numer-

ical value is converted into a linguistic value by means
of fuzzification. A defuzzification method should guar-
antee that this linguistic value can be reconstructed into
the same numerical value

(1)

where the interval is the universe of discourse. The
use of triangular membership functions with overlap
and centroid defuzification will satisfy this requirement
(see proof: [13]).

• Semantic integrity: This property guarantees that the
membership functions will represent a linguistic con-
cept. The main conditions for semantic integrity are the
following.

— Distinguishability: Each linguistic label should have se-
mantic meaning and the fuzzy set should clearly define a
range in the universe of discourse. Therefore, the member-
ship functions should be clearly different. The assumption
of the overlap equal to makes sure that the support of
each fuzzy set will be different. The distance between the
modal values of the membership functions is also very im-
portant to make sure that the membership functions can be

distinguished. The defined modal value of a membership
function is defined as the-cut with

(2)

— Justifiable number of elements: The number of sets should
be compatible with the number of “quantifiers” that a
human being can handle. This number should not exceed
the limit of 7 2 distinct terms [1]. The simple choice of
the shape of the membership functions does not guarantee
this property. To assure that this requirement is satisfied
the FuZion algorithm is presented further in this paper.
This algorithm reduces the number of sets present on each
input or output domain.

— Coverage: Any element from the universe of discourse
should belong to at least one of the fuzzy sets. This con-
cept is also mentioned in [3] ascompleteness.

— Normalization: Due to the fact that each linguistic label
has semantic meaning, at least one of the values in the
universe of discourse should have a membership degree
equal to one. In other words, all the fuzzy sets should be
normal.

Based on these criteria the selectedmembership functions
will be triangular and normal with
a specific overlap of . This means that the height of the in-
tersection of two successive fuzzy sets is

(3)

The choice of theAND and theOR operation can be moti-
vated by the need of construct a continuous and differentiable
nonlinear map. This property is important if optimization of the
antecedent terms is needed. In this caseANDandORoperations
usingproductandprobabilistic sumwill be preferred because
their derivatives are continuous.

The aggregation method and the defuzzification method will
be discussed in the next sections.

III. AFRELI A LGORITHM

The AFRELI is an algorithm designed to obtain a good
compromise between numerical approximation and linguistic
meaning. This particular tradeoff has been referenced for long
time in science (for a compilation of remarks, see [15]). The
main steps of this algorithm are as follows:

• clustering;
• projection;
• reduction of terms in the antecedents (FuZion, see Sec-

tion IV);
• consequence calculation;
• further antecedent optimization (optional step);
• reduction of terms in the consequences and rule modifica-

tion (FuZion, see Section IV).

Fig. 1 shows a flow diagram with the description of the algo-
rithm. The details of the AFRELI algorithm are presented in the
following lines.
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Fig. 1. Flow diagram of AFRELI algorithm.

1) Collect points from the inputs
and the output

... (4)

where and represents the inputs and the
output at instant . Construct thefeature vectors

with

... (5)

2) Using the feature vectors find clusters by using
mountain clustering method [7], [8] to initialize the cen-
ters and number of clusters and refine them using fuzzy
C-means [16]

...
...

. . .
...

(6)

It is very important to remark that the use ofmountain
clusteringwill be limited to low-dimensional problems,
its inherent advantage is that it can produce good ini-
tial points and number of clusters. For high-dimensional
problems, the alternative is to use only fuzzy C-means
and to overestimate the number of clusters. The sub-
sequent steps (FuZion) will then reduce the number of
terms.

3) Project the prototypes of the clusters into the input
spaces. Assuming that the projected value of each proto-
type is the modal value of a triangular membership func-
tion

(7)

where .
4) Sort the modal values on each domain such that

(8)

5) Add two more modal values for each input to guarantee
full coverage of the input space

(9)

(10)

6) Construct the triangular membership functions with
overlap of as :

(11)

where and the trapezoidal membership
functions at the extremes of each universe of discourse

(12)

(13)

7) Apply FuZion algorithm (see Section IV) to reduce
the number of membership functions. This FuZion
algorithm will reduce the number of fuzzy sets in each
domain. This algorithm does some kind of one-dimen-
sional clustering among the modal values of the fuzzy
sets.

8) Associate linguistic labels (e.g., BIG, MEDIUM,
SMALL, etc.) to the resulting membership functions.
This association will depend on the type of variable and
the opinion of the designer. In fact the association of a
fuzzy set with a label will be the result of the agreement
between the fuzzy set proposed by the algorithm and
the “sense” that this set creates in the mind of the user.

9) Construct the rule base with all possible antecedents (all
possible permutations) using rules of the form in the
equation shown at the bottom of the next page. Equiv-
alently, the evaluation of the antecedents for each rule
can be expressed in terms of operators. We use the min
operator

(14)

and theproductoperator

(15)
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Observe that if the number of fuzzy sets for the inputis
and there are inputs the number of potential rules is

This description guarantees the “full” description of the
system because every possible condition will be repre-
sented in the rule base. Observe that the number of rules
will grow very fast as the number of inputs increases.
This fact is a limitation in the sense that the comprehen-
sion of a set of rules with a large number of antecedents
is difficult. Moreover, there is a storage problem since
a large number terms has to be stored in the computer’s
memory. On the other hand, it does not represent a lim-
itation in terms of execution time because the use of the
described type of triangular membership functions will
guarantee that at most rules will be evaluated during
the inference process.

10) Propagate the values of the inputs and calculate the
consequences of the rules as singletons. These
singletons can be calculated as the solution of a least
squares problem. Observe that the output of the fuzzy
system can be calculated as

(16)

Where is the number of rules and can be cal-
culated as shown in the (14) or (15) (depending on the
selectedAND operator). The system can then be repre-
sented as the weighted sum of the consequences

(17)

where

(18)

expressing as the strength of the rulewhen the input
is . Taking all the values the problem can be seen as

...
...

...
. . .

...
...

...

(19)

The aim here is to reduce as much as possible the norm
of the error vector . Using the quadratic norm

(20)

The solution to this problem will be

(21)

This solution will be valid if and only if

rank (22)

The condition given in (22) implies that all the rules have
to receive enough excitation during training. In practice,
this is not always guaranteed so the application of this
method with anill-conditionedmatrix will gen-
erate catastrophic results for those rules with low exci-
tation and a significant bias in the rules with sufficient
excitation. The result will be a fuzzy system with signif-
icant errors in the points present in the training set and
very poor generalization for points outside the training
set.

Some ideas has been proposed to avoid this problem,
among others the pruning of the “unexcited” rules using
the information given by orthogonal transformations
(see [17]). However, the elimination of “unexcited”
rules is a dangerous solution because the generalization
capabilities of the model are compromised due to the
fact that the system can be excited by an input corre-
sponding to one of the pruned rules.

This problem can be solved by using an adaptive
strategy that adapts only the consequence of those rules
that has been excited and for the rules without excitation
a good initialization value is taken. The strategy for
adaptation will be recursive least squares (RLS) [18].
RLS guarantees that the adaptation will only affect the
excited rules. The RLS algorithm looks like

(23)

with and

(24)

(25)

(26)

with the initial value , where is large.
The initial value of can be assigned using the prior
knowledge of the expert, if available. A very interesting
fact of this strategy is that if expert knowledge exists it
will be preserved as long as the data does not falsify it.

IF is AND is AND AND is THEN
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Fig. 2. Input membership functions for the smallest fuzzy model.

If expert knowledge is not available, the alternative
will be to construct the smallest possible fuzzy model
with full coverage of the working space. Such a “re-
duced” fuzzy model will have two membership func-
tions on each input covering the universe of discourse, as
it is shown in Fig. 2. The “reduced” model has rules
where is the number of inputs. In this model any input
vector will excite all the rules making the estimation of
the consequences a well conditioned problem solv-
able by means of the formula (21). Once this “reduced”
model is obtained the modal values of the membership
functions of each of the rules of the “full” model will
be propagated. The output value generated by the “re-
duced” model will be theinitial consequence of the rule
of the “full” model. This procedure copies the “reduced”
model into the “full” model. In this way the “reduced”
model is used to generate the initial values for the con-
sequences of the rules . This method guarantees that
the “full” model will be at least as good as the “reduced”
model. This property is very important because the “re-
duced” model is the best multilinear model that can be
built with the given data, so there is a guarantee that the
“full” fuzzy model will be at least as good as the best
multilinear model and this is, in fact, an upper bound for
the modeling error.

11) (Optional Step) If further refinement is required to im-
prove the approximation, constrained gradient descent
methods can be applied to improve the location of the
modal values of the antecedent membership functions.
The main constraint applied in the optimization phase is
the “distinguishability” that is represented as the min-
imum acceptable distance between consecutive modal
values. The use of gradient descent methods will move
the system parameters toward a “local minimum” close
to the initial values.

Because the improvement obtained by this step will
not be very significant this step is consideredoptional
and will only be recommended when the numerical per-
formance of the model does not satisfy the user require-
ments.

12) Convert the singletons to triangular membership func-
tions with overlap and modal values equal to the po-
sition of the singleton . Consider the vector whose

entries are the consequences of the rules but sorted in
such a way that

(27)

The triangular membership function of theth conse-
quence is

(28)

and the two membership functions of the extremes

(29)

(30)

This description of the outer membership functions
guarantees that their centers of gravity will be exactly
on its modal value. This guarantees that the condition
of error-free reconstruction for optimal interface will be
achieved.

13) Apply FuZion algorithm (see Section IV) to reduce the
number of membership functions in the output universe.
The FuZion process reduces groups of neighboring
singletons to triangular membership functions whose
modal value is representative for a group of singletons
and is optimal in a sense that the modal value of the
“FuZioned” membership function is placed at the mean
value of the neighboring singletons.

14) Associate linguistic labels to the resulting membership
functions.

15) With the partition of the output universe, fuzzify the
values of the singletons. Observe that each singleton will
have a membership degree in at least one set and in as
much as two.

16) Relate the fuzzified values with the corresponding rule.
This means that each rule will have one consequence or
two weighted consequences where the weights are the
nonzero membership values of the fuzzified singleton.
This description of the consequences of the rules using
two linguistic fuzzy sets and two strength values im-
proves the interpretability of the consequence with re-
spect to the case where the consequence is only de-
scribed by a singleton. The advantage of this description
is that interpretability is improved without a loss in nu-
merical precision. This strategy was independently pro-
posed previously in [19] and [20].

IV. FUZION ALGORITHM

The FuZion algorithm is a routine that merges triangular
membership functions whose modal values are “too close”
to each other. This merger process is needed to preserve the
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Fig. 3. Effect of the FuZion algorithm.

distinguishabilityand the justifiable number of elementson
each domain to guarantee the semantic integrity. The effect of
the algorithm can be observed in the Fig. 3. A fundamental
parameter of this algorithm is the minimum acceptable distance
between modal values and is given by. It is important to
analyze the impact of the parameter in the characteristics
of the model. As the value of decreases, the number of
acceptable membership functions per domain will increase,
increasing the number of rules, increasing the complexity of
the model, improving the approximation capabilities of the
model, but compromising the semantic integrity of the model.
On the other hand, as the value of increases the number
of membership functions per domain decreases, reducing the
number of rules and increasing the approximation error.

is the parameter that must be used to balance the tradeoff
between interpretability and precision. Typical values for
will be between 5–25% of the coverage of the universe of dis-
course to guarantee the semantic integrity.

The FuZion algorithm is described in the following lines and
Fig. 4 shows a flow diagram of the following algorithm.

1) Take the triangular membership functions
with overlap and the modal values

(31)

with

(32)

2) Define the minimum distance acceptable between the
modal values .

Fig. 4. Flow diagram of FuZion algorithm.

3) Calculate the difference between successive
modal values as

(33)

4) While do.
5) Find all the differences smaller than.
6) Merge all the modal values corresponding to

consecutive differences smaller thanusing

(34)

(35)

where and are, respectively, the index of the first and
the last modal value of the fusioned sequence andis
the number of merged membership functions.

7) Update .
8) Calculate the difference between the new successive

modal values as

(36)

9) end while
10) end.

V. EXAMPLES

The present section shows three examples of applications of
the AFRELI and FuZion algorithm, the first two examples are
approximations of nonlinear static maps and the last is the pre-
diction of a chaotic time series.
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Fig. 5. Example 1: functionf(x; y) = sin(x=�) sin(y=�).

Fig. 6. Example 1: projected membership functions.

Fig. 7. Example 1: membership functions after FuZion withM = 10%.

A. Example 1: Modeling a Two-Input Nonlinear Function

In this example we consider the function

(37)

441 points regularly distributed were selected from the interval
. The graph of the function is shown in

Fig. 5.
Using mountain clustering and fuzzy C-means algorithm, 26

clusters were found. After the clusters were found their center
values were projected into the input domains. Fig. 6 shows the
projected membership functions. The Fuzion algorithm is ap-
plied with equal to the 10% of the universe of discourse on
each domain, observe that with this value offive (5) mem-
bership functions are generated as shown in Fig. 7. When the
parameter in the FuZion algorithm is chosen equal to 7% of the

Fig. 8. Example 1: membership functions after FuZion withM = 7%.

(a) (b)

Fig. 9. Example 1: (a) Singletons. (b) Membership functions with linguistic
meaning.

Fig. 10. Example 1: surface generated by the fuzzy system.

universe of discourse seven (7) membership functions are ob-
tained (see Fig. 8). The output membership functions are shown
in Fig. 9. Fig. 10 shows the identified surface. In total, 25 rules
were extracted. Some of the extracted rules are

IF is Negative Large AND

is Negative Large

THEN is Negative with strength

0.01 AND Zero with strength 0.99

IF is Negative Medium AND

is Negative Large

THEN is Zero with strength 0.92

AND Positive with strength 0.08.
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Fig. 11. Example 2: membership functions after projection and FuZion.

Observe that the obtained rules exhibit on each rule a clear
dominance of one of the consequences, when this case appears
it will be possible to eliminate the consequence with the small
strength without a major impact in the numerical approximation.
However, this step is a decision that must be left to the designer
because it is case dependent.

B. Example 2: Predicting Chaotic Time Series

This example shows the capability of the algorithm to capture
the dynamics governing the Mackey–Glass chaotic time series
Figs. 13, 14. These time series were generated using the fol-
lowing delay differential equation:

(38)

where . The numerical solution of this differential equa-
tion was obtained using fourth-order Runge–Kutta method, with
a time step of 0.1 and initial condition . The simula-
tion was run for 2000 s and the samples were taken each second.
To train and test the fuzzy system, 1000 points were extracted

to . The first 500 points were used as training set
and the remaining as validation set. First, a six step ahead pre-
dictor is constructed using past outputs as inputs of the model

(39)

and the output will be .
After applying the mountain clustering method, 57 clusters

were found. Some refinement on the position of the clusters was
obtained by using fuzzy C-means clustering method. After pro-
jection and FuZion the membership functions shown in Fig. 11
were obtained. A model with 135 rules was obtained.

For reasons of comparison with other methods, the prediction
error was evaluated using the so called nondimensional error
index (NDEI) defined as

(40)

TABLE I
EXAMPLE 2: PERFORMANCE FORPREDICTION SIX STEPSAHEAD. THE RESULTS

FROM PREVIOUS WORKS WERE TAKEN FROM [3]

TABLE II
EXAMPLE 2: PERFORMANCE FORPREDICTION 84 STEPSAHEAD (THE FIRST

SEVEN ROWS) AND 85 (THE LAST FOUR ROWS). RESULTS FOR THEFIRST

SEVEN METHODSARE OBTAINED BY SIMULATION OF THE MODEL OBTAINED

FOR PREDICTION SIX STEPSAHEAD. RESULTS FORLOCALIZED RECEPTIVE

FIELDS (LRFS) AND MULTIRESOLUTION HIERARCHIES(MRHS) ARE FOR

NEURONSTRAINED TO PREDICT 85 STEPSAHEAD. THE RESULTS FROM

PREVIOUS WORKS WERE TAKEN FROM [3]

where
desired output;

predicted output;

standard deviation of the target series.

Tables I and II show some comparative results. In this ex-
ample the impact of the use of the optional step of optimiza-
tion can be observed. It is clear that the improvement of this op-
tional step is small (reduction of about 30% on the NDEI) but,
of course, on certain applications this value could be significant.
Observe once more that the numerical performance is similar to
other techniques but the obtained model is not only good from
the precision point of view, but also a significant value is added
with the interpretability of the obtained rule base.
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(a) (b)

Fig. 12. Example 2. (a) Singletons. (b) Membership functions with linguistic
meaning.

Fig. 13. Example 2. (a) Mackey–Glass time series (solid line) fromt = 618

to 1117 and six steps ahead prediction (dashed line). (b) Prediction errors.

VI. CONCLUSION

The capabilities of fuzzy logic systems to approach nonlinear
functions have been shown abundantly in the literature. How-
ever, the comparative advantage of fuzzy systems in compar-
ison with other “universal approximators” is its linguistic in-
terpretability Fig. 12. The newly proposed AFRELI algorithm
in combination with the FuZion algorithm guarantees a good

Fig. 14. Example 2. (a) Mackey–Glass time series (solid line) fromt = 118

to 1117 and 84 steps ahead prediction (dashed line). (b) Prediction errors.

tradeoff between numerical accuracy and interpretability. The
method exploits some successful elements proposed in other
methods to reduce the complexity of the model construction.

The algorithm generates automatically the fuzzy sets and the
interactive labeling process (with intervention of the designer)
guarantees an agreement between the fuzzy set and the assigned
label.

The method generates a rule base covering all the possible
cases. This guarantees the completeness of the rule base, but the
associated drawback is the exponential growth of the rule base
as the number of inputs increases. However, from the computa-
tional point of view this is only a storage problem because the
description of the fuzzy sets guarantees that onlyrules (
number of inputs) are activated on each inference making the
inference process fast because only a limited number of rules is
evaluated.

The completeness of the rule base plus the proposed initial-
ization methods using “expert knowledge” or the information
given by the “reduced” model improves the generalization prop-
erties of the model and guarantees a lower bound on the quality
of the model. The use of RLS guarantees also that the lack of
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excitation will not affect the performance of unexcited rules as
does the classical LS method.

The numerical accuracy of the algorithm is directly related
with the choices of the parameter governing the FuZion al-
gorithm and the choices in the clustering algorithm. When the
number of inputs is large, the use of mountain clustering method
will be limited. A practical solution is to use the fuzzy C-means
algorithm with an overestimated number of clusters.

Some improvements of the numerical performance of the
model can be obtained by making a “fine” tuning of the
parameters of the antecedents by means of constrained gradient
descent techniques.
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