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Abstract: We use the matrix model — gauge theory correspondence of Dijkgraaf

and Vafa in order to construct the geometry encoding the exact gaugino condensate

superpotential for the N = 1 U(N) gauge theory with adjoint and symmetric or an-

ti-symmetric matter, broken by a tree level superpotential to a product subgroup in-

volving U(Ni) and SO(Ni) or Sp(Ni

2
) factors. The relevant geometry is encoded by

a non-hyperelliptic Riemann surface, which we extract from the exact loop equations.

We also show that O(1/N) corrections can be extracted from a logarithmic deformation

of this surface. The loop equations contain explicitly subleading terms of order 1/N ,

which encode information of string theory on an orientifolded local quiver geometry.
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1. Introduction

Holomorphic terms in the effective action of supersymmetric gauge theories give much

desired exact information about their non-perturbative dynamics. Based on geometric

engineering through string compactifications, Dijkgraaf and Vafa [1, 2, 3] conjectured

that the exact holomorphic superpotential of certain effective N = 1 gauge theories1 is

calculated by the planar diagrams of a matrix model. In the simplest case, an N = 2

U(N) gauge theory is broken by a tree-level superpotential W (φ) =
∑n

i=1
gk

k+1
Trφk+1

to an N = 1 theory with gauge group G =
∏r

i=1 U(Ni). Here φ is an adjoint chiral

superfield, and one assumes that all zeros of W are simple and that
∑r

i=1Ni = N .

An effective theory emerges by integrating out the massive chiral fields. Its effective

low energy Lagrangian can be expressed in terms of the gaugino bilinear fields Si =

− 1
32π2 TrWα iW

α i where i indicates the factors of the unbroken gauge group. The claim

is that the effective action as a function of these fields is calculated exactly by the

leading terms in the 1/N expansion of a matrix model whose matrix potential is given

by W .

Technically the field theory results for the case mentioned above are not new. They

were obtained by geometric engineering in [5] and partly by factorization of the N = 2

Seiberg-Witten curve [5, 6]. This allows for explicit checks [7] and leads to a particular

interpretation of the matrix model. The relevance of matrix model structures, such as

the planar loop equations, can also be understood more conceptually using supergraph

techniques [8] or anomalies [9, 10]. Further developments can be found in [11, 12, 13, 14].

In this paper, we shall add matter in the symmetric or antisymmetric representa-

tion of the U(N) gauge group and consider an additional term Tr Q̄φQ in the tree-level

superpotential 2. This leads to a richer vacuum structure, which has branches where

additional SO(Ni) and Sp(Ni/2) gauge factors appear. The conjecture of [1] then gives

us a rough recipe for how to obtain a dual matrix model. However, supersymmetric

vacua are described by a symplectic quotient, which is equivalent with a holomorphic

quotient of the space of F -flat configurations through the action of the complexified

gauge group. Thus the gauge-theory analysis of the vacuum structure leads to solutions

in the space of complex matrices modulo complexified gauge transformations. On the

other hand, Hermitian matrix models have hermiticity constraints on their matrix vari-

ables. To make the matrix model useful for the gauge theory analysis, an appropriate

constraint should be imposed in a way which allows one to recover the correct vacuum

1Some of these results carry over to N = 0 orbifolds [4] of N = 1 gauge theories.
2Symmetric and antisymmetric representations are interesting because they are building blocks

of chiral supersymmetric gauge theories. In particular many models with dynamical supersymmetry
breaking are based on antisymmetric representations, see e.g. [15, 16, 17].
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structure of the gauge theory. As an example, consider the one-matrix model associated

with the U(N) gauge theory broken by a cubic superpotential W (φ). Then the field

theory has two classical vacua at W ′(φ) = 0, which, for a Hermitian matrix φ, would

correspond to a local maximum and a local minimum for its eigenvalues. Perturbation

theory around the local maximum would make no sense in the Hermitian model. In

this case, the relevant information was extracted in [18] and [19], where it was shown

that it matches the gauge theory instanton expansion relevant for both vacua. Using

the BRST formalism, the residual gauge symmetry U(N)/(U(N1)× U(N2)) acting on

the vacuum leads to an expansion scheme in terms of a two-matrix model interacting

through the ghosts [7]. To avoid convergence problems, one must reinterpret the ex-

pansion around the extrema in terms of a Hermitian N1 ×N1 matrix interacting with

an anti-Hermitian N2 × N2 matrix [18]. The resulting perturbative expansion then

recovers the leading F -term gravitational corrections to the gauge theory, which in the

matrix model arise at order O(1/N2) [18, 19]. A more systematic analysis of such issues

requires a holomorphic construction of the relevant matrix model [20]. Namely it leads

to a so-called ‘holomorphic matrix model’, whose relevance was already pointed out

in [1]. As shown in [20], the procedure employed in [18] is indeed perfectly justified

in the holomorphic matrix model. In the present paper, we shall encounter similar

problems even before choosing a vacuum. Accordingly, we must carefully choose a

‘real section’ through the space of complex matrixes in order to make all integrals con-

verge. Moreover, we shall need a complex regularization of the matrix model in order

to avoid introducing spurious constraints on its filling fractions. This is very similar

to what happens in the case of holomorphic A2 models [20], where use of a complex

regularization is crucial in order to avoid similar problems.

In section two we introduce the gauge theory model and analyze its classical vacuum

structure. Using threshold matching, we also derive the leading logarithmic terms in

the effective superpotential.

In section three we define the corresponding matrix model, whose action can be

taken to be the superpotential of the gauge theory. As mentioned above, it will be

crucial to choose a suitable replacement for the hermiticity constraint. Contrary to the

one-matrix model, we cannot impose hermiticity of the matrix M which corresponds

to the adjoint chiral multiplet φ. Indeed, this requirement would prevent the matrix

model from probing the complete vacuum structure of the dual gauge theory. As

explained in [20], this is not a particular property of our model, but can be traced back

to similar issues encountered in ADE matrix models. Using a holomorphic definition

and a ‘complex’ regularization of our model, we shall extract two exact loop equations

(Ward identities) which are cubic and quadratic in the resolvent. A new feature of

these relations is that they contain explicitly terms of order O(1/N) and O(1/N2).
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Taking the large N limit of these constraints allows us to extract a non-hyperelliptic

Riemann surface which governs the planar solutions of the model, as well as the effective

superpotential of the dual field theory. The dual string geometry is expected to be

given by an orientifold of the non-compact Calabi-Yau background dual to the A2

quiver theory 3. We therefore also give the explicit derivation of the full loop equations

for the matrix model based on the A2 quiver, and relate it to the Z2 orbifold and

orientifolds thereof. However, there are subtleties in the orientifolding, in the large N

transition and in the precise definition of the B-model cycles. We therefore prefer to

use matrix model techniques in order to extract the Riemann surface, which should

already encode all relevant information about the holomorphic terms in the N = 1

effective action. This surface is a triple cover of the complex plane, which cannot

generally be written as a hyperelliptic curve. Since we have little guidance from a

string geometry, we must intrinsically understand this surface, which in the geometric

engineering approach would be obtained by integrating out two directions of a dual

Calabi-Yau geometry [5]. In particular, one must take into account issues of non-

compactness and relations between periods, which are important for a proper count of

this curve’s parameters.

Similar to the case of SO(N) and Sp(N
2
) groups [21, 22, 23, 24, 25, 26, 27, 28, 29],

the ’t Hooft expansion leads to unoriented ribbon graphs and the large N expansion of

the matrix model is spaced by N and not N2. Thus the explicit 1/N terms entering

our loop equations have field-theoretic relevance. To properly analyze such effects, one

must implement the filling fraction constraints Ni =const of [1] in the finite N model,

which will be done in section four by introducing chemical potentials and performing

a Legendre transform to extract a microcanonical generating function. This gives a

direct derivation of a set of special geometry relations, and provides their finite N

generalization. It also naturally leads to a finiteN version of Whitham-type constraints.

In section five we show how O(1/N) contributions can be computed from a mod-

ified Riemann surface, which is obtained by performing a logarithmic deformation of

the matrix model. We show that the O(1/N) term of the microcanonical generating

function can be computed by differentiating the leading (N = ∞) contribution with

respect to the coupling constant of such a logarithmic deformation.

In section six, we check agreement between the matrix model and the field theory.

For this, we use the matrix model to compute the leading (Veneziano-Yankielowicz)

contribution to the effective superpotential for different branches of the moduli space.

This is done by performing BRST gauge-fixing in the manner of [7, 18] and integrating

3Factorization of the N = 2 curve cannot give hints, since it leads to a completely different branch
of the moduli space.
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out the quadratic terms in the action. The comparison to the O(N) model and the

A2-quiver is summarized in the Appendix.

2. A first view of field theory properties

In this section we study U(N) N = 1 supersymmetric gauge theory with matter in

the symmetric or in the antisymmetric representation. The starting point is an N = 2

U(N) gauge theory with matter in the symmetric or antisymmetric representation

(QT , Q̄T ) = s(Q, Q̄). We choose a tree-level superpotential

W = tr (W (φ) + Q̄φQ) , (2.1)

which softly breaks the N = 2 supersymmetry to N = 1. In many of our considerations

below it helps to view the theory as coming from a Z2-orientifold of the A2 quiver

theory. Orientifolds of supersymmetric A2 quiver gauge theories have been constructed

before with the help of Hanany-Witten type brane configurations in Type IIA string

theory [30, 31]. These models were further analyzed in [32, 33, 34, 35]. Whereas an A2

quiver gauge theory contains two independent unitary gauge groups and matter that

transforms under the bifundamental representation, the orientifolded model identifies

the two gauge groups. In addition the orientifold modifies how the matter content

transforms. In the A2 model the chiral superfield Q transforms as U1QU
†
2 where U1

and U2 are the gauge transformation of the two independent gauge groups. In the

orientifolded model this changes to Q→ UQUT . Therefore Q transforms in a two-index

tensor representation of U(N) and the two possibilities of symmetric or antisymmetric

representation correspond to the two choices of orientifolds.

In the following we describe the vacuum and its phase structure of the emerging

N = 1 theory and calculate in various phases the Veneziano-Yankielowicz potential

from threshold matching.

2.1 The classical moduli space

We are going to classify the possible constant solutions of the classical field equations.

Throughout the analysis we also assume that N = 1 Fayet-Iliopoulos terms are absent.

As is well known in this case the space of solutions of the field equations can be obtained

by minimizing the superpotentialW and dividing by the complexified gauge group. The

field equations are

QQ̄+W ′(φ) = 0 , (2.2)

φQ+QφT = 0 , (2.3)

Q̄φ+ φT Q̄ = 0 . (2.4)
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For quiver gauge theories similar field equations arise and the classical moduli space

has been analyzed in [36]. We will adapt the methods there to the case at hand.

Note first that from (2.3), (2.4) it follows that

φnQ = Q(−φT )n ,

Q̄φn = (−φT )nQ̄ , (2.5)

We multiply (2.2) from the left with Q̄, from the right with Q and commute Q through

W ′ with the help of the previous relation. This gives Q̄Q[Q̄Q + W (−φT )] = 0. Now

we transpose (2.2) and use it to eliminate Q̄Q and we obtain −W ′(φT )[−W ′(φT ) +

W ′(−φT )] = 0. Finally we transpose this last equation and arrive at

[W ′(φ)−W ′(−φ)]W ′(φ) = 0 (2.6)

Equation (2.6) will be solved for φ being diagonal φ = diag(a1.1N1 , · · · , an.1Nn) and∑n
i=1Ni = N . The entries ai have to be the roots of one of the two equations

W ′(x)−W ′(−x) = 0 , (2.7)

W ′(x) = 0 . (2.8)

The vev of φ breaks the gauge group according to U(N) →
∏n

i=1 U(Ni). The field Q

decomposes into Qij with Qij transforming as a bifundamental (Ni, N̄j) under U(Ni)⊗
U(Nj) if i 6= j and as symmetric (antisymmetric) if i = j. An analogous statement

holds for Q̄. From (2.3) it follows that

(ai + aj)Qij = 0 (2.9)

and thus Qij = 0 unless ai = −aj and Ni = Nj. Such pairs of solutions are indeed

generated by the roots of (2.7). Another special root of (2.7) is x = 0. Let us study

now in more detail the different solutions.

2.1.1 Pair of solutions ai = −aj = b 6= 0 with W ′(b) = W ′(−b)

In the relevant subspace Q and Q̄ have to be of the form

Q =

(
0 q

sqT 0

)
Q̄ =

(
0 q̄

sq̄T 0

)
. (2.10)

A gauge transformation acts on Q as

Q→
(

0 U1qU
T
2

sU2q
TUT

1 0

)
(2.11)
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Since U1 and U2 are independent GL(Ni,C) matrices we can bring Q into the form

Q =

(
0 1

s1 0

)
. (2.12)

From (2.2) it follows then that

Q̄ = −W ′(b)

(
0 s1

1 0

)
. (2.13)

The gauge transformations that leave these matrices invariant are given by (U1)
−1 = UT

2

and therefore the residual gauge group is U(Ni) in this branch.

2.1.2 Solutions with ai = 0

This is the special solution of (2.7). The unbroken gauge group in this branch is U(Ni)

and it acts on Q as

Q→ UQUT . (2.14)

Let us consider first the case of symmetric Q. Since U is a general linear matrix we

can choose U such that Q becomes the Ni-dimensional unit matrix Q = 1. It follows

then that Q̄ = −W ′(0)1. The gauge transformations that are left over have to fulfill

U.UT = 1 and are therefore elements of SO(Ni).

In the case whereQ is antisymmetric similar arguments show thatQ can be brought

into the form

Q =

 ε 0 . . .

0 ε . . .
...

...
. . .

 ε =

(
0 1

−1 0

)
. (2.15)

Q̄ is determined by (2.6) and the unbroken gauge group is Sp(Ni/2).

2.1.3 Solutions with W ′(ai) = 0

In this case the equations of motion imply Q = Q̄ = 0 and the unbroken gauge group

is U(Ni) in this branch.

2.2 The Veneziano-Yankielowicz potential

After having established the structure of the moduli space of vacua we derive now

the leading terms in the low energy effective superpotential. Let us take a generic

vacuum with φ = diag(0N0 , a11N1 , . . . , an1Nn , b11Ñ1
,−b11Ñ1

, . . . , bk1Ñk
,−bk1Ñk

). The

unbroken gauge group is

n∏
i=1

U(Ni)⊗
k∏

j=1

U(Ñj)⊗
{
SO(N0) for s = 1

Sp(N0

2
) for s = −1

(2.16)
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At low energies the non-Abelian factors in the unbroken gauge group confine and leave a

U(1)n+k Abelian gauge group unbroken. The effective dynamics of the gaugino conden-

sates in the non-Abelian factor groups is captured by the usual Veneziano-Yankielowicz

superpotential. For the unitary group factors this is

W j
V Y = Sj log

(
Λ

3Nj

low,j

S
Nj

j

)
, (2.17)

and for the orthogonal or symplectic factor group it is given by

W s
V Y =

S0

2
log

(
Λ

3(N0−2s)
low,0

SN0−2s
0

)
. (2.18)

Taking all gaugino condensates into account we have

Weff =
n+k∑
j=1

W j
V Y +W s

V Y , (2.19)

where we substitute Nj = Ñj−n if j > n.

The low energy scale can be determined by threshold matching at the scales of the

masses of the various massive W -bosons and matter fields. In particular we find for

the vacuum with gauge group U(Ni)

Λ3Ni
low,i = (W ′′(ai))

Ni

n∏
j 6=i

(ai − aj)
−2Nj

k∏
l=1

(a2
i − b2l )

−2Ñl(ai)
−2N0 ×

×
n∏

r 6=i

(ai + ar)
Nr

k∏
t=1

(a2
i − b2t )

Ñt(ai)
N0(ai)

Ni+2sΛN−2s
high . (2.20)

The first term on the rhs of this equation comes from the fluctuations of φ in the Ni’th

diagonal block around the vev ai. The next terms stem from the massive off-diagonal

W bosons and in the second line we collected the contributions from the matter fields

Q and Q̄. Analogously one can analyze the other scale matching relations. We find:

Λ3Ñi
low,i+n = (W ′′(bi) +W ′′(−bi))Ñi

n∏
j=1

(b2i − a2
j)
−2Nj

k∏
l 6=i

(b2i − b2l )
−4Ñl(2bi)

−4Ñi(bi)
−4N0 ×

×
n∏

r=1

(a2
r − b2i )

Nr

k∏
t6=i

(b2i − b2t )
2Ñt(bi)

2(Ñi+2s)(bi)
2N0Λ

2(N−2s)
high . (2.21)

9



and

Λ
3
2
(N0−2s)

low,0 = (W ′′(0))
N0
2
−s

n∏
j=1

(aj)
−2Nj

k∏
l=1

(bl)
−4Ñl

n∏
r=1

(ar)
Nr

k∏
t=1

(bt)
ÑtΛN−2s

high . (2.22)

In (2.21) the factor of 2 in the exponent of Λhigh reflects the diagonal embedding of the

U(Ñi) gauge groups4. The higgsing by the vevs of Q which breaks U(Ñj)⊗U(Ñj) to this

diagonal U(Ñj) and the U(N0) factor group to either orthogonal or symplectic groups

produces also some massive fields. These come however always in the multiplicities

of N = 4 multiplets and therefore do not contribute to the threshold matching. To

be specific, consider the breaking to SO(N0). The massive fields include W bosons

and components of φ that lie in the coset U(N0)/SO(N0). They transform under the

symmetric representation of SO(N0). In addition Q and Q̄ are also symmetric in this

case. Thus we count (in N = 1 language) N0

2
(N0 +1) vector multiplets and 3N0

2
(N0 +1)

chiral multiplets that receive masses at the scale set by the vev of Q.

With this method we can of course obtain only an approximation to the exact low

energy superpotential. But is it is expected to capture the correct logarithmic behavior

at Si = 0. In section 6 we will derive this part of the superpotential from a one-loop

calculation in a matrix model.

3. The matrix model

In this section, we construct the matrix model which is expected to calculate the exact

superpotential of the N = 1 supersymmetric U(N) gauge theory with matter in the

adjoint and symmetric or antisymmetric representation. Using direct manipulations,

we shall derive the exact loop equations of this model. These are two independent

identities, which are respectively quadratic and cubic in ω(z) and ω(−z), where ω(z)

is the resolvent of the model. The large N limit of these relations gives algebraic

constraints on the planar limit of the averaged resolvent, which lead to a proposal for

the algebraic curve governing the dual gauge theory. We also give evidence that the

planar vacuum structure of the matrix model agrees with the field theory.

4For the threshold matching of the SO/Sp factor group there arises the following well-known
problem [37]. Projecting SU(N) to SO(N) or Sp(N

2 ) there are some roots which are invariant under
both projections. However, these roots serve as long roots for SO(N) but as short roots for Sp(N

2 ).
This results in a relative factor of two in the normalization of the roots in the projected groups and
this normalization influences the indices of the representations, e.g. for the adjoint representation
Cθ = (θ, θ)g∨, where θ is the highest root and g∨ the dual Coxeter number.
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3.1 Construction of the model

Our matrix model results by performing one of two orientifold projections on the matrix

model proposed in [2] for the A2 quiver field theory. The discussion of the covering A2

quiver theory and that of a related orbifold model can be found in Appendix A.

We use the superpotential (2.1) of the N = 1 supersymmetric gauge theory with

gauge group U(N), a chiral superfield φ in the adjoint representation, a chiral superfield

Q in the symmetric or antisymmetric two-tensor representation and a chiral superfield

Q̄ in the corresponding complex conjugate representation. In order to define the matrix

model we have to choose a real section in matrix configuration space. In the one matrix

model this is usually done by mapping Φ to a Hermitian matrix M (as discussed in

[20], this prescription is justified if the relevant superpotential is a polynomial of even

degree). Following a similar prescription for our models would lead to a series of

problems. Similar to what happens in the quiver matrix models [38, 39, 40, 41] and

the O(N) [42, 43] we would then have to require that all eigenvalues of M lie on the

(strictly) positive real axis. However, we saw in the analysis of the classical moduli space

that vacua with negative or zero eigenvalues play an important role. So it seems quite

unnatural from the gauge theory point of view to restrict to such matrix configurations5.

Instead, we shall consider the matrix model:

ZN,s,ε =
1

VolU(N)
×
∫

dMdQ exp
[
−NtrV (M) + itrQ†MQ

]
, (3.1)

where the M–integration is performed not over the set of Hermitian matrices but rather

over the set:

M =
{
M ∈ MatN(C)

∣∣M −M † = 2iε1
}
, (3.2)

where ε is a small positive quantity. We have also imposed the condition Q̄ = −iQ†.

Together with the shift of the eigenvalues of M into the upper half plane, this renders

the Q-integration finite without further restricting the range of M ’s eigenvalues. Then

the Q–integration is performed over the set:

Q =
{
Q ∈ MatN(C)

∣∣ QT = sQ
}
, (3.3)

where s = +1 and s = −1 distinguishes the symmetric from the anti-symmetric repre-

sentation. The measures dM , dQ are defined through:

dM =
∏

i

dMii

∏
i<j

d Re Mij d Im Mij ,

dQ =
∏
i<j

d Re Qij d Im Qij

(∏
i

d Re Qii d Im Qii

)δs,1

. (3.4)

5A similar issue arises in quiver matrix models, as discussed in [20].
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This model has the gauge-invariance:

M → UMU †

Q → UQUT , (3.5)

where U is an arbitrary unitary matrix6. Note that we have included the inverse volume

of the gauge group into the definition of the partition function (3.1). Also note that we

are rather valiant about the convergence of (3.1), which is assured —with our choice

of integration manifold — only provided that W is a polynomial of even degree. As in

[20], a consistent construction for odd degree potentials would require that we constrain

the eigenvalues of M to lie on a certain path in the complex plane, whose asymptotic

behavior is determined by the leading coefficient of W . In the present paper, we shall

ignore this and related issues, a complete treatment of which requires the full machinery

of [20].

Performing the Gaussian integral over Q yields∫
Q
dQ ei tr Q†MQ =

(
iπ
)N(N+s)/2

∏
i<j

1

λi + λj

(∏
i

1

λi

)δs,1

(3.6)

where λ1, . . . , λN are the eigenvalues of the matrix M .

Next we rewrite the integral over M in (3.1) in terms of eigenvalues of M :

ZN,ε,δ = CN,s Z̃N,s,ε , (3.7)

with

Z̃N,s,ε =

∫
R+iε

N∏
k=1

dλk e
−N2S and CN,s =

2−N2/2+N

Vol(U(1)N × SN)

(
iπ
)N(N+s)/2

, (3.8)

where the ‘effective’ action S(λ1, . . . , λN) in the eigenvalue representation is:

S =
1

N

∑
k

V (λk) +
s

2N2

∑
k

lnλk −
1

2N2

∑
k 6=l

ln(λk−λl)
2 +

1

2N2

∑
k,l

ln(λk+λl) . (3.9)

6This can be seen as follows: The action and the measure dM for the adjoint field are obviously
gauge invariant. Therefore we concentrate on the part coming from dQ. It is easiest to switch for
a moment to an index notation in which the fields transform as Qij → 1

2 (Ui
k Uj

l + sUi
l Uj

k)Qkl,
Q̄ij → Q̄kl 1

2 (U†
k

i U†
l

j + sU†
l

i U†
k

j) We took care explicitly of the symmetry properties of Q and Q̄.
The measure dQ picks up the product of the determinants of the transformation matrices defined in the
previous equations. Since the product of the determinants is the determinant of the product we com-
pute the product of the transformation matrices: 1

2 (Ui
k Uj

l + sUi
l Uj

k). 12 (U†
k

m U†
l

n + sU†
l

m U†
k

n) =
1
2 (δm

i δn
j + sδn

i δm
j ) This is just the identity in the symmetric and antisymmetric representation respec-

tively and of course the corresponding determinant is one.
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In the limit ε→ 0 (which we shall ultimately take below), the factors e− ln(λk+λl) =
1

λk+λl
in (3.8) produce well defined distributions according to the Sokhotsky formula:

1

λk + λl + i0+
= P

(
1

λk + λl

)
− iπδ(λk + λl) , (3.10)

where we took the limiting eigenvalues to be real in order to make the iε prescription

explicit and where P denotes the principal value. Substituting (3.10) into (3.8) (before

exponentiating the Vandermonde factors) leads to an expression for the ε→ 0+ limit of

Z̃ as a sum over ‘reduced’ integrals. This gives a limiting statistical ensemble, which can

viewed as the orientifold of the limiting ensemble extracted in [20] for the holomorphic

A2 model.

The potentials V (x) we want to consider are of the form

V (x) = t−1 ln(x) +W (x) where W (x) =
d∑

k=0

tk
k+1

xk+1 . (3.11)

From (3.9) we see that the effect of integrating only over symmetric or anti-symmetric

Q is a logarithmic correction to the potential of order 1/N . If we introduce

U(x) = V (x) +
s

2N
ln(x) (3.12)

the action S depends on s only implicitly through U(x). For the analysis of the matrix

model it is useful to further introduce the following quantities. The expectation value

of a function O(λ1, . . . , λN) is given by

〈O〉 =
1

Z̃

∫
R+iε

N∏
k=1

dλk O(λ1, . . . , λN) e−N2S (3.13)

and the eigenvalue density ρ(λ) and the resolvent ω(z) are defined to be

ρ(λ) =
1

N

∑
k

δ(λ−λk) and ω(z) =
1

N

∑
k

1

z − λk

. (3.14)

The two quantities are related by

ρ(λ) = lim
ν→0

ω(λ+iν)− ω(λ−iν)
2πi

, ω(z) =

∫
R+iε

dλ
ρ(λ)

z−λ
. (3.15)
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3.2 The microcanonical ensemble

The framework of Dijkgraaf-Vafa requires that the model obeys certain filling fraction

constraints. In [1], such conditions were imposed only on the large N microcanonical

generating function, which is insufficient in our case since we will have to consider

O(1/N) corrections as can be seen from (3.12). This requires that we impose such

constraints on the finite N microcanonical generating function, rather than on its large

N counterpart. The relevant constraints are easiest to formulate by employing a mi-

crocanonical ensemble. As we shall see below, the original path integral defines a

(grand) canonical ensemble at zero chemical potentials. This allows one to recover

the microcanonical generating function by introducing non-vanishing chemical poten-

tials (which are canonically conjugate to the filling fractions) and then performing a

Legendre transform to replace the former by the latter.

3.2.1 The (grand) canonical partition function associated with a collection

of intervals

Let us cover the displaced real line R + iε with disjoint nonempty line segments ∆α

subject to the condition:

∆1 ∪ · · · ∪∆r = R + iε . (3.16)

We shall let χα denote the characteristic function of ∆α, and consider the filling fractions

fα of ∆α:

fα =
1

N

∑
k

χα(λk) . (3.17)

This gives the expression of fα in terms of ω(z):

fα =

∫
dλρ(λ)χα(λ) =

∫
∆α

dλρ(λ) =

∮
γα

dz

2πi
ω(z) , (3.18)

where γα is a contour surrounding only ∆α and not any part of the intervals ∆β 6=α.

Picking chemical potentials µα, we consider the (grand) canonical ensemble associated

to our collection of intervals7:

Z(t, µ) =

∫
R+iε

N∏
k=1

dλk e
−N2Sµ where Sµ = S +

r∑
α=1

µαfα . (3.19)

The original partition function results by setting µα = 0. Introducing the (grand)

canonical generating function:

F(t, µ) = − 1

N2
lnZ(t, µ) , (3.20)

7In the following µ, S may stand for r-tuples and t for (t−1, t0, . . . , td).
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we have the standard relation:

∂

∂µα

F = 〈fα〉 =

∮
γα

dz

2πi
〈ω(z)〉 . (3.21)

In this subsection, the brackets 〈. . . 〉 always denote the expectation value taken in the

(grand) canonical ensemble. Since the union of ∆α covers the whole integration range,

the expectation values of the filling fractions fulfill the constraint:

r∑
α=1

〈fα〉 = 1 . (3.22)

3.2.2 The microcanonical generating function

Following standard statistical mechanics procedure, we define:

Sα :=
∂

∂µα

F (3.23)

and perform a Legendre transform to extract the microcanonical generating function:

F (t, S) :=
r∑

α=1

Sαµα(t, S)−F(t, µ(t, S)) . (3.24)

In this relation, µα are expressed in terms of t and S by solving equations (3.23). The

constraint (3.22) shows that Sα are related through:

r∑
α=1

Sα = 1 , (3.25)

so we can take S1 . . . Sr−1 to be the independent variables. Then equations (3.23)

express µα as functions of t and these coordinates, and equation (3.24) implies:

µα − µr =
∂F

∂Sα

for α = 1, . . . , r − 1 . (3.26)

Note that µα are only determined up to a common constant shift; this is due to the

constraint (3.25) on Sα.

Working with F (t, S) amounts to fixing the expectation values of the filling fractions

by imposing the quantum constraint (3.23):

〈fα〉 =

∮
γα

dz

2πi
〈ω(z)〉 = Sα , (3.27)

with Sα treated as fixed parameters. This gives a meaning to the procedure of [1]

beyond the large N limit.
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3.3 The quadratic and cubic loop equations

The classical equations of motion following from the action (3.9) are ∂S/∂λk = 0,

where:

N
∂S

∂λk

= U ′(λk)−
1

N

∑
l( 6=k)

2

λk−λl

+
1

N

∑
l

1

λk+λl

. (3.28)

The action (3.9) describes a system of charged particles moving along R + iε, together

with a set of mirror charges of opposite sign. For s=−1, each particle interacts with

all mirror charges excluding its own, while for s=1 it is also attracted to its own mirror

image.

The partial derivatives (3.28) will be used below to obtain a set of Ward identities

for the matrix model. In turn, we shall use these identities in order to derive two loop

equations for resolvent ω(z). Consider the integral:

1

N2

1

Z̃

∫
R+iε

N∏
i=1

dλi

∑
k

∂

∂λk

(
ψk(λ1, . . . , λN) e−N2S

)
= 0 (3.29)

Differentiating shows that (3.29) is equivalent to the Ward identity

1

N

∑
k

〈(
U ′(λk)−

1

N

∑
l( 6=k)

2

λk−λl

+
1

N

∑
l

1

λk+λl

)
ψk −

1

N

∂ψk

∂λk

〉
= 0 . (3.30)

3.3.1 The quadratic loop equation

The quadratic loop equation is obtained by setting ψk = (z−λk)
−1. Together with the

identity

2
∑
k 6=l

1

λk−λl

1

z−λk

+
∑

k

1

(z−λk)2
=
∑
k,l

1

z−λk

1

z−λl

(3.31)

one obtains the relation〈
ω(z)2 − 1

N

∑
k

U ′(λk)

z−λk

− 1

N2

∑
k,l

1

λk+λl

1

z−λk

〉
= 0 . (3.32)

Adding to (3.32) the same equation with z replaced by −z and absorbing the depen-

dence on the potential into f(±z) leads to the quadratic loop equation:〈
ω(z)2+ω(z)ω(−z)+ω(−z)2−U ′(z)ω(z)−U ′(−z)ω(−z)+f(z)+f(−z)

〉
= 0 . (3.33)

In deriving this we used the identity:∑
k,l

1

λk+λl

1

z−λk

+
∑
k,l

1

λk+λl

1

−z−λk

= −
∑
k,l

1

z−λk

1

−z−λl

(3.34)
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and introduced the quantity:

f(z) =
1

N

∑
k

U ′(z)− U ′(λk)

z − λk

. (3.35)

In the analysis of the largeN Riemann surface below we will need to know the properties

of f(z) in more detail. From the definition of U, V,W in (3.11) and (3.12) it follows

that f(z) can be written:

f(z) = f̄(z)− φ · t−1 + s/(2N)

z
where φ =

1

N

∑
k

λ−1
k = −ω(0) . (3.36)

The function f̄(z) is a polynomial in z defined through:

f̄(z) =
1

N

∑
k

W ′(z)−W ′(λk)

z − λk

. (3.37)

Since ω(z) ∼ 1/z as z →∞, one finds that the large z behavior of f̄ is f̄(z) ∼ tdz
d−1.

In particular the polynomial f̄(z) has degree d−1.

3.3.2 The cubic loop equation

The cubic relation for ω(z) results from substituting

ψk =
1

N

∑
m

1

(λm+λk)(z−λk)
, so that :

∂ψk

∂λk

=
1

N

∑
m

1

(λm+λk)(z−λk)

( 1

z−λk

− 1

λm+λk

)
+

1

N

1

4λ 2
k (z−λk)

(3.38)

into the Ward identity (3.30). To proceed we make use of the relations:

− 1

N3

∑
m,k,l( 6=k)

2

(λk−λl)(λm+λk)(z−λk)

= ω(z)2ω(−z) +
1

N3

∑
k,m

1

(λm+λk)(z−λk)

( 1

z−λk

− 1

λm+λk

)
+

1

N3

∑
m,k,l

1

(λm+λk)(λl+λk)(z+λk)
(3.39)

and
1

N

∑
k

1

λ 2
k (z−λk)

=
ω(z)−ω(0)

z2
+

1

z

1

N

∑
k

1

λ 2
k

(3.40)
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Equations (3.39) and (3.40) follow from the partial fraction decompositions:

1

(z−a)(z−b)(z−c)
=

1

(b−a)(c−a)(z−a)
+

1

(c−b)(a−b)(z−b)
+

1

(a−c)(b−c)(z−c)
1

(z−a)2(z−b)
=

1

(a−b)2(z−b)
− 1

(a−b)2(z−a)
+

1

(a−b)(z−a)2
(3.41)

When substituting (3.38), (3.39), (3.40) into (3.30) some of the terms cancel and we

are left with〈
ω(z)2ω(−z) +

1

N2

∑
k,m

U ′(λk)

(λm+λk)(z−λk)
+

1

N3

∑
m,k,l

1

(λl+λk)(λm+λk)

( 1

z−λk

− 1

−z−λk

)
− 1

N2

(ω(z)−ω(0)

4 z2
+

1

4z

1

N

∑
k

λ−2
k

)〉
= 0 (3.42)

As in the quadratic case we can add to this the same equation with z replaced by −z.
This removes the triple sum and gives〈

ω(z)2ω(−z) + ω(z)ω(−z)2 +
1

N2

∑
k,m

U ′(λk)

λm+λk

( 1

z−λk

− 1

z+λk

)
− 1

N2

ω(z)+ω(−z)−2ω(0)

4 z2

〉
= 0 (3.43)

To proceed we introduce the quantity

g(z) =
1

N2

∑
k,l

U ′(z)− U ′(λk)

(λl+λk)(z−λk)
. (3.44)

As with f(z) in (3.36), for later use we note that g(z) can decomposed into a polynomial

part ḡ(z) and a pole 1/z as

g(z) = ḡ(z)− γ · t−1 + s/(2N)

z
where

ḡ(z) =
1

N2

∑
k,l

W ′(z)−W ′(λk)

(λl+λk)(z−λk)
and γ =

1

N2

∑
k,l

1

λk(λk+λl)
=
ω(0)2

2
(3.45)

As before, since W ′(z) has degree d the large z behavior of the polynomial ḡ(z) is

(const) · zd−1, so that ḡ(z) has degree d−1. The expression γ = ω(0)2/2 has been

obtained by evaluating the identity (3.34) at z=0.

Using (3.32), one finds the following relation for the expectation value of g(z):〈
g(z)

〉
=
〈
− 1

N2

∑
k,l

U ′(λk)

(λl+λk)(z−λk)
+ U ′(z)

(
ω(z)2 + f(z)− U ′(z)ω(z)

)〉
(3.46)
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Substituting (3.46) into (3.43) we obtain the cubic loop equation:〈
ω(z)2ω(−z)− g(z) + U ′(z)

(
ω(z)2 + f(z)− U ′(z)ω(z)

)
+ (z ↔ −z)

〉
− 1

N2

〈ω(z)+ω(−z)−2ω(0)〉
4 z2

= 0 . (3.47)

3.3.3 Loop equations in terms of contour integrals

The two loop equations (3.33) and (3.47) can be presented in a more compact form

when using contour integrals. This form can be obtained as follows. Let γ be a contour

that encircles all the eigenvalues but not the point z and not the poles of ω(−z). One

can verify the two identities∮
γ

dx

2πi

2xU ′(x)

z2−x2

〈
ω(x)

〉
=

1

N

∑
k

〈2λkU
′(λk)

z2−λ2
k

〉
,∮

γ

dx

2πi

2xU ′(x)

z2−x2

〈
ω(x)ω(−x)

〉
=

1

N2

∑
k,l

〈2λkU
′(λk)

z2−λ2
k

−1

λk+λl

.
〉

(3.48)

and insert them into the equations (3.33) and (3.43). This results in the following

constraints, which are equivalent with the loop equations (3.33) and (3.47):〈
ω(z)2 + ω(z)ω(−z) + ω(−z)2

〉
=

∮
γ

dx

2πi

2xU ′(x)

z2−x2

〈
ω(x)

〉
,

〈
ω(z)2ω(−z) + ω(z)ω(−z)2

〉
− 1

N2

〈ω(z)+ω(−z)−2ω(0)〉
4 z2

(3.49)

=

∮
γ

dx

2πi

2xU ′(x)

z2−x2

〈
ω(x)ω(−x)

〉
.

3.4 The large N Riemann surface

In this section we shall take the large N limit of the loop equations for the orientifold

with symmetric and antisymmetric matter, thus obtaining two polynomial constraints

on the planar limit ω0 of the averaged resolvent 8, which is the leading term in the large

N expansion:

〈ω(z)〉 = ω0(z) +
1

N
ω1 +O(1/N2) (3.50)

These large N constraints on ω0 define a Riemann surface, similar to what happens in

the much better studied case of one-matrix models. The main difference is that the

Riemann surface governing our models is not hyperelliptic. Rather, it will turn out to

be a triple cover of the z-plane, one of whose branches gives ω0(z).

8These constraints also follow from the loop equations of the A2-quiver, which are given in Appendix
A.2.1.
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3.4.1 The loop equations at large N

The large N limit of the loop equations (3.33) and (3.47) gives:

ω0(z)
2 + ω0(z)ω0(−z) + ω0(−z)2 − V ′(z)ω0(z)− V ′(−z)ω0(−z) + f(z) + f(−z) = 0

ω0(z)
2ω0(−z)− g(z) + V ′(z)

(
ω0(z)

2 + f(z)− V ′(z)ω0(z)
)

+ (z ↔ −z) = 0 (3.51)

It is convenient to introduce the shifted variable u(z) through the relations:

ω0(z) = u(z)− t(z) , ω0(−z) = u(−z)− t(−z) , (3.52)

where

t(z) =
−2V ′(z) + V ′(−z)

3
, t(−z) =

−2V ′(−z) + V ′(z)

3
. (3.53)

Under this translation, equations (3.51) become:

u(z)2 + u(z)u(−z) + u(−z)2 = p(z)

u(z)2u(−z) + u(z)u(−z)2 = −q(z) , (3.54)

where:

p(z) = t(z)2 + t(z)t(−z) + t(−z)2 − f(z)− f(−z)
q(z) = −t(z)t(−z) [t(z) + t(−z)] + t(z)f(−z) + t(−z)f(z)− g(z)− g(−z) .(3.55)

Equations (3.54) are the Viete relations for the roots u0(z) := u(z), u1(z) := u(−z) and

u2(z) := −u0(z)− u1(z) of the cubic:

2∏
i=0

(u(z)− ui(z)) = u3 − p(z)u− q(z) = 0 . (3.56)

Therefore, the quantities u0(z), u1(z) and u2(z) are the three branches of the affine

curve (3.56), when the latter is viewed as a triple cover of the complex z-plane.

Let us index the branches such that:

ω0(z) = u0(z)− t(z) and ω0(−z) = u1(z)− t(−z) . (3.57)

It is clear from (3.55) that the functions p(z) and q(z) are even. Hence the curve (3.56)

admits the automorphism:

ν(z, u) = (−z, u) , (3.58)

which permutes the sheets u0 and u1, while stabilizing the third sheet. Using (3.55),

our curve can be written:(
u− t(z)

)(
u− t(−z)

)(
u+ t(z) + t(−z)

)
+
[
f(z) + f(−z)

]
u +

[
2gev(z)− t(z)f(−z)− t(−z)f(z)

]
= 0 , (3.59)
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where:

gev(z) :=
1

2
[g(z) + g(−z)] =

1

2
[ḡ(z) + ḡ(−z)] (3.60)

is the even part of g. For f = g ≡ 0, the defining equation reduces to:

(u− t0(z))(u− t1(z))(u− t2(z)) = 0 , (3.61)

where t0(z) := t(z), t1(z) := t(−z), t2(z) = −t0(z) − t1(z). Correspondingly, the

branches are given by uj = tj in this limit. The general curve (3.59) is a deforma-

tion of (3.61), parameterized by the coefficients of f and gev.

The number of independent coefficients in f and gev is constrained by the matrix

model. Recall from the discussion of equations (3.37) and (3.45) that the polynomials

f̄(z) and ḡ(z) have degree d−1 if the polynomial part W (x) of the potential has degree

d+1. Thus f̄(z) depends on d complex parameters while the even polynomial gev

depends on δ+1 parameters, where

δ =
[

d−1
2

]
. (3.62)

In the large N limit the function f(z) in (3.35) has the form f(z) = f̄(z)− φt−1/z, so

it depends on the coefficients of f̄(z) as well as on φ, if the logarithmic term is present

in the potential. Altogether, we have:

#( coefficients in f, gev ) =

{
d+ δ + 1 ; t−1 = 0 a.)

d+ δ + 2 ; t−1 6= 0 b.)
(3.63)

3.5 The Riemann surface in the absence of a logarithmic deformation

3.5.1 General description and parameter count

In the absence of a logarithmic deformation (t−1 = 0), the large N algebraic curve

is given by (3.56) with V (z) = W (z). We shall start by counting its parameters

and periods. For this, we must describe the branching structure of this curve and of

its deformations. For a generic deformation (f, g), we shall find d+ δ + 1 independent

periods, in agreement with the parameter count for gev and f performed in the previous

subsection.

Let us start with the classical curve (3.61) and analyze its branching. Writing

W ′(z) =
∑d

m=0 tmz
m, we have:

W ′
odd(z) :=

1

2
[W ′(z)−W ′(−z)] =

δ∑
k=0

t2k+1z
2k+1 = zv(z2) , (3.64)
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where we defined v(x) :=
∑δ

k=0 t2k+1x
k. Consider the factorizations:

W ′(z) = td(z − z+
1 ) . . . (z − z+

d ) → W ′(−z) = td(−1)d(z − z−1 ) . . . (z − z−d ) (3.65)

with z−i := −z+
i and

v(x) = t2δ+1(x− x1) . . . (x− xδ) . (3.66)

The second relation implies the factorization:

W ′
odd(z) = t2δ+1z(z

2 − x1) . . . (z
2 − xδ) = t2δ+1z(z − z̃+

1 )(z − z̃−1 ) . . . (z − z̃+
δ )(z − z̃−δ ) ,

(3.67)

where z̃±j = ±√xj.

Then the curve (3.61) has ordinary double points at those values of z where ti(z) =

tj(z) for some 0 ≤ i < j ≤ 2. Let us assume that all roots z+
i , z

−
i , z̃

+
j and z̃−j are

mutually distinct and nonzero (this is the generic case). Then:

t0(z) = t2(z) ⇔ W ′(z) = 0 ⇔ z ∈ {z+
1 . . . z

+
d }

t1(z) = t2(z) ⇔ W ′(−z) = 0 ⇔ z ∈ {z−1 . . . z−d } (3.68)

t0(z) = t1(z) ⇔ W ′
odd(z) = 0 ⇔ z ∈ {z̃−1 . . . z̃−δ , 0, z̃

+
1 . . . z̃

+
δ } .

When turning on generic deformations f, g to reach the curve (3.56), all of these

double points will split into cuts:

z+
i → [ai, bi] := Ii , z−i → [−bi,−ai] := I−i , i = 1, . . . , d

z̃+
j → [ãj, b̃j] := Ĩj , z̃

−
j → [−b̃j,−ãj] := Ĩ−j , j = 1, . . . , δ

z̃0 → [ã0, b̃0] := Ĩ0 , with ã0 = −b̃0 . (3.69)

This splitting is symmetric since the allowed deformations must preserve the symmetry

of our curve. We obtain 2d cuts of type Ii and 2δ + 1 cuts of type Ĩj.

The deformed curve (3.56) has a multiple point at z = ∞. It follows that an ap-

propriate deformation of its normalization will have two supplementary cuts. Applying

the Hurwitz formula for this normalized and deformed curve, we obtain its genus g:

g =
1

2
(4δ + 4d+ 6)− 3 + 1 = 2(d+ δ) + 1 . (3.70)

This is one unit greater than the arithmetic genus of the curve (3.56).

Choose cycles Ai, Ãj around the cuts Ii, Ĩj as indicated in figure 1. Due to the Z2

invariant perturbation of the cuts and the induced action ν∗(λ) = −λ of (3.58) on the

meromorphic differential

λ =
1

2πi
u dz, (3.71)
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Ã0 Ãj

Ĩ−j Ĩ0 Ĩj

Ã−j

I−i

A−i Ai

Ii

Figure 1: The cycles Ai and Ãj . Solid lines lie on the sheet u0(z), while dashed lines lie on
u1(z). Under the automorphism ν the cycles transform as ν(Ai) = A−i, ν(Ãj) = Ã−j and
ν(Ã0) = −Ã0.

the periods integrals of this ‘regularized’ curve along A−i, Ã−j are minus the ones along

Ai, Ãj for i = 1 . . . d and j = 1 . . . δ, while
∫

Ã0
λ is invariant. Therefore, we can choose∫

Ai
λ and

∫
Ãj
λ (with i = 1 . . . d and j = 0 . . . δ) to be independent periods. Hence their

number agrees with the parameter count for gev and f . In (3.69) we assumed a generic

situation, which can be justified from the double cover. In that case, the existence

of 3d independent 3-cycles in the Calabi-Yau geometry has been established [36]. By

the classical results of Tian and Todorov [44, 45], this is equivalent to 3d unobstructed

complex structure parameters, which descend to the Riemann surface. The argument

above can be viewed as establishing consistency of the Z2 projection on the parameters

and periods of the Riemann surface.

3.5.2 Physical meaning of the cuts

We next discuss the interpretation of the cuts in terms of the planar eigenvalue distri-

bution of the matrix model. Remember that ω0(z) =
∫
dλρ(λ)

z−λ
. From (3.57) we see that

the cuts of ω0(z) coincide with those of u0(z). The fact that u0 has branch cuts along

Ii and Ĩj (with i = 1 . . . d and j = −δ . . . δ) requires that ρ(λ) be non-vanishing along

each of these cuts. This implies that ω0(−z) will have cuts on the reflected loci I−i and

Ĩ−j. To find the matrix model meaning of these cuts, consider the analytic function:

κ(z) := u0(z)− u2(z) = 2u0(z) + u0(−z) = 2ω0(z) + ω0(−z)−W ′(z) =

=

∫
dλ′ρ(λ′)

[
2

z − λ′
− 1

z + λ′

]
−W ′(z) , (3.72)

where we used relations (3.52) and (3.53), which imply:

2t(z) + t(−z) = −W ′(z) . (3.73)

Similarly, we consider:

τ(z) := u0(z)− u1(z) = u0(z)− u0(−z) = ω0(z)− ω0(−z)− [W ′(z)−W ′(−z)] =

=

∫
dλ′ρ(λ′)

[
1

z − λ′
+

1

z + λ′

]
− [W ′(z)−W ′(−z)] , (3.74)
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u0

Ii

λ + iε

λ− iε

u2

Figure 2: The values of u0(λ − i0) and u2(λ + i0) agree along a cut Ii, since the latter
connects the branches u0 and u2. A similar argument holds for the other types of cuts.

where again we used (3.52) and (3.53).

The definition of the cuts Ii and Ĩj implies (see figure 2):

u0(λ± i0) = u2(λ∓ i0) for λ ∈ Ii with i = 1 . . . d

u1(λ± i0) = u2(λ∓ i0) for λ ∈ I−i with i = 1 . . . d (3.75)

u0(λ± i0) = u1(λ∓ i0) for λ ∈ Ĩj with j = −δ . . . δ .

Therefore, we have:

P(κ(λ)) = 0 for λ ∈ Ii with i = 1 . . . d

P(κ(−λ)) = 0 for λ ∈ I−i with i = 1 . . . d (3.76)

P(τ(λ)) = 0 for λ ∈ Ĩj with j = −δ . . . δ .

Writing these principal values using (3.72) and (3.74), we find:∫
dλ′ρ(λ′)

[
2

λ− λ′
− 1

λ+ λ′

]
= W ′(λ) , λ ∈ Ii , (3.77)∫

dλ′ρ(λ′)

[
2

λ+ λ′
− 1

λ− λ′

]
= −W ′(−λ) , λ ∈ I−i , (3.78)∫

dλ′ρ(λ′)

[
1

λ− λ′
+

1

λ+ λ′

]
= W ′(λ)−W ′(−λ) , λ ∈ Ĩj . (3.79)

Notice that the second equation is equivalent with the first under the substitution

λ→ −λ and therefore contains no new information.
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Assuming that all cuts are disjoint from each other, the analytic function u2 must

be continuous across Ĩj (since the cuts of u2 are Ij and I−j). Therefore, we have the

following relations for λ ∈ Ĩj:

u2(λ+ i0) = u2(λ− i0) ⇐⇒ u0(λ+ i0) + u1(λ+ i0) = u0(λ− i0) + u1(λ− i0) ⇐⇒
u0(λ+ i0)− u0(λ− i0) = u1(λ− i0)− u1(λ+ i0) . (3.80)

Using u0(z) = u1(−z) in the right hand side gives:

ρ(λ) = ρ(−λ) , λ ∈ Ĩj , (3.81)

where we also used the identity:

u0(λ− i0)− u0(λ+ i0) = 2πiρ(λ) , λ ∈ R . (3.82)

Thus ρ takes symmetric values along the cuts Ĩj and Ĩ−j (in particular, ρ(λ) is sym-

metric along Ĩ0).

Finally, we can identify the filling fractions of the matrix model:

Si =

∫
Ai

λ , for i = 1 . . . d ,

S̃j = 2

∫
Ãj

λ , for j = 1 . . . δ (3.83)

S̃0 =

∫
Ã0

λ .

The factors two in the second equation follows from the fact that Ĩj and Ĩ−j support

symmetric distributions of eigenvalues for j 6= 0.

From the gauge theory point of view, we can interpret (3.77) as the quantum

correction to the classical vacuum configuration (2.8) and (3.79) as the correction to

(2.7). The different filling fractions correspond to the different types of vacua we found

in section 2.1. In particular, a fraction S̃j with j 6= 0 corresponds to a vacuum in

which the final U(Nj) gauge group is embedded diagonally, while S̃0 corresponds to

the vacuum with an orthogonal or symplectic unbroken gauge group. Of course, up to

now we imposed the strict large N limit and therefore the curve can not distinguish

between the two types of orientifolds. In section 5 we will argue that this difference

can be accounted for by including a logarithmic term in the potential V of the model.

Let us therefore study this situation next.
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3.6 Riemann surface in the presence of a logarithmic interaction

In this subsection, we analyze the Riemann surface (3.56) in the presence of a logarith-

mic term t−1 ln z in the potential V . We shall show that turning on such interactions

produces supplementary cuts, which correspond to eigenvalues accumulating along new

loci. The purpose of the present section is to identify these novel cuts for small values

of t−1 — this will important in our discussion of the first order loop equations in section

5.

To understand the generic situation, first note that p(z) and q(z) acquire poles

at the origin for t−1 6=0. To display this, we decompose t(z) = t̄(z) − t−1

z
, with

t̄(z) := −2W ′(z)+W ′(−z)
3

a polynomial. Further, we define polynomials p̄(z) and q̄(z)

by substituting f̄ , ḡ, t̄ in (3.55). This results in:

p(z) = p̄(z)− t−1

z

(
t̄(z)−t̄(−z)

)
+
t 2
−1

z2

q(z) = q̄(z) +
t−1

z

(
f̄(z)−f̄(−z) + [t̄(z)−t̄(−z)][φ−t̄(z)−t̄(−z)]

)
(3.84)

−
t 2
−1

z2

(
2φ− t̄(z)− t̄(−z)

)
,

where we used (3.36) and (3.45) and absorbed the s dependence in t−1. To write (3.56)

in polynomial form, we multiply the equation by z3 and define a new variable y := zu:

y3 − P (z)y − zQ(z) = (y − y0(z))(y − y1(z))(y − y2(z)) = 0 , (3.85)

where y1(z) = −y0(−z), y2(z) = −y0(z)− y1(z) and P (z) = z2p(z) and Q(z) := z2q(z)

are even polynomials. This curve admits the symmetry:

(z, y) → (−z,−y) . (3.86)

We shall view (3.85) as a deformation of the curve:

ȳ3 − z2p̄(z)ȳ − z3q̄(z) = (ȳ − ȳ0(z))(ȳ − ȳ1(z))(ȳ − ȳ2(z)) = 0 , (3.87)

which is obtained from:

u3 − p̄(z)u− q̄(z) = (u− ū0(z))(u− ū1(z))(u− ū2(z)) = 0 , (3.88)

where ū2(z) = −ū0(z)− ū1(z) and ū1(z) = ū0(−z), by performing the birational trans-

formation ȳ = zu.

We are interested in the generic behavior of (3.85) as t−1 approaches zero. In this

limit, the curve degenerates to (3.87), whose first two branches ȳ0 and ȳ1 are tangent

in a cusp at ȳ = z = 0, where they also meet the third branch ȳ2 (figure 3).
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ȳ2

ȳ1
ȳ0

Figure 3: Branching of the curve (3.85) at the origin for t−1 = 0.

The geometry of (3.85) for a small value of t−1 is described in figure 4. The loga-

rithmic deformation of the model generates four new branch points of the birationally

transformed curve, which are indexed by z± and z̃±. These are symmetric with respect

to the origin, namely z− = −z+ and z̃− = −z̃+.

y1

y2

z−

z̃+

z+

z̃−

y0

Figure 4: Deformed curve after addition of a logarithmic term in the matrix model potential,
in the birationally equivalent coordinates (y, z).

From this geometry, one finds that the cut Ĩ0 splits into two new cuts Ĩ+
0 = [z̃+, b̃0],

and Ĩ−0 = [ã0, z̃−], which are distributed symmetrically with respect to the origin. Both

of these cuts connect the branches 0 and 1. One also finds two new cuts I0 = (−∞, z+)

and −I0 = (z−,+∞), which connect the pairs of branches (0, 2) and (1, 2) respectively.

As in [5], we shall ‘regularize’ our curve by choosing a large Λ > 0 and replacing these

cuts with I0 = (−Λ, z+) and −I0 = (z−,+Λ).
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These cuts produce new A-type cycles A0, Ã
±
0 (and associated B-cycles), which

project onto the z-plane to the curves γ0, γ̃
±
0 , see figure 5. The homology classes Ã±

0

are interchanged by the symmetry z → −z, which also interchanges the homology class

of A0 with that of −A0.

The cuts I0 and Ĩ±0 give the A-type periods:∮
γ0

dz

2πi
ω0(z) =

∮
A0

dz

2πi
ω(z) ,∮

γ̃±0

dz

2πi
ω0(z) =

∮
Ã±

0

dz

2πi
ω(z) .

(3.89)

The cut −I0 gives the opposite of the A0-period. The Z2 symmetry also implies:∮
γ̃−0

dz

2πi
ω0(z) =

∮
γ̃+
0

dz

2πi
ω0(z) . (3.90)
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z = 0
A0

Ã+
0Ã−0

−Λ
b̃0z̃+ Ĩ+

0
z+z−z̃−ã0 Ĩ−0

I0

Figure 5: The new cuts of u0 generated by a logarithmic term in the potential (viewed as
cuts of the birationally transformed curve (3.85)). The cut −I0 corresponds to branching of
u1 with u2, and consequently it is not shown. The figure also indicates the new cycles A0,
Ã±

0 on the Riemann surface. Solid cycles lie on the sheet u0(z), while the dashed cycle lies
on u1(z). The curves γ0,γ̃±0 mentioned in the text are the projections of A0 and Ã±

0 onto the
z-plane.

The presence of new cuts for the log-deformed model shows that eigenvalues can

accumulate along I0 and Ĩ±0 in the largeN limit (no eigenvalues accumulate on−I0 since

this is not a cut of ω0). Accordingly, the microcanonical ensemble of the log-deformed

model involves the supplementary constraint:

∮
γ0

dz

2πi
〈ω(z)〉 = S0 , (3.91)
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while the constraint
∮

γ̃0

dz
2πi
〈ω(z)〉 = S̃0 of the undeformed model is replaced by:∮

γ̃+
0

dz

2πi
〈ω(z)〉 =

1

2
S̃0 . (3.92)

This becomes part of conditions (3.27) for the case t−1 6= 0. For a consistent limit

as t−1 → 0, one takes S0 to be a function of t−1 which tends to zero in that limit. Note

also that with the additional constraint (3.91) we have to fix d + δ + 2 periods in the

log-deformed model, in agreement with the parameter count in (3.63).

4. Chemical potentials at large N

In this section, we study the planar limit of our models for the case t−1 = 0. Our

main purpose is to give a proof 9 of an appropriate set of special geometry relations.

The path we shall follow is based on our construction of the microcanonical ensemble,

combined with a modification of an argument due to [46]. Namely, we shall show

that the chemical potentials µ reduce in the large N limit to certain B-type periods

Π of our Riemann surface. Then special geometry conditions of the type found in [1]

follow from the standard equation (3.26) which expresses the chemical potentials as

derivatives of the microcanonical partition function with respect to the filling fractions.

In particular, equation (3.26) is the appropriate finite N generalization of the special

geometry constraints. We also show that Whitham-type relations of the type found in

[46] arise as the planar limit of certain finite N equations which follow naturally in the

microcanonical ensemble. For simplicity, we assume t−1 = 0 for most of the present

section. The generalization to the case t−1 6= 0 is entirely obvious, but notationally

tedious.

Let us hence assume t−1 = 0. Since ρ(λ) in our models develops a nonzero value

along the cuts Ii and Ĩj with i = 1 . . . d and j = −δ . . . δ, we have d + 2δ + 1 filling

fractions. To construct the microcanonical ensemble, we pick intervals ∆i (i = 1 . . . d)

and ∆̃j (j = −δ . . . δ), such that ∆̃−j = −∆̃j for all j. In the large N limit, we shall

assume that the intervals ∆i and ∆̃j contain the cuts Ii and Ĩj. The symmetry property

9The original paper [1] gives a beautiful intuitive argument for the existence of such a relation,
without providing a rigorous proof (what is missing is to show that the Riemann surface B-periods
indeed equal appropriately defined chemical potentials). A derivation of this relation was later given
in [46, 47, 48] (using older results of [49]), though a clear construction of the microcanonical ensemble
(which is implicit in that argument) was not given there. In the present paper, we are dealing with
the more complicated case of a non-hyperelliptic Riemann surface, which underscores the usefulness
of having a clear proof of such relations.
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(3.81) shows that the filling fractions of Ĩj and Ĩ−j are equal, and we shall take S̃0 . . . S̃δ

to be the independent quantities:∫
Ii

dλρ0(λ) = Si for i = 1 . . . d∫
Ĩj

dλρ0(λ) =
1

2
S̃j for j = 1 . . . δ (4.1)∫

Ĩ0

dλρ0(λ) = S̃0 .

Then the d + δ + 1 constraints (4.1) completely fix the d + δ + 1 deformations

of (3.56) encoded by the polynomials f and gev. In the (grand) canonical ensemble,

this is implemented by introducing chemical potentials µi and µ̃j with i = 1 . . . d and

j = 0 . . . δ.

The planar (grand) canonical generating function reads:

F0(t, µ) =

∫
dλW (λ)ρ0(λ)− 1

2

∫
dλ

∫
dλ′K(λ, λ′)ρ0(λ)ρ0(λ

′)

+
d∑

i=1

µiSi +
δ∑

j=0

µ̃jS̃j (4.2)

where

K(λ, λ′) = 2 ln |λ− λ′| − ln |λ+ λ′| . (4.3)

This gives the planar limit of the microcanonical generating function:

F0(t, S) =
1

2

∫
dλ

∫
dλ′K(λ, λ′)ρ0(λ)ρ0(λ

′)−
∫
dλW (λ)ρ0(λ) , (4.4)

with the constraints (4.1).

Observation Remembering relation (3.81), one finds the functional derivatives:

δF0

δρ(λ)
=

∫
dλ′K(λ, λ′)ρ0(λ

′)−W (λ) , λ ∈ I := ∪i=1...dIi

δF0

δρ(λ)
=

∫
dλ′K̃(λ, λ′)ρ0(λ

′)−W (λ)−W (−λ) , λ ∈ Ĩ := ∪j=−δ...δ Ĩj , (4.5)

where:

K̃(λ, λ′) = K(λ, λ′) +K(−λ, λ′) = ln |λ+ λ′|+ ln |λ− λ′| . (4.6)

Note that equating (4.5) to constants and further differentiating with respect to λ gives

the planar equations of motion (3.77,3.78,3.79). This observation can be viewed as an

intuitive justification for the rigorous procedure discussed below.
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4.1 The primitive of κ along the real axis

To extract the large N chemical potentials, we shall be interested in the ‘restriction’ of

the function κ of subsection 3.5.2 along the real axis, which we define by:

κp(λ) =
1

2
[κ(λ+ i0) + κ(λ− i0)] (4.7)

for any real λ. If λ is a real value lying outside the union of Ii, then κp(λ) equals κ(λ),

the quantity obtained by substituting λ for z in (3.72). Taking the principal value of

(3.72) along the real axis gives:

κp(λ) :=

∫
dλ′ρ0(λ

′)K(λ, λ′)−W ′(λ) , (4.8)

where K(z, z′) := 2
z−z′

− 1
z+z′

. Consider now the function φ : R → C defined through:

φ(λ) :=

∫
dλ′K(λ, λ′)ρ0(λ

′)−W (λ) . (4.9)

Noticing that K(λ, λ′) = ∂
∂λ
K(λ, λ′) shows that φ is a primitive of κp:

dφ

dλ
= κp . (4.10)

As discussed in the previous section, the equations of motion (3.28) amount to the

requirement that κp vanishes along each of the intervals Ii:

κp(λ) = 0 for λ ∈ I = ∪d
i=1Ii . (4.11)

This means that φ is constant along each of these intervals:

φ(λ) = ξi = constant for λ ∈ Ii . (4.12)

Then the jump in the value of κp between consecutive cuts can be obtained by inte-

grating (4.10) between their endpoints:

ξi+1 − ξi =

∫ ai+1

bi

dλκ(λ) . (4.13)

4.2 The primitive of τ along the real axis

An entirely similar discussion can be given for the function τ(z), whose ‘restriction’ to

the real axis is:

τp(λ) =
1

2
[τ(λ+ i0) + τ(λ− i0)] =

∫
dλ′ρ0(λ

′)K̃(λ, λ′)− [W ′(z)−W ′(z′)] , (4.14)
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where K̃(z, z′) := 1
z−z′

− 1
z+z′

. Its primitive

ψ(λ) :=

∫
dλ′K̃(λ, λ′)ρ0(λ

′)−W (λ)−W (λ′) (4.15)

can be integrated in between the cuts Ĩj to give:

ξ̃j+1 − ξ̃j =

∫ ãj+1

b̃j

dλτ(λ) , (4.16)

where ξ̃j is the constant value of ψ along Ĩj (as required by the second planar equation

of motion):

τp(λ) = 0 for λ ∈ Ĩ = ∪j=−δ...δ Ĩj . (4.17)

4.3 The large N chemical potentials

Differentiating (4.4) with respect to Si for some i < d and using relation (4.9) gives:

µ
(0)
i − µ

(0)
d =

∂

∂Si

F0(t, S) =

∫
I∪Ĩ

dλ
∂ρ0(λ)

∂Si

φ(λ) = ξi − ξd , (4.18)

where we took the dependent filling fraction to be Sd.

To arrive at the last equality, we used equation (4.12) and the constraints (4.1) and

(3.25). Relation (4.18) shows that the chemical potentials associated with Ii coincide

with the quantities ξi in the planar limit, up to a common additive constant. Using

relation (4.13), we obtain:

µ
(0)
i+1 − µ

(0)
i =

∫ ai+1

bi

dλκ(λ) (4.19)

A similar argument for the differential with respect to S̃j (using relation (4.15) and

the last two constraints in (4.1)) gives µ̃
(0)
i = ξ̃i and:

µ̃
(0)
j+1 − µ̃

(0)
j =

∫ ãj+1

b̃j

dλτ(λ) . (4.20)

4.4 Geometric expression for the large N chemical potentials

Together with (3.72), equation (4.19) gives:

µ
(0)
i − µ

(0)
i+1 =

∫ ai+1

bi

dz[u2(z)− u0(z)] =

∮
B̄i

dzu(z) , (4.21)
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where B̄i are cycles on the large N Riemann surface chosen as explained in figure 6.

Similarly, we find:

µ̃
(0)
j − µ̃

(0)
j+1 =

∫ ãj+1

b̃j

dz[u1(z)− u0(z)] =

∮
˜̄Bj

dzu(z) , (4.22)

with ˜̄Bj chosen as in figure 6.

�
�
�
�Λ

IdId−1Ĩδ

Bd(Λ)

Ãδ

B̄d−1

B̃δ(Λ)¯̃Bδ−1

B̄d−3

Id−2

Ad−2 Ad−1 Ad

B̄d−2

Figure 6: Choice of B-cycles on the large N Riemann surface. We only indicate a few
cuts close to the point Λ. The cycles B̄i,

¯̃Bj and Bd(Λ), B̃δ(Λ) are defined such that, when
crossing a cut going upwards along these cycles, one moves from the branch u0 to the branch
u1 (drawn dashed) or u2 (dotted) respectively. With the orientation of the Riemann surface
induced by its complex structure, and with the indexing α of cuts explained the text, this
implies the intersections Aα∩ B̄α = +1 for the re-indexed cycles (note that the cycles Aα and
B̄α intersect in a single point, which lies on the branch u0).

Consider the cycles B̂i =
∑d−1

k=i B̄k for all i = 1 . . . d− 1. Then (4.21) implies:

µ
(0)
i = µ

(0)
d +

∮
B̂i

dzu(z) for i = 1 . . . d− 1 . (4.23)

The quantity µ
(0)
d is undetermined and can be fixed arbitrarily. Following [1], we take

µ
(0)
d =

∮
Bd
dzu(z), where Λ is a point close to +∞ and Bd(Λ) is a path shown in figure

6. Defining Bi(Λ) = B̂i +Bd(Λ) for all i = 1 . . . d− 1, equation (4.23) gives:

µ
(0)
i = Πi for i = 1 . . . d , (4.24)

with:

Πi :=

∫
Bi

dzu(z) . (4.25)

A similar construction for the cuts Ĩj gives:

µ̃
(0)
j = Π̃j for j = 0 . . . δ , (4.26)
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where:

Π̃j :=

∫
B̃j

dzu(z) , (4.27)

with cycles B̃j chosen analogously (figure 6):

B̃j = B̃δ(Λ) +
δ−1∑
k=j

˜̄Bk . (4.28)

Relations (4.24) and (4.26) show that the chemical potentials µ are the finite N ana-

logues of the periods Π.

Also remember that the filling fractions can be expressed as periods of udz over

the cycles Aα of figure 1:

Sα =

∮
γα

dz

2πi
ω0(z) =

∮
γα

dz

2πi
u0(z) =

∮
Aα

dz

2πi
u(z) . (4.29)

In the second equality, we used relation (3.52) and the fact that t(z) is a polynomial.

Defining q := d+ δ, let us index the cuts by α = −q . . . q in the order in which the

intervals Ii, Ĩj appear from left to right. We also let Aα and B̄α respectively Bα be the

corresponding cycles Ai, Ãj and B̄i,
˜̄Bj respectively Bi, B̃j indexed in this order. It is

then clear from figure 6 thatAα∩B̄α = −Aα∩B̄α−1 = +1 andAα∩B̄β = 0 if β 6= α, α−1.

This gives Aα ∩ Bβ = −Bβ ∩ Aα = δαβ. Since we also have Aα ∩ Aβ = Bα ∩ Bβ = 0, it

follows that Aα,Bβ have canonical intersection form. Thus we find a canonical system

of cycles Aα,Bα with α = −q . . . q :

Aα ∩Bβ = −Bα ∩Aβ = δα,β , Aα ∩Aβ = Bα ∩Bβ = 0 for all α = −q . . . q . (4.30)

4.5 Whitham-type relations

Let us now show how a finite N version of a set of Whitham-type constraints (similar

to those found in [46] for the case of one-matrix models) can be extracted from the

microcanonical ensemble. For the rest of this subsection, we shall allow for a logarithmic

term in the potential— as we shall see in a moment, this has interesting effects on our

Whitham-type relations.

Differentiating (3.24) with respect to tm gives:

∂

∂tm
F (t, S) = − ∂

∂tm
F(t, µ)|µα=µα(t,S) = lm , (4.31)

where we defined the averaged loop operators: lm := − 1
N
〈tr∂tmV (M)〉 = − 1

N(m+1)
〈tr(Mm+1)〉

for m > 0 and l−1 := − 1
N
〈tr(logM)〉 for m = −1. Equations (4.31) supplement rela-
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tions (3.26). We have:

−lm =

{
1

m+1

∫
dλ〈ρ(λ)〉λm+1 = 1

m+1

∮
γ

dz
2πi
zm+1〈ω(z)〉 if m > 0∫

dλ〈ρ(λ)〉 log λ =
∮

γ
dz
2πi
〈ω(z)〉 ln z if m = −1

, (4.32)

where γ is a counterclockwise contour that encircles all eigenvalues. Combined with

(4.32), equations (4.31) give a finite N version of a set of Whitham-like constraints;

these reduce to standard Whitham conditions in the planar limit and for the case

t−1 = 0.

4.5.1 Geometric form of the large N Whitham-type constraints

For m > 0, one can deform the contour γ toward infinity, thus picking up contributions

from z = ∞. This gives:

lm =
1

m+ 1
Resζ=0

[
〈ω(1/ζ)〉
ζm+3

]
for m > 0 , (4.33)

where ζ = 1/z.

In the large N limit, one has 〈ω(z)〉 = ω0(z), with ω0(z) a branch of the Riemann

surface (3.56). In this case, equations (4.33) and the last equation in (4.32) determine

the derivatives ∂F0

∂tm
in terms of the coefficients of V and f, g; these are Whitham-type

conditions analogous to those of [46]. As shown above, the derivatives ∂F0

∂Sα
are also

determined by the Riemann surface. Together with the Whitham relations, this allows

one to determine the planar generating function F0(t, S) up to an additive constant10,

given the planar limits l(0)(t, S) and Π(t, S).

5. First order analysis of the loop equations

Consider the first order large N expansion of the microcanonical generating function

F (t, S) of the log-deformed model:

F (t, S) = F0(t, S) + 1
N
F1(t, S) + O(N−2) . (5.1)

The aim of this section is to show that the contribution F1 can be obtained by differ-

entiation with respect to the parameter t−1 in the potential (3.11):

F1(t, S) =
s

2

∂F0(t, S)

∂t−1

+ Ψ(t−1, S0) . (5.2)

10We stress that equations (3.26) only determine F0(t, S) up to the addition of an arbitrary function
of tm. One needs the Whitham constraints in order to fix the t-dependence of F0.
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5.1 The resolvent to order 1/N

To establish this, we first note that the multi-point correlators of the resolvent ω differ

from the corresponding product of one point functions only at order 1/N2:

〈ω(z)2〉 = 〈ω(z)〉2+O(1/N2) , 〈ω(z)2ω(−z)〉 = 〈ω(z)〉2〈ω(−z)〉+O(1/N2) (5.3)

and so forth. Consider the 1/N–expansion:

〈ω(z)〉 = ω0(z) +
1

N
ω1(z) +O(1/N2) . (5.4)

Inserting this and (5.3) into the integral formulation (3.49) of the loop equations we

obtain the planar relations:∮
γ

dx

2πi

2xV ′(x)

z2 − x2
ω0(x) = ω0(z)

2 + ω0(z)ω0(−z) + ω0(−z)2 ,∮
γ

dx

2πi

2xV ′(x)

z2 − x2
ω0(x)ω0(−x) = ω0(z)

2ω0(−z) + ω0(−z)2ω0(z) (5.5)

and the O(1/N) constraints:∮
γ

dx

2πi

2xV ′(x)

z2 − x2
ω1(x) + s

∮
γ

dx

2πi

ω0(x)

z2 − x2

= [2ω0(z) + ω0(−z)]ω1(z) + [2ω0(−z) + ω0(z)]ω1(−z) , (5.6)∮
γ

dx

2πi

2xV ′(x)

z2 − x2
[ω0(−x)ω1(x) + ω0(x)ω1(−x)] + s

∮
γ

dx

2πi

ω0(x)ω0(−x)
z2 − x2

= [2ω0(z)ω0(−z) + ω0(−z)2]ω1(z) + [2ω0(−z)ω0(z) + ω0(z)
2]ω1(−z) .

On the other hand, the filling fraction conditions give:∮
γi

dz

2πi
ω0 = Si (i = 0 . . . d) ,

∮
γ̃j

dz

2πi
ω0 =

1

2
S̃j (j = 1 . . . δ) ,

∮
γ̃+
0

dz

2πi
ω0 =

1

2
S̃0 , (5.7)

and∮
γi

dz

2πi
ω1 = 0 (i = 0 . . . d) ,

∮
γ̃j

dz

2πi
ω1 = 0 (j = 1 . . . δ) ,

∮
γ̃+
0

dz

2πi
ω1 = 0 . (5.8)

These include the constraints for the log-deformed model arising for the cuts shown in

figure 5.

Suppose that ω0(z) is a solution to (5.5) and (5.7) for the potential (3.11). By

differentiating the planar loop equations (5.5) as well as (5.7) with respect to t−1 one
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can check that ωp
1 := s

2
∂ω0

∂t−1
is a particular solution of both (5.6) and (5.8). To show that

this is the unique solution, it suffices to check that the homogeneous system obtained

from (5.6) by dropping the terms s
∮

γ
dx
2πi

ω0(x)
z2−x2 and s

∮
γ

dx
2πi

ω0(x)ω0(−x)
z2−x2 from the two left

hand sides admits only the trivial solution when supplemented by the constraints (5.8).

To establish this, notice that the homogeneous system associated with (5.6) results from

the planar equations (5.5) if one performs infinitesimal variations of ω1 = δω0, such

that the variations are independent of the coefficients t−1 . . . td of the potential (3.11).

Such variations of ω0 arise by changing the filling fraction parameters Sα, which give a

parameterization of that part of the moduli space of our Riemann surface which results

by varying the quantities f, g of subsection 3.3. Therefore, the solution space to the

homogeneous system associated with (5.6) is the tangent space T to this part of the

moduli space of our surface. Since the corresponding moduli space is parameterized

by Sα, the dimension of this solution space equals d + δ + 2. On the other hand,

relations (5.8) give d + δ + 2 linearly independent equations for such solutions. These

equations select the vanishing solution of the homogeneous system associated with (5.6).

Therefore, the homogeneous system obtained from (5.6) has no nontrivial solutions

when supplemented by the constraints (5.8). This shows that the solution of (5.6) and

(5.8) is uniquely determined and equals ωp
1.

We conclude that the solution of the loop equations has the form:

〈ω(z)〉 = ω0(z) +
1

N
ω1(z) +O(1/N2) , (5.9)

where:

ω1(z) =
s

2

∂ω0(z)

∂t−1

. (5.10)

5.2 The 1/N correction to the microcanonical generating function

Next we show that a similar relation holds for the 1/N -expansion of F . To simplify

notation we label all filling fractions S, S̃ by S, keeping the convention that S0 denotes

the filling fraction of I0 in figure 5. Equation (5.10) was derived under the assumption

that the nonsingular part W of our potential contains a finite number of terms d. Since

(5.10) must hold for any value of d, it is clear that it also holds if we formally allow

W to contain an infinity of terms. Therefore, let us now take W (z) =
∑∞

m=0
tm

m+1
zm+1.

Defining the loop insertion operator d
dW (z)

=
∑∞

m=0
m+1
zm+1

∂
∂tm

(see e.g. [50]), we then

have (m+ 1) ∂F
∂tm

= 1
N
〈trMm+1〉, for all m ≥ 0, which gives the standard relation:

〈ω(z)〉 = − d

dW (z)
F (5.11)
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upon expanding ω(z) = 1
N
〈tr 1

z−M
〉 = 1

N

∑∞
m=0

1
zm+1

〈tr Mm+1〉
m+1

. Here F is the micro-

canonical generating function. Expanding F =
∑

j≥0
1

NjFj, this gives ωj = − d
dW (z)

Fj.

Therefore, relation (5.10) implies:

F1(t−1, . . . t∞, S0 . . . S∞) =
s

2

∂F0(t−1 . . . t∞, S0 . . . S∞)

∂t−1

+ Ψ(t−1, S0 . . . S∞) , (5.12)

where Ψ is a universal function of t−1, S0 . . . S∞ which does not depend on (tj)j≥0. Since

this function is completely independent of t0 . . . t∞, it knows nothing about which of

these coefficients are zero. To determine it, let us consider a potential (3.11) with

W = 0; this amounts to setting tj = 0 for all j ≥ 0. In this case, the associated

Riemann surface (3.85) has a single independent period, namely S0. It follows that the

function Ψ does not depend on the variables S1 . . . S∞. Thus one has Ψ = Ψ(t−1, S0).

Returning to equation (5.12), we now take W to be of the form (3.11) and obtain:

F1(t−1, t0 . . . td, S0 . . . Sd+δ+1) =
s

2

∂F0(t−1, t0 . . . td, S0 . . . Sd+δ+1)

∂t−1

+Ψ(t−1, S0) . (5.13)

Since we are ultimately interested in the case t−1 = 0, let us set S0 = S0(t−1) with

S0(0) = 0 in equation (5.13). Then the limit t−1 → 0 gives:

F1(0, t0 . . . td, 0, S1 . . . Sd+δ+1) =
s

2

[
∂F0(t−1, t0 . . . td, S0 . . . Sd+δ+1)

∂t−1

] ∣∣∣
t−1=0,S0=0

+Ψ(0, 0) .

(5.14)

Therefore, the microcanonical generating function of the model with t−1 = 0 satisfies:

F1 =
s

2

∂F0

∂t−1

∣∣∣
t−1=0

+ constant . (5.15)

This relation is reminiscent (though somewhat different in character) of similar equa-

tions satisfied by the (microcanonical) generating function of SO(N) and Sp(N/2)

one-matrix models [22, 28].

6. Comparison with the field theory description

In this section we want to compute the leading terms in the effective superpotential

from our matrix model. The strategy to do so will be the following. We will take the

superpotential of the gauge theory in which all the fields are complex. So to start with,

there is no hermiticity constraint on M and also Q and Q̄ are unrelated. The gauge

symmetry will be given by the complexified gauge group just as in the discussion of

the classical moduli space of the gauge theory. After imposing an appropriate gauge
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fixing à la BRST we then choose a suitable real section in the configuration space and

perform the path integral along this real section. This is completely analogous to the

situation in [7, 18] where in a two-cut vacuum of the one-matrix model one was forced

to expand around Hermitian and anti-Hermitian matrices respectively. This somewhat

ad hoc procedure has been justified recently in [20].

According to the DV-conjecture the leading logarithmic terms in the superpoten-

tial can be computed from the “non-perturbative” part of the matrix-model partition

function. Actually the notion of non-perturbative should be understood here in the

sense that we compute the one-loop approximation to the partition function, taking all

couplings of terms involving the product of more than two matrices to zero. In other

words, we will expand the matrix model around the background only up to terms that

are bilinear in the fluctuating fields. In order to keep things simple but also capture

the essential physics we choose to expand around the vacuum with vevs given by

〈M〉 = diag(0N0 , a1N1 , b1N2 ,−b1N2) ; (6.1)

and

〈Q〉 =


Es

0

0 1N2

s1N2 0

 ; 〈Q̄〉 =


−sW ′(0)Es

0

0 −sW ′(b)1N2

−W ′(b)1N2 0


(6.2)

The N0 ×N0 matrix Es is defined as in section 2. The constants a and b are solutions

to the equations W ′(a) = 0 and W ′(b) = W ′(−b). This vacuum is the simplest generic

one in the sense that each of the different types of vacua we found in the analysis of

the classical moduli space appears precisely once.

6.1 Fixing the gauge à la BRST

The gauge transformation are

δM = i[Λ,M ] , δQ = i(ΛQ+QΛT ) δQ̄ = −i(ΛT Q̄+ Q̄Λ) (6.3)

Since we are interested only in the quadratic part of the action we can also linearize

the gauge transformations around the background. Furthermore from now on we will

decompose all matrices in blocks of sizes Ni × Nj with i, j ∈ 0 · · · 3 and denote the

fluctuations of the matrices around the vevs with lower case letter, i.e. M = 〈M〉+m,

Q = 〈Q〉 + q and Q̄ = 〈Q̄〉 + q̄. The linearized gauge transformations then take the
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form

δ̂mij = i
(
〈M〉jj − 〈M〉ii

)
Λij (6.4)

δ̂qij = i
(
Λik〈Q〉kj + 〈Q〉ik(Λjk)

T
)

(6.5)

δ̂q̄ij = −i
(
(Λki)

T 〈Q̄〉kj + 〈Q̄〉ikΛkj

)
(6.6)

From these transformation we see that we can choose the gauge

mij = 0 ; for j 6= i ,

q23 = q00 = 0 . (6.7)

The gauge fixing is now implemented in a standard fashion by promoting the gauge

transformations to BRST transformations, i.e. replacing the gauge parameters by ghosts.

We also need to introduce antighosts C̄ and Lagrange multiplier fields B. The gauge

fixing Lagrangian is given by

Sgf = sTr

(∑
i6=j

(C̄ijmij) + C̄qq23 + C̄00q00

)
. (6.8)

The BRST transformations for the antighosts and Lagrange multipliers are

s C̄ij = Bij , s B̄ij = 0 ,

s C̄q = Bq , s B̄q = 0 ,

s C̄00 = B00 , s B̄00 = 0 . (6.9)

Explicitly the gauge fixing action is

Sgf = Tr
[∑

i6=j

Bijmij + i(〈M〉ii − 〈M〉jj)C̄ijCij +Bqq23 − iC̄q(C22 + CT
33) +

B00q00 − iC̄00(C00Es + EsC00)
]
. (6.10)

The the residual gauge group is

Gs = U(N1)× U(N2)×
{
SO(N0) s = +1

Sp(N0

2
) s = −1

. (6.11)

Notice that the U(N2) group is diagonally embedded in U(N2)× U(N2) such that the

rank of the original U(N) gauge group is N = N1 + 2N2 + N0. According to this

structure of the gauge group only the combination C22 +CT
33 appears in the gauge fixed

action. Similarly only the ghosts components of C00 that do not correspond to SO/Sp

residual gauge transformations propagate.
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6.2 Gaussian approximation of partition function and microcanonical gen-

erating function

Expanding the action around the background up to terms that are bilinear in the fields

gives

S(2) = N

(
N1W (a) +N2(W (b) +W (−b)) +N0W (0) +

1

2

3∑
i=0

W ′′(〈M〉ii)Tr (m2
ii)

)
+

∑
i>j

(〈M〉ii + 〈M〉jj)Tr (q̄ijqji) +
3∑

i=0

〈M〉iiTr (q̄iiqii) +

+Tr (q̄32(m22 +mT
33)) +

1

2
Tr (q̄00(m00Es + Esm

T
00)) . (6.12)

In this expression we used already that q23 = 0, q00 = 0 and mij = 0 for i 6= j. Notice

that this gauge fixing is also important for another reason. Even without our gauge

choice the blocks q23, q00 do not contribute to S(2). This is because 〈M〉22 = b = −〈M〉22
and 〈M〉00 = 0. Fixing the gauge in the way we did eliminates this problem. Moreover,

the fields q̄23 and q̄00 act now as Lagrange multipliers implementing the constraints

m22 = −mT
33 and m00Es + Esm

T
00 = 0 . (6.13)

This restricts the fluctuations of M precisely in such a way as to account for a field in

the adjoint representation of the diagonally embedded U(N2) gauge group and another

field in the adjoint representation of SO(N0) or Sp(N0

2
) respectively.

In the definition of the matrix model in section 2 we had to implement also a

reality constraint of the form M − M † = 2iε1 and Q̄ = −iQ†. However, for the

present calculation it is more convenient to choose different sections to ensure that all

exponentials are decaying. For instance if a sits at a maximum of W (x) we will choose

m11 anti-Hermitian. Similarly, we choose q̄ij = q†ij or q̄ij = −q†ij depending on the sign of

the coefficient of q̄ijqij in S(2). For the ghosts we choose either Re (Cij) = Re (C̄ij) = 0

or Im (Cij) = Im (C̄ij) = 0.

In addition we can not relate all blocks of q to blocks of q̄ by a conjugation. De-

manding for example q̄32 = q†23 would automatically set q̄32 to zero because of the gauge

fixing. We do need these fields however in order to implement the constraints (6.13)

on the fluctuations of M . Therefore we will demand q̄32 imaginary and q̄00 imaginary

symmetric or antisymmetric depending on s. After integrating out the Lagrange mul-

tipliers Bij, Bq, B00, q̄32 and q̄00 the partition function of the gauge fixed matrix model

is given by

Z =
1

vol(Gs)

∫ ∏
i∈{0,1,2}

dmii

∏
ij 6=

n
(23)

(00)

dqij dC dC̄ e−(S(2)+Sgf ) (6.14)
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Performing the Gaussian integrations gives

Z =
1

vol(Gs)
ZM Zghosts Zmatter , (6.15)

where

ZM =
( 2π

NW ′′(a)

)N2
1
2
( 2π

N(W ′′(b) +W ′′(−b))

)N2
2
2
( 2π

NW ′′(0)

)N0
4

(N0−s)

.

Zghosts = (a2 − b2)2N1N2a2N1N0(2b)2N2
2 b4N2N0

Zmatter =
( π

a2 − b2

)N1N2
(π
a

)N1N0+
N1
2

(N1+s)(π
b

)2N2N0+N2(N2+s)

. (6.16)

The microcanonical generating function is defined through N2F = − log(Z). In order

to compute it we need the logarithms of the volume of the residual gauge group. These

are given by

log(vol(U(N))) = −N
2

2

(
log(N)− 3

2
− log(2π)

)
+O(N0) ,

log(vol(Hs(N))) = −N
2

4

(
log(N)− 3

2
− log(2π)

)
+

s
N

4
(log(N)− 1 + log(4)− log(2π)) +O(N0) , (6.17)

where Hs is SO(N) for s = 1 and Sp(N
2
) for s = −1. According the the DV conjecture

we introduce now the filling fractions Si = Ni

N
and define the masses m(a) = W ′′(a),

m(b) = (W ′′(b)+W ′′(−b)) and m(0) = W ′′(0). The 1/N expansion of the microcanon-

ical generating function we denote by

F = N2

(
F 0 +

1

N
F 1 +O(1/N2)

)
. (6.18)

The complete microcanonical generating function is

F = FM + Fghosts + Fmatter (6.19)

where

FM = −S
2
1

2
log
( S1

e
3
2m(a)

)
− S2

2

2
log
( S2

e
3
2m(b)

)
− S2

0

4
log
( S0

e
3
2m(0)

)
+

+
s

N

S0

4
log
( 4S0

em(0)

)
,

Fmatter = −S1S2 log
( π2

a2 − b2

)
− (S1S0 + S2

1/2−
s

2N
S1) log

(π
a

)
− (6.20)

−(2S2S0 + S2
2 +

s

N
S2) log(

π

b

)
,

Fghosts = −2S1S2 log(a2 − b2)− 2S1S0 log(a)− 2S2
2 log(2b)− 4S2S0 log(b) .
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6.3 The superpotential in the Gaussian approximation

The effective superpotential of the gauge theory can be computed from these expressions

as

Weff =
∑

i∈{1,2,0}

Ni
∂F 0

∂Si

+ 4F 1 + αiSi , (6.21)

The subleading 1/N term in the microcanonical generating function stems form graphs

with topology RP2. These are present in our theory because of the symmetric/antisymmetric

Q matrices. It has been argued in [21, 22, 28] that the RP2 contribution to F enters the

superpotential with a an additional factor 4. This argument has originally been derived

in the context of theories with orthogonal and symplectic gauge groups. However, it re-

ally only depends on the topology of the Feynman graphs and therefore should go over

to our case without essential changes. In any case we will see shortly that (6.21) gives

the correct Veneziano-Yankielowicz form of the superpotential. The final ingredient is

α. It is given by the coupling of the original U(N) gauge theory

α = (N − 2s) log
(Λhigh

µ

)
. (6.22)

The factor N − 2s is the one-loop beta function coefficient of the original gauge theory.

The scale µ is the scale where the potential W (φ) becomes relevant. For notational

simplicity we will set this scale to one. Alternatively we could have introduced a

scale in the matrix integral such that the Si obtain the correct dimension three as is

appropriate for the interpretation as gaugino condensate. The αi are then given by

α0,1 = α and α2 = 2α, where the last factor two stems from the diagonal embedding of

the gauge group U(N2). Collecting now all the terms we find the effective low energy

superpotential

Weff = S1 log
(Λ3N1

low,1

SN1
1

)
+ S2 log

(Λ3N2
low,2

SN2
2

)
+
S0

2
log
(Λ

3(N0−2s)
low,0

SN0−2s
0

)
+S1 log

(
eN1

πN+2s

)
+ S2 log

(
eN2

π2(N−2s)−2N2

)
+
S0

2
log

(
42seN0−2s

π2N1+4N2

)
.(6.23)

The relation between the low- and high energy scales is

Λ3N1
low,1 = m(a)N1 aN1+2s (a2 − b2)−N2 a−N0 ΛN−2s

high ,

Λ3N2
low,2 = m(b)N2 (a2 − b2)−N1 b2N2+4s−2N0 (2b)−4N2 Λ

2(N−2s)
high ,

Λ
3
2
(N0−2s)

low,0 = m(0)
N0
2
−s a−N1 b−2N2 ΛN−2s

high . (6.24)
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Thus the effective superpotential coincides with the one obtained in section 2 up to the

linear terms in the Si. Of course these linear terms can not be determined by naive

threshold matching.
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A. Comparison with the O(n) and A2 matrix models

A.1 Comparison with the O(n) model

Let us compare our models with symmetric and antisymmetric matter with the O(n)

model analyzed in [42, 43]. The difference is the (M,Q) interaction term, which reads

in the O(n) model
n∑

i=1

trQ†
iMQi, (A.1)

where Q†
i = Qi are Hermitian. After diagonalizing M in the relevant case for compar-

ison11 n = 1, the Gaussian integration over the real Qii leads in our conventions to

s = 0. To summarize one has s = 1 for Qii complex, s = 0 for Qii real and s = −1 for

Qii = 0 and this affects only the definition of U(x) (3.12) while the rest of the derivation

of the loop equations remains the same. The quadratic loop equation (3.33) agrees in

the large N -limit with the one in [42, 43]. A cubic loop equation does not appear in

[42, 43] explicitly. The second order loop equations generalize very directly to general

n. The third order loop equation should become an n + 1 order loop equation. From

the gauge theory point of view the n = 1 model corresponds to adding matter in the

adjoint representation, a spectrum which emerges e.g. from an N = 4 theory. Adding

more matter n > 1 leads to non asymptotically free cases.

A.2 Comparison with the A2 quiver theory

Let us next compare the situation to the ADE quiver theories, in particular to A2,

which is the double cover of the models discussed so far. The ADE matrix models where

11For a special cubic V (x) this corresponds to Ising model on a random lattice [42].
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discussed in [38, 39, 41] and further considered in the context of the DV conjecture in

[2, 51, 52]. The action of the ADE quiver matrix models is:

SADE =
r∑

i=1

trW(i)(M
(i)) +

r∑
i,j=1

sijtrQ(ij)M
(j)Q(ji) . (A.2)

Here one has an N (i) ×N (i) matrix M (i) for every node in the Dynkin diagram of the

ADE Lie algebra and the Q(ij) are N (i)×N (j) matrices transforming in the (N (i), N̄ (j))

representation and fulfilling Q†
(ij) = Q(ji). For a given ordering of the nodes sij =

−sji = 1 if node i and node j are linked in the diagram and sij = 0 otherwise. After

diagonalizing all M (i) the Gaussians in the Q-fields appear with different signs. Let us

assume sij = 1 and Qji = iQ†
ij. Then we have to shift the M (i) eigenvalues into the

upper half-plane whereas the M (j) eigenvalues have to be shifted into the lower half-

plane ! For sij = −1 we can still shift the M (i) eigenvalues into the upper half-plane

but we then have to demand Qji = −iQ†
ij. After choosing these real slices through the

matrix configuration space the Gaussian integrations over all Q-fields can be performed.

N2SADE = N
r∑

i=1

N(i)∑
k=1

W(i)(λ
(i)
k )−

r∑
i=1

∑
k 6=l

ln(λ
(i)
k −λ

(i)
l )+

r∑
i<j

∑
k,l

ln(λ
(i)
k −λ

(j)
l )|sij | . (A.3)

The orientifold projections are obtained by M (1) = −
(
M (2)

)T
and Q̄T

12 = sQ21 and

lead to the symmetric or antisymmetric matter. Identifying Q12 = Q21 leads to the

n = 1 O(n) model. The action on M identifies for all cases λ
(1)
k = −λ(2)

k , while the

projection of the Q changes the result of the Gaussian integration starting from (A.2).

Let us sketch the derivation of the exact loop equations for S := SA2 in the following.

The e.o.m. for the λ
(1)
k eigenvalues read:

N
∂SADE

∂λ
(1)
k

= W ′
(1)(λ

(1)
k )− 1

N

N1∑
l( 6=k)

2

λ
(1)
k − λ

(1)
l

+
1

N

N2∑
l

1

λ
(1)
k − λ

(2)
l

, (A.4)

with an analogous expression for the λ
(2)
k .

Let us define the resolvents for the two matrices as ωi(z) = 1
N

∑Ni

k
1

z−λ
(i)
k

, i = 1, 2

and choose Ψ
(i)
k = 1

z−λ
(i)
k

, i = 1, 2 in (3.30) to obtain two Ward identities, which can be

simplified with analogous equations to (3.31). Adding these two Ward identities one

gets the quadratic loop equation:

〈ω1(z)
2−ω1(z)ω2(z) +ω2(z)

2−W ′
1(z)ω1(z)−W ′

2(z)ω2(z) + f1(z) + f2(z)〉 = 0 . (A.5)
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Here we defined

fi(z) =
1

N

Ni∑
k=1

W ′
i (z)−W ′

i (λ
(i)
k )

z − λ
(i)
k

, i = 1, 2 . (A.6)

The derivation of the cubic loop equations is likewise very similar to the discussion

in the orientifolded model. One uses Ψ
(1)
k = 1

N

∑N2

m=1
1

λ
(1)
k −λ

(2)
m

1

z−λ
(1)
k

in (3.30) and sim-

plifies the Ward identity with (3.41). Subtracting the same equation, but with indices

(1) ↔ (2) exchanged, yields the cubic loop equation:〈
ω1(z)ω2(z)

2 − ω1(z)
2ω2(z) +W ′

1(z)(ω1(z)
2 + f1(z)−W ′

1(z)ω1(z))−

W ′
2(z)(ω2(z)

2 + f2(z)−W ′
2(z)ω2(z)) + g2(z)− g1(z)

〉
= 0, (A.7)

where

gi(z) =
1

N2

N1∑
k=1

N2∑
m=1

W ′
i (z)−W ′

i (λ
(i)
k )

(λ
(i)
k − λ

(j 6=i)
m )(z − λ

(i)
k )

, (A.8)

Note that the cubic loop equation for the quiver model does not depend explicitly on
1
N

. In contrast the cubic loop equation for the O(1) model does contain a subleading
1

N2 term and the orientifold model contains even terms at order 1
N

. This is consistent

with the fact that 1
N

terms come from non-orientable diagrams and these are absent of

course in the A2 and O(1) model. According to the DV conjecture, terms of order 1
N2 are

related to gravitational corrections. The effective pure field theoretical superpotential

of the orbifold model can therefore be obtained by taking the effective superpotential of

the A2 model and simply identifying the relevant variables, e.g. S
(1)
i = S

(2)
i . However,

in the terms related to the gravitational couplings this procedure would not give a

correct result, since then one has to take into account the additional 1
N2 terms in the

cubic loop equation! It would be interesting to investigate this issue further and to see

if these extra terms can be related to the presence of twisted sectors in the dual string

model.

A.2.1 The large N Riemann surface for the A2-quiver

Here we will take the large N limit of the loop equations for the A2 quiver. We will

see that the Riemann surface governing the A2 model is not hyperelliptic but rather

is a triple cover of the z-plane, one of whose branches gives ωi,0(z). The occurrence of

Riemann surfaces with a more complicated sheet structure for multi matrix models is

not unexpected [40, 2]. Our derivation from the exact loop equations will provide a

proof for the curves of A2 quiver and the orbifolds thereof.
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The leading terms will be extracted from the loop equations (A.5,A.7). Using the

variables12

ω1(z) = u1(z)− t1(z) , t1(z) = −1

3
(2W ′

1(z) +W ′
2(z))

ω2(z) = −u2(z) + t2(z) , t2(z) =
1

3
(W ′

1(z) + 2W ′
2(z)) (A.9)

one obtains the from the large N -loop equations the affine complex algebraic curve

u1(z)
2 + u1(z)u2(z) + u2(z)

2 = p(z)

u1(z)u2(z)
2 + u1(z)

2u2(z) = −q(z) (A.10)

where

p(z) = t21 + t1t2 + t22 − f1 − f2

q(z) = −t21t2 − t1t
2
2 + f1t2 + f2t1 − g1 + g2 . (A.11)

Now (A.10) are the Viete relations for the cubic

2∏
i=0

(u(z)− ui) = u3 − p(z)u− q(z)

=
2∏

i=0

(u− ti(z)) + u(f1 + f2) + g1 − g2 − f2t1 − f1t2 = 0 , (A.12)

where u0 = −u1 − u2 and t0 = −t1 − t2. As we have shown that fi and gi are

polynomials in z, (A.12) is an algebraic curve, and can be viewed as a triple cover of

the z plane [2]. The perturbations encoded in fi and gi can be explicitly related to

the eigenvalue densities of the two matrix model. If d1 + 1, d2 + 1 are the degrees of

the potentials W1,W2, the degrees of fi, gi are di − 1 respectively. The perturbation

parameters introduced by gi are #(g) = max(d1, d2) and #(f) = d1 + d1 for the fi.

In particular for d1 = d2 = d relevant for the modding below we get 3d, which is is

compatible with number of branches calculated in [36]: for equal degree d + 1 of the

Wi it is dR+, where R+ are the number of positive roots for the quiver ADE group. It

has also been checked [36] that this number coincides with the number of independent

S3 in H3(M), where M is the local Calabi-Yau threefold after the large N transition.

Using the Z2 identification λ(1) = −λ(2) on gets

ω1(z) = ω(z), ω2(z) = −ω(−z), (A.13)

W ′
1(z) = W ′(z), W ′

2(z) = −W ′(−z)

12In order to keep the notation simple, we use here ωi for ωi,0.
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etc. Since it was shown in section 3.1 that all log dependence can be absorbed into

V (z) we can in general replace W ′(z) by V ′(z) and recover the large N limit of the two

loop equations with the Z2 orientifold identification (3.51).
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