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Abstract

Background: Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand

challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression

networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and

consistent with different data sets. This is particularly problematic for little understood organisms since not much existing

biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise.

Random matrix theory (RMT), which has been widely and successfully used in physics, is a powerful approach to

distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have

hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold

can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory.

Results: Application of random matrix theory to microarray data of S. oneidensis, E. coli, yeast, A. thaliana, Drosophila,

mouse and human indicates that there is a  of nearest neighbour spacing distribution (NNSD) of correlation matrix after

gradually removing certain elements insider the matrix. Testing on an in silico modular model has demonstrated that this

transition can be used to determine the correlation threshold for revealing modular co-expression networks. The co-

expression network derived from yeast cell cycling microarray data is supported by gene annotation. The topological

properties of the resulting co-expression network agree well with the general properties of biological networks.

Computational evaluations have showed that RMT approach is sensitive and robust. Furthermore, evaluation on sampled

expression data of an in silico modular gene system has showed that under-sampled expressions do not affect the

recovery of gene co-expression network. Moreover, the cellular roles of 215 functionally unknown genes from yeast, E.

coli and S. oneidensis are predicted by the gene co-expression networks using guilt-by-association principle, many of which

are supported by existing information or our experimental verification, further demonstrating the reliability of this

approach for gene function prediction.

Conclusion: Our rigorous analysis of gene expression microarray profiles using RMT has showed that the transition of

NNSD of correlation matrix of microarray profile provides a profound theoretical criterion to determine the correlation

threshold for identifying gene co-expression networks.
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Background
The cellular system, similar to engineering systems, is
modular [1]. Hartwell et al. defined a module in biologi-
cal system as "a discrete unit whose function is separable
from those of other modules" and suggested that the func-
tional modules are a "critical level of biological organiza-
tion" [1]. One of important characteristics of modular
system is collectivity. Namely, the similarities of behav-
iour or properties between elements in the same module
are significantly higher than similarities between elements
from different modules. Moreover, the cell is a complex
system with many functionally diverse elements, includ-
ing proteins, DNA, RNA and small molecules. Cellular
functionalities involve groups of molecules interacting to
each other. Modelling cellular systems as networks with
connected elements allows us to understand the proper-
ties of cellular systems [2,3]. Thus, a module in a biologi-
cal network can be defined as a sub-network that
structurally has more insider links than outsider links and
functionally is enriched with genes (proteins) in the same
functional module.

The microarray technology, which enables massive paral-
lel measurement of expressions of thousands of genes
simultaneously, has opened up great opportunities for the
systems-level understanding and elucidating of gene net-
works [4-6]. Various methods have been developed for
inferring gene networks, such as differential equation-
based network methods [7-10], Bayesian network meth-
ods [11,12] and relevance/co-expression network meth-
ods [13-15]. Nevertheless, the inference of genome-wide
gene networks currently is still constrained by the dimen-
sionality problem, namely, number of genes is far greater
than the number of experiments in microarray data.

Because of its computational simplicity and the nature of
microarray data (typically noisy, highly dimensional and
significantly under-sampled) [16], co-expression network
methods are most commonly used for identifying cellular
networks [14,15,17-19]. As the expressions of genes in the
same function modules generally are highly correlated,
gene functional modules can be revealed from gene co-
expression network as network modules. The co-expres-
sion network methods first construct a correlation matrix
of gene expressions, in which the Pearson correlation and
the mutual information are often used. Then, the co-
expression network methods assign a link to a pair of
genes when the correlation between their expressions
exceeds a threshold [14,15,17-19]. Consequently, the net-
work structure and topology, e.g. the number, size, con-
tent and connections of modules, are subjective,
depending on the thresholds chosen. Thus, it is critical to
appropriately define the threshold of correlation. Cur-
rently, thresholds are usually determined by either known
biological information [17-19], or by statistical compari-

son to randomized expression data [20,21]. New
approaches are urgently needed to determine gene net-
works in an automatic and objective fashion [3]. To tackle
this, we developed a novel random matrix theory (RMT)-
based approach to determine the threshold in this report.

Initially proposed by Wigner and Dyson in the 1960s for
studying the spectrum of complex nuclei [22], RMT is a
powerful approach for identifying and modelling phase
transitions associated with disorder and noise in statistical
physics and materials science. It has been successfully
used for studying the behaviour of complex systems, such
as spectra of large atoms [23], metal insulator transitions
in disorder systems [24,25], spectra of quasiperiodic sys-
tems [23,26,27], chaotic systems [28], brain response [29]
and the stock market [30]. However, its suitability for bio-
logical systems remains largely unexplored.

RMT makes two universal predictions for real symmetric
matrices: the nearest neighbour spacing distribution
(NNSD) of eigenvalues (i.e., the distribution of the differ-
ence of two nearest neighbour eigenvalues) follows Gaus-
sian orthogonal ensemble (GOE) statistics if there exists
correlation between nearest-neighbour eigenvalues, while
it follows Poisson statistics if there is no correlation [23].
Deviations from GOE universal prediction can be used to
distinguish system-specific, non-random properties of
complex systems from random noise [30]. It has been well
recognized that only a portion of genes change their
expressions under different experimental conditions.
Thus, the correlation matrix of gene expressions is the
combination of the high correlation part Mc, which signi-
fies the correlation of gene expressions specified to
changes in biological systems, and the weak correlation
part Mr or so-called noise, which signifies random rela-
tions between gene expressions: M = Mc + Mr. The modu-
larity of the cellular systems indicates that Mc is non-
random and will emerge collectivity property. Based on
RMT, we hypothesized that the two universal predictions
are applicable to biological systems. The NNSD of M will
follow GOE and the NNSD of Mc will follow Poisson dis-
tribution. The transition of NNSD between GOE and Pois-
son distributions can serve as a reference point to
distinguish system-specific, non-random relationship
embedded in correlation matrix of gene microarray data
from random noise. This reference point is mathemati-
cally defined and can be used as a threshold to identify
gene co-expression networks in an automatic and objec-
tive fashion.

In this report, we describe the development and applica-
tion of an RMT-based approach to determine the correla-
tion threshold for identifying co-expression networks
based on the microarray data from such simple-to-com-
plex organisms as S. oneidensis, E. coli, yeast, A. thaliana,
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Drosophila, mouse and human. Moreover, the resulting co-
expression networks are useful for predicting the function
of unknown genes, which is supported by existing infor-
mation and our experimental verification.

Results
In silico evaluation of RMT approach to determine 

correlation threshold

To test the effectiveness of the RMT based criterion to
determine correlation threshold for constructing co-
expression network, we constructed an in silico model to
simulate a simplified gene co-expression network. A cor-
relation matrix of 2,000 genes with a designated correla-
tion threshold of 0.7 was constructed (See Methods and
Materials for details). The NNSD of the in silico correlation
matrix showed a dramatic transition at the designated
threshold (Fig. 1). NNSD followed Poisson distribution at
the cutoff 0.7, whereas it obeyed GOE at cutoff 0.69. The
RMT approach reliably identified the designated thresh-
old.

Sharp transitions of NNSD from GOE to Poisson 

distributions in correlation matrices from yeast microarray 

data

We then proceeded to apply RMT-based approach to real
biological data. Yeast cell cycling microarray data [31] was
selected because it has been extensively studied, making it
easy to evaluate whether the results from RMT-based
method are consistent with existing biological knowledge.
A total of 5,293 genes with 70 time points available in the
dataset were used. A correlation matrix based on pair-wise
Pearson correlation coefficient in the range of (-1, 1) was
calculated (See Methods for details). To simplify the anal-
ysis, the absolute cutoff values were set to be the same for
both positive and negative correlations, though different
cutoffs for positive and negative correlations were tested
separately and similar results were obtained (data not
shown).

A clear sharp transition of NNSD from GOE to Poisson
distribution was observed (Fig. 2A). Based on χ2 test (p =
0.001), NNSD started to deviate from GOE at the correla-
tion coefficient rl = 0.62 and completely transformed into

In silico evaluation of RMT approachFigure 1
In silico evaluation of RMT approach. An in silico modular system was constructed at cutoff of 0.7 to simulated a simplified 
gene co-expression network. (A) The normalized NNSDs of correlation matrices of the system at cutoff 0.69 (cyan) and 0.7 
(pink) were compared to the curves of Wigner surmise (green) and Poisson distribution (red). The x-axis is the level spacing s 
and the y-axis is probability of NNSDs. (B) Chi-Square Test at different cutoff values. The red line in the inset indicates the crit-
ical value of Chi-Square test of p = 0.001. X and Y axes represent the cutoff and the chi-square test values, respectively.
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Transition of nearest neighbour spacing distribution and gene co-expression network from yeast cell cycle microarray profilesFigure 2
Transition of nearest neighbour spacing distribution and gene co-expression network from yeast cell cycle 
microarray profiles. (A) The normalized NNSDs of correlation matrices of yeast cell cycle gene expressions at different cut-
off values. They were plotted against the curves of Wigner surmise (navy) and Poisson distribution (red). The x-axis is the level 
spacing s and the y-axis is the probability of NNSDs. (B) Fifteen significant gene co-expression sub-networks (modules) of the 
yeast cell cycling dataset were revealed at cutoff 0.77. All modules that have more than 4 genes are shown. For modules that 
have 3 genes, only those modules that form a cycle are shown, because only these kinds of modules are statistically significant 
[61]. Each node represents a gene and the width of line represents the Pearson correlation coefficient of two linked genes. 
Blue and gray lines indicate positive and negative correlation coefficients, respectively. Colors were assigned to nodes accord-
ing to their functional categories: Red represents the major functional category of each module while purple, yellow and tan 
represent other functional categories, which are often clustered into sub-modules. Genes in lavender participate in processes 
closely related to genes in red. White nodes are unknown genes while black nodes are genes whose functional links to other 
genes are not currently understood. Green nodes are genes in metabolic processes, which are influenced by many biological 
processes. LightCyan nodes in Module 15 are genes involved in cell cycling regulation and related processes. Text in the map 
indicates the major functional category of each module, as represented by red. Dashed circles separate modules into sub-mod-
ules, which form independent modules at higher cutoffs. A more detailed description of each gene is provided in Addtional File 
3, Supplement Note B and online [62]. (C) Dilution assays of deletion mutants. Deletion mutants and the wild-type strain 
B4742 were grown in YPD overnight to saturation. Then cells were diluted 1:10 and 1:100 in water prior to spotting onto YPD 
or YPD containing 1 μg/ml cycloheximide plates. Images were obtained after incubation at 30°C for 4 or 7 days, respectively. 
(D) Growth curves of deletion mutant YLR190W and the parental strain B4742. Triplicates of B4742 and the YLR190W mutant 
were grown in YPD or YPD containing nocodazole (NZ) at 30°C with constant agitation for 30 hrs.
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Poisson distribution at the correlation coefficient rh =
0.77. Similarly, after the missing values is estimated using
the nearest neighbour based method [32], sharp transi-
tion (see additional file l, Figure 1) also observed and the
threshold remains the same, which was possible due to
the small number of missing values allowed in our study
(only 7 missing values allowed in total 77 experiments).
Furthermore, sharp transition from GOE to Poisson was
also observed in correlation matrix using mutual informa-
tion (data not shown). In addition, we applied this
method to another yeast microarray dataset generated
from environmental stress responses of yeast [33]. A clear
transition from GOE to Poisson distributions was
observed likewise (r = 0.60–0.89) (data not shown).

Comparison of threshold obtained by RMT to that 

obtained by randomization

To evaluate the effectiveness of the threshold determined
by RMT method, we compared it to the widely used
method of determining the threshold by randomizing
gene expression profiles [14,34], using the yeast cell cycle
data [31] and environmental stress responses data [33].
Gene Ontology Slim category from Saccharomyces
Genome Database (SGD) database [35] was used to clas-
sify links. To simplify the comparison, a link connecting
two genes in the some Gene Ontology Slim category is
deemed to be true. As summarized in Table 1, more than
half of links in all networks obtained by RMT method are
true links. However, for randomized method, the net-
works constructed from yeast environmental stress
responses data contain very low percentage of true links.
This comparison indicates that randomization is poor for
certain microarrays and RMT method has an advantage
over randomization in identifying system-specific infor-
mation embedded inside microarray profiles.

Gene co-expression network based on yeast cell cycle 

microarray data

From correlation matrix of yeast cell cycle microarray
data, we have constructed a co-expression network at the

cutoff value rh = 0.77, where NNSD is completely trans-
formed into Poisson distribution. The resulting network
contains a total of 804 genes that are partitioned into 15
sub-networks (modules) (Fig. 2B; see Additional File 3,
Supplementary Note for detailed description of each
module). Both positive and negative correlations are
present in the network, as depicted in Figure 2B. To
achieve an accurate evaluation based on current biological
knowledge, we manually analyzed the biological coher-
ence of modules according to gene annotations from the
Saccharomyces Genome Database (SGD) and Munich
Information centre for protein sequences (MIPS).
Remarkably, all modules contain functionally coherent
set of genes (Fig. 2B), demonstrating that RMT analysis
faithfully reveals biologically meaningful networks in
yeast. Indeed, among links of known genes, 85.4% of the
links are between genes in the same or related functional
pathways, whereas the rest 14.6% links are not supported
by current experimental results, which might reflect the
existence of systematic errors in microarray data or alter-
natively, the insufficiency of current biological knowledge
of yeast.

Many large modules can be visually divided into smaller
sub-modules, as indicated by the dashed circle in Figure
2B. For instance, Module 15 can be divided into four sub-
modules: (1) ribosome proteins; (2) genes involved in
ribosomal biogenesis; (3) mitochondrion proteins and
(4) genes involved in protein degradation, while Module
9 contains distinct sub-modules of Y'-cluster genes, cell
cycle regulators and histones. These have suggested the co-
regulation at the gene expression level between different
sub-modules, which often display evident functional
association. For example, in Module 15, genes involved in
ribosomal biogenesis are surely related to ribosome pro-
teins, while a large portion of sub-module of mitochon-
drion proteins are indeed mitochondrion ribosome
proteins. These results signify the presence of modular
hierarchy in the network. Furthermore, sub-modules can
be separated from each other by raising the cutoff. For

Table 1: Comparison of thresholds obtained by RMT approach and randomization method and their corresponding co-expression 

networks. The thresholds determined by RMT approach and randomization method on two yeast microarray expression profiles and 

their corresponding co-expression networks are compared. Abbreviations: MI – mutual information, and Pearson – Pearson 

correlation coefficient.

Microarray data Yeast cell cycle Yeast environmental stress responses

RMT Randomization RMT Randomization

Correlation measure MI Pearson MI Pearson MI Pearson MI Pearson

rh 1.17 0.77 1.253065 0.68836 1.361 0.91 0.666697 0.533674

Number of genes 861 966 342 2398 402 523 3883 5266

Number of links 1764 3346 591 15853 4991 7160 625161 1585805

"true" links (%) 57.88 64.94 64.13 52.27 77.28 75.53 32.30 29.86
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instance, sub-modules of Module 15 are separated at cut-
off of 0.79 (Addtional File 1, Figure 2). Likewise, submod-
ules of Module 9 are separated at cutoff of 0.79 and 0.81
(Addtional File 1, Figure 2). Therefore, different levels of
modularity of the yeast co-expression networks can be
identified by further raising the cutoff values above the
mathematically defined threshold.

Different types of modules are observed in the yeast co-
expression network. Many (sub) modules are mainly
comprised of components of protein complexes. Remark-
able examples include the ribosomal protein sub-module
in Module 15, in which about 90% of the known genes
encode ribosomal or ribosome-associated proteins. Also,
out of 10 genes of histone sub-module of Module 9, eight
are histone subunits. In the case of mitochondrion, genes
encoding proteins located to this small subcellular
organelle are clustered into a sub-module of Module 15.
In contrast, other modules cannot be classified by co-pres-
ence in protein complexes or subcellular organelles;
instead, they are comprised of components in the same
cellular processes. For instance, module 3 is composed of
five genes participating in galactose metabolic pathway:
GAL1, 2, 3, 7 and 10. Gal1p, Gal2p, Gap7p and Gal10p
function in consecutive steps of glycolysis, whereas Gal3p
is a regulatory protein exerting tight transcriptional con-
trol over the galactose metabolism pathway. These genes
are co-regulated at expression level but might not interact
with each other directly [36]. Similarly, all five known
genes in Module 7 participate in gluconeogenesis, despite
the lack of physical interaction between their protein
counterparts.

It has been noted that genes with similar functions do not
always have similar expression profiles [17]. Although
two genes are not strongly correlated in gene expression,
they could both be strongly correlated with the same set
of other genes, a characteristic named as "transitivity". All
of these transitive genes should be grouped together in the
same modules. However, major clustering algorithms fail
to do so [17]. In contrast, the co-expression network
method is able to detect transitively co-regulated genes, as
best exemplified by genes encoding ribosome proteins.
The pairwise Pearson correlation coefficients between
expressions of three genes encoding ribosome proteins,
RPL19B, RPL26B and RPL1A, are less than 0.3 and hence
unlikely to be grouped by clustering, whereas RMT analy-
sis correctly links them within Module 15. Similarly, both
Smc1p and Bim1p are involved in spindle formation or
chromosome segregation during mitosis. Although the
correlation between their expressions is as low as 0.2, they
are grouped together by their linkages to other cell cycle
regulators such as RAD53 and KCC4.

We also constructed the gene co-expression network from
the yeast cell cycle microarray profiles with the missing
values estimated [32]. As shown in Table 5, the two gene
co-expression networks obtained from yeast cell cycle
microarray profiles with or without missing value estima-
tion are almost the same with 95.5% genes and 93.8%
links overlapped.

Functional predictions of unknown genes and 

experimental validation

The fact that functionally related genes are connected
together in the co-expression networks sheds the light for
predicting the cellular roles of hypothetical genes by
"guilt-by-association" [37]. Although confidence level of
the predictions has not been quantified at this moment, it
can be inferred by functional uniformity among the asso-
ciated genes. We have tentatively predicted the functions
of 136 genes based on yeast cell cycling datasets, (see
Additional File 2, Supplementary Table S1). A few selected
examples are listed in Table 2. For example, yeast
YCR072C is associated with many genes of ribosomal bio-
genesis and protein synthesis in Module 15. Accordingly,
the protein product of this gene has been reported
recently to participate in several complexes involved in
protein synthesis and RNA turnover metabolism [38]. It
was also co-purified with the 60S ribosomal subunit [39].
Notably, several predictions were consistent with experi-
mental results but were not made by other network iden-
tification methods (Table 2).

To experimentally evaluate the predictive power of co-
expression network, we examined the functional associa-
tion of six unknown proteins (YJL122W, YML074C,
YMR269W, YNL050C, YOR154W, and YCR016W) pre-
dicted to be involved in ribosomal biogenesis. While
YJL122W and YCR016W were suggested to be involved in
ribosomal biogenesis by other methods (Table 2), the
other genes were not previously predicted to be associated
with this functional process. Since we hypothesized that
these genes participate in ribosomal biogenesis, we pre-
dicted that their deletion mutants might have defective
ribosomes and deficiency in protein synthesis. Conse-
quently, they should be sensitive to the protein synthesis
inhibitor, cycloheximide. Indeed, a deletion mutant of
CGR1, which is known to be involved in ribosomal bio-
genesis, failed to grow on YPD plates containing cyclohex-
imide (Fig. 2D). Similarly, the deletion mutants of these
six unknown genes, but not their parental strain B4742,
failed to grow on YPD plates containing cycloheximide,
indicating that protein synthesis in these mutants is defec-
tive. A possible function of ribosomal biogenesis of these
unknown genes is also supported by recent high-through-
put findings [40,41]. For example, YML074C and
YMR269W localize to the nucleolus [40], the cellular
organelle for ribosome biogenesis.
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Transition of nearest neighbour spacing distribution and gene co-expression network from S. oneidensis microarray profilesFigure 3
Transition of nearest neighbour spacing distribution and gene co-expression network from S. oneidensis micro-
array profiles. (A) The normalized NNSDs of correlation matrices of S. oneidensis heat/cold shock gene expressions at differ-
ent cutoff values. They were plotted against the curves of Wigner surmise (navy) and Poisson distribution (red). The x-axis is 
the level spacing s and the y-axis is the probability of NNSDs. (B) A node representing a hypothetic protein SO2017 is inter-
connected to many heat shock proteins, suggesting a possible role in heat shock. The heat shock proteins are grpE, lon, 
SO3681, dnaJ, dnaK, groES, groEL, prlC and hslV. (C) Growth curves of SO2017 deletion mutant and its parental strain DSP10. 
Both strains were initially grown in LB media and shifted to 42°C when OD600 reached 0.69 and 0.62, respectively. In an inde-
pendent experiment, the viability of the ΔSO2017 strain was reduced by 46% at 10 min after exposure to 42°C (data not 
shown).
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We also examined another unknown gene, YLR190W, for
its role in cytokinesis. The deletion mutant and its paren-
tal strain B4742 grew similarly in YPD medium. However,
the mutant showed a severe growth defect compared to
B4742 in the presence of the cytokinesis inhibitor nocoda-
zole (Fig. 2E). This has suggested that YLR190W is
involved in cytokinesis. In conclusion, our experiments
demonstrated the prediction power of the co-expression
networks.

RMT-based approach is applicable to microarray data of 

other tested organisms

The yeast co-expression network above was validated
using existing gene annotations and experiments with
deletion mutants for genes of unknown function. How-
ever, it is more desirable to apply the RMT-based method
to determine correlation threshold for constructing gene
co-expression networks from microarray data of little
understood organisms. Since not much existing biological
knowledge of these organisms could be employed to
determine the threshold, it is appealing to use an auto-
matic method to defined confident threshold. To test
whether the NNSD transitions are present in correlation
matrices of gene expression data from other organisms,
the RMT method has been used to analyze correlation

matrices of microarray data from a variety of organisms,
e.g. Shewanella oneidensis [42], Escherichia coli [43], Arabi-
dopsis thaliana [44], Drosophila[45], mouse [46] and
human [47]. A clear NNSD transition from GOE to Pois-
son distribution has been observed in the range of 0.73–
0.9 for the little understood bacterium S. oneidensis (Fig.
3A). Likewise, transitions have been revealed in other
organisms: E. coli (r = 0.72–0.86), A. thaliana (r = 0.86–
0.94), Drosophila (r = 0.76–0.93), mouse (r = 0.67–0.89)
and human (r = 0.67–0.87) (data not shown). These
results have demonstrated that RMT is applicable to gene
expression data from all of the tested organisms.

The power of RMT method for determining the correla-
tion threshold has been further evaluated in details based
on genome-wide expression data from S. oneidensis and E.
coli. A co-expression network of 7 modules was con-
structed for S. oneidensis heat/cold shock microarray data
at cutoff of 0.90 (Addtional File 1, Figure 3), and a co-
expression network containing 30 modules was identified
in E. coli dataset at a cutoff of 0.86 (Addtional File 1, Fig-
ure 4). Similar to yeast data, functional modules was iden-
tified in the networks [62]. For example, modules of
energy transport (#1, 2 and 4) were isolated in S. oneiden-
sis co-expression network, while the big module #25 in E.

Structural properties of gene co-expression network from yeast cell cycling data at threshold of 0.77Figure 4
Structural properties of gene co-expression network from yeast cell cycling data at threshold of 0.77. (A) The 
dependence of the clustering coefficient on the node's degree C(K). (B) The connectivity distribution P(K).
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coli dataset was dedicated to display sugar to the outer
structure of bacterial surface. Taken together, the RMT-
approach is useful to determine the correlation threshold
for identifying gene co-expression networks in different
species.

From the co-expression networks, we predicted functions
of 32 unknown genes for E. coli and 47 unknown genes
for S. oneidensis (see Additional File 2, Supplementary
Tables S1and S3). Some representative examples are listed
in Table 2. For example, E. coli gene yaeC is predicted to
function in metabolite transport. This prediction is sup-
ported by a recent report that yaeC is a component of the
methionine uptake system [48], though this information
is missing in the annotation database from the institute
for genomic research (TIGR). The predictive power of co-
expression network was further experimentally tested on a
hypothetical protein SO2107 from S. oneidensis. It formed
a compact sub-network with other known heat shock pro-
teins, indicating a role of this gene in heat shock response
(Fig. 2B). An in-frame deletion mutant was generated, and
it was indeed sensitive to heat shock (Fig. 3C). In addi-
tion, an RpoH (σ32) binding site was identified in the
upstream region of SO2017 [42]. These results clearly sup-
ported the reliability of the gene function predictions
made using co-expression network.

Topological properties of gene co-expression networks

Biological networks are considered to be small world,
modular, hierarchical and scale-free [3,49]. To determine
whether the obtained co-expression networks are consist-
ent with general network theory, the topological proper-
ties of the co-expression network from yeast cell cycle
microarray data have been examined. The average path
length of this network is 7.81, which is quite small com-
pared to the size of the network (804 genes). This result
suggests that the network is a small world. The average
clustering coefficient of this network is 0.323, implying a
high degree of modularity. Also, the average clustering
coefficient (C(k)) of all genes with k links follows the scal-
ing law: C(k) ~ k-0.37 as shown in Figure 4A. This signifies
high hierarchical modularity although the scaling expo-
nent of 0.37 differs from the values obtained from meta-
bolic modular networks [50]. Analysis of connectivity
properties of this network revealed a power-law distribu-
tion with a degree exponent of 1.5 (Fig. 4B), which is in
accordance with the previous results on microarray
expression profiles [51]. Taken together, the properties of
RMT networks are consistent with general network theory.

Computational evaluations of RMT approach

To determine the sensitivity of RMT-based approach to
determine correlation threshold for identifying gene co-
expression networks, we randomly have rewired a small
percentage of the links in the network from the yeast cell

cycling data. As low as 0.4% random rewiring is able to
make the NNSD deviating from Poisson distribution (Fig.
5). Therefore, the RMT approach is sensitive to detect even
small topological changes in the networks. In addition,
since microarray data typically contain high inherent var-
iability, we have examined whether the networks are sta-
ble when additional noise is added. Different levels (1–
50%) of Gaussian noise have been added to the entire
dataset; new correlation thresholds have been determined
for the perturbed data and corresponding networks have
been constructed. When 30% noise has been added,
79.4% of the original links and 86.5% of the original
genes are still preserved (Fig. 6), indicating that the RMT
approach is robust in tolerating noises. Together, these
statistical evaluations have indicated that the RMT
approach is sensitive and robust to noise for determining
correlation threshold.

In silico evaluation of the effect of sampling complexity on 

RMT approach

The microarray data is under-sampled, that is, the number
of experiments is fewer than the number of genes. To eval-
uate the effect of under-sampling to RMT based method,
we developed an in silico modular gene system (see Meth-
ods and Materials for details), in which correlations
between expressions of genes inside modules ("true"
links) have been designed to be a value Ct (0 <Ct < 1); and
other expression correlations have been designed to be
zero. Then, RMT based method has applied to construct
gene co-expression network from sampled expression
data of the modular system. First, effect of different Ct
value on the number of samplings to recover 99% of
"true" links is tested. As shown in Table 3, when the Ct
value is decreased (from 0.7 to 0.3), the number of expres-
sions needed to separate the "true" links from random is
increased (from 50 to 600). However, the number of
experiments is still very small comparing to the total genes
in the system. In addition, the effect of the size of system
on the number of samplings needed is limited (Table 4).
We also examined the percentage of "true" links over total
links in the network. For Ct = 0.7 and a system size of
2000 genes, the percentage of "true" links over total links
is 98.4% for only 20 expressions sampled (data not
shown). In summary, even with the under-sampled
expressions, the RMT approach is still able to recover the
original co-expression networks in the designed model.

Discussion
RMT has been used in characterizing the non-random
phenomena in physical, material and social systems,
including heavy nuclei, metal insulator transitions and
the stock markets. It has been well recognized in these sys-
tems that RMT analyses are efficient for distinguishing sys-
tem-specific, nonrandom properties from random noise.
In this study, our observations with the microarray data
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Table 2: Representative functional predictions of hypothetical proteins with high confidence.

Species Module Gene
Designation

Predicted
biological
pathway/
localization

Identified by
other methods?

Experimental
verification in
this paper

Experimental supporting 
evidences from annotation 
databases

Yeast Module 9 YLR183C cell cycle yes [19, 63] ND transcription factor regulating several 
promoters of genes involved in 
pheromone response and cell cycle;

Module 9 YOL007C cell cycle yes [19, 63] ND structural component of the chitin 
synthase 3 complex

Module 9 YLR190W cytokinesis yes [19] Consistent with 
prediction

localized to small buds, bud neck, and 
incipient bud sites; mRNA is targeted 
to the bud via the mRNA transport 
system involving She2p

Module 9 YNL058C cell cycle yes [18, 19] ND potential Cdc28p substrate

Module 15 YHL021C Stress response yes [19, 63] ND

Module 15 YGR160W ribosome 
biogenesis

yes [19, 63] Consistent with 
prediction

Module 15 YIL127C ribosome 
biogenesis

yes [63] ND

Module 15 YJL122W ribosome 
biogenesis

yes [63] Consistent with 
prediction

Module 15 YLR196W ribosome 
biogenesis

yes [19, 63] ND nucleolar protein

Module 15 YLR400W ribosome 
biogenesis

no Consistent with 
prediction

Module 15 YML074C ribosome 
biogenesis

yes [19] Consistent with 
prediction

nucleolar peptidyl-prolyl cis-trans 
isomerase (PPIase); FK506 binding 
protein; phosphorylated by casein 
kinase II (Cka1p-Cka2p-Ckb1p-
Ckb2p) and dephosphorylated by 
Ptp1p

Module 15 YMR269W ribosome 
biogenesis

no Consistent with 
prediction

nucleolar protein [40]; protein 
possibly involved in protein synthesis 
[64]

Module 15 YNL050C ribosome 
biogenesis

no Consistent with 
prediction

Module 15 YOR146W ribosome 
biogenesis

no ND

Module 15 YOR154W ribosome 
biogenesis

no Consistent with 
prediction

Module 15 YCR016W ribosome 
biogenesis

yes [63] Consistent with 
prediction

nucleolar protein

Module 15 YPR169W ribosome 
biogenesis

no ND nucleolar protein [40]

Module 15 YCR072C ribosome 
biogenesis

yes [19, 63] ND present in several complexes involved 
in protein synthesis and RNA turnover 
metabolism [38]; co-purified with the 
60S ribosomal subunit [39].

Module 15 YDL063C ribosome 
biogenesis

yes [19] ND

S. oneidensis Module 4 SO3725 central 
intermediate 
metabolism; 
protein 
modification

no ND

Module 5 SO2017 heat shcok 
response

yes [42]. Consistent with 
prediction

Module 5 SO2042 heat shcok 
response

Module 5 SO2375 metabolism

Module 5 SO3298 metabolism no ND

Module 5 DsbD metabolism no ND thiol:disulfide interchange protein
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from various organisms support our central hypothesis
that the two universal predictions are applicable to bio-
logical systems. RMT might be particularly suitable for
microarray data, which usually have high inherent varia-
tions. Based on yeast gene annotation, 85% of the func-
tionally known genes are correctly linked. In addition, we
demonstrated that the structure of network obtained from
original microarray profiles differs from the networks
obtained from randomized expression data [52]. Further-
more, computational analysis showed that all modules
and links in an in silico network were correctly identified
at the expected cutoff value. Together, these results suggest
that the RMT-based approach can reliably identify gene
co-expression networks.

Previously, we have applied the random matrix theory to
study the properties of microarray data [50] and biologi-
cal networks [54]. In our Physics Letters A paper [54], we
have demonstrated that the NNSDs of the adjacent matrix
of protein interaction network and metabolic network fol-
low universal predictions of RMT. The current manuscript
is a follow-on study of our Physical Review E paper [50].
The Physical Review E paper has just shown that NNSDs
of correlation matrices from microarray data follow the
universal description in random matrix theory. However,
it did not provide a solid and complete algorithm for
inferring gene co-expression networks from microarray
data. Moreover, no rigorous biological tests of the pre-
dicted networks were performed. In the current manu-
script, we systematically proposed a method for inferring
gene co-expression network by utilizing the transition of
NNSDs of correlation matrices from microarray data. And
we provided computational analyses to show that this
approach is reliable, sensitive and robust to noise. Fur-
thermore, we demonstrated that the resulting co-expres-

sion networks are biologically meaningful. We provided
evidences that the gene grouped in the network partici-
pate in the same biological pathway; the function of
unknown genes can be accurately predicted, as shown by
the experimentally validation; and the network are hierar-
chical, modular, small-world and scale-free, which are
typical properties of biological networks. Together, the
current manuscript is dedicated to a more practical
method for inferring biological meaningful gene net-
works from microarray data, which is certainly not tackled
at all in the previous publication. The current manuscript
is a necessary follow-on study and also the first manu-
script to provide a useful RMT based method for systems
biology to identify biological pathways that are regulated
by the given condition, to annotate function of unknown
genes, and to dissect the global network properties.

There are two kinds of properties of eigenvalues of a real
symmetric matrix: global properties and local properties.
For example, eigenvalue distribution that changes based
on large scale of eigenvalues is a global property of eigen-
values [23]. On the other hand, NNSD is a local property
of eigenvalues. The global and local properties usually are
unrelated. Numerical experiments showed that local
properties of eigenvalues of a real symmetric matrix
become independent of the probability distribution of
matrix elements and the global properties of matrix when
N → ∞ [23]. The local properties, like NNSD, only
dependent on over-all symmetries of the system, like real
symmetric, or Hermitian.

As a matter of fact, the correlation matrices of microarray
data are not general matrices with random elements, or
even normal correlation matrices in statistic due to the
number of microarray experiments is much less than the

E. c Module 143 yaeC metabolism, cell 
surface 
transporter

no ND

Module 143 ybgF protein synthesis no ND

Module 141 envR function related to 
cell surface 
structure

no ND

Module 2531 b1505 transport protein no ND

Module 2531 yqcB energy metabolism no ND

The function of the listed hypothetical proteins was not clearly understood. However, many of our predictions were supported by existing 
experimental evidence from other laboratories (see last column), which was cited and summarized in the Saccharomyces Genome Database or 
TIGR's S. oneidensis or E. coli annotation database [59]. 
ND: not determined.

Table 2: Representative functional predictions of hypothetical proteins with high confidence. (Continued)

Table 3: Effect of different Ct value on sampling to recover 99% of "true" links for a system of 2000 genes

Ct 0.3 0.5 0.7

Number of sampled expressions 600 200 50
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number of genes analyzed. Hence, current predictions of
RMT about the global properties, such as eigenvalue dis-
tribution, may be invalid for these correlation matrices
from microarray data. Addtional File 1, Figure 5 has
showed that the distribution of elements in correlation
matrix of yeast cell cycle microarray data follows the Gaus-
sian distribution and Addtional File 1, Figure 6 has
showed that the eigenvalue distribution of this matrix fol-
lows Cauchy distribution. However, the overall symmetry
of these correlation matrices is still a real symmetry. The
independent character of NNSD makes it possible to com-
pare the NNSD of correlation matrices from microarray
profiles with the theoretical predictions of RMT. Noted
that the correlation matrix used in the report actually even
is not a normal semi-positively defined correlation matrix

as there are missing values in the data set and we have
only used the experiments both genes having values to
calculate the correlation. However, the same NNSD tran-
sitions have also been observed on normal semi-posi-
tively defined correlation matrices that calculated from
same microarray data after estimating the missing value
[32].

The co-expression networks identified based on RMT cri-
terion can serve as a useful tool for predicting functions of
hypothetical proteins. Genome sequencing projects indi-
cate that substantial portions of open reading frames in a
variety of organisms are functionally unknown. Defining
the functions of such genes is a formidable task [53]. In
this study, the cellular roles of 215 functionally unknown

Sensitivity of RMT approachFigure 5
Sensitivity of RMT approach. (A) Wigner surmise (green) and Poisson distribution (red) were compared to the normalized 
NNSDs of the yeast dataset at cutoff 0.77 and its derived correlation matrices in which 1% (cyan), 2% (blue), 3% (navy) links 
were rewired. (B) Chi-Square test. Poisson distribution is plotted against NNSDs of correlation matrix of yeast cell cycling 
dataset at cutoff 0.77 and its derived correlation matrices in which 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 
2%, 3%, 4%, 5% links are rewired. The red line indicates the critical value of Chi-Square test of p = 0.001.

Table 4: Effect of the size of gene systems on sampling to recover 99% of "true" links for certain Ct = 0.7.

Size of gene system 2000 3000 5000 7000

Number of sampled 
expressions

50 70 100 100
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genes from yeast, S. oneidensis and E. coli were predicted,
many of which were supported by existing information
and our experiments. Such predictions will provide direc-
tions and guidance for future experimental design and
verification, and hence facilitate the studies of function-
ally poorly characterized genes. In addition, the co-expres-
sion networks appear to be fairly sensitive in identifying
functional modules, as shown by our computational anal-
yses and comparison to relevance network. Indeed, the
functions of several unknown genes identified and exper-
imentally verified in this report were not reported before
by other commonly used methods including relevance
network.

We selected the threshold at which the NNSD finished the
transformation into Poisson distribution from GOE dis-

tribution with the probability of p = 0.001. Based on the
microarray data examined, it appears that the sharpest
changes of χ2 values were observed when NNSD is
changed to a Poisson distribution at the probability level
of p = 0.001. Thus p = 0.001 appears to be a good choice.
However, due to the nature of microarray data (e.g. high
noise), insufficient datasets to resolve the interactive rela-
tionships among different genes and/or the complexity of
biological processes, complete removal of noises is
unlikely. It is expected that some false links could still
exist above the threshold. To further remove false links,
one could select the threshold at other correlation values
at which the NNSD is changed into a Poisson distribution
with different probabilities such as p = 0.01, 0.05, or 0.1,
which correspond to higher threshold correlation values.
This should enable the isolation of network connections

Table 5: Comparison of gene co-expression networks obtained from yeast cell cycle microarray profiles with and without missing 

values estimation. The gene co-expression network obtained from original yeast cell cycle data is compared with the gene co-

expression network obtained from a derived yeast cell cycle microarray data with missing value of original file is estimated by nearest 

neighbour method [32].

Number of Genes Number of Links

W/O 966 3346

With 941 3318

Overlap 922 3139

Analysis of RMT approach for robustness to noiseFigure 6
Analysis of RMT approach for robustness to noise. Increasing levels of Gaussian noise are added to the yeast cell cycling 
microarray expression profiles. The mean of noise is zero and its standard deviation (σNoise) is set to 1, 2, 5, 10, 20, 30, 40, and 
50% of the average of absolute expression value of whole dataset. (A) Percentage of preserved links over total links in the 
modules perturbed by noise (red), and over total links in original modules (green) at different levels of noise. (B) Percentage of 
preserved Genes over total genes in the modules perturbed by noise (red), and over total genes in original modules (green) at 
different levels of noise. (C) Increased noise decreases the cutoff to separate modules.
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with higher confidence and further division of larger
modules into smaller modules.

Our results have indicated that a transition zone can be
defined based on the two critical points (rl and rh). A tran-
sition zone of r = 0.62–0.77 has been identified for yeast
cell cycling data. In order to achieve high confidence on
the co-expression network, we have chosen the upper
bound of the NNSD transition as the threshold, with
trade-off of possible loss of some correct information. For
instance, at the threshold value of r = 0.77, a module
involved in galactose metabolism has been identified
(Module 3). But a key regulatory protein in this pathway,
Gal80, is missing. This protein has been identified after
lowering threshold value to 0.70 (data not shown). There-
fore, lowering the threshold in the transition zone can
enable us to identify additional correct links. However,
this could also lead to much more false links (data not
shown). One solution to solve this problem is called soft
thresholding [15]. A further study that combines RMT
based criterion with soft threshold to identify more true
links in the transition zone will be worthy of investigation
in the future.

When Mc can not be easily distinguished from Mr in cor-
relation matrix, the RMT approach could not be able to
generate a meaningful threshold. The examples include
occasions that the experiment points are very limited and
similarities between expressions of all genes are high; or
very messy microarrays that have been poorly carried out.

Conclusion
Although high throughput genomics technologies such as
microarray are powerful tools for studying gene functions
and global regulations, identifying cellular networks in an
automatic and objective fashion from genome-wide gene
expression data remains challenging [6,19,54]. The RMT-
based approach has been presented here provides a relia-
ble, sensitive and robust method for determining correla-
tion threshold; and then dissecting gene co-expression
networks. The automatic and objective fashion of RMT-
based approach makes it more advantageous in studying
little understood organisms. The RMT-based approach
could also be applied to other high throughput data for
proteomes and metabolomes or combinations of these
datasets. Similar characteristics have been also observed
with the matrices from yeast protein interaction and met-
abolic pathway data [55]. Moreover, we expect that RMT
is applicable to complex biological systems such as com-
munities, and ecosystems. Further exploration of this
method should provide valuable insights into the modu-
lar networks across different levels of biological organiza-
tion.

Methods
Determining correlation threshold by RMT based 

approach

First, a gene expression correlation matrix M, whose ele-
ments are Pair-wise Pearson correlation coefficients (r) in
the range of (-1.0, 1.0), was constructed. If there are miss-
ing values in the expression files, only the experiments
that both genes have values are used to calculate Pearson
correlation. Then, a series of correlation matrices were
constructed using different cutoff values. If the absolute
value of an element in the original correlation matrix is
less than the selected cutoff, it is set to 0. Eigenvalues of
each correlation matrix were obtained by direct diagonal-
ization of the matrix. Standard spectral unfolding tech-
niques [26] were applied to have a constant density of
eigenvalues and subsequently the nearest neighbour spac-
ing distribution P(s) (see Additional File 3, Supplemental
Note A for details), which is employed to describe the
fluctuation of eigenvalues of the correlation matrix. We
used the Chi square test to determine two critical thresh-
old values, rl at which P(s) start to deviate from GOE at a
confidence level of p = 0.001, and rh at which P(s) follows
the Poisson distribution at a confidence level of p = 0.001.
The critical point rh is chosen to be the threshold used for
constructing the gene co-expression network. Same proce-
dure is used for analyzing the correlation matrix based on
mutual information to determine the threshold.

Constructing gene co-expression network

Based on RMT, the complete transition from GOE to Pois-
son distributions can serve as a reference point to distin-
guish system-specific, nonrandom properties embedded
in gene expression data from random noise. Thus, we
used the rh at which NNSD is completely transformed into
Poisson distribution at the significance level of p = 0.001
as the threshold to define gene co-expression networks.
From the correlation matrix, we can easily construct a co-
expression network, in which each gene is a node and
there is a link between two genes if the correlation meas-
ure between their expressions is greater than the thresh-
old. All co-expression networks with cutoff beyond
threshold will also provide system-specific relationship.
However, the co-expression network at the threshold will
provide the most relationship.

Construction of an in silico model

An in silico gene co-expression network of 2,000 genes
with 10 modules of the size ranging from 5 to 200 genes
(200, 100, 50, 50, 20, 20, 10, 10, 5, and 5 genes) was con-
structed using the threshold value of rh = 0.7. The corre-
sponding in silico correlation matrix was constructed as
following: First, for each module whose size is greater
than 5, we assigned the correlation coefficient of a ran-
dom value in the range of +/-(0.7, 1.0) to each pair of ele-
ment inside the module with a probability of 0.35. This
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probability is chosen to make the modules have the simi-
lar number of "true" links as the real gene co-expression
modules. Second, for two modules with a size of 5, we
linked the 5 elements to form some topology structure
similar in real gene co-expression networks by assigning
certain correlation coefficient with a random value in the
range of +/-(0.7, 1.0). Finally, we assigned the rest correla-
tion coefficient in the correlation matrix of these 2000 ele-
ments to a random value in the range of (-0.695, 0.695).
The links with weight between 0.7 and 1.0 correspond to
the "true" correlation inside modules and the links with
weight between 0.0 and 0.7 are noise. The RMT method
was applied to this system as described above.

Sampling expressions of an in silico modular gene system

A modular gene system has been developed to examine
the effect of under-sampling on RMT based method. In
this gene system (with size > 1000), there are 1000 genes
divided into ten modules with equal size. Correlations
between expressions of genes inside modules ("true"
links) have been designed to a value Ct (0 <Ct < 1); and
other expression correlations have been designed to be
zero. Expressions of genes are sampled from Gaussian dis-
tribution to make their correlation matrix following previ-
ous designed pattern. Note that the real correlations from
the sampled expression will fluctuate around the original
designed values. Then, RMT based method was applied to
sampled expressions to construct gene co-expression net-
work. Multiple sampling experiments have been con-
ducted. First, for a system of 2000 genes and different Ct
value (0.3, 0.5, and 0.7), we started from sampling 20
expressions, and then sampled 10 more expressions every
next time until 99% of "true" links recovered. Second, for
certain Ct value (0.7) and different sizes of system (2000,
3000, 5000, 7000), we started from sampling 20 expres-
sions, and then 10 more expressions every next time until
99% of "true" links recovered.

Evaluations of RMT-based network identification 

approach

(A) Sensitivity. The Maslov-Sneppen procedure [56] was
used to rewire a small percentage (0.1%, 0.2%, 0.3%,
0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 2%, 3%, 4%,
5%) of links in the gene co-expression network derived
from yeast cell cycling data. The Maslov-Sneppen proce-
dure randomizes the links in the network while keeping
the degree of each vertex unchanged. For each rewiring,
two links, A-B and C-D, are randomly selected. If there is
no link between A and D and no link between C and B,
the original two links A-B and C-D are disconnected and
two new links A-D and B-C are constructed. After finishing
rewiring the network, we constructed the corresponding
correlation matrices, from which NNSDs were obtained.
(B) Robustness to noise. Increasing levels of Gaussian
noise (1–50%) were added to the entire yeast cell cycling

data. Then NNSDs from perturbed data were calculated as
described above.

Network visualization and annotation

The software program Pajek [57] was used to visualize
modular networks. Annotation databases for yeast, S.
oneidensis and E. coli were from the Saccharomyces Genome
Database (SGD) [58] and The Institute for Genomic
Research [59], respectively.

Strains and physiological studies

All yeast strains were purchased from Open Biosystems
(Huntsville, AL). For dilution assays, cultures were grown
in YPD media (1% yeast extract, 2% bactopeptone, and
2% dextrose) overnight to stationary phase, suspended in
water, and then spotted onto chemical-containing YPD
plates at 10-fold serial dilutions followed by incubation at
30°C. Growth assay of cultures in liquid medium was per-
formed in YPD with a BioScreen C (MTX Lab Systems,
Inc., Vienna, VA).

To generate an in-frame S. oneidensis mutant of SO2017,
the majority of the ORF was removed by an in-frame dele-
tion mutagenesis approach [60]. The desired gene region
was removed using PCR amplification with the primers
A1 (5'AGC CTG TGA GCT CAC GGG), A2 (5'TGT TTA
AAC TTA GTG GAT GGG GGT TAG ATC GAG GAT ATT),
B1 (5'CCC ATC CAC TAA GTT TAA ACA GTT TGG CAA
ACC AAT ATC) and B2 (5'ACA ATC GAG CTC TGC GAT),
and a second cross-over PCR amplification with A1 and
B2 using the mixed amplified fragments as templates. The
resulting product was cloned into the suicide plasmid
pDS3.0 and transformed into E. coli S17-1/λpir prior to
conjugal transfer into S. oneidensis strain DSP10. Correct
in-frame deletion was verified by DNA sequencing.

Growth of the SO2017 mutant was examined in Luria-Ber-
tani (LB) medium under both optimal temperature
(30°C) and temperature shifting (30 to 42°C at OD600 =
0.62). The survival of mutant cells was compared to the
parental strain DSP10 at 5, 10, 15, 25, 50 min after tem-
perature shift.
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