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Abstract— We present an algorithmic methodology for
constructing Lyapunov-Krasovskii (L-K) functionals for
linear time-delay systems, using the sum of squares decom-
position of multivariate polynomials to solve the related in-
finite dimensional Linear Matrix Inequalities (LMIs). The
resulting functionals retain the structure of the complete
L-K functional and yield conditions that approach the true
delay-dependent stability bounds. The method can also be
used to construct parameter-dependent L-K functionals for
certifying stability under parametric uncertainty.

I. INTRODUCTION

Functional Differential Equations (FDEs) are an im-
portant modeling tool for systems involving transport
and propagation of data or with aftereffect. Recently,
research in the area [5], [8] has been intensified as the
simplest adequate models for Internet congestion control
schemes [9], [16] are in the form of nonlinear FDEs.

The presence of delays can have an effect on system
stability and performance, so ignoring them may lead to
design flaws and incorrect analysis conclusions. Stability
is classified as delay-independent if it is retained irre-
spective of the size of the delays, and delay-dependent
if it is lost at a certain delay value. In general the former
condition is more conservative as in most cases bounds
on the expected value of the delay exist.

The investigation of the stability properties of lin-
ear time-delay systems is usually performed using
“frequency-domain” tests which are suitable for systems
with a small number of heterogeneous delays. When
there are many heterogeneous delays involved, an at-
tractive alternative is the use oftime-domain(Lyapunov-
based) methodologies, which amount to construct-
ing simple Lyapunov-Krasovskii (L-K) or Lyapunov-
Razumikhin (L-R) certificates by solving an appropriate
set of Linear Matrix Inequalities (LMIs) [6]. The stabil-
ity conditions that can be obtained in this way are often
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conservative - even though the existence of complete
quadratic L-K functionals necessary and sufficient for
stability is known, and so is their structure [4]. The
reason is that use of the complete functional yields
infinite dimensional LMI conditions that are difficult
to verify algorithmically with current tools; researchers
have concentrated on other structures that yield simple
finite dimensional LMI conditions but which inevitably
produce conservative conditions for stability [12]. A
discretization scheme of the infinite dimensional LMIs,
based on the complete Lyapunov functional was in-
troduced by Gu [4], wherein the resulting sufficient
conditions were written as a set of finite dimensional
LMIs. This approach carries a high computational cost
as delays closer to the stability boundary are tested.
Moreover the method is quite complicated to set up and
cannot be generalized to nonlinear time delay systems.

In this paper we investigate delay-dependent stability
of linear time-delay systems with or without parametric
uncertainty by solving the infinite dimensional LMIs
that the complete L-K functional conditions produce
algorithmically using the sum of squares (SOS) [13]
methodology. The introduction of SOS techniques has
paved the way for analysis of nonlinear systems with
polynomial vector fields [11], and the construction of
parameter-dependent Lyapunov functions for linear sys-
tems with parameters. For nonlinear time delay systems,
this topic has been addressed in [10], [14]. The case of
linear time-delay systems merits special consideration
due to the existence of a known complete quadratic
Lyapunov functional structure necessary and sufficient
for stability. We show that the existence of a complete
L-K functional is equivalent to feasibility of certain
infinite dimensional LMIs which can be solved using
the SOS approach with relatively little conservatism. By
increasing the order of the polynomial variables, our
estimate on the delay bound approaches the true value.

In section II, we review the stability conditions for
linear time-delay systems, and present the complete L-
K functional. In section III we give a brief introduction
to the SOS decomposition and how it can be computed.
In section IV we present the main result that can be used
to test delay-dependent stability. In section V we show
how robustness analysis for linear time-delay systems



with parametric uncertainty can be performed. We close
the paper with some conclusions.

A. Notation

Notation is standard;R is the set of real numbers,
R

n denotes then-dimensional Euclidean space. Forη ∈
[0,+∞), C = C([−η, 0], Rn) denotes the Banach space
of continuous functions defined on an interval[−η, 0],
taking values inRn with the topology of uniform con-
vergence, and with a norm‖φ‖ = maxθ∈[−η,0] |φ(θ)|,
where| · | is an arbitrary norm inRn.

II. PROBLEM STATEMENT AND PAST RESULTS

Consider the following linear system with delayed
states:

ẋ(t) = A0x(t) +

k
∑

i=1

Aix(t − τi) (1)

with an initial conditionx(θ) = φ(θ), θ ∈ [−τ, 0], where
τ = max{τ1, . . . , τk}, φ ∈ C. The inhomogeneous
delaysτi are assumed to be constant,x(t) ∈ R

n andAi,
i = 1, . . . , k are known real constant matrices of appro-
priate dimensions. In a later section we will investigate
the case in which theAi are parameter-dependent. The
following theorem (Lyapunov-Krasovskii) can be used
to prove asymptotic stability of the above system.

Theorem 1: [4] The system described by Equation
(1) is asymptotically stable if there exists a bounded
quadratic Lyapunov functionalV (xt) such that for some
ǫ > 0, it satisfies:

V (xt) ≥ ǫ‖xt(0)‖2 (2)

and its derivative along the system trajectory satisfies

V̇ (xt) ≤ −ǫ‖xt(0)‖2. (3)
As mentioned in the Introduction, we identify

two types of stability: delay-independent and delay-
dependent. In the first case the stability property is
retained irrespective of the size of the delay, whereas
in the second one the stability property is a function of
the delay size, seen as a parameter.

This theorem is a natural extension of the Lyapunov
theory for ordinary differential equations (ODEs) to
systems described by FDEs. It respects the fact that the
state is infinite dimensional and proposes a certificate
for stability that is a functional rather than a function,
which is the case for systems described by ODEs. It
is well known that a Lyapunov function necessary and
sufficient for stability of the generic linear ODE system
of the formẋ = Ax is V = xT Px whereP is a positive
definite matrix satisfyingAT P + PA < −Q for some
positive definite matrixQ. Given a particularQ > 0, the

P that satisfies the above conditions is unique, and can
be found numerically by solving an LMI, also known as
a feasibility semidefinite program [2]. In the same spirit,
the search for structures that are ‘complete’, i.e produce
necessary and sufficient conditions for stability in the
case of time-delay systems has produced some important
results in the past few years. For the case of what is
called strong delay-independent stability (for definitions
and details see [1]), the class of such Lyapunov functions
has been completely characterized [1].

Example 2:For system (1) withk = 1, a L-K can-
didate that would yield a delay-independent condition
is

V (xt) = xt(0)T Pxt(0) +

∫ 0

−τ

xt(θ)
T Sxt(θ)dθ

Sufficient conditions onV (xt) to be positive definite are
P > 0, S ≥ 0. For V̇ (xt) < 0 we require

[

AT P + PA + S PA1

AT
1 P −S

]

< 0,

i.e. the conditions for stability (see Theorem 1) can be
written as an LMI with P and S as the unknowns.
The above structure may not be adequate to prove
delay-independent stability of a particular system. The
structure presented in [1] would be the next choice.

As far as delay-dependent stability is concerned, the
structure of the L-K functional necessary and sufficient
for delay-dependent stability is known, but difficult to
construct. For this reason, researchers have concen-
trated their attention on finding structures for which an
algorithmic approach can be used [6]. Inevitably the
maximum delays that could be tested in this way were
conservative.

The complete Lyapunov functional, which is neces-
sary and sufficient for delay-dependent stability of the
linear system is known [4] and has the following form:

V (xt) = xT
t (0)Pxt(0) + xT

t (0)

∫ 0

−τ

P1(θ)xt(θ)dθ

+

∫ 0

−τ

xT
t (θ)PT

1 (θ)dθxt(0)

+

∫ 0

−τ

∫ 0

−τ

xT
t (θ)P2(θ, ξ)xt(ξ)dξdθ

+

∫ 0

−τ

xT
t (θ)Qxt(θ)dθ (4)

with appropriate continuity conditions onP, P1 andP2.
The conditionsV > 0 and V̇ < 0 can be thought of
as infinite-dimensional versions of the standard finite
dimensional LMI problem wherext(θ) is now the



state at timet and summations have been replaced
by integrations. An approach to solve the infinite di-
mensional LMIs was considered in [4] by discretising
the kernels, yielding a set of finite-dimensional LMIs
with size dependent on the discretisation level: finer
discretisation can test delay approaching the true bounds
at the expense of increasing computational effort. Setting
up the discretisation scheme in this algorithm is quite
involved; moreover, it returns a complicated discretised
certificate, and there exists no obvious way to generalise
the procedure to non-linear time-delay systems, issues
that the approach we propose in this paper can address.

In this paper, we consider a structure which is a slight
generalization of the complete quadratic L-K functional
(4). We construct certificates in which the kernels (ma-
trices P1, P2 etc) are polynomials in the variablesθ, ξ.
As the order of the kernels is increased, the delay-
dependent stability conditions obtained analytically (i.e.
using frequency domain methods) can be approached. In
order to solve the resulting infinite dimensional LMIs,
we propose a method using the SOS decomposition of
multivariate polynomials.

III. T HE SUM OF SQUARESDECOMPOSITION

In this section we give a brief introduction to sum
of squares (SOS) polynomials, their use, and how the
existence of a SOS decomposition can be verified algo-
rithmically. A more detailed description can be found in
[13].

Definition 3: A multivariate polynomialp(x), x ∈
R

n is aSum of Squaresif there exist polynomialsfi(x),
i = 1, . . . ,M such thatp(x) =

∑M
i=1 f2

i (x).
An equivalent characterization of SOS polynomials is
given in the following proposition.

Proposition 4: [13] A polynomialp(x) of degree2d

is SOS if and only if there exists a positive semidefinite
matrix Q and a vectorZ(x) containing monomials inx
of degree≤ d so that

p = Z(x)T QZ(x)
In general, the monomials inZ(x) are not algebraically
independent. ExpandingZ(x)T QZ(x) and equating the
coefficients of the resulting monomials to the ones in
p(x), we obtain a set of affine relations in the elements
of Q. Sincep(x) being SOS is equivalent toQ ≥ 0,
the problem of finding aQ which proves thatp(x) is an
SOS can be cast as a semidefinite program (SDP) [13].
Therefore the problem of seeking aQ such thatp is a
SOS can be formulated as an LMI. Note that if a polyno-
mial p(x) is a SOS, then it is globally nonnegative. The
converse is not always true: not all positive semi-definite
polynomials can be written as SOS, apart from 3 special

cases (see [13]) - in fact, testing global non-negativity
of a polynomialp(x) is known to be NP-hard when the
degree ofp(x) is greater than 4 [7], whereas checking
whetherp can be written as a SOS is computationally
tractable - it can be formulated as an SDP which has a
worst-case polynomial-time complexity. The construc-
tion of the SDP related to the SOS conditions can be
performed efficiently using SOSTOOLS [15], a software
that formulates general SOS programmes as SDPs and
calls semidefinite programming solvers to solve them.

If the monomials in thep(x) have unknowncoef-
ficients then the search for feasible values of those
coefficients such thatp(x) is nonnegative is also an SDP,
a fact that is important for the construction of Lyapunov
functions and other S-procedure type multipliers.

IV. M AIN RESULTS

In this section we consider the system (1) withk = 1:

ẋ = A0x(t) + A1x(t − τ) , f(xt) (5)

wherex(t) ∈ R
n and xt(θ) = x(t + θ), θ ∈ [−τ, 0].

The results we present here can be easily extended to
the multiple delay case. We are interested in delay-
dependent conditions for stability of this system.

Here we consider structures similar to the complete
quadratic L-K functional (4) for which we construct
certificates in which the kernels (matricesP1, P2 etc)
are polynomials in the variables(θ, ξ). To proceed, we
use Theorem 1 and consider the following candidate
Lyapunov functional, which is a slight generalization of
the complete Lyapunov functional (4):

V (xt) = a0(xt(0)) +

∫ 0

−τ

∫ 0

θ

a2(xt(ζ))dζdθ

+

∫ 0

−τ

∫ 0

−τ

a1(θ, ξ, xt(0), xt(θ), xt(ξ))dθdξ

+

∫ 0

−τ

∫ 0

ξ

a3(xt(ζ))dζdξ (6)

where theai are polynomials in the indicated variables
with bound on the degree. The polynomials are restricted
to be quadratic with respect toxt(0), xt(θ) and xt(ξ)
and allowed to be any order with respect to variablesθ

and ξ. Such polynomials are calledbipartite and their
SOS decomposition has a special structure [3]. Writing
the expression witha1 as an infinite dimensional LMI,
we have

∫ 0

−τ

∫ 0

−τ

a1(θ, ξ, xt(0), xt(θ), xt(ξ))dθdξ

=

∫ 0

−τ

∫ 0

−τ

xt(θ)
T ā1(θ, ξ)xt(ξ)dθdξ



where ā1 may containδ-functions. Positivity of this
expression is an LMI in the statext with the integral
taking the place of the summation and whereā1(i, j)
would correspond tōAi,j for a finite-dimensional matrix
A. In order to express sufficient conditions for the
positivity of this LMI in terms of the polynomiala1,
we can rewritea1 as follows.

a1(θ, ξ, xt(0), xt(θ), xt(ξ))

=





xt(0)
xt(θ)
xt(ξ)





T 

 ã1(θ, ξ)









xt(0)
xt(θ)
xt(ξ)





where ã1(θ, ξ) is a polynomial matrix in(θ, ξ). Since
a1 is now expressed as a quadratic form with kernel
ã1, pointwise positivity ofã1 will now be sufficient for
positivity of the expression. Now denotexd = xt(−τ),
y = xt(θ), z = xt(ξ) and x = xt(0) for brevity. The
time derivative ofV (xt) alongf given by (5) is:

τ2V̇ (xt) =

∫ 0

−τ

∫ 0

−τ

v(θ, ξ, xt(0), xt(θ), xt(ξ))dθdξ

v(θ, ξ, xt(0), xt(θ), xt(ξ)) =
da0

dx
+ τa1(0, ξ, x, x, z)

+ τ2

(

∂a1

∂x
f −

∂a1

∂θ
−

∂a1

∂ξ

)

+ τ(a3(x) − a3(z))

− τa1(−τ, ξ, x, xd, z) + τa1(θ, 0, x, y, x)

− τa1(θ,−τ, x, y, xd) + τ(a2(x) − a2(y))

The kernel of this expression is also quadratic in variables
x, xd, y and z and can be written similarly toa1. The
conditions of positive definiteness ofV and negative
definiteness ofV̇ are infinite dimensional LMIs. To
create sufficient conditions for feasibility, we express
the LMIs using a quadratic form with kernel similar to
ã1. One can impose positivity and negativity conditions
on thesekernels for all θ and ξ. Positivity of this
kernel implies positivity of the quadratic form which
implies positivity of the integral. However, enforcing this
pointwise positivity condition can be conservative. Later
on, we will show how to reduce the conservativeness
through the use of special functions.

By structuring the polynomials and testing positivity
of V and negativity ofV̇ as explained above, it is easy
to see that the resulting sufficient conditions will be
parameterized finite dimensional LMIs in(θ, ξ). How-
ever, for notational simplicity we will be working at the
polynomial level - we multiply out the quadratic form
and search for a polynomial certificate using the bipartite
structure of the resulting expression to simplify the
search. Sufficient conditions for stability of the system
can be found in the following proposition:

Proposition 5: Consider the system given by Equa-
tion (5). Suppose we can find polynomialsa0(x)
a1(θ, ξ, x, y, z), a2(xt(ζ)) anda3(xt(ζ)) and a positive
constantǫ such that the following conditions hold:

1) a0(x) − ǫ‖x‖2 ≥ 0,
2) a1(θ, ξ, x, y, z) ≥ 0, ∀θ, ξ ∈ [−τ, 0],
3) a2(xt(ζ)) ≥ 0, a3(xt(ζ)) ≥ 0,
4) da0

dx
f + τ2 ∂a1

∂x
f − τ2 ∂a1

∂θ
− τ2 ∂a1

∂ξ
+ τa2(x) −

τa2(y) + τa3(x) − τa3(z) + τa1(0, ξ, x, x, z) −
τa1(−τ, ξ, x, xd, z) + τa1(θ, 0, x, y, x) −
τa1(θ,−τ, x, y, xd) ≤ −ǫ‖x‖2, ∀θ, ξ ∈ [−τ, 0].

Then the system described by Equation (5) is asymptot-
ically stable.

Proof: The first three conditions impose that:

V (xt) ≥ ǫ‖xt(0)‖2.

Similarly, the fourth condition, and the discussion before
the statement of the proposition imply that

V̇ (xt) ≤ −ǫ̃‖xt(0)‖2

for some ǫ̃ > 0. Therefore from the statement of
Theorem 1, the system (5) is asymptotically stable.

Condition (2) in the above proposition asks fora1 to
be non-negative only on a certain interval ofθ andξ, as
does condition (4). To restrict ourselves to the intervals
θ ∈ [−τ, 0] and ξ ∈ [−τ, 0], we use a process similar
to the S-procedure. The polynomiala1 is required to
be non-negative only wheng1 , θ(θ + τ) ≤ 0 and
g2 , ξ(ξ + τ) ≤ 0 are satisfied, which can be tested as
follows:

a1 + p1g1 + p2g2 ≥ 0 (7)

wherep1 andp2 are sums of squares of degree 2 inx, y

and z and of bounded degree inθ and ξ — this will
retain the bipartite structure of the whole expression,
which will be taken advantage of in the computation.
The same can be done with Constraint (4) in the above
proposition.

In order to reduce conservativeness of the positivity
condition on the kernel of the quadratic form, we can
now add polynomial terms which integrate to zero to the
kernels. For example, we may test pointwise positivity
of ã1 + b with the constraint

∫ 0

−τ

∫ 0

−τ
b(θ, ξ)dθdξ = 0

whereb has the following structure

b =





b11(θ, ξ) b12(ξ) b13(θ)
b12(ξ) b22(ξ) 0
b13(θ) 0 b33(θ)



 (8)

Likewise, for V̇ , we may use c where



∫ 0

−τ

∫ 0

−τ
c(θ, ξ)dθdξ = 0 and where

c =









c11(θ, ξ) c12(θ, ξ) c13(ξ) c14(θ)
c12(θ, ξ) c22(θ, ξ) c23(ξ) c24(θ)
c13(ξ) c23(ξ) c33(ξ) 0
c14(θ) c24(θ) 0 c44(θ)









. (9)

The computational complexity of this method in-
creases as the order of the polynomialsa1 with respect
to ξ andθ is increased. Although the SOS algorithm uses
polynomials inx, y andz as well asξ andθ, since the
order of the variablesx, y andz is fixed at2 one can take
advantage of the bipartite structure of the expression. For
more details on how sparsity can be exploited, see [13]
and the references therein. SOSTOOLS has routines that
exploit the sparse bipartite structure to reduce the size
of the resulting LMIs.

The system with delayτ can therefore be tested for
stability by solving a SOS program (10). Note that the
above procedure can be extended to handle systems with
more than one delay. A different Lyapunov structure
may then be required which allows the polynomials to
be discontinuous at discrete points. We now present an
example which investigates stability of a linear time-
delay system.

Example 6:The following two dimensional system
has been analyzed extensively in the past, and various
LMI tests developed by other researchers have been
tested against this example.

ẋ1(t) = −2x1(t) − x1(t − τ) , f1

ẋ2(t) = −0.9x2(t) − x1(t − τ) − x2(t − τ) , f2

The system has been shown analytically to be asymptot-
ically stable forτ ∈ [0, 6.17]. The best bound onτ that
can be obtained without using the discretisation method
in [4] was τmax = 4.3588 in [12]. Using V (xt) given
by (6) we can test the maximum delays given in Table I.
We see that as the order of the polynomials is increased,
the LMI conditions we can obtain are better, but this is
at the expense of increasing computational effort.

V. ROBUST STABILITY UNDER PARAMETRIC

UNCERTAINTY

An important issue in control theory is robust stability,
i.e. ensuring stability under uncertainty. In this section
we consider robust stability of linear time-delay systems
under parametric uncertainty. Consider a time-delay
system of the form (5) with an uncertain parameterp:

ẋ(t) = A0(p)x(t) + A1(p)x(t − τ) = f(xt, p) (11)

This kind of uncertainty can be handled directly using
the above tools as follows. Suppose one is interested in

the parameter set

P = {p ∈ R
m |qi(p) ≥ 0, i = 1, . . . , N}

i..e the parametric uncertainty is captured by certain
inequalities. We will be proving robust stability for the
above system, by constructing aParameter Dependent
Lyapunov functional, as follows:

V (xt, p) = a0(xt(0), p)

+

∫ 0

−τ

∫ 0

−τ

a1(θ, ξ, xt(0), xt(θ), xt(ξ), p)dθdξ+

+

∫ 0

−τ

∫ 0

θ

a2(xt(ζ), p)dζdθ +

∫ 0

−τ

∫ 0

ξ

a3(xt(ζ), p)dζdξ.

(12)

Then the conditions for stability are similar to the ones
in Proposition 5:

Proposition 7: Suppose there exist polynomials
a0(x, p), a1(θ, ξ, x, y, z, p), a2(xt(ζ), p) and
a3(xt(ζ), p), and a positive constantǫ such that
the following hold for allp ∈ P :

1) a0(x, p) − ǫ‖x‖2 ≥ 0,
2) a1(θ, ξ, x, y, z, p) ≥ 0 ∀θ ∈ [−τ, 0], ξ ∈ [−τ, 0],
3) a2(xt(ζ), p) ≥ 0, a3(xt(ζ), p) ≥ 0
4) τa1(0, ξ, x, x, z, p) − τa1(−τ, ξ, x, xd, z, p) +

τa1(θ, 0, x, y, x, p) − τa1(θ,−τ, x, y, xd, p) +
da0

dx(t)f + τa2(x, p) + τa3(x, p) − τa2(y, p) −

τa3(z, p)) + τ2 ∂a1

∂x
f − τ2 ∂a1

∂θ
− τ2 ∂a1

∂ξ
≤ −ǫ‖x‖2

∀θ ∈ [−τ, 0], ξ ∈ [−τ, 0].

Then the system given by Equation (5) is stable for
all p ∈ P .

The conditionsp ∈ P , which are captured by the
inequality constraintsqi(p) ≥ 0 can be adjoined to the
above inequality constraints using SOS multipliers in
the similar manner that the inequalitiesθ(θ+τ) ≤ 0 are
adjoined. A similar SOS program to (10) can easily be
constructed.

VI. CONCLUSION

In this paper we have developed a new methodology
for constructing the complete L-K functionals necessary
for stability of linear time-delay systems based on the
SOS decomposition. The results presented in this paper
complement the results already obtained for nonlinear
delay systems using SOS [10], [14]. A significant contri-
bution of this paper is that the infinite dimensional LMIs
obtained when considering complete L-K functionals for
delay-dependent stability of linear time delay systems
can be solved algorithmically using the SOS decompo-
sition. The bipartite structure of the the resulting SOS
conditions, and the use of special techniques discussed



SOS program to test stability of system (5) for a delay of sizeτ

Find polynomialsa0(x), a1(θ, ξ, x, y, z), a2(x(ζ)), a3(x(ζ)), ǫ > 0 and SOSqi,j(θ, ξ, x, y, z) for i, j = 1, 2

and polynomial matricesb(θ, ξ) andc(θ, ξ) of the form (8) and (9) such that

a0(x) − ǫ‖x‖2 is SOS, a1(θ, ξ, x, y, z) +

2
∑

j=1

q1,jgi(θ, ξ) + [x, y, z]b(θ, ξ)[x, y, z]T is SOS,

a2(xt(ζ)) is SOS, a3(xt(ζ)) is SOS, (10)














−da0

dx
f(xt) − τ2 ∂a1

∂x
f(xt) + τ2 ∂a1

∂θ
+ τ2 ∂a1

∂ξ
− τa1(0, ξ, x, x, z)

+τa1(−τ, ξ, x, xd, z) − τa1(θ, 0, x, y, x)
+τa1(θ,−τ, x, y, xd) − τa2(x) − τa3(x) + τa2(y) + τa3(z)

−ǫ‖x‖2 +
∑2

j=1 q2,jgi(θ, ξ) + [x, xd, y, z]c(θ, ξ)[x, xd, y, z]T















is SOS,

∫ 0

−τ

∫ 0

−τ

b(θ, ξ)dθdξ = 0,

∫ 0

−τ

∫ 0

−τ

c(θ, ξ)dθdξ = 0.

Order ofa1 in θ andξ 0 1 2 3 4 5 6
max τ 4.472 5.17 5.75 6.02 6.09 6.15 6.16

TABLE I

τmax FOR DIFFERENT DEGREE POLYNOMIALSa1 IN θ AND ξ IN V (xt) FOR EXAMPLE 6

allows the solution of the infinite dimensional LMIs with
little conservatism. This same idea was extended to the
case of proving stability under parametric uncertainty.

The complexity of this method increases as higher
order polynomials and delays closer to the analytical
ones are tested. However, one can take advantage of
sparsity in the resulting polynomials therefore reducing
significantly the computational complexity. Also, if the
presence of certain functions (exponential, trigonomet-
ric, etc) in these functionals is known, then it is some-
times possible to search certificates that contain them
[11]. Moreover, the procedure presented in this paper
can be extended to many other cases that appear for
time-delay systems: stability of neutral systems, systems
with distributed delays, synthesis etc. More importantly,
it can be extended to the analysis of nonlinear time delay
systems, which was the subject of earlier work [10],
[14].
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