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Abstract— We present an algorithmic methodology for conservative - even though the existence of complete
constructing Lyapunov-Krasovskii (L-K) functionals for  quadratic L-K functionals necessary and sufficient for
linear time-delay systems, using the sum of squares decom- giapjjity is known, and so is their structure [4]. The
position of multivariate polynomials to solve the related in- . . .
finite dimensional Linear Matrix Inequalities (LMIs). The .rezlis,on '§ that. use of the Colmplete functlonall }"e'ds
resulting functionals retain the structure of the complete  infinite dimensional LMI conditions that are difficult
L-K functional and yield conditions that approach the true  to verify algorithmically with current tools; researchers
delay-dependent stability bounds. The method can also be have concentrated on other structures that yield simple
gZﬁﬂ;ﬁ;ﬂZﬁﬁﬁ;puar{(??re;?rfnquﬁ?fiﬂlﬁ}gﬁt@cnonms for finite dimensional LMI conditions but which inevitably

' produce conservative conditions for stability [12]. A
. INTRODUCTION discretization scheme of the infinite dimensional LMIs,

. . . . . th I L functional in-
Functional Differential Equations (FDES) are an |m-baSEd on the complete Lyapunov functional was in

ortant modelina tool for svstems involving trans orttroduced by Gu [4], wherein the resulting sufficient
gnd rona atilor? of data orywith aflte\:ef\flclac? ReceFr)ltI conditions were written as a set of finite dimensional
propag ) YL Mis. This approach carries a high computational cost

research in the area [5], [8] has been intensified as the delays closer to the stability boundary are tested.

) . a
simplest adequate models for Internet congestion Contrﬂsoreover the method is quite complicated to set up and

schemes [9], [16] are in the form of nonlinear FDEs. : : .
Th f del h ffact ¢ cannot be generalized to nonlinear time delay systems.
€ presence ot delays can have an etiect on System, , y;q paper we investigate delay-dependent stability

stapll|ty and perfqrmance, S0 ignonng them may Ieaq .tgf linear time-delay systems with or without parametric
design flaws and incorrect analysis conclusions. Stab'“tﬁlncertainty by solving the infinite dimensional LMIs

is classified as delay-independent if it is retained IMeq At the complete L-K functional conditions produce

gpeptwe of the size of the delays, and delay'dependegltgorithmically using the sum of squares (SOS) [13]
if it is lost at a certain delay value. In general the forme ethodology. The introduction of SOS techniques has
condition is more conservative as in most cases boun Sved the w;ay for analysis of nonlinear systems with
On_l_tr? € _expe(t:_tedt_valuef ci:]thetdﬁl_ﬁ/ exist. " £ i polynomial vector fields [11], and the construction of
€ investigation of the stabiiity properties of fin- arameter-dependent Lyapunov functions for linear sys-

?ar time-delay ;y"stems IS usually _performed USINb ms with parameters. For nonlinear time delay systems,
frequency-domain” tests which are suitable for systems . topic has been addressed in [10], [14]. The case of

with a small number of heterogeneous delays. Whel'ﬂqear time-delay systems merits special consideration

there_ are many he_:terogeneo_us delays_ involved, an %tae to the existence of a known complete quadratic
tractive alternative is the use be-domain(Lyapunov- Lyapunov functional structure necessary and sufficient

pasegi) Tetlt]odologlesk Whlcrl](.. aT?(um tcl)_ construc}br stability. We show that the existence of a complete
ing simple Lyapunov-Krasovskil (L-K) or Lyapunov- L “,nctional is equivalent to feasibility of certain

Razumikhin (L-R) certificates by solving an appropriatqnﬁmte dimensional LMIs which can be solved using

set of L|_n_ear Matrix Inequalltle_s (LMIS) [_6]' The stabil- the SOS approach with relatively little conservatism. By
ity conditions that can be obtained in this way are Ofterihcreasing the order of the polynomial variables, our
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with parametric uncertainty can be performed. We clos® that satisfies the above conditions is unique, and can

the paper with some conclusions. be found numerically by solving an LMI, also known as
) a feasibility semidefinite program [2]. In the same spirit,
A. Notation the search for structures that are ‘complete’, i.e produce

Notation is standardR is the set of real numbers, necessary and sufficient conditions for stability in the
R" denotes the:-dimensional Euclidean space. Fpe ~ case of time-delay systems has produced some important
[0, +00), C = C([-n,0],R™) denotes the Banach spaceresults in the past few years. For the case of what is
of continuous functions defined on an interyaly, 0], called strong delay-independent stability (for definiion
taking values inR™ with the topology of uniform con- and details see [1]), the class of such Lyapunov functions
vergence, and with a noriig| = maxge(_, o) |¢(f)|, has been completely characterized [1].

where| - | is an arbitrary norm irR". Example 2:For system (1) withk = 1, a L-K can-
didate that would yield a delay-independent condition
Il. PROBLEM STATEMENT AND PAST RESULTS is

Consider the following linear system with delayed 0

states: i V(zs) = 2¢(0)T Px(0) +/ z4(0)T Sz, (0)do
(1) = Aoz (t) + Z Ai(t — i) @) sufficient conditions oV (z,) to be positive definite are
=1 P >0,8>0.ForV(z;) <0 we require

with an initial conditionz(6) = ¢(6), 0 € [—,0], where .
7 = max{r,...,7}, ¢ € C. The inhomogeneous A PXTI;A +5 P’i} } <0,
delaysr; are assumed to be constanft) € R™ and 4;, 1 N
1 =1,...,k are known real constant matrices of approi.e. the conditions for stability (see Theorem 1) can be

priate dimensions. In a later section we will investigatevritten as an LMI with P and S as the unknowns.
the case in which thel; are parameter-dependent. TheThe above structure may not be adequate to prove
following theorem (Lyapunov-Krasovskii) can be useddelay-independent stability of a particular system. The
to prove asymptotic stability of the above system. structure presented in [1] would be the next choice.

Theorem 1: [4] The system described by Equation ag far as delay-dependent stability is concerned, the
(1) is asymptotically stable if there exists a boundedrcture of the L-K functional necessary and sufficient
quadratic Lyapunov functional (z;) such that for some 4 gelay-dependent stability is known, but difficult to
€ >0, it satisfies: construct. For this reason, researchers have concen-

V(ze) > €|z (0))2 (2) trated their attention on finding structures for which an
algorithmic approach can be used [6]. Inevitably the
and its derivative along the system trajectory satisfies maximum delays that could be tested in this way were

V(we) < —el|ae (0)]|%. (3) conservative.
As mentioned in the Introduction, we identify The complete Lyapunov functional, which is neces-
two types of stability: delay-independent and delaysary and sufficient for delay-dependent stability of the
dependent. In the first case the stability property iinear system is known [4] and has the following form:

retained irrespective of the size of the delay, whereas 0
in the second one the stability property is a function of V(z¢) = 2} (0)Pz4(0) + :L'tT(())/ Py(0)x4(0)do
the delay size, seen as a parameter. -7

This theorem is a natural extension of the Lyapunov + /0 2T (0)PL (0)dOz,(0)
theory for ordinary differential equations (ODEs) to -

systems described by FDEs. It respects the fact that the

state is infinite dimensional and proposes a certificate + /

0 0
[t Or0.mc)acas

for stability that is a functional rather than a function, OT o
which is the case for systems described by ODEs. It +/ zl (0)Qx.(0)do 4)
is well known that a Lyapunov function necessary and -7
sufficient for stability of the generic linear ODE systemwith appropriate continuity conditions aff, P; and P.
of the formi = Az is V = 27 Pz whereP is a positive The conditionsV > 0 and V < 0 can be thought of
definite matrix satisfyingA” P + PA < —(Q for some as infinite-dimensional versions of the standard finite
positive definite matrixQ. Given a particular) > 0, the dimensional LMI problem wherer;(0) is now the



state at timet and summations have been replacedases (see [13]) - in fact, testing global non-negativity
by integrations. An approach to solve the infinite di-of a polynomialp(x) is known to be NP-hard when the
mensional LMIs was considered in [4] by discretisingdegree ofp(x) is greater than 4 [7], whereas checking
the kernels, yielding a set of finite-dimensional LMIswhetherp can be written as a SOS is computationally
with size dependent on the discretisation level: finetractable - it can be formulated as an SDP which has a
discretisation can test delay approaching the true boundsrst-case polynomial-time complexity. The construc-
at the expense of increasing computational effort. Settingpn of the SDP related to the SOS conditions can be
up the discretisation scheme in this algorithm is quit@erformed efficiently using SOSTOOLS [15], a software
involved; moreover, it returns a complicated discretisethat formulates general SOS programmes as SDPs and
certificate, and there exists no obvious way to generaligmlls semidefinite programming solvers to solve them.
the procedure to non-linear time-delay systems, issueslf the monomials in thep(z) have unknown coef-
that the approach we propose in this paper can addre§isients then the search for feasible values of those
In this paper, we consider a structure which is a slightoefficients such that(x) is nonnegative is also an SDP,
generalization of the complete quadratic L-K functionah fact that is important for the construction of Lyapunov
(4). We construct certificates in which the kernels (mafunctions and other S-procedure type multipliers.
trices Py, P, etc) are polynomials in the variablés¢.
As the order of the kernels is increased, the delay- ) . . ]
dependent stability conditions obtained analyticallg.(i. In this section we consider the system (1) witk= 1:
using frequency domain methods_) can be approached. In i = Apx(t) + At — 7) 2 f(z) (5)
order to solve the resulting infinite dimensional LMls,
we propose a method using the SOS decomposition #fhere z(t) € R™ andz(0) = =(t + 0), 6 € [-7,0].

IV. MAIN RESULTS

multivariate polynomials. The results we present here can be easily extended to
the multiple delay case. We are interested in delay-
[Il. THE SUM OF SQUARES DECOMPOSITION dependent conditions for stability of this system.

In this section we give a brief introduction to sum Here we consider structures similar to the complete
of squares (SOS) polynomials, their use, and how thguadratic L-K functional (4) for which we construct
existence of a SOS decomposition can be verified alg&ertificates in which the kernels (matricés, P, etc)
rithmically. A more detailed description can be found in@re polynomials in the variablgg, ¢). To proceed, we
[13]. use Theorem 1 and consider the following candidate

Definition 3: A multivariate polynomialp(z), = € Lyapunov functional, which is a slight generalization of
R™ is aSum of Squarei§ there exist polynomialg;(z), ~the complete Lyapunov functional (4):
i=1,...,M such thatp(z) = S, f2(x). 0 0
An equivalent characterization of SOS polynomials is V(1) = ao(2:(0)) +/ / az(2(¢))d¢do
given in the following proposition. 0 0 e

Proposition 4: [13] A polynomial p(x) of degree2d +/ / a1(0,&,24(0), 24(0), x4 (€))dOdE
is SOS if and only if there exists a positive semidefinite —TJ=T

matrix Q and a vectolZ (x) containing monomials i o /0
of degrcge< d so that o ’ +/ /£ a3(2:(C))dCds ©6)
p=2(x)"'QZ(x) where thea; are polynomials in the indicated variables

In general, the monomials i#(z) are not algebraically with bound on the degree. The polynomials are restricted
independent. Expanding(z)”QZ(x) and equating the to be quadratic with respect te;(0), z;(0) and z;(§)
coefficients of the resulting monomials to the ones iand allowed to be any order with respect to variatsles
p(r), we obtain a set of affine relations in the element&nd £. Such polynomials are calledipartite and their

of Q. Sincep(x) being SOS is equivalent t > 0, SOS decomposition has a special structure [3]. Writing
the problem of finding & which proves thap(x) is an  the expression witli; as an infinite dimensional LMI,
SOS can be cast as a semidefinite program (SDP) [13}e have
Therefore the problem of seeking(a such thatp is a /0 /

0
SOS can be formulated as an LMI. Note that if a polyno- a1(0, &, 24(0), 2¢(0), 2¢(€))dOdE
0

mial p(z) is a SOS, then it is globally nonnegative. The 0
converse is not always true: not all positive semi-definite = / / z(0)Tay (6, &)z (€)dodE
polynomials can be written as SOS, apart from 3 special —rJ—7



where a; may containd-functions. Positivity of this Proposition 5: Consider the system given by Equa-
expression is an LMI in the state, with the integral tion (5). Suppose we can find polynomiatg (z)
taking the place of the summation and wherdi, j) a1(0,&, 2,9, 2), az(z+(¢)) andas(x+(¢)) and a positive
would correspond tol; ; for a finite-dimensional matrix constante such that the following conditions hold:

A. In order to express sufficient conditions for the

positivity of this LMI in terms of the polynomiak;, 1) ao(z) — €l|z||* >0,
we can rewritez; as follows. 2) a1(0,¢,2,y,2) >0, ¥0,§ € [-7,0],
3) az(@:(¢)) 2 0, ag(@:(¢)) = 0,
al(&f;It(oﬁyxt(e)aft(f)) 4) dao gy 7200 ¢ 72001 _ 72%—‘? + Tas(x) —
x4(0) x4(0) Tas(y) + Taz(x) — taz(2) + 7a1(0,&, 2,2, 2) —
= | x,(0) a1(6,€) z4(6) Ta1(—7,&,z,xq,2) + Ta1(0,0,2,y,x) —
z4(€) x4 (€) Ta1(0, —7,2,y,14) < —€||z||?, VO, € € [-7,0].

wherea, (6,£) is a polynomial matrix in(6,¢). Since  hen the system described by Equation (5) is asymptot-
a1 is now expressed as a quadratic form with kernq[:a||y stable.

a1, pointwise positivity ofa; will now be sufficient for i N ]
positivity of the expression. Now denoig, = z,(—7), Proof: The first three conditions impose that:
y = xt(e), z= x4(€) andz = Jlt.(()) for brev.ity. The V(z:) > el|ze(0)]|2.
time derivative ofV (x;) along f given by (5) is:
0 0 Similarly, the fourth condition, and the discussion before
P2V () = / / 0(0,€,24(0), 2:(0), 2,(¢))dode e statement of the proposition imply that

V(wr) < —lze(0)]

dao
9) ) O b 9 ) = 07 b ) )
0(6,& z2(0), 22(6), :(8)) dz +7a(0,6,2,7,2) for some ¢ > 0. Therefore from the statement of
e <5a1 f day 5@1) + ras(x) — as(2)) Theorem 1, the system (5) is asymptotically stabim.

Oz 09 08 Condition (2) in the above proposition asks fgr to
—ta1(-7,§,x,24,2) + Ta1(0,0, 2, y, ) be non-negative only on a certain intervaléoand¢, as
—71a1(0, =7, 2,y,xq) + T(az(z) — az(y)) does condition (4). To restrict ourselves to the intervals

[-7,0] and ¢ € [—7,0], we use a process similar
he S-procedure. The polynomial is required to
be non-negative only whep, = 6(6 + 7) < 0 and

The kernel of this expression is also quadratic in variablet%)et
x,xq,y and z and can be written similarly ta;. The
con_d?tions of positive .de_finiten(.ass df and negative g2 = £(€ 4+ 7) <0 are satisfied, which can be tested as
definiteness ofV are infinite dimensional LMIs. To follows:
create sufficient conditions for feasibility, we express

the LMIs using a quadratic form with kernel similar to

a1. One can impose positivity and negativity conditionsvherep, andp, are sums of squares of degree iy

on thesekernels for all § and . Positivity of this andz and of bounded degree ith and ¢ — this will
kernel implies positivity of the quadratic form which retain the bipartite structure of the whole expression,
implies positivity of the integral. However, enforcingshi which will be taken advantage of in the computation.
pointwise positivity condition can be conservative. LateiThe same can be done with Constraint (4) in the above
on, we will show how to reduce the conservativenesproposition.

through the use of special functions. In order to reduce conservativeness of the positivity
By structuring the polynomials and testing positivitycondition on the kernel of the quadratic form, we can

of V' and negativity of” as explained above, it is easy now add polynomial terms which integrate to zero to the

to see that the resulting sufficient conditions will bekernels. For example, we may test pointwise positivity

parameterized finite dimensional LMIs {i#,¢). How-  of @, + b with the constraint/ " f_OT b(0,€)dod¢ = 0

ever, for notational simplicity we will be working at the whereb has the following structure

polynomial level - we multiply out the quadratic form

and search for a polynomial certificate using the bipartite - bzl(e’ ¢) 212(0 bu3(0) 8

structure of the resulting expression to simplify the b= 12(8)  b22(£) 0 (8)

search. Sufficient conditions for stability of the system b3 (6) 0 ba3(0)

can be found in the following proposition: Likewise, for V, we may use ¢ where

a1 +pigr +p2g2 >0 (7)



fET fET c(0,€)dod¢ = 0 and where the parameter set

c11(0,€) 12(0,€) cr3(€)  cra(h) P={peR"|su(p) 20, i=1,...,N}
c12(0,8)  c22(0,8) ca3(§)  c24(0)

cr3(€) cos(€) sl 0 9) ?..e the. _parametri(_: uncertai_nty is captureq_by certain
0) () 0 c1a(0) inequalities. We will be proving robust stability for the
cra( 24 4 above system, by constructingRarameter Dependent
The computational complexity of this method in- Lyapunov functional, as follows:
creases as the order of the polynomiajswith respect

to ¢ andé is increased. Although the SOS algorithm use¥ T, p) = aO (2:(0), p)
polynomials inz,y and z as well as¢ and, since the
order of the variables, y andz is fixed at2 one can take a1 (0, €, (0, 2(0), 2:(€), p)dbde+

advantage of the bipartite structure of the expression. For

more details on how sparsity can be exploited, see [13}/ / az(w; dcdo + / / az(x¢(C), p)dCde.
and the references therein. SOSTOOLS has routines that” ~" *? ’ (12)
exploit the sparse bipartite structure to reduce the size

of the resulting LMIs. Then the conditions for stability are similar to the ones

The system with delay can therefore be tested for in Proposition 5:
stability by solving a SOS program (10). Note that the Proposition 7: Suppose there exist polynomials
above procedure can be extended to handle systems witi(=,p),  a1(0,&,z,y,2,p),  az2(z:(¢),p)  and
more than one delay. A different Lyapunov structurets(z:(¢),p), and a positive constant such that
may then be required which allows the polynomials tdhe following hold for allp € P:
be discontinuous at discrete points. We now present anl) ag(z,p) — e||z||*> > 0,
example which investigates stability of a linear time- 2) a4(0,¢,x,y,2,p) > 0V0 € [-7,0], £ € [-7,0],

delay system. 3) az(z4(¢),p) =0, az(2:(¢),p) =0

Example 6:The following two dimensional system 4) 7a,(0,¢,z,x,2,p) — 7a1(—T7,&,2,24,2,p) +
has been analyzed extensively in the past, and various ml(e 0,z,y,z,p) — 7Ta1(0,—7,2,y,24,p) +
LMI tests .develc_)ped by other researchers have been dz(t s/ + Tas(x,p) + Tas(x,p) — Taz(y,p) —
tested against this example. Taz(z,p)) + T2 f — 7204 _ 12 3“51 < —el|lx|?
i1(t) = =2 () —m(t—7)2f Vo € [-7,0], fe[ 0.

Bo(t) = —0920(t) —a1(t —7) — ot —7) 2 f a||Tthpthe system given by Equation (5) is stable for

p

The system has been shown analytically to be asymptot- The conditionsp € P, which are captured by the
ically stable forr € [0,6.17]. The best bound om that  inequality constraintg; (p) > 0 can be adjoined to the
can be obtained without using the discretisation methogbove inequality constraints using SOS multipliers in
in [4] was Tax = 4.3588 in [12]. Using V(x;) given the similar manner that the inequalitié® + ) < 0 are

by (6) we can test the maximum delays given in Table ladjoined. A similar SOS program to (10) can easily be
We see that as the order of the polynomials is increaseghnstructed.

the LMI conditions we can obtain are better, but this is

at the expense of increasing computational effort. VI. CONCLUSION

In this paper we have developed a hew methodology
for constructing the complete L-K functionals necessary
for stability of linear time-delay systems based on the

An important issue in control theory is robust stability, SOS decomposition. The results presented in this paper
i.e. ensuring stability under uncertainty. In this sectiortomplement the results already obtained for nonlinear
we consider robust stability of linear time-delay systemgelay systems using SOS [10], [14]. A significant contri-
under parametric uncertainty. Consider a time-delagution of this paper is that the infinite dimensional LMIs
system of the form (5) with an uncertain parameier  obtained when considering complete L-K functionals for

N . delay-dependent stability of linear time delay systems

() = Ao(p)a(t) + Au(p)2(t = 7) = flze,p) (1) can be solved algorithmically using the SOS decompo-
This kind of uncertainty can be handled directly usingition. The bipartite structure of the the resulting SOS
the above tools as follows. Suppose one is interested aonditions, and the use of special techniques discussed

V. ROBUST STABILITY UNDER PARAMETRIC
UNCERTAINTY



SOS program to test stability of system (5) for a delay of size
Find polynomialsao(z), a1 (0, &, ,y, 2), az(2(¢)), as(x(C)),€ > 0 and SOSy; ;(0,&, x,y, z) for i,j = 1,2
and polynomial matrices(d, &) andc(6,€) of the form (8) and (9) such that

ao(z) — €||z||* is SOS  a1(0,€, 2,9, 2) + ungi(@,&) + [z, y, 2]b(0,8)[z, y, 2T is SOS
j=1
az(z4(C)) is SOS  az(74(¢)) is SOS (10)
da"f( t) — TQ%f(xt) —I—TQB‘“ —i—TQd‘“ Ta1(0,&, x, 2, 2)
+7rai(—7,&, 2, x4, ) — Ta1(9, O,J:, Y, x)
+r1a1(0, —T,2,y,24) — TCLQ(LL‘) —taz(x) + Tas(y) + Tasz(2)
—elll? + 3251 42,5910, + [, wa, y, 2e(0,E)[w, wa, y, 2"

l[7[4 (0, )dode = 0, ‘17[4 c(6,€)dbde = 0.

Order ofa; in 6 and¢& 0 1 2 3 4 5 6
max 4.472| 5.17| 5.75| 6.02| 6.09 | 6.15| 6.16
TABLE |
Tmaz FOR DIFFERENT DEGREE POLYNOMIALS11 IN @ AND f IN V(xt) FOR EXAMPLE 6
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