
ED&TC ’96
0-89791-821/96 $5.00 1996 IEEE

Constructing Minimal Spanning/Steiner Trees

with Bounded Path Length�

Iksoo Pyo Jaewon Oh and Massoud Pedram
JF1-61 Department of EE-Systems

Intel Corportation University of Southern California
Hillsboro, OR 97124 Los Angeles, CA 90089

Abstract

This paper presents an exact algorithm and two heuristics

for solving the Bounded path length Minimal Spanning Tree

(BMST) problem. The exact algorithm which is based on it-

erative negative-sum-exchange(s) has polynomial space com-

plexity and is hence more practical than the method pre-

sented by Gabow. The �rst heuristic method (BKRUS) is

based on the classical Kruskal MST construction. For any

given value of parameter �, the algorithm constructs a rout-

ing tree with the longest interconnection path length at most

(1 + �) � R, and empirically with cost at most 1.19 times

cost(BMST �) where R is the length of the direct path from

the source to the farthest sink and BMST � is the optimal

bounded path length MST. The second heuristic combines

BKRUS and negative-sum-exchange(s) of depth 2 to improve

results. Extensions of these techniques to the bounded path

length Minimal Steiner Trees, using the Elmore delay model

are presented as well. Empirical results demonstrate the ef-

fectiveness of these algorithms on a large benchmark set.

1 Introduction

In the design of high-performance VLSI systems, circuit
speed and power consumption are important considerations.
Routing optimization plays an important role in achieving
optimal circuit speed and minimal power consumption. In-
deed, critical path delay is a function of maximum intercon-
nection path length while power consumption is a function
of the total interconnection length.
A linear RCmodel (where interconnection delay between a

source and a sink is proportional to the wire length between
the two terminals) is often used as a simple approximation
for interconnection delay. First, we also use wire length to
approximate interconnection delay during the construction
of routing trees. Later, we extend this delay model to a
more accurate RC delay model.
A routing tree used in a synchronous system has an in-

put, called the driver or source, that sends signals to each
sink. Critical path delay is de�ned as the maximum delay
from the source to any sink. The critical path delay of the
Shortest Path Tree (SPT) is minimum(In a SPT, each sink
is connected to the source by the shortest possible path.),
but SPT has excessive routing cost and power dissipation as
the power consumed by the driver has a linear relation with

�This research was funded in part by SRC under contract No.

94-DJ-559 and by NSF NYI under contract No. M/P-9457392

the routing capacitance. Minimal Spanning Tree (MST) has
minimal routing cost, but may contain very long source-to-
sink paths which degrade the performance. Alpert et al. [8]
showed how to trade the average source-to-sink path length
for lower total routing cost by using a linear combining cost
function consisting of the source-to-sink path length and the
weight of the edge to be added during the tree construction.
In this paper, we present algorithms for constructing a

Bounded path length Minimal Spanning Tree (BMST). The
routing tree achieves bounded path length, that is, the
length of the path from the source to each terminal is
bounded. Such a bounded path length tree provides a good
initial topology for designers to adjust for minimizing criti-
cal paths using a more accurate RC delay model. Also, the
tree has small routing cost which is important from area and
power consumption viewpoints.
Let R be the length of direct path from the source to the

farthest sink and � be a non-negative user-speci�ed param-
eter. Our method constructs a spanning tree with radius at
most (1+�) �R by using an analogue of the classical Kruskal
MST construction [1]. We will show the same method can be
extened to Elmore delay model and to bounded path length
Steiner tree. Furthermore, the tree cost is empirically ob-
served to be at most 1.19 of that of an optimal BMST.
We next describe an exact algorithm due to Gabow [5]

which produces an optimal BMST with exponential time
and space complexity. Then, we propose a new exact algo-
rithm which requires exponential time but has polynomial
space complexity. This method constructs an optimal tree
by negative-sum-exchange(s) on an initial feasible solution.
We also propose another heuristic which resolves the com-
plexity problems of the exact algorithm and produces better
average results than the Kruskal based method.

2 Background

On a Mahattan (L1 metric) or an Euclidean (L2 metric)
plane, let G = (V;E) (jV j = N) be a network where V is a
set of randomly distributed terminal pins called sinks with
a distinguished pin called the source(s), and E is the set
of edges connecting V . BMST seeks to connect all nodes
of V in G by a set of edges in E of minimal total length
with a bounded path length from the source to any sink.
This problem is known to be NP-complete [7]. We propose
a novel algorithm - that is, Bounded path length Kruskal
(BKRUS) - for solving this problem heuristically. A tree
generated by our BKRUS method is called a Bounded path

length Kruskal minimal spanning Tree (BKT).
Cong et al. [2] proposed two heuristics for solving the

BMST problem. In the �rst method of Cong et al., i.e.
the Bounded Prim (BPRIM) algorithm, even though the
empirical results are promising, the worst-case performance
ratio is unbounded where performance ratio is de�ned as
cost(BPRIM)/cost(MST) (see Table 2 and Figure 5). In
the second method of Cong et al., i.e. the Bounded Radius,
Bounded Cost (BRBC) algorithm, the worst-case perfor-
mance ratio is bounded. However, BRBC method uses min-
imum path (shortest path) from the source to sink whenever
the source-to-sink path length violates the length bound � �

cost(S;sink) during the depth �rst tree traversal. Hence, it
may introduce unnecessary routing cost. Their benchmark
results [2] show about a worst-case performance ratio of 2:66
and an average performance ratio of 1:57.

3 A Heuristic: BKRUS

Before describing our approach, we give some de�nitions.
The sum of all edge weights of T is the cost of the tree,
cost(T). The shortest path distance between u and v in
graph G is distG(u; v). The shortest path distance between
u and v in tree T is distT (u; v). The radius of node v 2 G is
radiusG(v) (i.e. maxfdistG(v; u)g, 8 u 2 V). Similarly, the
radius of node v 2 T is radiusT (v) (i.e. maxfdistT (v; u)g,
8 u 2 V). The partial tree which contains node v is repre-
sented by tv. S denotes the source.
BKRUS algorithm solves the BMST problem by solving

the following problem:

Given the routing graph G(V;E) in L1 or L2

space, �nd a minimal cost routing tree BKT with
radiusBKT (S) � (1 + �) � R.

The classical Kruskal algorithm adds an edge (u; v) in G

to MST, or equivalently, merges two partial trees tu and tv
by the edge (u; v) if:

(1) (u; v) is the least weight edge among the avail-
able edges and

(2) tu 6= tv.

For (1), all the edges are sorted in nondecreasing order. For
(2), a disjoint set on V is implemented. Three operations
on the set are MAKE SET, FIND SET and UNION, the
meanings of which are self-explanatory. Merging two partial
trees is done by the UNION operation followed by the Merge
routine to be discussed later, while condition (2) is easily
tested by the FIND SET operation. BKRUS algorithm adds
one more condition as follows:

(3) the merged tree satis�es the path length bound
(1+ �) �R from the source to the farthest sink.

Let tM be the merged tree, i.e., tM = tu [tv [(u; v). Two
cases are possible:
(3-a) If tu contains the source, then the following condition

should be satis�ed:

disttu(S; u) + distG(u; v) + radiustv (v) � (1 + �) �R

Since nodes in tu already satisfy the upper bound constraint,
this condition ensures that nodes in tv will also satisfy the

upper bound constraint after the merge. The case where tv
contains the source is similar.
(3-b) If neither tu nor tv contains the source, then there

must be a node x 2 tM such that:

distG(S; x) + radiustM (x) � (1 + �) �R

This condition ensures that all the nodes in the merged
tree tM can be connected to the source without violating
the upper bound path length constraint by having at least a
direct path from the source to node x. That is, the existence
of such node x guarantees that all nodes in tM can satisfy
the upper bound constraint. If no such node exists in tM ,
then (u; v) should be rejected as there is no way to satisfy
the upperbound constraint for all the nodes in tM . We can
now give two important de�nitions.

De�nition 3.1 A feasible node: If there exists a node x in

tM such that distG(S,x) + radiustM (x) � (1 + �) � R, then

node x is a feasible node in tM .

De�nition 3.2 A feasible edge: If edge (u; v) satis�es con-
ditions (2) and (3), then it is a feasible edge.

Feasible edges can be safely added to the spanning tree
under construction.
BKRUS maintains the radius of each node in the partial

tree it belongs to, and the path lengths between every pair
of nodes within the partial tree they belong to. Let the
array D[V,V] contain information about the Manhattan or
the Euclidean distances between every pair of nodes, i.e.
D[x; y] = distG(x; y). Let the array P[V,V] be the path
length between every pair of nodes in the routing tree, i.e.
P[x; y] = distT (x; y). Also let the vector r[V] be the radii of
nodes in the tree they belong to. Initially, the array P and
the vector r are initialized to zero. As the tree grows, P and
r are updated by the Merge routine given below:

// Merge two subtrees tu and tv by edge (u; v)
Algorithm Merge(u; v)

1 for each x 2 tu and y 2 tv do

2 P[x; y] = P[y; x] = P[x;u] + D[u; v] + P[v; y]
3 end for

4 for each x 2 tu do

5 r[x] = max(r[x], P[x; i], 8 i 2 tv)

6 end for

7 for each y 2 tv do

8 r[y] = max(r[y], P[i; y], 8 i 2 tu)
9 end for

Figure 1 shows an example of how Merge routine works.
The two partial trees are merged by the edge (c; e). The
lefthand side tree is tc and the righthand side tree is te. Be-
fore the merging takes place, all of the non-zero elements
(except the diagonal elements) in matrix P and the vector
r were computed from previous mergings. Note that ele-
ments of r are the maximum of each row of P. The Merge
routine leaves those non-zero elements unchanged and up-
dates P[x; y] only when x and y are in di�erent partial trees.
For example, P[a; f] can be computed by P[a; f] = P[a; c] +
D[c; e] + P[e; f]. Once the P matrix is updated by line 1-3
in the algorithm, new radius r[x] can be found by taking the
maximum among the old radius (old r[x]) and the P[x; y]s
for all y 2 tv. For example, new r[a] can be found by taking
the maximum among fold r[a], P[a; e], P[a; f]g, which is f9,

a

b

c

d

e

f

4

3

2

2

5

Before Merge

a b c d e f
0 2 6 9 11 13
2 0 4 7 9 11
6 4 0 3 5 7
9 7 3 0 8 10

11 9 5 8 0 2
13 11 7 10 2 0

After Merge

a
b
c
d
e
f

P =

13
11
7
10

a
b
c
d
e
f

r =

11
13

a b c d e f
0 2 6 9 0 0
2 0 4 7 0 0
6 4 0 3 0 0
9 7 3 0 0 0
0 0 0 0 0 2
0 0 0 0 2 0

a
b
c
d
e
f

P =

9
7
6
9

a
b
c
d
e
f

r =

2
2

Figure 1: Example of Merging Two Partial Trees

11, 13g. So the new r[a] is 13. We can easily see that the
time complexity of Merge is O(V 2).
Since we need a new radius of a node x in the merged tree

to test the feasibility of x, it seems that a merging is needed
before the feasibility test is performed. However, we can
�nd the new radius of any node without an actual merging.
Using the same notation as before, suppose x belongs to tu.
Then it can be easily seen that

new radius of x = max fr[x], P[x;u] + D[u; v] + r[v]g

where r and P values are read from the arrays before the
merge. The case where x belongs to tv is similar. With
this, feasibility test for a node can be done in O(1). So the
condition (3-b) can be tested in O(V). We also note that
condition (3-a) can be tested in O(1). The complete BKRUS
algorithm is summarized in the following:

Algorithm BKRUS(G)

1 for each vertex x 2 V do

2 MAKE SET(x)

3 r[x] = 0
4 end for

5 for every pair of vertices x; y 2 V do

6 P[x; y] = 0
7 end for

8 sort the edge set E in nondecreasing order of weights
9 for each edge (u; v) in the sorted edge list do

10 if FIND SET(u) 6= FIND SET(v) then
11 if either condition (3-a) or (3-b) is satis�ed then

12 UNION(u; v)

13 Merge(u; v)
14 output the edge (u; v)
15 end if

16 end if

17 end for

The dominating complexity of BKRUS is on line 11 and
13. Since line 11 is executed E times and line 13 is exe-
cuted V �1 times, the complexity of BKRUS is bounded by
O(EV + V � V 2) = O(V 3).
Here, we explain BKRUS algorithm with a simple exam-

ple. Suppose we have a source and three sinks as shown in
(a) of Figure 2. If the upper bound path length is set to
(1 + �)� R = 8, BKRUS works in the order of (b), (c), and
(d) and produces a BKT with total cost 8 which is optimal.
The selected lightest edge b-c of (a) satis�es above three
conditions since b is the feasible node. So the edge b-c is
a feasible edge. The next lightest edge a-b of (b) satis�es

S

a

b
c

S

a

b
c

S

a

b
c

S

a

b
c

(a) (b) (c) (d)

4

6
8

3

1

4

Figure 2: BKRUS Example

above three conditions since a is the feasible node. Finally,
edge S-a is included since S is the feasible node.

3.1 Extension of BKRUS to use the Elmore
Delay Model

The BKRUS algorithm can be extended to the Elmore delay
model so that the path length from the source to any sink
is replaced with the signal propagation delay. To ensure the
existence of a solution, the source should be able to supply
very large amount of current, i.e. it must have a very small
driver resistance so that SPT can be a solution. R is set
to the longest S-sink delays of SPT. For two nodes u and
v, the delay from u to v is not simply proportional to the
path length between u and v, but also dependent on the
tree topology. So the method in BKRUS for computing the
radius of a node does not work. The new radii r in BKRUS
algorithm must be completely recomputed after temporarily
merging the two subtrees. The radius r[v] of node v is the
longest delay from v to any sink in the merged tree rooted
at v, and can be found in linear time. At the same time,
the total capacitance, which is sum of the wire and load ca-
pacitances in the merged tree (denoted by C(merged tree))
is also computed. The feasibility tests (3-a) and (3-b) are
then restated as:
(3-a)

0

r[source] � (1 + �) �R in the merged tree

(3-b)
0

there exists a node x in the merged tree such that
Rs �distG(S; x) �(Cs �distG(S; x)=2+C(merged tree)) + r[x]
< (1 + �) �R, where Rs and Cs denote the sheet resistance
and capacitance of the wire, respectively.
(3-a)

0

takes O(V) while (3-b)
0

takes O(V 2). As a result
of these modi�cations to BKRUS, the feasibility test domi-
nates the total complexity of the algorithm, whose complex-
ity becomes O(EV 2).

3.2 Constructing Bounded Path Length
Steiner Trees: BKST

Bounded Path Length Steiner Trees can be constructed on
a channel intersection graph or on a Hanan's grid graph [9]
using a modi�ed BKRUS. A spanning tree that spans all
the sinks and the source on these routing graphs becomes
a Steiner tree. We call this variation of Bounded Kruskal
method a Bounded Kruskal STeiner (BKST). Initially, the
distances between every pair of sinks on the routing graph
are computed and stored in a heap. These distances are
analogous to the edge weights in BKRUS. Then we extract
the smallest distance from the heap and check its feasibilty.
If it is feasible, the path in the routing graph that achieves

Source

b

d

a

c

Source

b

d

a

c

Source

b

d

a

c

Source

b

d

a

c

Source

b

d

a

c

e

f f g

e e

f g
h

i j

(a) (b) (c)

(d) (e)

f

e

g
h

i

Figure 3: Example of Steiner BKRUS (BKST)

this distance is found and added to the Steiner tree under
construction. If there are multiple such paths, we choose
only L-shaped paths (no zigzag paths). Also, among the two
possible L-shaped paths, we choose the path whose corner
is closest to the source. The nodes that lied on the path
which were just added to the Steiner tree, are treated as
new sinks. Next, the distances between the new sinks and
all other sinks which are not in the current merged tree are
computed and stored in the heap. The next iteration picks
the smallest distance from the heap. This continues until
every sink is covered.
If there are m sinks (both given and added sinks) in the

Steiner tree, the complexity of BKRUS is O(V m2). In the
worst case, m is of O(V 2). However, in practice, m is not
large. In our benchmark circuits, m was usually no more
than 10 times of V . In many VLSI designs, especially in
standard cell designs, the sink locations are regular. So there
are not so many Hanan points. These facts enabled us to
run BKST on large benchmarks as well.
Figure 3 shows an example of this algorithm on a Hanan

grid graph. In the Figure, (a) shows the given source and
four sink locations. The dotted lines and their intersection
points are the edges and nodes of the Hanan grid graph.
Initially, the distances between the 5 points (Source, a, b,
c, d) are computed and stored in the heap. From the heap,
the shortest distance (a,b) is extracted. Assume that it is
feasible. Then the path path(a; b) shown in (b) is added to
the Steiner tree. We then have two new sinks e and f . The
distances from e, f to Source, c, d are computed and stored
in the heap. The next shortest distance in the heap is (f ,c)
and it is feasible, so path(f; c) is added to the Steiner tree
in (c). The next shortest distance path(c; d), however, is
not feasible, so it is rejected. The next shortest and feasible
distance is path(Source; g), so it is added in (d). Finally,
path(i; d) is included in (e).

4 Gabow's Exact Method: BMST G

Let us describe an optimal algorithm for the Bounded path
length Minimal Spanning Tree (BMST) problem. This opti-
mal algorithm is adopted from [5], although our implemen-
tation is somewhat di�erent.
Gabow's algorithm produces all spanning trees in order of

increasing cost with time complexity of O(KElog(1+E=V)V)

Initial Solution Tree

T-exchange

T-exchange

T-exchange

T-exchange

depth 1

depth 2

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Figure 4: BKEX Negative-sum-Exchange Search Tree

and space complexity of O(K) where K is the total number
of spanning trees generated1. We briey describe his algo-
rithm, omitting many details. Interested readers may refer
to [5].
Let T be a spanning tree of G. A T-exchange is a pair

of edges (e, f) where e 2 T , f 2 G� T and T� e [f is a
spanning tree. The weight of exchange (e, f) is weight(f) �
weight(e). The edge pair (e, f) which achieves the minimum
weight of exchange is minimal T-exchange. Note that if T
is a minimal spanning tree, there is no negative weight T-
exchange. If T is a minimal spanning tree and (e, f) is a
minimal T -exchange, then T� e [f is a spanning tree with
the next smallest cost. This is the basis of the algorithm.
We terminate Gabow's algorithm when the generated

spanning tree satis�es the upper bound. The major short-
coming of Gabow's algorithm is the space complexity. Total
number of spanning trees in a complete graph is V V�2 [6].
This makes Gabow's algorithm impractical even for as few
as 10 nodes. We have been able to somewhat reduce the
space and time complexities by eliminating some edges as a
preprocessing to the Gabow's algorithm that cannot lead to
a solution tree. Using this technique, we have used Gabow's
algorithm on trees with as many as 15 sinks. In a practical
CMOS circuit, a gate usually drives less than 10 gates. So
this algorithm can be used in most practical cases.

5 Yet Another Exact Method and a Heuristic:

BKEX and BKH2

Bounded Kruskal EXchange (BKEX) is a post-processing
algorithm that starts from an initial solution tree and re-
duces the routing cost toward the optimal. If the initial tree
is not an optimal solution, BKEX �nds edge exchange(s)
such that routing cost is reduced. We call such exchange(s)
negative-sum-exchange(s).

De�nition 5.1 Negative-sum-exchange(s): A sequence of

T-exchange(s) where the sum of the weight(s) of exchange(s)

is negative.

BKEX starts from any solution tree, �nds negative-sum-
exchange(s), converts the solution tree to a new solution
tree by exchanging edges, and iterates until no more possi-
ble exchange(s) are found. Let's denote the search tree in
Figure 4 as � . Each node in � represents a spanning tree.

1We believe this is the correct time complexity instead of

Gabow's claim of O(KE�(E;V)).

The root of � is the initial solution. A child node is gener-
ated by a T -exchange from its parent node. The edges of �
are labeled with the weight of T -exchange. BKEX searches
negative-sum-exchange(s) in a depth �rst search manner.
Note that one can reach any spanning tree from the root by
a series of at most V � 1 T -exchanges. So searching down
to the depth of V � 1 always �nds the optimal solution.
However, in most cases, BKEX �nds an optimal solution in
much smaller depth.
BKEX keeps track of the sum of T -exchange weights from

the root to the current node during the depth �rst search.
If the sum at a certain node is negative, a new tree with
less cost is constructed at that node and we store the new
tree as a minimum cost tree. Whenever a better solution is
found during the search, this new tree is put on the root of
� and a new search begins.
Since the number of possible T -exchanges in a tree T

is O(EV), a node in � has O(EV) children. So � has
O(EnV n) nodes where n is the depth of � . For each node
in � , BKEX needs to check if the current spanning tree
is feasible, which takes O(V). So the time complexity of
BKEX is O(EnV n+1). This is a higher time complexity
than Gabow's, but space complexity is only O(E). The ini-
tial solution signi�cantly a�ects the performance of BKEX.
When BKEX starts from a very good initial solution (such as
BKT), the actual search space is much smaller than EnV n.
Indeed our experimental results show that BKEX is much
faster than Gabow's method. Besides, BKEX �nds the so-
lution when Gabow's algorithm fails for larger benchmarks
due to its exponential space complexity.
We tested BKEX with 2,750 randomly generated bench-

marks. The number of sinks of these benchmarks are be-
tween 5 and 15. The � value has a range from 0.0 to 1.0.
BKEX reaches optimal solutions of 96.945%, 97.309% and
99.709% with depth two, three and four respectively. Only
one benchmark was left unoptimal with depth �ve and it
was solved by depth six.
We implemented another heuristic method BKH2 which

limits the depth of the search tree � by two. It can be
shown that BKT is a local optimum with respect to a sin-
gle T -exchange. To obtain a better local optimum than
BKT, at least double T -exchanges are needed. Thus BKH2
is proposed to �nd a local optimum with respect to two
T -exchanges.
The complexity of BKH2 is O(E2V 3). Since this com-

plexity is relatively high, we found that BKH2 is beni�cial
when V is less than 300 (see Table 1).

6 Experimental Results

We implemented BKRUS, BMST G, BKEX, BKH2, and
BKST algorithms in C on HPPA and SUN workstations in
the UNIX environment. We used three sets of benchmarks:
(1) the sink placements for MCNC Primary1 and Primary2
benchmarks used in [3]; and (2) the sink placements for the
�ve benchmarks r1-r5 used in [4]; and (3) �ve sets of 5 to
15 sinks and 50 random test cases for each set.
We added one more node as the source to the r* and

primary* benchmarks because they did not come with a
source. All the results are computed in Manhattan metric.

BKRUS BKH2 perf.

path perf. path perf. red.

� ratio ratio cpu ratio ratio cpu %

pr1 1 2.424 1.000 0.73 2.424 1.000 0.76 0.00

1.00 1.841 1.000 0.73 1.841 1.000 0.77 0.00

0.50 1.491 1.018 0.75 1.465 1.002 11.51 1.60

0.10 1.100 1.076 0.76 1.096 1.009 0.1k 6.24

0.00 1.000 1.144 0.75 1.000 1.037 2.0k 9.37

pr2 1 2.372 1.000 4.26 2.372 1.000 4.45 0.00

1.00 1.935 1.000 4.27 1.935 1.000 4.6 0.00

0.50 1.493 1.012 4.26 1.459 1.003 0.1k 0.88

0.10 1.100 1.073 4.30 1.100 1.034 31.1k 3.60

0.00 1.000 1.102 4.37 1.000 1.100 31.9k 0.18

r1 1 1.941 1.000 1.12 1.941 1.000 1.17 0.00

1.00 1.941 1.000 1.12 1.941 1.000 1.17 0.00

0.50 1.489 1.019 1.11 1.489 1.002 2.5 1.68

0.10 1.096 1.124 1.14 1.090 1.021 2.1k 9.21

0.00 1.000 1.263 1.18 1.000 1.072 4.7k 15.11

r2 1 1.838 1.000 7.32 1.838 1.000 7.67 0.00

1.00 1.838 1.000 7.35 1.838 1.000 7.69 0.00

0.50 1.489 1.021 7.33 1.468 1.000 0.3k 1.99

0.10 1.098 1.084 7.51 1.097 1.034 52.6k 4.62

0.00 1.000 1.148 7.55 1.000 1.118 32.6k 2.58

r3 1 2.291 1.000 13.69 2.291 1.000 14.12 0.00

1.00 1.833 1.000 13.65 1.833 1.000 14.27 0.00

0.50 1.471 1.006 13.66 1.498 1.001 63.38 0.50

0.10 1.100 1.060 13.68 1.099 1.051 22.0k 0.86

0.00 1.000 1.156 14.27 1.000 1.137 28.6k 1.71

r4 1 3.372 1.000 82.65 3.372 1.000 88.06 0.00

1.00 1.995 1.011 82.62 1.898 1.000 23.5k 1.08

0.50 1.490 1.014 84.83 1.496 1.010 55.0k 0.41

0.10 1.100 1.076 103.67 1.100 1.076 54.5k 0.00

0.00 1.000 1.104 102.74 1.000 1.104 18.7k 0.00

r5 1 3.151 1.000 216.37 3.151 1.000 0.2k 0.00

1.00 1.999 1.011 218.28 1.927 1.011 9.2k 1.05

0.50 1.500 1.017 243.27 1.500 1.017 46.1k 0.00

0.10 1.100 1.064 278.65 1.100 1.064 43.3k 0.00

0.00 1.000 1.113 262.31 1.000 1.113 48.6k 0.00

perf. ratio (Tree) = cost(Tree) = cost(MST)

path ratio (Tree) = longest path(Tree) = longest path(SPT)

perf. reducttion = (1 � BKH2/BKRUS) � 100

CPU time is measured in seconds.

BKH2 limits CPU time to about 12 hours.

GABOW, BKEX and BPRIM are impractical to generate outputs.

Table 1: BKRUS and BKH2 results for large benchmarks

S S S S

BPRIM MST and BKT BKT
ε = 0.25
Cost = 38.57Cost = 30.98

ε= ∞
Cost = 131.30
ε= 0.0

BKT
ε = 0.0
Cost = 40.09

Figure 5: Example where the performance ratio of BRPIM
is not bounded for any �

As explained in [2], BPRIM can generate solution whose
cost is not bounded for any �. BPRIM generates 4:2 �

cost(MST) and 3:3 � cost(BKT) for the benchmark shown
in Figure 5 when � = 0.
A comparison of BKRUS and BKH2 over MST is given

in Table 1 for benchmarks (1), (2). The results show that
the performance ratio of BKT over MST is at most 1.263.
For (3) benchmarks, the comparison of BPRIM, BRBC,
BKRUS, BKH2, BMST G and BKST in terms of routing
cost is shown in Table 2. The benchmark results show about
average performance ratios of 1.282, 1.245, 1.202, 1.202 and
1.032 for BPRIM, BKRUS, BKH2, BMST G and BKST re-
spectively in the worst case. In the case of 15 points with
� = 0:1, the average cost reductions are 18.19%, 10.9%,
10.6% and 6.5% over BPRIM for BKST, BMST G (BKEX),
BKH2 and BKRUS respectively. BKRUS method o�ers
a continuous, smooth trade-o� between the competing re-
quirements of longest path length and total wire length in
terms of �.

net BPRIM BRBC BKRUS BKH2 BMST G BKST

size � ave max max ave max cpu ave max cpu ave max cpu min ave max cpu

5 0.0 1.157 1.854 1.854 1.153 1.854 0.021 1.151 1.854 0.024 1.150 1.854 0.219 0.802 0.953 1.366 0.308

5 0.1 1.108 1.514 1.715 1.092 1.514 0.021 1.088 1.514 0.022 1.088 1.514 0.221 0.802 0.934 1.125 0.303

5 0.2 1.073 1.332 1.715 1.063 1.332 0.022 1.059 1.332 0.024 1.059 1.332 0.224 0.802 0.925 1.114 0.307

5 0.3 1.040 1.332 1.715 1.035 1.332 0.023 1.033 1.332 0.021 1.033 1.332 0.226 0.802 0.923 1.114 0.307

5 0.4 1.034 1.332 1.438 1.032 1.300 0.023 1.028 1.300 0.022 1.028 1.300 0.202 0.802 0.924 1.114 0.306

5 0.5 1.024 1.209 1.595 1.020 1.206 0.021 1.018 1.168 0.023 1.018 1.168 0.220 0.802 0.924 1.114 0.308

5 1.0 1.004 1.089 1.315 1.002 1.048 0.023 1.002 1.048 0.022 1.002 1.048 0.218 0.802 0.914 1.000 0.303

8 0.0 1.254 2.043 2.494 1.239 1.938 0.024 1.202 1.938 0.022 1.202 1.938 0.221 0.864 0.986 1.205 0.307

8 0.1 1.156 1.928 2.116 1.115 1.457 0.023 1.094 1.457 0.023 1.094 1.457 0.227 0.853 0.982 1.205 0.308

8 0.2 1.120 1.933 1.908 1.077 1.318 0.021 1.057 1.294 0.024 1.057 1.294 0.225 0.853 0.959 1.111 0.307

8 0.3 1.072 1.515 1.773 1.043 1.318 0.023 1.029 1.187 0.021 1.029 1.187 0.221 0.853 0.951 1.111 0.307

8 0.4 1.056 1.351 1.767 1.032 1.205 0.024 1.023 1.156 0.020 1.023 1.156 0.219 0.840 0.945 1.111 0.307

8 0.5 1.057 1.469 1.665 1.023 1.156 0.020 1.019 1.156 0.023 1.019 1.156 0.216 0.840 0.944 1.111 0.306

8 1.0 1.003 1.145 1.361 1.002 1.112 0.011 1.000 1.025 0.013 1.000 1.025 0.211 0.840 0.934 1.025 0.306

10 0.0 1.235 2.121 2.136 1.221 1.970 0.012 1.173 1.970 0.014 1.169 1.970 0.249 0.861 1.009 1.224 0.311

10 0.1 1.168 1.621 2.136 1.127 1.495 0.011 1.094 1.369 0.014 1.092 1.369 0.239 0.861 0.983 1.224 0.312

10 0.2 1.143 1.764 1.843 1.069 1.338 0.010 1.054 1.277 0.013 1.052 1.277 0.231 0.861 0.946 1.136 0.312

10 0.3 1.110 1.906 1.803 1.031 1.242 0.014 1.029 1.242 0.012 1.029 1.242 0.223 0.861 0.941 1.136 0.314

10 0.4 1.065 1.489 1.803 1.025 1.253 0.012 1.020 1.242 0.018 1.019 1.242 0.229 0.861 0.939 1.136 0.313

10 0.5 1.056 1.591 1.535 1.022 1.247 0.022 1.016 1.242 0.023 1.015 1.242 0.228 0.861 0.937 1.136 0.312

10 1.0 1.005 1.149 1.455 1.001 1.020 0.022 1.001 1.020 0.022 1.001 1.016 0.218 0.861 0.926 1.007 0.310

12 0.0 1.242 1.611 2.129 1.226 1.558 0.024 1.155 1.517 0.029 1.149 1.517 0.818 0.829 1.002 1.217 0.314

12 0.1 1.200 1.536 2.129 1.115 1.542 0.023 1.072 1.300 0.024 1.072 1.300 0.313 0.829 0.980 1.256 0.314

12 0.2 1.136 1.407 1.707 1.073 1.408 0.024 1.041 1.246 0.024 1.041 1.246 0.292 0.829 0.956 1.135 0.314

12 0.3 1.092 1.398 1.601 1.056 1.286 0.022 1.029 1.171 0.023 1.029 1.171 0.240 0.829 0.947 1.129 0.315

12 0.4 1.068 1.272 1.525 1.038 1.254 0.022 1.020 1.133 0.024 1.020 1.133 0.218 0.829 0.937 1.033 0.314

12 0.5 1.044 1.312 1.508 1.016 1.139 0.022 1.009 1.087 0.025 1.009 1.087 0.222 0.829 0.932 1.028 0.314

12 1.0 1.001 1.052 1.346 1.001 1.033 0.023 1.001 1.030 0.022 1.001 1.030 0.218 0.829 0.927 0.976 0.316

15 0.0 1.282 1.763 2.179 1.245 1.745 0.025 1.157 1.745 0.032 1.148 1.686 10.465 0.926 1.032 1.266 0.326

15 0.1 1.204 1.705 2.037 1.126 1.298 0.025 1.077 1.298 0.030 1.073 1.298 22.490 0.872 0.985 1.245 0.324

15 0.2 1.138 1.618 1.877 1.078 1.282 0.025 1.047 1.212 0.024 1.043 1.212 8.518 0.872 0.971 1.245 0.329

15 0.3 1.141 1.794 1.802 1.056 1.282 0.024 1.031 1.148 0.025 1.028 1.148 4.411 0.846 0.955 1.245 0.323

15 0.4 1.099 1.556 1.711 1.034 1.159 0.024 1.020 1.105 0.026 1.018 1.092 0.683 0.846 0.938 1.044 0.323

15 0.5 1.067 1.345 1.708 1.024 1.133 0.025 1.012 1.092 0.024 1.012 1.092 0.634 0.846 0.939 1.120 0.321

15 1.0 1.012 1.151 1.385 1.004 1.046 0.023 1.003 1.046 0.023 1.003 1.046 0.301 0.846 0.925 1.000 0.320

50 random test cases were generated for each point.

CPU time is the average of 50 random test cases measured in seconds.

Minimum values are 1.008, 1.038, 1.007 and 1.007 for BPRIM, BKRUS, BKH2 and BMST G respectively at � = 0.0 of net 12. The others are 1.000.

BRBC is shown only with maximum values since minimum and average values of BRBC are always worse than those of BPRIM.

Table 2: The Ratio of the Routing Cost over MST

MST BMST_G

BKEX BKH2

BKRUS SPT

Maximal
Spanning
Tree

Figure 6: Routing Cost Chart

From these results, the various BMST methods can be
ordered by their routing costs as shown in Figure 6. This
chart shows the average relative positions.
The result of Bounded Kruskal Steiner Tree (BKST) on

benchmark set (3) shows that its cost is lower than any
other spanning tree heuristics. The savings are 5% to 30%
over other heuristics. Note that the savings are even greater
when � is close to zero. This is due to the fact that when �

is close to zero, there are many direct source-to-sink paths
in the spanning tree solutions while in the Steiner solutions,
these direct paths are replaced by fewer direct source-to-sink
paths. Although BKST produces lower cost trees, we feel
that spanning tree heuristics are worthwhile because they
run much faster.

7 Conclusion

We have presented bounded path length minimal span-
ning/Steiner tree schemes which can control longest path
length and routing cost. Our method achieves smaller cost
than that of BPRIM and BRBC. Future research includes
considering the e�ects of bu�ering and wire sizing, extend-
ing this work to lower and upper bounded Steiner Trees and

preserving planarity during the construction procedure.

References

[1] J. B. Kruskal, \One the shortest spanning subtree of a graph
and the traveling salesman problem," Proceedings of the

American Mathematical Society, Vol. 7, pp. 48-50, 1956.

[2] Jingsheng Cong, A. Kahng, G. Robins, M. Sarrafzadeh, and

C. K. Wong, \Provably Good Performance-Driven Global
Routing," IEEE Transactions on Computer Aided Design ,

Vol. 11, NO. 6, pp. 739-752, June, 1992.

[3] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh, \Clock rout-
ing for high-performance ICs," 27th Design Automation Con-

ference , pp. 573-579, 1990.

[4] R-S Tsay, \Exact zero skew," International Conference on

Computer-Aided Design , pp. 336-339, 1991.

[5] Harold N. Gabow, \Two algorithms for generating weighted
spanning trees in order," SIAM J. Comput. , Vol. 6, No. 1,
pp. 139-150, March 1977.

[6] F. Harary, \Graph Theory," Addison-Wesley, Massachusetts,

pp. 152-154, 1969.

[7] J. Ho, D. T. Lee, C. H. Chang, and C. K. Wong, \Bounded
diameter spanning trees and related problems," Procceedings
of ACM Symposium Computational Geometry , pp. 276-282,

1989.

[8] C.J. Alpert, T.C. Hu, J.H. Huang and A.B. Kahng, \A di-
rect combination of the Prim and Dijkstra constructions for

improved performance-driven global routing," International

Symposium on Circuit and Systems, pp. 1869-1872, 1993.

[9] M. Hanan, \On Steiner's problem with rectilinear distance,"
SIAM Journal of Applied Mathematics, pp. 255-265, March
1966.

