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Republic of China∥ Centre for Nano-Wear, School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea

ABSTRACT

  The availability and catalytic activity of the cost-efficient electrocatalysts are the dominant factors for 

the hydrogen evolution reaction (HER) performance in the renewable hydrogen economy. Extensive 

efforts have been devoted to maximize the amount of various active sites in non-noble metal 

electrocatalysts for HER. This work reported a physically-sputtering strategy to construct porous and 

ordered 2H-MoS2 films with mono-/di-/tri-types of active sites via controlling the film thickness (from 

~15 nm to 3050 nm) in the energetic plasma. As the pure (2H-) MoS2 for HER electrocatalyst, the as-

fabricated 3050 nm additive-free columnar film electrode shows a stable electrochemical activity for 

HER (an overpotential of 204 mV at a current density of -10 mA/cm2). Interestingly, the MoS2 film 

with controllable thickness can serve as an innovative platform to study the electrocatalytic activity of 

the customized different active sites (the exposed active edge of sheets (eE), stepped-termination 

surfaces (sS) and terrace on the basal planes (tB)) and the dependence of electrocatalytic efficiency of 

the vertically-aligned MoS2 eE active sites on their distance to the current collector. The results firstly 

revealed that the tB active sites possessed almost the same electrocatalytic activity as that of the eE 

active sites but higher than sS active sites. The electrocatalytic efficiency of the eE active sites 

decreased as their distances to the current collector were gradually increasing, due to the limited 

conductivity of the semi-conductive 2H-MoS2 sheets. This work proposes and evaluates a facile 
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strategy for replying the question on how to investigate the electrocatalytic activities of various active 

sites in the electrocatalysts. 

KEYWORDS: MoS2, physically-sputtering strategy, various active sites, electrocatalytic activity, 

hydrogen evolution reaction

1. INTRODUCTION

  In view of the forthcoming fossil fuel exhaustion, rapid global population growth and environmental 

issues, the immediate deployment and development of renewable energy resources become paramount. 

Hydrogen fuel is considered to be one of the most promising sustainable and clean energy sources since 

the raw material for the hydrogen production is water.1-4 Solar energy is a rival source but with some 

issues due to the intermittent nature. By comparison, hydrogen fuel can be produced by simply splitting 

water driven by electrocatalyst and the production process is paralleled. The low abundance and high 

cost feature of Pt has limited its wide adoption for the hydrogen evolution reaction (HER) even though 

Pt based electrocatalyst are demonstrated to have the most effective catalysis performance.4-7 Currently, 

one challenge is to develop a low cost but high efficiency electrocatalyst, as an alternative to the earth-

rare Pt for HER.

  The race was started to improve the HER performance of non-noble-metal candidate materials 

(carbide: W2C, Mo2C, etc.;8,9 phosphide: MoP, NixCoyP, etc.;10,11 nitride: Ni3N, WN, etc.;12,13 oxide: 

Co3O4,14 transition metal dichalcogenides (TMDs)6,7,15,16) since the natures of their active sites for 

electrocatalytic activity had been identified. One of the main strategies was to create more active sites 

per unit area, and the other was to improve the electric conductivity to further enhance the 

electrocatalytic activities of the existing active sites. Among the aforementioned candidates, the TMDs 

have been widely studied due to their promising high activity and high stability in many strong acids. 

Up to now, extensive efforts have been devoted to developing the TMDs (MoS2, WS2, MoSe2, WSe2, 
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MoTe2, NbSe2, etc.)7,15,17,18-26 and tailoring their nanostructure (the ratio of effective atoms at the 

surface and subsurface) to maximize the amount of active sites to ultimately enhance HER performance. 

The efficient strategy to increase the density of active sites included (i) reduction of the TMDs’ size to 

enlarge the ratio of the exposed active edge of sheets (eE),21,27-29and (ii) induction of the heterogeneous 

growth of TMDs crystals to fabricate the stepped-termination surface (sS),7,15,30 and (iii) activating the 

inert basal plane by creating the active terraces (tB),21,24,31-35 and (iv) switching the semi-conductive 2H 

phase to the metallic and active 1T’ phase TMDs. 7,36-39 Grain boundary was also known as another 

type of active site but it had lower electrocatalytic activity than eE, sS and tB.40 Thus, additive 

manufacturing of more active sites in MoS2 electrode held broad interests and significances to fully 

accelerate the HER kinetics. Hu et al have simply pointed out that the more loading mass of porous 

active material in electrode film, the higher hydrogen yield.17,18 Nevertheless, it was still unclear of the 

contribution of the high-loading mass active material on the enhanced hydrogen production. The key 

challenge was in lack of the understanding of the contributions of different active sites on the HER 

kinetics. David et al have used porous MoS2 electrodes with various thicknesses as model to identify 

the dominant factors of active sites for HER activity.38,41-43 However, it was real no way to define the 

contribution of the electrocatalysis active sites in the randomly restacked MoS2 electrode on HER 

performance by weight, because their relative proportion was unknown and their electrocatalytic 

activities were also unclear. In fact, the explicit definition of the electrocatalytic activities of various 

active sites for HER is essential to design the well-defined structure for further enhancing their 

electrocatalytic performance. 

   Recently, the novel physical approach is triggering interests in manufacturing the additive-free 

vertically-aligned active materials on current collector to explore the enhanced electrochemical 

performances.44-47 This stimulates us to explore a straightforward physically-sputtering strategy to 

directly synthesize the porous and ordered TMDs film on the current collector to define electrocatalytic 
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activities of active sites for HER. There will be no any interference of re-stacking or aggregating by the 

binder or conductive agents. Considering the MoS2 as the representative of TMDs, we propose a 

physical vapour deposition (PVD) strategy to synthesize the ordered MoS2 films with various thickness 

(~15 nm to 3050 nm) via precisely controlling the sputtering plasma conditions: the ultra-thin 2H-MoS2 

film with terrace on the basal plane (tB), the thin MoS2 film with exposed stepped-termination surface 

(sS), the vertically-aligned MoS2 film with abundant exposed active edge (eE). The current collector is 

cleaned carbon fibre (CF). Moreover, in this study, we aim to develop a new approach to reveal the 

electrocatalytic activities of various active sites in the MoS2 electrocatalyst for HER performance. 

2. EXPERIMENTAL DETAILS

2.1 MoS2 film electrode deposition

The MoS2 films were directly fabricated on the CF substrate without any additives by using a 

magnetron sputtering strategy in the Ar plasma. The source material was 99.99% MoS2 target with 

diameter of 75 mm. The maximum fabrication area of film depends on the target size. Before the 

deposition, the CF substrate was cleaned by acetone for 10 minutes, alcohol for 10 minutes and 

deionized water (DI) for 5 minutes. The deposition conditions were under Ar pressure of 0.65 Pa, 

sputtering power of 275 W and CF substrate bias voltage of -30 V. The deposition time of the MoS2 

films with thickness of ~15 nm, ~35 nm, 76 nm, 880 nm and 3050 nm was 40 seconds, 1 minute 30 

seconds, 3 minutes, 28 minutes and 100 minutes, respectively. 

2.2 Structure characterization

  The phase structure of the MoS2 films was characterized by grazing incidence X-ray diffraction 

(GIXRD, Philips X’Pert) using Cu Kα radiation under an incident beam angle of 1°, and Raman 

microscopy (Thermo Scientific, DRX) with an excitation wavelength of 532 nm. The surface and 

cross-sectional morphologies of MoS2 films were analysed by field emission scanning electron 
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microscopy (FESEM, Hitachi SU8230). The cross-sectional structure of representative 3050 MoS2 film 

was observed by a high-resolution transmission electron microscope (HRTEM, FEI Titan Themis 

Cubed 300) and the chemical component was analysed by the attached energy dispersive X-ray 

spectroscopy (EDS). The Pt/Ir layers were deposited on the as-deposited 3050 nm MoS2 film to protect 

the original film structure from any damage by the high energetic focused ion beam (FIB) in the 

preparation process of cross-sectional TEM sample. The X-ray photoelectron (XPS) spectrum was 

collected using an XPS (Thermo UK) equipped with mono-chromated Al Kα radiation to further 

analyse the detailed chemical composition of film. 

2.3 Electrochemical measurements

  All electrochemical measurements were performed with a standard three-electrode electrochemical 

cell in 0.5 M H2SO4 solution. The Ag/AgCl (3 mol/L KCl), Pt/C rod and as-deposited pure MoS2 films 

coated CF electrode were used as the reference, counter and working electrode, respectively. The 

Ag/AgCl reference electrode was properly calibrated. All potentials reported in this paper were 

converted to the reversible hydrogen electrode (RHE) by adding a value of (205+59pH) mV. 

Polarization curves were acquired by sweeping the potential from 0 to -500 mV vs. RHE at a sweep 

rate of 2 mV/s. Tafel slopes were determined by replotting the polarization curves. Electrochemical 

impedance spectroscopy (EIS) was performed with frequency from 100,000 Hz to 0.01 Hz and an 

amplitude of 10 mV under the overpotential of 200 mV vs. RHE, and spectra were appraised through 

the Levenberg-Marquardt minimization procedure. iRs compensation (current times internal resistance) 

was applied in all sweep running experiments to account for the voltage drop between the reference and 

working electrodes, where Rs is the solution resistance extracted from the fitted EIS data. Cyclic 

Voltammetry (CV) for double layer capacitance measurements was taken in a potential window 

between 0.1 to 0.2 V (vs. RHE) at scan rates of 10, 30, 50, 70, 90, 110 mV/s. The total current density 
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obtained from the current density difference (Δj=ja-jc) at 0.15 V (vs. RHE) was plotted against the scan 

rate, where the double layer capacitance (Cdl) is equivalent to the slope of the fitted line. The 

electrochemical surface area (ECSA) of a catalyst can be calculated according equation: ECAS= Cdl/Cs, 

where Cs is the capacitance of the sample with an atomically-smooth planar surface material. The 

overpotential-time responses were detected for 10 hours by chronoamperometric measurements under 

the current density of -10 mA/cm2. 

3. RESULTS AND DISCUSSION

3.1 Characterization of MoS2 film electrode

 To verify the feasibility of fabricating the porous and ordered MoS2 film via physically-sputtering 

approach, the structure characterization of the as-prepared film was investigated by the FESEM and 

focused ion beam (FIB)-HRTEM. Figure 1(a) shows the FESEM image of the 3050 nm MoS2 film on 

CF. The MoS2 film covers the top surface of the CF substrate. The FESEM image of as-prepared FIB-

TEM sample is shown in Figure S1. The cross-sectional TEM images and EDS mapping of the 

representative 3050 nm MoS2 film are presented in Figure 1(b)-(f). From Figure 1(b), it can be seen 

that the ordered and vertically-aligned columnar MoS2 platelet film is monolithic, and the porous 

feature is obvious as well. The seamless connection between film and the CF substrate suggests a good 

adhesion. The morphologies of MoS2 films with thicknesses of ~15 nm, ~35 nm, 76 nm, 880 nm and 

3050 nm were characterized by FESEM, and the cross-sectional and surface morphologies are shown 

in Figure 2(a). The ~15 nm and ~35 nm MoS2 films exhibit typical cluster characterization and other 

films show columnar structure. The later films present the porous surface morphologies. The typical 

different zones in 3050 nm columnar MoS2 film (Zone I: basal orientation crystal at MoS2/fibre 

interface, Zone II: the stepped-termination surface and Zone III: the continuous columns above the 

basal crystal) were further characterized and the HRTEM images are presented in Figures 1(c)-(e). It 
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could be seen that the dense MoS2 layers with ~20 nm thickness are robustly bonded to the substrate 

surface. The layer-to-layer spacing of 0.65 nm in the S-Mo-S layers clarifies the basal plane of MoS2 

crystals (as shown in Figure 1(c)). The terrace stages can decorate the exposed basal crystal plane 

(Zone I) if the film thickness was below ~20 nm, such as the ~15 nm ultrathin MoS2 film in this study. 

As the basal crystals grew up (thicker than ~20 nm), they would be was blocked by the growing grain 

crystals.48 Thus, the growth direction of edge orientation crystals can switch from being parallel to 

current collector to being perpendicular to it at the intersection boundaries of crystals. Ultimately the 

continuous columnar MoS2 platelets with edge orientation crystal structure can be formed, as shown in 

Figure 1(d). The length of columnar MoS2 platelets can be easily controlled via simply adjusting the 

sputtering time (see the Figure 2(a)). Figure S2 shows the corresponding selected area electron 

diffraction (SAED) patterns with strong rings of (100), (103) and (110) MoS2 crystal planes in the 

representative columnar MoS2 platelet zones. It verifies that the edge orientation structure of the entire 

columnar platelet (Zone III) is homogenous in MoS2 film. The edge of the MoS2 columnar platelets are 

always decorated by abundant active edge sites, as previously reported.21,27,28,48 
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 Figure 1. (a) The FESEM image of 3050 nm MoS2 film on CF substrate (the inset is one fibre), (b) 

cross-sectional HAADF image of 3050 nm MoS2 film on CF, cross-sectional HRTEM images of Zones 
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I (c) and III (d) in panel (b), and the combined EDS elemental mapping (e) and cross-sectional HRTEM 

image (f) of Zone II in panel (b).

     The Pt/Ir layers were initially utilized to protect the original film surface structure of FIB sample. As 

shown in Figure 1(e), the wavy distribution of coated Ir element on the top of 3050 nm MoS2 film 

suggested the top surface (Zone II) was very rough. The marked stepped-termination surfaces of each 

columnar MoS2 platelet are shown in Figure 1(f) and Figure S3(a),(b). They are another type of active 

sites for the outstanding HER performance, as previously reported.7,15 The height of the formed 

stepped-termination surfaces of each columnar MoS2 platelet was 15~20 nm, as shown in Figure 1(f). 

  The chemical composition and structure of the 2H-MoS2 phase were further investigated by XPS and 

Raman microscope, respectively, and the results of representative 3050 nm MoS2 film are presented in 

Figure 2(b)-(d). The XPS spectra were calibrated by a carbon 1s peak located at 284.8 eV. The Mo4+ 

3d5/2 and 3d3/2 peaks, the S2- 2p3/2 and 2p1/2 peaks in XPS spectra were located at 229.0, 232.2, 161.8 

and 163.0 eV, respectively, (Figure 2 (b),(c)) representing the 2H structure of  the as-fabricated MoS2 

in this study.38,49,50 As shown in the Raman spectrum in Figure 2(d), it is consisted of two main Raman 

modes of E1
2g and A1g, and the distinct J1, J2 and J3 peaks for 1T’-MoS2 phase are absent, indicating 

that pure 2H-MoS2 phase was ultimately formed by the physically-sputtering strategy in this study. 
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Figure 2. (a) The FESEM images of the cross-sectional and surface morphology of MoS2 films with  

thickness of ~15 nm, ~35 nm, 76 nm,  880 nm and 3050 nm, respectively. The high resolution XPS 

scans of (b) Mo 3d and (c) S 2p and (d) Raman spectrum of the 3050 nm MoS2 film. (e) GIXRD 

spectra of MoS2 films on CF. 

  Here, we aim to evaluate the electrocatalytic activity of various active sites in MoS2 electrode. To 

identify typical crystal characterization of the MoS2 films which are decorated by different active sites, 

the GIXRD measurement of films was performed and the pattern spectra are shown in Figure 2(e). 

Apart from the diffraction peak from the carbon fibre (CF) substrate located at 25.8, the peaks 

associated with (002), (100), (103) and (110) orientation of the 2H-MoS2 crystal are observed.7,38 The 

strongest (002) diffraction peak of the ~15 nm MoS2 film indicated that the deposited MoS2 crystal 

clusters were the dominant basal orientation. In the ~35 nm MoS2 film, the intensity ratio of I (100)/ I (002) 
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rose. It should be due to the switch of orientated-growth from the dominant (002) plane to (100) plane 

as the maximum thickness of basal planes reached up to ~20 nm (as shown in Figure 1(c)). The 

morphological feature of 2H-MoS2 (100) plane is columnar. With further growth of the MoS2 columnar 

platelets (76 nm thickness), the diffraction signal of the (002) plane was further weakened due to the 

shielding of the formed thick (100) and (110) crystals with columnar morphology. As the thickness of 

column-dominated MoS2 film was up to 880 nm, the (002) crystal plane and CF disappeared 

accompanied by the significant rising of the MoS2 (100) and (110) crystal planes with edge orientation. 

The diffraction patterns of 880 nm and 3050 nm MoS2 films are almost same, indicating that the 

structure of the MoS2 columnar platelets was independent on the platelets’ length. All the column-

dominated MoS2 films are decorated by the stepped-termination edges at their top surfaces (shown in 

Figure 1(f)).

  Therefore, it can be stated that the exposed different active sites of the MoS2 film can be additively 

manufactured by this on-step physically-sputtering approach via controlling the film thickness. This 

physically-sputtering strategy should be scalable to fabricate the large area of films on diverse substrate 

surface and the maximum loading area depends on the volume of the sputtering chamber. The pure 

mass of 3050 nm MoS2 film per area is about 0.96 mg·cm-2 and the density is found to be 3.15 g·cm-3. 

The calculated porosity is 37.7 % (taking the MoS2 density to be 5.06 g·cm-3). The columnar pores are 

expected to provide free access channels for the electrolyte to the internal active sites of the columnar 

MoS2 film. Theoretically, the immature basal plane-dominated MoS2 film (~15 nm) was in abundance 

of exposed tB active sites, the infantile columns on the matured basal planes of the MoS2 film (~35 nm) 

was in abundance of sS active sites and the column-dominated MoS2 films (76 nm, 880 nm and 3050 

nm) were rich of two kinds of eE and sS active sites.  

3.2 Fundamental Theory of the MoS2 film growth in plasma 
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   Numerous density functional theory (DFT) calculation and experimental investigation results have 

determined that the terraces on the MoS2 basal plane (tB), the exposed active edge sites (eE), and the 

stepped-termination surface (sS) of MoS2 sheets facilitated not only the adsorption of H+ from 

intermediate but also the desorption of hydrogen product for the high HER performance. 7,15,31,51-54 The 

schematic illustration of physically-sputtering strategy and the distribution of the various formed active 

sites (eE, sS and tB) along MoS2 film growth direction is shown in Figure 3. On basis of the classic 

Thornton model and aforementioned analysis of as-fabricated MoS2 films, the growth mechanism of 

MoS2 film consists of two main steps: (i) the initial formation of thin basal orientated MoS2 crystal 

planes on substrate (CF), and (ii) the following formation of the edge orientated MoS2 crystal platelets, 

in which various active sites were speculated to distribute in different height zones of MoS2 film.55,56 

Precisely-tailoring the MoS2 target power density is essential to create kinetic Mo and S atoms for their 

indispensable migration in plasma and adsorption on the growing surface to ultimately fabricate the 

structure controllable MoS2 film.57,58 During the film growth process, in comparison to the low surface 

energy (~250 mJ·m-2) and high activation energy (~120 kJ·mol-1) of sulphur (002) basal plane, the high 

surface energy ((100) plane of ~250,000 mJ·m-2) and low activation energy of ((100) plane of 95 

kJ·mol-1) surface diffusion edge plane could prevent the desorption of incident Mo and S ions and 

promote the growth of edge plane.59,60-62 In other words, the interfacial energy between the MoS2 basal 

plane and substrate is much higher than that between the edge plane and substrate. 
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Figure 3. The fabrication strategy of MoS2 films with various active sites on the carbon fibre.

  In the initial growth stage, the abundant absorbed MoS2 atoms on rough surface could promote 2D 

nucleation and the rapid growth of MoS2 edge planes parallel to substrate surface. Meanwhile, the 

growth of MoS2 edge planes perpendicular to substrate surface was limited. Thus, the MoS2 basal 

orientated growth and rapid extension of edge plane parallel to the substrate surface were synchronous, 

and ultimately the polycrystalline MoS2 with basal orientation was formed in the thin MoS2 film (~15 

nm MoS2 in this study). The abundant terrace (tB) was formed on the immature basal planes before 

they grow up (~15 nm MoS2 in this study). The basal plane nuclei would bond with each other at their 

domain boundaries when they grew up.21,48,54,55,63

  In the second growth stage, the mutually-blocking effect of adjacent edge orientated crystals can 

facilitate the crystal to grow vertically at the boundaries because of the more free geometry space in the 

vertical direction upward. Furthermore, the high surface energy (2 orders of magnitude larger than the 

basal plane) and low surface activation energy of edge plane determined the edge orientation growth, 

resulting in formation of the columnar platelet structure, which were always decorated by abundant 

active edge sites (eE).48,57,60,63 It can be also stated that the different growth rate of each S-Mo-S layer 

resulted in the uneven edge orientated columnar platelets.7,15,30 In other words, the stepped-termination 
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surfaces (sS) were ultimately formed. The concomitantly-formed vertical pores around the columnar 

MoS2 platelets can enable the free access of electrolyte to the internal of the electrode, allowing active 

sites to fully expose to electrolyte.41,48 The energetic plasma atmosphere, as optimized in this study, is 

essential for the staged-growth of MoS2 films: the initial growth of MoS2 basal plane with abundant tB 

(below ~20 nm thickness) and subsequent growth of MoS2 edge plane with abundant eE and sS.

 3.3 Insights into electrocatalytic activities of various active sites of 2H-MoS2 for HER

  The typical polarization curves of MoS2 films decorated by different type of active sites are shown in 

Figure 4(a). The ~15 nm MoS2 film gives a high overpotential of 386 mV vs RHE at a current density 

of -10 mA/cm2, which is lower than that of the ~35 nm MoS2 film with the stepped-termination surface 

(432 mV vs RHE). For the column-dominated MoS2 films, the thicker the MoS2 film, the greater HER 

activity can achieve: as the thickness of the columnar MoS2 film increased from 76 nm to 880 nm, and 

further to 3050 nm, the HER activities are boosted with the overpotential as low as 342 mV vs RHE, 

280 mV vs RHE and 204 mV vs RHE, respectively. The improved electrocatalytic activity of 3050 nm 

(2H-) MoS2 should be attributed to the porous and vertically-aligned MoS2 film with large specific 

surface area and abundant exposed active edge sites.17,41 It is worthy to further elucidate both the 

electrocatalytic activity and efficiency of the difference active sites in the MoS2 electrode for HER.

The Tafel slope is used to evaluate the dominant HER mechanism of the cathodic 

electrode/electrolyte interface in the low current range. As shown in Figure 4(b), the Tafel plots of the 

~15 nm, ~35 nm, 76 nm, 880 nm and 3050 nm films and Pt/C are 136 mV/dec, 159 mV/dec, 128 

mV/dec, 123 mV/dec and 125 mV/dec, and 37 mV/dec, respectively. As reported by Tributsch and 

Carway et al.41,64,65, the Tafel slope of ~120 mV/dec was generally observed as the surface coverage of 

the adsorbed hydrogen, Hads (H*), on the electrode was relatively low. Thus, the Volmer reaction 

mechanism

H3O+ + e- + * ⇄ H* + H2O
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is the rate-dominating step (RDS) of MoS2 film for HER in this work. In this equation, the * indicates 

the catalytic active sites. It is still unclear which is the dominant factor for the limited formation of H* 

on the active sites: is it the small amount of active sites, the limited electron transfer ability through the 

active materials or the low supply capacity of H3O+ to the internal active site from electrolyte? Until 

now, there are still no consensus on this dominant factor on the unremarkable hydrogen reaction 

kinetics, associated with Tafel slope in the range of 100~145 mV/dec for 2H-MoS2.

  To elucidate the electrocatalytic activity of active site, the basal orientated plane at the interface was 

defined as Zone I, the stepped-termination surface was defined as Zone II, and the columnar platelet 

edge was defined as Zone III (shown in Figure 1(b) and Figure 4(c)). The ~15 nm film possesses the 

immature basal planes decorated by terrace active sites (tB), and the ~35 nm film constitutes of Zone I 

with thickness of ~20 nm and the upper Zone II (~15 nm) with sS active sites, in which the Zone I was 

covered by the upper Zone II. The film with thickness over 76 nm constitutes of the bottom Zone I with 

thickness of ~20 nm (as illustrated in Figure 1), the topmost ~15 nm thickness Zone II with sS active 

sites and the middle columnar Zone III with eE active sites, in which the Zone I surface was covered by 

the Zone III. Based on the aforementioned analysis, the electrocatalytic activities of MoS2 were 

attributed to the terrace sites on the immature basal planes (tB) for ~15 nm MoS2 film, uncovered 

stepped-termination surface sites (sS) for ~35 nm MoS2 film, and both the exposed edge sites of the 

columnar platelets (eE) and uncovered stepped-termination surface sites (sS) for 76 nm MoS2 film, 

respectively. The operating overpotential of 400 mV vs RHE was selected as one representative 

evaluation criterion in this study. From the Figure 4(b), it can be found that the ~15 nm MoS2 film’s 

Tafel slope (136 mV/dec) is lower than that of ~35 nm MoS2 film (169 mV/dec), and the current 

density (12 mA/cm2 at 400 mV vs RHE) is higher than that of ~35 nm MoS2 film (8 mA/cm2 at 400 mV 

vs RHE). It indicates that the electrocatalytic activity of terrace sites on the immature basal plane (tB) 

is higher than the stepped-termination surface sites (sS). 
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  With further increase in film thickness, the columnar Zone III of MoS2 film grew up. Thus, the Zone 

III of the 880 nm MoS2 film can be further divided into Zone III41 and Zone III804, and Zone III of the 

3050 nm MoS2 film can be further divided into Zone III41, Zone III804 and Zone III2176. The Tafel slope 

of 76 nm MoS2 film should be considered as a mixture of the columnar Zone III41 and short stepped-

termination surface Zone II, while the proportion of Zone II was approximate 0 in the mixed Tafel 

slope value as the columns were up to the length of 880 nm and 3050 nm MoS2 films. The similarity of 

Tafel slopes of the ~15 nm film and the column-dominated films (880 nm and 3050 nm MoS2 films) 

verified that the terrace active sites on the immature basal planes and active edge sites on columnar 

platelet edge possess the same electrocatalytic activity for HER. This is the first evidence for 

elucidating the HER activity of 2H-MoS2 with diverse active sites via tailoring the mono-/di-/tri-types 

of active site in each film. 

  It is well worth to further evaluate the electrocatalytic efficiency of eE active sites in MoS2 films. 

Taking the current density at the given overpotential of 400 mV vs RHE as an example (J(400 mV)), 

the JI(400 mV) value of ~15 nm MoS2 film represents the electrocatalytic efficiency of Zone I terrace 

sites on basal plane (tB). The JII(400 mV) value of ~35 nm MoS2 film represents the electrocatalytic 

efficiency of ~15 nm thickness Zone II’s stepped-termination surface (sS) because the matured ~20 nm 

thickness basal plane layer was covered by upper Zone II during film deposition process in plasma, as 

shown in Figure 1(c). The difference of the two values of 76 nm film and the ~35 nm film, JIII41(400 

mV), represents the electrocatalytic efficiency of Zone III edge sites along columnar platelets with 41 

nm length (Zone III41), and the difference of the two values of the 880 nm film and the 76 nm film, 

JIII804 (400 mV), represents the electrocatalytic efficiency of Zone III edge sites along the columnar 

platelets with further 804 nm length (Zone III804), and the difference of the two values of the 3050 nm 

film and the 880 nm film, JIII2176 (400 mV), represents the electrocatalytic efficiency of Zone III edge 

sites along the columnar platelets with further 2176 nm length (Zone III2176). Figure 4(d) presents the 
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current density of the defined zone of the MoS2 film at the given overpotential of 400 mV vs RHE. It is 

obviously observed that the Zone I, Zone II and Zone III41 exhibit the low current density of 11.9 

mA/cm2, 8.1 mA/cm2 and 11.0 mA/cm2, respectively. They are much lower than those of the far 

column zones ofJIII804 (400 mV) and JIII2176 (400 mV), which are 20.2 mA/cm2 and 42.8 mA/cm2, 

respectively. It suggested that large amount of eE active sites of MoS2 are contributed to the high 

electrocatalytic efficiency for HER. 
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Figure 4. Electrochemical measurements for the MoS2 film on CF in 0.5 M H2SO4: (a) Polarization 

curves for MoS2 films with different thickness at a scan rate of 2 mV/s, (b) Tafel plots for the MoS2 

films, (c) the illustration of the typical active zones along the height of the 3050 nm MoS2 film, (d) the 

current density of different active zones under the overpotential of 400 mV vs RHE and (e) the 

corresponding current density of each 10 nm length of the active zones. 

  Since the Zone I of ~15 nm film, Zone II in ~35 nm film and Zone III41 in 76 nm film have the same 

order of magnitude of distance to the current collector, the difference of charge transport in these three 

zones can be negligible and the active site activity should be considered to be the dominant factor for 

the electrocatalytic efficiency. Taking the current density of each 10 nm length of the active Zones I, II 

and III as the standard of comparison, the electrocatalytic efficiencies of the typical active zones were 

further investigated at the given overpotential of 400 mV vs RHE, as shown in upper of Figure 4(e). 

The results show that the current density of each 10 nm length Zone I (in abundance of terrace active 

sites (tB)) is 7.9 mA/cm2·10 nm-1, substantially higher than those of the Zone II of stepped-termination 

surface active site (sS) and Zone III of exposed edge site (eE), which are 5.3 mA/cm2·10 nm-1 and 2.9 

mA/cm2·10 nm-1, respectively. Lots of previous reports have already demonstrated the electrocatalytic 

activity of terraces on basal plane (tB), the stepped-termination surface (sS) and column edge site (eE) 

of vertically-aligned MoS2, but it is the first time to properly compare their electrocatalytic activity and 

efficiency. Increasing the length of columnar platelets would increase the amount of available 

Page 18 of 34

ACS Paragon Plus Environment

ACS Applied Energy Materials

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Page 19/33

electrocatalytic sites at the edge of columnar platelets (eE), enabling the high current density at a given 

overpotential of 400 mV vs RHE, as shown in Figure 4(d). Nevertheless, the current density of each 10 

nm length of the Zones III41, III804 and III2176 decreases gradually from 2.90 mA/cm2·10 nm, to 0.26 

mA/cm2·10 nm and then 0.19 mA/cm2·10 nm at the given overpotential of 400 mV vs RHE, as shown 

in the bottom of Figure 4(e). The similar current density evolution trends of the different active site 

zones (Zones III41, III804 and III2176) are also observed under the given overpotential of 350 mV vs RHE 

(Figure S4) and 450 mV vs RHE (Figure S5), respectively. It is immediately apparent that the current 

density of MoS2 columnar platelets is distance dependent: edge active sites far away from the current 

collector have a low yield of hydrogen product as the distance gradually increases from dozens of 

nanometers, to hundreds of nanometers and further to thousands of nanometers scale. By aid of the 

controllable gradient thickness of MoS2 film electrodes, it can be further demonstrated that the increase 

in distance of eE active sites to the current collector by one or two orders of magnitude (from dozens of 

nanometers to hundreds of nanometers, and further to thousands of nanometers) reduces the HER 

electrocatalytic current by about one order of magnitude (Figure S6). It can be considered to be further 

exploration of quantitative correlation of the electrocatalytic activity with dependence of distance to the 

current collector.32

  Practically, the electrocatalytic activity was sensitively associated with (i) the exposed active site 

density, (ii) the energetic adsorption of key reaction intermediates (H+) and desorption of the reaction 

product on the active sites and (iii) the charge and proton transfer from the current collector to each 

active site.3,7,15,65 The electrochemical double layer capacitance (Cdl) is expected to be linear 

proportional to the electrochemical surface area (ECSA) of porous MoS2 film, which method was 

employed to study the distribution of the active sites for HER.7,38,66 It have been previously proved that 

the columnar structure was independent on the MoS2 platelets’ length. So the amount of the exposed 

active sites is linearly proportional to the surface area of columnar platelets even though the surface 
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active sites are only one part of the entire surface involved. Thus, the comparison of the relative density 

of the exposed active sites of Zones III41, III804 and III2176 can be still estimated via the Cdl. The 

original Cdl values were estimated through linear fitting the plot of the current density difference 

(j=ja-jc) at overpotential of 150 mV vs RHE versus the scan rate. The Cdl values of the MoS2 

columnar platelets at Zone III41, Zone III804 and Zone III2176 can be further estimated through the jIII41, 

jIII804 and jIII2176 values versus the scan rate, in which the j III41 value is the different j values 

between the 76 nm and ~35 nm films, j III804 value is the different j values between the 880 nm and 

76 nm films and j III2176 value is the different j values between the 3050 nm and 880 nm films, 

respectively (The raw data are presented in Figure S7). On basis of these, the calculatedCdl_ III41, 

Cdl_ III804 and Cdl_ III2176 values can be utilized to compare the exposed electrochemical surface area 

of the columnar MoS2 platelets, as shown in Figure 5(a). The Cdl value increases from 0.31mF/cm2, 

to 7.66 mF/cm2 and further to 19.3 mF/cm2 with gradual increasing in the length of columnar MoS2 

platelets from 41 nm, to 804 nm and 2176 nm. As the Cdl value of each 10 nm length of MoS2 

columnar platelets was further compared, it can be seen that all the Cdl_ III41_10 (7.5610-3 mF/cm2), 

Cdl_ III804_10 (9.4810-3 mF/cm2) and Cdl_ III2176_10 (8.8710-3 mF/cm2) values are in the same order of 

magnitude (as shown in Figure 5(b)). It indicates that all the columnar zones III have the similar 

electrochemical surface area, namely, the homogeneously-distributed active sites on the columns’ edge, 

which should not be the dominant factor responsible to the gradually-reduced current density of each 

10 nm length columnar MoS2 platelet as they were gradually far away from the current collector. The 

current density of each 10 nm length of MoS2 columnar platelets under a given overpotential of 400 

mV vs RHE, normalized with the ECSA,7 are 15.30 mA/cm2·10 nm (Zone III41), 1.07 mA/cm2·10 nm 

(Zone III804)and 0.86 mA/cm2·10 nm (Zone III2176). This ECSA-normalized current densities indicated 
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the real electrocatalytic efficiency of the MoS2 columnar platelets is distance dependent: the farther 

from the current collector the active site is, the lower catalytic efficiency it has. 

 

  

Figure 5. Electrochemical characterization of MoS2 films on CF: (a) charge-current density difference 

plotted against the scan rate of the MoS2 films (Cdl is equivalent to the slope of the fitted line), (b) the 

Cdl of each 10 nm length of different zone III along the length of the MoS2 columns, (c) Nyquist plots 

showing EIS spectra measured at the overpotential of 200 mV vs RHE with real (Z) and imaginary (Z) 

components and (d) chronopotentiometry responses (~t) recorded from 3050 nm and ~15 nm films at 

current density of -10 mA/cm2. 

The electrochemical impedance spectroscopy (EIS) was further performed to confirm the rate-

dominating step (RDS) for the gradual reduction of current density along the length of the columnar 

platelets, the spectra are shown in Figure 5(c) and the Rct values are listed in Table S1. The semicircles 
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are observed in the low frequency regime from the Nyquist curves, which can provide us the 

dominating step information on the surface exchange process of intermediate and the hydrogen product 

in HER. The absence of Warburg impedance suggested that mass transport for supplying the H3O+ to 

the active sites was fast, which conclusively suggested that charge transfer was the RDS in HER.15,41 

Furthermore, the thick MoS2 film has a small semicircle, namely, the low charge transfer resistance. 

This was attributed to the increased internal platelet edge surface of the elongated porous and columnar 

MoS2 film which was fully exposed to the intermediate. In this case, the intermediate can be accessible 

to the internal active sites along the vertical pore channels of film, ensuring the increased interaction 

between internal active sites with the reactants. It was demonstrated that the conductivity of the in-

plane MoS2 (columnar crystals) was 1,000 times higher than that of out-of-plane.41,67,68 However, on 

basis of aforementioned results in this study, it can be stated that the vertical-aligned columnar MoS2 

crystal platelet with abundant active edge sites can’t fundamentally change the overall 2H-MoS2 semi-

conduction characterization or the limited charge transfer capacity either. The low conductivity is still 

the barrier for the 2H-MoS2 to achieve complete interaction of far-end active sites with the as-absorbed 

H3O+, due to the inefficient electron supply. Thus, the zone III of columnar platelet far away from the 

current collector presents low electrocatalytic activities (Figure 4 (e)). The farther the active site is, the 

lower electrocatalytic activity it has. 

  Furthermore, the electrocatalytic stability of the physically-deposited MoS2 electrodes was measured 

at the fixed current density of -10 mA/cm2. The typical chronopotentiometry response curves of the 

thickest 3050 nm MoS2 film and the thinnest ~15 nm MoS2 film are shown in Figure 5(d). The results 

show a more stable and low overpotential for the 3050 nm MoS2 film electrode. To maintain the 

cathodic current density of -10 mA/cm2, the electrode overpotential for 3050 nm MoS2 film increases 

from 213 mV to 232 mV (8.2 % fluctuation) over the duration of 10 hours. The 3050 nm MoS2 film 

was still pinning on CF substrate after running 10 hours, as confirmed by FESEM image and the EDS 
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elemental mapping measurement in Figures S8(a)-(d). For the ~15 nm MoS2 film, the overpotential 

increases from 394 mV to 445 mV (11.4 % fluctuation) to maintain the current density of -10 mA/cm2. 

The low fluctuation of electrochemical performance indicated the physically-deposited MoS2 films 

could serve as a robust platform to deeply reveal the RDS of electrocatalytic mechanism for HER. This 

new approach proposes and evaluates a new insight on how to investigate the electrocatalytic activities 

of various active sites in MoS2 electrocatalyst. Our further research plan is to present how to arrange 

the conductive agent along the edge-orientated columnar platelets but without any cover or passivate 

the active sites to fast transfer electron to the far-end active sites, to approach its intrinsic activity rate 

for HER. 

4. CONCLUSIONS

  The porous and ordered MoS2 film with various active sites (exposed edge of columnar sheets (eE), 

stepped-termination surface (sS) and terraces on basal plane (tB)) was successfully fabricated on 

carbon fibre by one-step physically-sputtering strategy in energetic plasma environment. The amount 

of active sites at the edge of columnar platelets can be customized via simply controlling the length of 

the 2H-MoS2 columns. This new approach proposes and evaluates a facile strategy to investigate the 

electrocatalytic activities of various active sites (eE, sS and tB) and the dependence of eEs’ 

electrocatalytic activities on the distance to the current collector in columnar MoS2 platelets 

electrocatalyst for HER. The results reveal that the tB active site has the same electrocatalytic activity 

to the eE active site but it is higher than that of sS active site. The electrocatalytic efficiency of the eE 

active sites at the columnar platelet edge decreased gradually as their distances to the current collector 

were gradually increasing, from dozens of nanometers to hundreds of nanometers and further to 

thousands of nanometers scale. It should be attributed to the limited charge transfer from the current 

collector to the far-end active sites of the MoS2 columnar crystal platelets. In comparison to the 

previously-reported pure 2H-MoS2 for HER, the physically-deposited 2H-MoS2 films can serve as a 
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robust platform to deeply reveal the RDS of electrocatalytic mechanism for HER. As one reference, we 

believe that this strategy can be employed as a model for the porous and ordered active material to 

study the electrocatalytic activities of various active sites for HER or/and oxygen evolution reaction.  

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at ///

  FESEM image of FIB sample; SAED patterns along the thickness direction of cross-sectional 3050 

nm MoS2 film; cross-sectional HAADF image of stepped-termiation surface of columnar platelets; 

current densities of each 10 nm length column along the thickness direction; cycle voltammogram (CV) 

curves; FESEM image and EDS mapping of the 3050 nm films after running over 10 hours. 
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Shusheng Xu synthesized the electrocatalysts and conducted the electrochemical measurements, Yu-

Zhen Liu, Yanan Wang, Yong Hua and Xiaomin Gao characterized the electrocatalysts. 

Notes
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