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Simulating biologically relevant timescales at atomic resolution is a challenging task since typical atomistic simulations are at least two 
orders of magnitude shorter.  Markov State Models (MSMs) provide one means of overcoming this gap without sacrificing atomic resolution by 
extracting long time dynamics from short simulations.  MSMs coarse grain space by dividing conformational space into long-lived, or metastable, 
states.  This is equivalent to coarse graining time by integrating out fast motions within metastable states.  By varying the degree of coarse 
graining one can vary the resolution of an MSM; therefore, MSMs are inherently multi-resolution.  Here we introduce a new algorithm Super-
level-set Hierarchical Clustering (SHC), to our knowledge, the first algorithm focused on constructing MSMs at multiple resolutions.  The key 
insight of this algorithm is to generate a set of super levels covering different density regions of phase space, then cluster each super level 
separately, and finally recombine this information into a single MSM.  SHC is able to produce MSMs at different resolutions using different super 
density level sets.  To demonstrate the power of this algorithm we apply it to a small RNA hairpin, generating MSMs at four different resolutions. 
We validate these MSMs by showing that they are able to reproduce the original simulation data.  Furthermore, long time folding dynamics are 
extracted from these models.  The results show that there are no metastable on-pathway intermediate states.  Instead, the folded state serves as a 
hub directly connected to multiple unfolded/misfolded states which are separated from each other by large free energy barriers.   
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1. Introduction 

       Conformational changes are crucial for a wide range of biological processes including protein folding[1], 
RNA folding[2] and the operation of key cellular machinery[3-5].  Extensive genetic, biochemical, biophysical and 
structural experiments can be performed to understand these conformational changes[3-5].  However, probing the 
mechanisms of conformational changes at atomic resolution is very difficult experimentally and without these 
details it is impossible to understand the fundamental chemistry they perform.  Computer simulations may 
complement such experiments by providing dynamic information at an atomic level.  However, there is a gap 
between the timescales where interesting biologically relevant conformational changes occur (typically 
microseconds and up) and those we can simulate at atomic resolution (typically only tens of nanoseconds).  The 
length of atomistic simulations is limited by the need to take small timesteps (1 or 2 fs), which is determined by 
high frequency motions such as chemical bond stretching.  One natural way to bridge this timescale gap is to use 
coarse grained models where the smallest unit of the system represents a group of atoms[6, 7].  In these models, 
much longer timesteps are allowed since the high frequency motions are not explicitly simulated.  Coarse grained 
simulations work well for a variety of problems[8-12]; however, these models sacrifice accuracy for speed, making 
them less than ideal for investigating the detailed mechanisms of conformational changes.      

An alternative approach to overcome the timescale gap is to build discrete-time Markov State Models (MSMs) 
[13-17].  These models may be built from many short (nanosecond timescale) simulations and then propagated to 
give long timescale dynamics, such as processes occurring on microsecond timescales or even longer.  MSMs 
partition phase space into a number of distinct states, called metastable states, such that intra-state transitions are 
fast but inter-state transitions are slow.  Such separation of timescales ensures that the model is Markovian, in that 
the probability of being in a given state at time t+∆t depends only on the state at time t.  In an MSM, the time 
evolution of a vector representing the population of each state may be calculated by repeatedly left-multiplying by 
the transition probability matrix. 

 
( ) [ ( )] (0nP n t T t PΔ = Δ                                               (1) 

 
where P(n∆t) is a vector of state populations at time n∆t and T is the column-stochastic transition probability matrix. 
Any model is Markovian for a sufficiently long lag time (τ = ∆t), because the system is able to relax to an 
equilibrium distribution from any arbitrary starting distribution after one lag time.  The key point is to build a model 
with a lag time that is shorter than the timescale of the process of interest with a reasonable number of states.  This 
requires a very good state decomposition, which is difficult.  A few different approaches have been developed to 
address this issue[13-18].  There also exist other methods to bridge the timescale gap such as milestoning [19].  
However, most of these methods require the reaction coordinate is known a priori, while this information is often 
difficult to obtain.   

MSMs are also multi-resolution in nature[13, 14].  In order to achieve a Markovian model at a certain lag time, 
the states must be defined such that large internal free energy barriers are avoided and conformations within the 
same metastable state can interconvert within one lag time.  Thus, the number of states needed in an MSM depends 
on the desired lag time.  The smaller the lag time is, the more states the MSM needs to ensure that dynamics within 
each state are memory-less after one lag time.  A short lag time would result in a high resolution MSM having many 
metastable states, capturing numerous free energy minima separated by small barriers.  A longer lag time results in a 
low resolution MSM with only a few states, each of which contains multiple local free energy minima.  We 
introduce a new algorithm, Super-density-level Hierarchical Clustering (SHC), to construct MSMs at different 
resolutions for conformational dynamics.  To our knowledge, SHC is the first algorithm focusing on generating 
MSMs at multiple resolutions.  

The key insight of the SHC algorithm is to cluster conformations hierarchically using super density level sets in 
a bottom-up fashion starting with the densest regions of phase space, which correspond to the bottoms of free 
energy minima.  This algorithm can generate multi-resolution models by tuning the super density level sets, and 
each level of resolution constitutes a discrete-state MSM with a particular partitioning of phase space.  At low 
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resolution, it generates a coarse state decomposition with a small number of metastable states while at high 
resolution it generates a finer state decomposition with more metastable states. This leaves one the flexibility to 
select an MSM at the best resolution to study their biological problem.   

The procedure to build MSMs using SHC is as follows. (1) Partition the conformations into a large number of 
states, called microstates, according to their structural similarity.  An approximate K-centers clustering 
algorithm[20] is used here as it gives states with approximately uniform size, resulting in a correlation between the 
population of each state and its density.  (2) Split the microstates into n density levels ordered from high to low 
density (L= {L1, … Ln}) such that each level contains approximately the same number of conformations.  Then 
construct super density level sets Si, where 1 2 1...iS L L L L−i i= ∪ ∪ ∪ .  Thus each super density level contains all 
previous levels . (3) Within each super density level (Si), perform spectral clustering to group 
kinetically related microstates.  Metastable regions are better separated at high density super levels, since most of 
the fuzzy microstates in the transition region are excluded at these levels.  Now, build a graph representing the 
connectivity of the states across super density levels.  Then generate gradient flows along the edges of the graph 
from low to high density levels.  Each attraction node (or attractive basin) where the gradient flow ends is assigned 
to a new metastable state. (4)  Assign every microstate not belonging to an attraction node to the metastable state it 
has the largest transition probability to.  Thus we have a complete state decomposition for an MSM.  Furthermore, 
this procedure may be repeated with different super density level sets to construct MSMs at different resolutions.  
The larger the number of super density levels, the finer the resolution and the larger the number of metastable states 
in the final MSM.  

1 2... iS S S⊆ ⊆

In order to test SHC, we apply it to a small RNA hairpin with microsecond time scale dynamics: an eight 
nucleotide RNA GCAA tetraloop with the sequence 5’-GCGGCAGC-3’.  It has 4 bases in the loop and two stem 
base pairs as shown in Figure 1.  RNA hairpins are a ubiquitous secondary structure motif often involved in tertiary 
contacts[21].  Much experimental work has been done on these systems as a step towards understanding larger RNA 
molecules but knowledge of their folding is still incomplete[22-28].  Despite their small size, even eight nucleotide 
hairpins fold on a microsecond timescale[23], about two orders of magnitude longer than typical atomic simulations.  
However, using SHC, we are able to construct multi-resolution MSMs from many short 45 ns atomistic simulations. 
These models are able to predict microsecond timescale dynamics.  We compare MSMs at different resolutions and 
also validate them by confirming their ability to reproduce the original simulation trajectories.  Furthermore, we 
extract the kinetics between the most populated metastable states from our MSMs.  The results suggest that the 
folded state is a hub connected to many non-native metastable states that are mostly uncoupled from one another.  
No metastable intermediate states are identified, while there are a few misfolded states such as states with shifted 
base pairing or an unfolded loop.  This indicates that folding of an eight nucleotide RNA hairpin with only two stem 
base pairs might be different from RNA hairpins with longer stems where stable thermodynamic intermediate states 
were seen in previous simulations[22].          
   

Figure 1. (A) Structure of the 8 nucleotide RNA GCAA tetraloop, generated by truncating the two terminal base pairs from the NMR structure of 
a 12 nucleotide tetraloop (PDB ID 1zih).  (B) The cartoon representation of the same structure using sticks to represent the orientation of the 
bases.  The same cartoon representation will be used in Figure 6 to illustrate representative structures from different metastable states. 
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2. Methods 

Here we explain the SHC algorithm in detail using an RNA GCAA tetraloop as an example.  The dataset we 
examine here contains 9,963 45ns explicit solvent molecular dynamics simulations with an aggregate simulation 
time of 448 microseconds.  Conformations are saved every 0.2 ns, and the total number of conformations is about 
2.3 million. These simulations are initiated from different metastable regions of phase space identified by short 
Simulated Tempering[29, 30] simulations following the Adaptive Seeding Method (ASM)[31].  More simulation 
details are available in Appendix A.   

2.1.  Partitioning conformations into microstates 

Modern computer simulations can easily generate massive data sets with millions of conformations, making 
analysis of these data sets computationally challenging.  To reduce the dimensionality of the data, we first group 
conformations into a large number (a few thousand or tens of thousands) of small clusters called microstates based 
on their structural similarity, in this case measured using the Root Mean Square Deviation (RMSD) between all 
heavy atoms.  Each microstate must be small enough to ensure conformations in the same state can interconvert 
rapidly.  An approximate K-centers clustering algorithm[20] was used here to generate microstates by minimizing 
the maximum cluster radius, where the cluster radius is defined as the maximum heavy atom RMSD distance 
between the cluster center and any other conformation within the cluster.  The detailed implementation of the 
algorithm is discussed elsewhere[18, 20], and the code for the approximate K-centers clustering is available through 
the MSMBuilder package[18].  This algorithm has a computational complexity of O(kN), where k is the number of 
clusters and N is the number of conformations to be clustered.  Moreover, it gives states with approximately equal 
radii.  As a result, there is a correlation between the population of each microstate and its density, allowing us to 
define density levels in the subsequent steps.   

We have clustered ~2.3 million conformations into 10,000 microstates, and the same microstate decomposition 
is used to build all MSMs in this work.  The cluster radius distribution has a sharp peak around 4 Å, confirming that 
the clusters have approximately equal radius (data not shown).  Thus, the population of each microstate is a 
reasonable indicator of its conformational density.  However, we note that even small differences in the radius of 
microstates may imply relatively large variations in their volumes due to the high dimensionality of conformation 
space.  We empirically find that assuming all clusters have approximately equal volumes is useful.  In the future, we 
can improve the density estimation step by working on low dimensional sub-manifolds where density estimation is 
consistent and accurate.  These low dimensional sub-manifolds can be constructed with nonlinear dimensionality 
reduction techniques[32]. 

2.2. Super density level set formation 

In this step, we first split the microstates into n density levels L= {L1, … Ln}.  As discussed above, the density 
of microstates d1...dk can be estimated from their populations by dividing number of conformations within each 
microstate by the total number of conformaitons.  We order microstates according to the value of di and classify the 
microstates into n consecutive levels.  Each level contains about the same number of conformations.   Density levels 
are ordered from high to low density, and labeled 1 to n.  For example, from our RNA dataset, we have generated a 
density level set with three levels L= {L1, L2, L3}.  L1, L2, and L3 contain 146, 615, and 1810 microstates 
respectively, and approximately an equal number of conformations (each level contains about 25% of the total 
conformations, the remaining conformations are ignored until the final step of the algorithm).  Thus, level L1 has the 
least number of microstates and contains only the highest density regions.  From the density level set, we can easily 
construct the super density level set S= {S1, …, Sn} by defining i i1 2 1...iS L L L L−= ∪ ∪ ∪ .  Each super density 
level contains all previous levels .  In our example, three super density levels S1, S2, and S3 are 
created, containing 25%, 50% and 75% of the total conformations respectively.   Recently,  a topological data 
analysis approach[33, 34] based on similar ideas regarding clustering in density level sets has been successfully 

1 2... iS S S⊆ ⊆
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applied to perform geometric clustering on biomolecular data.  However, we found in this study that super level 
sets yield better results than density level sets in identifying kinetically metastable states  (data not shown).      

2.3. Spectral Clustering within super density levels 

Spectral clustering [35-38]  is performed on a transition probability matrix within each super density level (Si).  
Since these transition probablity matrixs are generated by normalizing number of transitions between pairs of 
micorstates by counting directly from the original simulation trajectories,  applying spectral clustering on them is 
able to lump kinetically related microstates into larger metastable states.  Metastable regions are better separated in 
high density super levels, since most of the fuzzy microstates in transition regions are excluded at these levels.  For 
example, in the RNA dataset, multiple disconnected blocks are found in the transition probability matrix for level 
S1, indicating good separation of metastable regions.  When we move up to levels containing more low density 
microstates, less and less disconnected blocks are found in the transition probability matrix, and eventually the 
matrix becomes completely connected.  In the example with three density levels, the first level S1 contains 35 
metastable states, S2 contains 25, and S3 contains only 6 states.  In order to identify nearly disconnected blocks in a 
transition matrix, we choose eigenvalues very close to 1 for spectral clustering.  In particular, a constant spectral gap 
of 0.0001λΔ =  is used for this example.   

 

Figure 2. A graph describing the connectivity of the metastable states generated by SHC.  Each node in the graph denotes a single metastable 
state.  Each row corresponds to one super density level:  states belonging to S1 (in red), S2 (in blue), and S3 (in green) contain 25%, 50%, and 75% 
of all the conformations respectively.  Two nodes are connected if they share microstates, and the arrows represent the gradient flows from low 
density to high density regions, i.e. from S3 to S1.  Arrows representing self transitions are plotted at attraction nodes where the flow ends.  The 
radius of each node is scaled linearly by its population within each super level.   

Next we build a graph representing the connectivity of the metastable states across super density levels. Figure 
2 is an example of such a graph with three levels.  Each node in the graph represents one metastable state.  As 
discussed above, the number of nodes in each level decreases from S1 to S3.  In S1, there is a large node (node 1) 
containing 64% of all the conformations in that level.  Similar nodes can also be found in other levels such as node 
2 (83%) in S2 and node 3 (99%) in S3. These results suggest that there is a large metastable state corresponding to 
the folded state, to be discussed in more detail in the Results and Discussion section.  In the next step, gradient 
flows are generated along the edge of the graph from low to high density levels.  Nodes that do not have any flow 
into denser states correspond to basins of attraction, or metastable states.  For example, node 1 is an attraction node, 
while nodes 2 and 3 are not.  As shown in Figure 2, there are 46 attraction nodes in this model (35 in S1 and 11 in 
S2). Thus the model contains 46 metastable states. 

2.4. Assigning microstates not in attraction nodes 

In the previous step, all the attraction nodes were selected as metastable states.  Here, we will assign the 
remaining nodes to metastable states, as well as microstates that were not included in any of the density levels.  This 
is achieved by computing the transition probabilities from each of these microstates to all possible metastable states, 
and assigning each microstate to the metastable state it has the largest transition probability to.  If a particular 
microstate cannot transition to any of the metastable states in a single step we consider a progressively larger 
number of steps until we see transitions between this microstate and some metastable state.  
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Following the above steps yields a complete state decomposition for an MSM.  In the example shown in 

Figure 2, a 46-state MSM is generated.  In order to construct MSMs at different resolutions we repeat the same 
procedure using different numbers of super density levels.   

3. Results and Discussion 

3.1. Constructing MSMs at different resolutions 

Using SHC, we have constructed four different MSMs by varying the number of super density levels (NL) all 
with a lag time of 0.2 ns.  The super density level set is defined as S= {d0/NL, 2d0/NL,…, d0}, where d0 = 0.75.  
Specifically, we used 3, 6, 9, and 15 super density levels, yielding MSMs referred to as L3 MSM, L5 MSM, L9 
MSM and L15 MSM respectively.  In addition, we also built a model (L1 MSM) with L = 1 as a control.  Some 
properties of these models are listed in Table 1.   
 

Table 1. Number of states (N), metastability (Q), and average self transition Probability (<Tii>=Q/N)  
for five MSMs generated by SHC using super density level sets containing L levels. 

 
L 1 3 6 9 15 
N 6 46 57 63 68 
Q 5.95 44.3 54.2 59.3 63.4 

<Tii> 99.1% 96.3% 95.1% 94.1% 93.2% 
 

The first property in the table is the number of macrostates in each MSM.  This number increases with L, and 
L15 MSM contains more than ten times more states than L1 MSM.  With many more states, L15 MSM is a higher 
resolution model than L1 MSM.  Thus SHC is able to generate multi-resolution MSMs by changing the number of 
super density levels NL.  Metastability is another important property for an MSM.  A good MSM should contain a 
state decomposition which maximizes the separation of timescales.  The self-transition probability, indicating the 
stability of each macrostate, is a simple and straightforward way to check if there is a good separation of timescales.  
The metastability (Q) listed in Table 1 is defined as the sum of the self-transition probabilities (Tii) of each 
macrostate.  Table 1 also shows the average self transition probability: <Tii> = Q/N, where N is the number of 
metastable states.  <Tii> decreases with L, indicating higher resolution models have smaller average self transition 
probabilities.  This is consistent with the fact that higher resolution models will capture smaller free energy minima, 
which are separated by smaller free energy barriers and therefore less metastable.   

Another interesting property, which is not listed in the table, is the population of each macrostate. For the 
control model L1 MSM, the populations of the six states ordered from high to low are: 98.0%, 1.6%, 0.2%, 0.05%, 
0.05%, and 0.05%.  Only two states have populations greater than 1%, and the rest have negligible populations.  A 
closer look at the data shows that these four states each contain only a single microstate, and they are almost 
disconnected from the rest of phase space.  Thus these four states might not be significant metastable regions, but 
just noise due to insufficient sampling.  This is one issue with spectral clustering algorithms such as PCCA[37] and 
PCCA+[38], which tend to first separate the most disconnected blocks from the transition probability matrix.  This 
makes it difficult to choose a proper number of metastable states in order to identify all the significant metastable 
regions.  SHC is able to overcome this issue by clustering from the highest density super level, which guarantees 
that the most populated metastable regions are identified first.  L3 MSM, L5 MSM, L9 MSM, and L15 MSM 
contain 8, 15, 12, and 10 states with populations larger than 1% respectively.     

3.2. Validating MSMs 

In this section, we will validate the MSMs discussed above in two ways: implied timescales and Chapman-
Kolmogorov equation. 

Implied timescales.  Examining the behaviors of the implied timescales is one way to check if the model is 
Markovian as first suggested by Swope. et. al.[16].  Implied timescales (τk) can be computed from the eigenvalues 
of the transition matrix T as shown below:  
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where μk is an eigenvalue of the transition matrix with the lag time τ.  Each implied timescale describes an aggregate 
transition between subsets of macrostates.   If the model is Markovian and Equation (1) holds, the exponentiation of 
T should be identical to an MSM constructed with a longer lag time, and the implied timescales will be independent 
of the lag time.  This requires that lag times are sufficiently long.  The shortest lag time for this condition to hold is 
defined as the Markovian time, which is correlated with the longest internal equilibrium time of any state.  Figure 3 
displays implied timescales plots as a function of the lag time for L3 MSM.  As shown in Figure 3 (a), the implied 
timescales level off around a lag time of 20ns.  This implies that the model is Markovian with long enough lag 
times.  However, big fluctuations are observed for the three slowest timescales.  A further investigation shows that 
these slow timescales are due to low-population states which are nearly disconnected from the other states.  If we 
exclude three states (with populations 0.1%, 0.09%, and 0.04%) containing very few non-self transition counts from 
our analysis, these slowest timescales disappear (see Figure 3 (b)).  The implied timescale plots for other resolution 
MSMs also level off as shown in Figure 4.  These results suggest that MSMs generated from SHC are Markovian 
with sufficiently long lag times.  Higher resolution MSMs with a finer discretization of phase space should have 
shorter Markovian times, since the intra-state equilibrium times are shorter.   Looking at Figure 4, the implied 
timescales of L15 MSM seem to level off slightly faster than those of L6 MSM.  However, it is hard to tell by eye 
whether there is any large difference in the Markovian times for these models.  Thus, the implied timescales check 
has some drawbacks.  It is difficult to determine by eye if and where the implied timescales level off.   In addition, 
small uncertainties in the eigenvalues can induce large uncertainties in the implied time scales[14].     
 

 
 
Figure 3. Top twenty implied timescales as a function of the lag time for the L3 MSM (L3 denotes the super density level set containing 3 levels) 
The plots are generated by using (a). the transition probability matrix with all 46 states. (b) the transition probability matrix with only 43 states 
with three nearly uncoupled states excluded (These three states have very few transition counts to other states).  

 

Figure 4. Top twenty implied timescales as a function of the lag time for (a) L6 MSM, (b) L9 MSM, and (c) L15 MSM.  L6, L9, and L15 indicate 
that 6, 9 and 15 super density levels are used to generate these MSMs respectively.  The insert in (b) is the same as the main figure except that the 
y axis goes up to 7 microseconds in order to show one very long implied timescale.  
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     Chapman-Kolmogorov Check.  An alternative way to validate MSMs is to directly check if Equation (1), a 

form of  the Chapman-Kolmogorov equation, holds[14].   Figure 5 shows the time evolution of the populations of 
the top eight most populated states in L3 MSM.  Populations extracted from the raw data are compared with those 
generated by the MSM starting from the same initial populations (see Equation (1)).  As shown in Figure 5, these 
populations agree well within statistical error.  Similar agreement was found for the other MSMs as well (data not 
shown). These results suggest that MSMs generated by SHC are consistent with the original dataset from which 
they were constructed.  The final obervation is that population distriutions are almost flat,  which may suggest that 
the starting conformations of the simulations generated from the Adaptive Seeding Method[31] are already close to 
the equilibrium distribution (See Appendix 1 for details). 
 

 
Figure 5. Comparison between the time evolution of the populations of the eight most populated states (with populations larger than 1%) in the 
L3 MSM (red) and the raw data (black).  The error bars in the black curves are the standard deviations computed from one hundred boot strapping 
runs each of which randomly selected 8,000 of 9,963 trajectories with replacement. A 20ns lag time is used to build the transition probability 
matrix based on the L3 MSM state decomposition. 

3.3. RNA hairpin folding mechanism 

Despite the small size of RNA hairpins, there is some debate over whether they fold in a two-state or multi-state 
manner.  Thermodynamic measurements such as temperature melting[25] support the two-state model, while kinetic 
experiments such as temperature jump suggest a multi-state model[39].  Using the laser  temperature jump 
technique, the Gruebele group[23] observed two unfolding relaxation phases of the eight nucleotide gcUUCGgc 
hairpin at low temperatures: a fast phase of 1-2 microseconds, and a slow phase of 5-10 microseconds[23, 40]. They 
also developed a lattice model with four metastable states that accurately reproduced the experimental data[23].  
However, it is difficult to extract information at atomic resolution from this simple model.   

MSMs are a useful tool for extracting kinetics from atomistic simulations.  From L3 MSM, we have computed 
the Mean First Passage Time (MFPT) between the eight most populated metastable states.  The MFPT is defined as 
the average time taken to get from the initial state to the final state[41].  It can easily be computed from a transition 
probability matrix (see the Appendix B for details).  The results of this calculation are displayed in Figure 6, along 
with representative structures from each state.  State 1 is the folded state and has the largest population (77.1%), 
indicating the free energy surface is biased to the native state at 300K.  Multiple non-native states, each directly 
connected to the folded state, are also identified: e.g. states 3 and 4 with coil structures, state 2 with a shifted base 
pairing, and state 5 with an unfolded loop.  MFPTs for folding (i.e. transitions from non-native states to the folded 
state) are all around a few hundred nanoseconds, while MFPTs for unfolding are at least an order of magnitude 
longer (from a few to tens of microseconds).  This confirms that the folded state is the most stable state at 300 K.  
All MFPTs between non-native states are at least eight microseconds, much longer than those for folding.  This 
suggests that these states are uncoupled from each other.   Therefore, no metastable on-pathway intermediate states 
are indentified in this system.  The transition from state 1 (folded) to 8 (shifted base pairing) has the longest MFPT 
(45.7 microseconds) among all the unfolding transitions, indicating a large energy barrier for breaking non-native 
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base pairing/stacking followed by forming native ones.  State 5 (unfolded loop) has the shortest MFPT (0.16 
microseconds) among all the folding transitions, which suggests the kinetics of loop rearrangements are relatively 
rapid. 

We have successfully extracted kinetic information between the most populated metastable states from our 
MSMs.  The overall unfolding timescales fall in a range of a few to tens of microseconds, in qualitative agreement 
with experimental observations.  However, direct comparisons between our simulations and laser T-jump 
experiments are not possible at present because our simulations are at a single temperature and are therefore unable 
to capture effects due to the temperature jump.  No stable thermodynamic intermediate states were found for folding 
of this 8 nucleotide RNA hairpin, in contrast to a previous study of a 12 nucleotide hairpin[22].  These results 
suggest that increasing the number of stem base pairs complicates the folding mechanisms of RNA hairpins. 

   

 
 

Figure 6: Mean First Passage Times (MFPTs) between the eight most populated states in the L3 MSM with a lag time of 20ns (L3 MSM is 
generated from a super level set with three levels, see Table 1 for details).  All the MFPTs are in units of microseconds.  States are labeled in red 
from 1 to 8 according to their populations in descending order. The populations of each state are shown in black. Two representative 
conformations are shown from each state using Pymol[42] with a cartoon representation.  These conformations were extracted by selecting the 
centers of the top populated microstates in each macrostate. 

4. Conclusions and Future Plans 

Markov State Models (MSMs) are a useful tool for bridging the gap between experimental and computational 
timescales.  MSMs are inherently multi-resolution, however, algorithms focused on constructing MSMs at different 
resolutions are lacking.  Here we have introduced a new algorithm, called Super-level-set Hierarchical Clustering 
(SHC), which is capable of constructing MSMs of conformational dynamics at multiple resolutions.  The key 
insight of this algorithm is to perform spectral clustering hierarchically using super level sets starting from the 
highest density level, which guarantees that highly populated metastable regions are identified before less populated 
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ones.  This is an improvement over direct application of spectral clustering to the full data set, which tends to 

identify sparse states that are very weakly coupled to the rest of phase space due to insufficient sampling before 
identifying real metastable states in denser regions of phase space.  We applied SHC to an 8 nucleotide GCAA 
RNA tetraloop, and built four MSMs at different resolutions.   Each of these models was validated by both the 
implied timescales and Chapman-Kolmogorov checks.  The overall unfolding timescales predicted from our MSMs 
are between a few and tens of microseconds, which are qualitatively consistent with those observed by laser 
temperature jump experiments.  Our results suggest that there are no metastable intermediate states.  Instead, the 
folded state is directly connected to multiple unfolded and misfolded states, which all fold faster than they 
interconvert with one another.   

In SHC, we use the populations of microstates from K-centers clustering to approximate their conformation 
density.  However, estimating densities in high dimensional spaces is quite challenging.  In particular, our 
approximate K-centers algorithm only generates clusters with approximately equal radii and small variances in the 
cluster radius may induce large volume differences.  In the future, we plan to improve our density estimates by 
computing kernel density functions around microstate centers or the average of the kernel density for a few 
randomly selected conformations within the state.  Alternatively, we may employ nonlinear dimensionality 
reduction techniques[32] to discover lower dimensional spaces where the density may be estimated more easily.   
We have demonstrated that SHC is able to generate a large number of MSMs at different resolutions.  However, we 
haven’t discussed how to determine which one is the best model.  A Bayesian approach to compare different MSMs 
by Bacallado et al.[43] may be used for model selection in the future.  Finally, while we have focused on identifying 
metastable states in this work, SHC may also be used to identify intermediate and transition states by studying non-
attractive nodes in lower density super density levels.  In addition to being biologically relevant themselves, 
identification of these states could allow us to perform adaptive sampling by starting more simulations from 
transition states in order to rapidly sample transition events between metastable states.   
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 Appendix A: Simulation Details 

Our simulations were generated using the Adaptive Seeding Method (ASM)[31]. First, two sets of 1120 27ns 
Simulated Tempering (ST) simulations[29, 30] were run: one started from a folded state and the other from a 
random coil.  An independent MSM with 10 states was then built using MSMBuilder[18] for each dataset in order 
to identify the dominant metastable states. Next, one hundred random conformations were selected from each 
metastable state and used as starting points  for new constant temperature simulations (2,000 points in total).  Five 
45ns constant temperature 300K MD simulations were launched from each point.  This resulted in a dataset with 
9,963 trajectories (some simulations were not completed).  All the simulations were performed using Stanford’s 
Bio-X2 cluster and Folding@Home[44].  We used nucleic acid parameters from the AMBER99 force field[45, 46]. 
The RNA molecule was solvated in a water box with 2,543 TIP3P[47] waters and 7 Na+ ions.  The simulation 
system was minimized using a steepest descent algorithm, followed by a 100ps MD simulation applying a position 
restraint potential to the RNA heavy atoms.  All NVT simulations were  coupled to a Nose-Hoover thermostat with 
a coupling constant of 0.02ps-1[48].  A cutoff of 10 Å was used for both VdW and short range electrostatic 
interactions.  Long-range electrostatic interactions were treated with the Particle-Mesh Ewald (PME) method[49].  
Nonbonded pair-lists were updated every 10 steps with an integration step size of 2 fs in all simulations. All bonds 
were constrained using the LINCS algorithm[50]. 
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Appendix B: Mean First Passage Time (MFPT) 

The mean first passage time (MFPT) from initial state i to final state f  in an MSM is the average time taken to 
get from state i to state f[41].  The MFPT (Xif) given that a transition from state i to j was made first is the time it 
took to get from state i to j plus the MFPT from state j to f.  Thus the MFPT (Xif) can be defined as (cite), 

 

(if ij ij jf
j

X P t X= +∑                   (A.1) 

where tij is the lag time of the transition matrix T.  The boundary condition for this calculation is: 
 

0ffX =                  (A.2) 

 
The set of linear equations in Equation (A.1) and (A.2) can be solved to obtain the MFPT Xif.  
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