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CONSTRUCTING OPTIMAL MAPS
FOR MONGE’S TRANSPORT PROBLEM

AS A LIMIT OF STRICTLY CONVEX COSTS

LUIS A. CAFFARELLI, MIKHAIL FELDMAN, AND ROBERT J. MCCANN

The Monge-Kantorovich problem is to move one distribution of mass onto an-
other as efficiently as possible, where Monge’s original criterion for efficiency [19]
was to minimize the average distance transported. Subsequently studied by many
authors, it was not until 1976 that Sudakov showed solutions to be realized in the
original sense of Monge, i.e., as mappings from Rn to Rn [23]. A second proof
of this existence result formed the subject of a recent monograph by Evans and
Gangbo [7], who avoided Sudakov’s measure decomposition results by using a par-
tial differential equations approach. In the present manuscript, we give a third
existence proof for optimal mappings, which has some advantages (and disadvan-
tages) relative to existing approaches: it requires no continuity or separation of the
mass distributions, yet our explicit construction yields more geometrical control
than the abstract method of Sudakov. (Indeed, this control turns out to be essen-
tial for addressing a gap which has recently surfaced in Sudakov’s approach to the
problem in dimensions n ≥ 3; see the remarks at the end of this section.) It is also
shorter and more flexible than either, and can be adapted to handle transportation
on Riemannian manifolds or around obstacles, as we plan to show in a subsequent
work [13]. The problem considered here is the classical one:

Problem 1 (Monge). Fix a norm d(x, y) = ‖x − y‖ on Rn, and two densities
— non-negative Borel functions f+, f− ∈ L1(Rn) — satisfying the mass balance
condition ∫

Rn

f+(x)dx =
∫

Rn

f−(y)dy.(1)

In the set A(µ+, µ−) of Borel maps r : Rn → Rn which push the measure dµ+ =
f+(x)dx forward to dµ− = f−(y)dy, find a map s which minimizes the cost func-
tional

I[r] :=
∫

Rn

‖r(x)− x‖f+(x)dx.(2)
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2 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANN

Here r ∈ A(µ+, µ−) is sometimes denoted by r#µ+ = µ−, and means merely that∫
Rn

φ(r(x))f+(x)dx =
∫

Rn

φ(y)f−(y)dy(3)

holds for each continuous test function φ on Rn.
Though the norm ‖x − y‖ need not be Euclidean, throughout the present manu-

script we assume there exist constants Λ, λ > 0 such that all x, y ∈ Rn satisfy the
uniform smoothness and convexity estimates:

λ ‖y‖2 ≤ 1
2
‖x+ y‖2 − ‖x‖2 +

1
2
‖x− y‖2 ≤ Λ ‖y‖2.(4)

The estimates (4) assert some uniform convexity and smoothness [3] of the unit
ball; they are certainly satisfied if, e.g., the unit sphere ‖x‖ = 1 is a C2 surface
in Rn with positive principal curvatures. In particular, Λ = λ = 1 makes (4) an
identity in the Euclidean case. For a further discussion of Monge’s problem, its
history, and applications, we refer the reader to Evans [5], Evans and Gangbo [7],
Gangbo and McCann [15] or Rachev and Rüschendorf [20].

Part of the difficulty of this problem is the degeneracy which results from failure
of the norm to be strictly convex (radially). Even in the simplest one-dimensional
examples this leads to non-uniqueness of the minimizing map. By contrast, when
the transportation cost function ‖y − x‖ is replaced by a strictly convex function
such as ‖y − x‖p with p > 1, the problem simplifies considerably, and following
ideas of Brenier and others it is possible to show that a unique map solves the
problem and possesses nice measurability properties in both the Euclidean [4], [15]
and Riemannian [18] settings.

In this paper, our key idea for resolving this degeneracy is to first find a change
of coordinates which adapts the problem’s local geometry so that all transport
directions become parallel, and then solve these one-dimensional transportation
problems separately before invoking Fubini’s theorem to complete the proof. The
map we construct in this way might, in principle, be recovered in the p → 1 limit
from the unique maps solving the p > 1 problems. Although we don’t carry out
this limit directly, we do use structural features of the optimal maps for p > 1 to
facilitate several aspects of the proof. This distinguishes our solution from that of
Evans and Gangbo, as illustrated by the book-shifting example f+ = χ[0,n] and
f− = χ[1,n+1] on the line R1 [15]. For this example, the map we construct is the
translation s(x) = x+1, whereas Evans and Gangbo would leave the mass common
to f+ and f− in its place a priori, obtaining the map s(x) = x on x ∈ [1, n] and
s(x) = x + n on [0, 1] as a result. We anticipate that the ability to deal with
overlapping densities f+ and f− will be significant in applications. We also point
out that a sequel shows the map constructed below is the only optimal map to
preserve the ordering of pairs of points with collinear images [12].

We now give a heuristic outline of our existence proof. Following previous au-
thors, we begin by solving a dual problem whose solution defines the set of transport
rays, according to the terminology of Evans and Gangbo [7]. These rays are de-
termined by the property that the Lipschitz potential u : Rn → R from the dual
problem decreases along them with maximum admissible rate. As we show below,
the optimal mapping s takes each transport ray into itself. We therefore restrict
the measures µ+ and µ− to each ray, so that mass balance holds for the restrictions,
and solve a transportation problem on each ray. These one-dimensional problems
are easy to solve. Thus we get an optimal map on each ray, and as the result a map
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CONSTRUCTING OPTIMAL MAPS 3

from Rn into Rn. We show then that this map pushes µ+ forward to µ−, and is
optimal.

The most delicate step in this procedure involves restricting the measures to rays,
and it is here that our approach diverges from Sudakov’s. Instead of building on the
measure decomposition results of Halmos [16] or Rokhlin [21], we seek a local change
of variables in Rn so that the new coordinate xn measures distance along each ray,
while the remaining n − 1 coordinates vary across nearby rays. For the Euclidean
norm on Rn the directions of rays are given by the gradient of Monge’s potential
u, and thus it is natural to use level sets of u to parametrize rays, i.e., the variables
x1, . . . , xn−1 will be coordinates on a fixed level set of u. This can also be adapted to
more general norms, if one defines the gradient of u using the appropriate (Finsler)
identification of vectors with one-forms. But we also need certain properties of this
change of variables in order to be able to express µ+ and µ− in the new coordinates:
Indeed, expressing these measures is tantamount to changing variables under the
integral, and the change of variables must be Lipschitz continuous to apply the Area
formula. However, the typical pattern of rays is too complicated for us to achieve
this globally. We therefore decompose the set of all rays into a countable collection
of special subsets, chosen so that the rays enjoy a more “regular” structure within
each subset while the mass of µ+ still balances µ−, and perform a Lipschitz change
of variables on each subset separately. Thus the Lipschitz control on directions of
rays given by Lemma 16 is absolutely crucial to our proof. The estimate which
provides this control is a restriction on the geometry of quadrilaterals in a smooth,
uniformly convex Banach space; established in Lemma 14, this estimate holds some
independent interest (cf. Federer [10, §4.8(8)] and Feldman [11, Appendix A]).

The remainder of this paper is organized as follows. In the first section we recall
the general duality theory for Monge-type problems introduced by Kantorovich [17],
and the construction of optimal maps for transportation costs given by strictly
convex functions instead of a norm [4], [15]. The Kantorovich dual problem is
solved by taking a limit of such costs, and the section concludes with a criterion
for optimality. It is followed by a section which introduces the transport rays
and geometry dictated by the Kantorovich solution and criterion for optimality.
Several observations by Evans and Gangbo are summarized here, followed by our
key new estimate giving Lipschitz control on the directions of transport rays. In the
third section we construct the local changes of variables which parallelize nearby
transport rays, while the fourth section verifies that the traces of f+ and f− —
weighted by a Jacobian factor accounting for the change of variables — are balanced
on each individual ray. Finally, these ingredients are combined in Section 5 to give
a proof of our main theorem by constructing a map solving Monge’s problem:

Theorem 1 (Existence of Optimal Maps). Fix a norm on Rn satisfying the uni-
form smoothness and convexity conditions (4), and two L1(Rn) densities f+, f− ≥
0 with compact support and the same total mass (1). Then there exists a Borel map
s : Rn → Rn which solves Monge’s problem, in the sense that it minimizes the
average distance (2) transported among all maps pushing f+ forward to f− (3).

Remarks added in revision. After the submission of this manuscript, the authors
learned of several significant developments. Foremost among them is the concur-
rent but independent discovery of a existence result for optimal maps in Monge’s
problem by Trudinger and Wang [24]. Although very similar to our approach, the
argument there is streamlined somewhat by their decision to focus exclusively on
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4 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANN

the Euclidean norm. Lecture notes subsequently released by Ambrosio [2] contain
an excellent summary of progress on Monge’s problem cast into the framework of
geometric measure theory; they include a derivation for existence and uniqueness of
a transport density corresponding to f± ∈ L1(Rn) which parallels certain results
of Feldman and McCann [12]. Ambrosio’s notes also highlight a logical gap in the
solution of Monge’s problem proposed by Sudakov. Without Lipschitz control on
ray directions, it is impossible to know that the conditional restriction of f± yields
an absolutely continuous measure along almost every ray, as required for Sudakov’s
proof. In two dimensions, disjointness prevents nearby rays from turning too much
without bumping into each other, so Lipschitz control is automatic and the gap can
be bridged (as long as the norm has a strictly convex unit ball). But a counterex-
ample in R3 due to Alberti, Kircheim, and Preiss [1] shows an uncountable union
of disjoint segments can be constructed, whose midpoints form the support of an
absolutely continuous probability measure on R3. The restriction of this measure
to each of the segments yields a Dirac mass at its midpoint, violating the absolute
continuity claimed by Sudakov. In this context the geometrical control provided by
Lemma 16 is required to preclude such a collection of segments from forming trans-
port rays in Monge’s problem. Thus it would seem that Evans-Gangbo [7] contains
the first complete proof of existence for optimal maps between Lipschitz densities
f± with disjoint support, while the present manuscript and Trudinger-Wang [24]
complete the first proofs for more general f± ∈ L1(Rn). Note that all complete
proofs require a Euclidean ball, or at least the uniform smoothness and convexity
hypothesis (4), which Sudakov explicitly eschews [23, p. 164].

1. Duality in the limit of strictly convex costs

In this section we recall a problem formulated by Kantorovich as a dual to
Monge’s problem. We construct its solution, and extract properties germane to our
purposes.

Consider Rn metrized by a norm ‖ · ‖ satisfying the uniform smoothness and
convexity conditions (4), and denote the associated distance by d(x, y) := ‖x− y‖.
Then the problem asserted by Kantorovich [17] to be dual to Monge’s problem is
formulated as follows. Let Lip1(X , d) denote the set of functions on X ⊂ Rn which
are Lipschitz continuous with Lipschitz constant no greater than one; thus

Lip1(Rn, d) =
{
u : Rn → R1 | |u(x)− u(y)| ≤ d(x, y) for any x, y ∈ Rn

}
.

Problem 2 (Kantorovich). For f+, f− ∈ L1(Rn) from Monge’s Problem 1, max-
imize K̂[v] on Lip1(Rn, d), where

K̂[v] :=
∫

Rn

(vf+ − vf−) dx.

To solve the Monge and Kantorovich problems, we consider a second pair of dual
problems in which the metric d(x, y) is replaced by a more general transportation
cost function cε(x, y) on Rn × Rn. The Monge problem analogous to (1) then
becomes:

Problem 3 (Primal). Fix two Borel densities f+, f− ≥ 0 in L1(Rn) with com-
pact support satisfying the mass balance condition (1). Among Borel maps r ∈
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A(µ+, µ−) which push the measure dµ+ = f+(x)dx forward to dµ− = f−(y)dy as
in (3), find a map s : Rn → Rn which minimizes the total transportation cost

Iε[r] :=
∫

Rn

cε(x, r(x))f+(x)dx.(5)

The corresponding dual problem is:

Problem 4 (Dual). Take f+, f− ∈ L1(Rn) as in Problem 3. Denote the support
of f+ by X and of f− by Y. Among all pairs of continuous functions ϕ, ψ in

Jε(X ,Y) := {(ϕ, ψ) ∈ C(X ) × C(Y) |(6)
ϕ(x) + ψ(y) ≥ −cε(x, y) on X × Y}

find a pair (ϕε, ψε) minimizing the functional

K(ϕ, ψ) :=
∫
X
ϕf+ dx+

∫
Y
ψf− dy.(7)

The duality assertion Iε[s] = −K(ϕε, ψε) which relates these two problems holds
rather generally; see Rachev and Rüschendorf [20]. However, the Dual Problem 4
takes a fundamentally different form than the Kantorovich problem, due to the fact
that the cost cε(x, y) need no longer satisfy a triangle inequality. This generalization
is useful, since it permits us to replace the distance function d(x, y) = ‖x − y‖ by
a strictly convex cost function

cε(x, y) := hε(x− y) = ‖x− y‖1+ε,(8)

for which existence, uniqueness, and a characterization of optimal maps in Monge’s
problem can be found in Caffarelli [4] and Gangbo and McCann [14], [15]. Noting
that hε(x) is C1,ε(Rn) smooth and strictly convex from Lemma 11 below, we recall
the relevant results as follows:

Theorem 2 (Duality and Optimal Maps for Strictly Convex Costs [4], [14]). Take
f+, f− ∈ L1(Rn) and denote X := spt f+ and Y := spt f− as in Problem 4. If the
transportation cost cε(x, y) satisfies (8) and (4), then for ε > 0:

(i). Some pair (ϕε, ψε) minimizing K(ϕ, ψ) on Jε(X ,Y) in the dual problem sat-
isfies

ϕε(x) = sup
y∈Y

(−cε(x, y)− ψε(y)),(9)

ψε(y) = sup
x∈X

(−cε(x, y)− ϕε(x)).(10)

(ii). The function ϕε is Lipschitz on X (as ψε is on Y), with Lipschitz constant
dominated by the Lipschitz constant of cε(x, y) on X × Y.

(iii). For a.e. x ∈ X there exists a unique y ∈ Y such that

ϕε(x) + ψε(y) = −cε(x, y).(11)

(iv). Define the mapping sε : X → Y by assigning to a.e. x ∈ X the unique y ∈ Y
for which (11) holds. Then sε pushes the measure dµ+ = f+(x)dx forward to
dµ− = f−(y)dy and is the unique minimizer for the primal Problem 3.

Our first goal is to extract a pair of functions minimizing K(ϕ, ψ) on J0(X ,Y)
from the limit ε → 0 of this theorem. This follows from a simple compactness
result:
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6 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANN

Proposition 3 (Limit of Minimizing Pairs). For some sequence εj > 0 which
tends to zero, the Dual Problem 4 admits a sequence of pairs (ϕεj , ψεj ) which min-
imize K(ϕ, ψ) on Jεj (X ,Y) and converge uniformly on the compact sets X and Y
respectively to limits ϕεj → ϕ0 and ψεj → ψ0 as j →∞. The limit functions ϕ0, ψ0

minimize K(ϕ, ψ) on J0(X ,Y) and satisfy

ϕ0(x) = sup
y∈Y

(−‖x− y‖ − ψ0(y)),(12)

ψ0(y) = sup
x∈X

(−‖x− y‖ − ϕ0(x)).(13)

Proof. Fix x0 ∈ X and observe that K(ϕ, ψ) = K(ϕ− A,ψ + A) for each A ∈ R1

according to the mass balance condition (1). Thus any pair (ϕε, ψε) minimizing
K(ϕ, ψ) on Jε(X ,Y) may be shifted by A = ϕε(x0) to ensure ϕε(x0) = 0.

Now X and Y are compact, so for ε ∈ (0, 1) the costs cε(x, y) = ‖x − y‖1+ε

form an equi-Lipschitz family on X × Y. The minimizing functions ϕε and ψε in
Theorem 2(ii) also form equi-Lipschitz families on X and Y respectively. Moreover
ϕε(x0) = 0, so the functions ϕε are uniformly bounded on X . Also, |cε(x, y)| ≤ C
for all (x, y, ε) ∈ X × Y × (0, 1), implying a uniform bound on the ψε in (9). The
Ascoli-Arzela theorem then yields a subsequence εj → 0 such that ϕεj and ψεj
converge uniformly on X and Y respectively to ϕ0 ∈ C(X ) and ψ0 ∈ C(Y); (12)–
(13) follow from (9)–(10) and imply that (ϕ0, ψ0) ∈ J0(X ,Y).

It remains to show that (ϕ0, ψ0) minimizes K(ϕ, ψ) on J0(X ,Y). For any other
pair (ϕ̃, ψ̃) ∈ J0(X ,Y) and ε > 0, define ϕ̃ε ≡ ϕ̃ and

ψ̃ε(y) = ψ̃(y) + max
x∈X

[−cε(x, y) + d(x, y)].

Compactness of X yields ψ̃ε ∈ C(Y), while (ϕ̃ε, ψ̃ε) ∈ Jε(X ,Y) from their def-
inition and (6). Moreover, ψ̃ε → ψ̃ uniformly on Y as ε → 0. For each j

these competitors satisfy K(ϕεj , ψεj ) ≤ K(ϕ̃εj , ψ̃εj ). Uniform convergence yields
K(ϕ0, ψ0) ≤ K(ϕ̃, ψ̃) in the limit j →∞, so the proposition is proved.

Next we demonstrate equivalence of the Dual Problem 4 in the case ε = 0 to the
Kantorovich Problem 2 via the triangle inequality; see (14) and (17) especially.

Proposition 4 (Lipschitz Maximizer). Suppose (ϕ0, ψ0) satisfy (12)–(13) and min-
imize K(ϕ, ψ) on J0(X ,Y). Then there exists u ∈ Lip1(Rn, d) such that

u = −ϕ0 on X , u = ψ0 on Y.(14)

Moreover, u maximizes K̂[v] on Lip1(Rn, d) and satisfies

u(x) = min
y∈Y

(u(y) + ‖x− y‖) for any x ∈ X ,
u(y) = max

x∈X
(u(x) − ‖x− y‖) for any y ∈ Y.(15)

Proof. Extend ϕ0, ψ0 to the whole space Rn using the right-hand sides of (12)–(13).
We show first that ϕ0, ψ0 ∈ Lip1(Rn, d). Indeed, let x1, x2 ∈ Rn. Continuity of ψ0

on the compact set Y yields a point y1 ∈ Y where the supremum (12) is attained:
ϕ0(x1) = −‖x1 − y1‖ − ψ0(y1). Also (12) implies ϕ0(x2) ≥ −‖x2 − y1‖ − ψ0(y1).
Thus

ϕ0(x1)− ϕ0(x2) ≤ −‖x1 − y1‖+ ‖x2 − y1‖ ≤ ‖x1 − x2‖
by the triangle inequality. Thus ϕ0 ∈ Lip1(Rn, d), and ψ0 ∈ Lip1(Rn, d) similarly.
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CONSTRUCTING OPTIMAL MAPS 7

Next we show that ϕ0 + ψ0 = 0 on X . For any x ∈ X , (13) yields

ϕ0(x) + ψ0(x) ≥ 0 on X .(16)

Suppose for some z ∈ X a strict inequality holds: ϕ0(z) +ψ0(z) > 0. By (12)–(13)
and continuity of ϕ0 and ψ0, there exist x ∈ X and y ∈ Y such that

ϕ0(z) = −‖z − y‖ − ψ0(y),

ψ0(z) = −‖z − x‖ − ϕ0(x).

Combined with ϕ0(z) + ψ0(z) > 0 and (ϕ0, ψ0) ∈ J0(X ,Y) this implies

‖z − y‖+ ‖z − x‖ = −ϕ0(z)− ψ0(z)− ϕ0(x)− ψ0(y)

< −ϕ0(x) − ψ0(y) ≤ ‖x− y‖,
contradicting the triangle inequality. Thus ϕ0 + ψ0 ≤ 0 on X . In conjunction with
(16) this yields ϕ0 + ψ0 = 0 on X as desired.

Thus, denoting u = ψ0 in Rn we have shown u ∈ Lip1(Rn, d) and both parts of
(14). Also, (15) follows directly from (12)–(13). It remains to prove u maximizes
K̂[v] in the Kantorovich Problem 2.

Note that

K̂[u] = −K[ϕ0, ψ0](17)

by (14). Let v ∈ Lip1(Rn, d). Then the pair ϕ̂, ψ̂ defined by

ϕ̂ = −v on X and ψ̂ = v on Y
belongs to the set J0(X ,Y) defined in (6); indeed, for (x, y) ∈ X × Y we have

ϕ̂(x) + ψ̂(y) = −v(x) + v(y) ≥ −‖x− y‖.
Now

K̂[u] = −K[ϕ0, ψ0] ≥ −K[ϕ̂, ψ̂] = K̂[v],

where the last equality follows from the definition of ϕ̂, ψ̂, and the proposition is
proved.

Definition 5 (Kantorovich Potentials). Any function u which maximizes K̂[v] on
Lip1(Rn, d) may be referred to as a Kantorovich potential. Such potentials exist
by Propositions 3 and 4. However, the Kantorovich potentials obtained in this way
— via a limit (ϕ0, ψ0) of pairs from Theorem 2(i) — have additional virtues ((14)–
(15)). We call such u a limiting Kantorovich potential and exploit its existence
hereafter.

Finally, we discuss the connection between the primal and dual problems. For
the strictly convex costs (8) this connection is given by Theorem 2, which shows how
the primal problem can be solved using a solution to the dual problem. However,
for the non-strictly cost c0(x, y) the uniqueness assertion of Theorem 2(iii) would
fail, so the corresponding map is not well defined: its direction is clear, but its
distance ambiguous. Indeed, when a minimizing pair (ϕ0, ψ0) for K(ϕ, ψ) satisfies
(12)–(13) and ϕ0(x) + ψ0(y) = ‖x− y‖ holds for some (x, y) ∈ X ×Y, we shall see
ϕ0(x) + ψ0(z) = ‖x − z‖ for all z ∈ [x, y] ∩ Y, meaning all z = tx + (1 − t)y ∈ Y
with t ∈ [0, 1].

The next lemma exhibits the connection between the primal and dual problems
for the cost function c0(x, y) = ‖x − y‖. It shows in particular that to obtain an
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8 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANN

optimal map in the primal problem, it is sufficient to start from a Kantorovich
potential u and construct any admissible map consistent with (18). The rest of this
paper is devoted to carrying out this program on Rn, suitably normed.

Lemma 6 (Dual Criteria for Optimality). Fix u ∈ Lip1(Rn, d) and let s : Rn →
Rn be a mapping which pushes µ+ forward to µ−. If

u(x)− u(s(x)) = ‖x− s(x)‖ for µ+ a.e. x ∈ X ,(18)

then:
(i). u is a Kantorovich potential maximizing Problem 2.
(ii). s is an optimal map in Problem 1.
(iii). The infimum I[s] in Problem 1 is equal to the supremum K̂[u] in Problem 2.
(iv). Every optimal map ŝ and Kantorovich potential û also satisfy (18).

Proof. For any map r : Rn → Rn pushing forward µ+ to µ+ and v ∈ Lip1(Rn, d)
we compute:

I[r] =
∫

Rn

‖x− r(x)‖dµ+(x)

≥
∫

Rn

[v(x) − v(r(x))]dµ+(x)(19)

=
∫

Rn

v(x)dµ+(x) −
∫

Rn

v(y)dµ−(y)

= K̂[v],

using (3). Thus the minimum value of I[r] on A(µ+, µ−) is at least as large as
the maximum of K̂[v] on Lip1(Rn, d). On the other hand, our hypothesis (18)
produces a case of equality I[s] = K̂[u] in (19). This implies the assertions (i) K̂[u]
is a maximum; (ii) I[s] is a minimum; and (iii) I[s] = K̂[u] of the lemma.

Now let r ∈ A(µ+, µ−) and v ∈ Lip1(Rn, d) be any other optimal map and
Kantorovich potential. Then I[r] = I[s] and K̂[v] = K̂[u] combine with (iii) to
yield I[r] = K̂[v]. But this implies a pointwise equality µ+ almost everywhere in
(19), so the proofs of assertion (iv) and hence the lemma are complete.

2. Transport rays and their geometry

The preceding section reduced the problem of finding an optimal map in Monge’s
problem to constructing an admissible map which also satisfies (18). We carry out
this program on Rn metrized by the norm d(x, y) = ‖x− y‖. Our starting point is
a Kantorovich potential u ∈ Lip1(Rn, ‖ · ‖). In this section, we study the geometric
meaning of condition (18), and introduce the transport rays and transport sets
which are ultimately used to construct an optimal map. We study the properties of
transport rays, in particular proving a Lipschitz estimate for how much the direction
of nearby rays can vary if none of the rays are too short. The underlying idea is
that smoothness and uniform convexity of the norm ball (4) impose geometrical
constraints on each quadrilateral whose opposite sides are formed by transport
rays. This estimate is much in the spirit of Federer’s theorem on Euclidean distance
functions [10, §4.8(8)]; see also Feldman [11, Appendix A]

Fix two measures µ+ and µ− defined by non-negative densities f+, f− ∈ L1(Rn)
satisfying the mass balance condition (1). Assume that µ+ and µ− have compact
supports, denoted by X and Y ⊂ Rn respectively. Through §§2–5, we fix a limiting
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CONSTRUCTING OPTIMAL MAPS 9

Kantorovich potential u — a maximizer in Problem 2 obtained from a limit of
solutions to dual problems with strictly convex costs cε(x, y) = ‖x − y‖1+ε. Such
a potential exists and satisfies (15) by Propositions 3 and 4 and Definition 5. Note
that u has Lipschitz constant one with respect to the distance d(x, y) = ‖x − y‖.
The derivative of any function ϕ : Rn → R1 at x ∈ Rn — viewed as a linear
functional on the tangent space — is denoted by Dϕ(x) ∈ (Rn)∗.

Since we want to investigate the geometrical implications of (18) for u, suppose
x ∈ X and y ∈ Y satisfy

u(x)− u(y) = ‖x− y‖.

From the Lipschitz constraint

|u(z1)− u(z2)| ≤ ‖z1 − z2‖ for any z1, z2 ∈ Rn,(20)

it follows that on the segment connecting x and y the function u is affine and
decreasing with the maximum rate compatible with (20). We will call maximal
segments [x, y] having these properties the transport rays. More precisely:

Definition 7 (Transport Rays). A transport ray R is a segment with endpoints a,
b ∈ Rn such that

(i). a ∈ X , b ∈ Y , a 6= b;
(ii). u(a)− u(b) = ‖a− b‖;
(iii). Maximality: for any t > 0 such that at := a+ t(a− b) ∈ X there holds

|u(at)− u(b)| < ‖ at − b‖,
and for any t > 0 such that bt := b+ t(b − a) ∈ Y there holds

|u(bt)− u(a)| < ‖ bt − a‖.

We call the points a and b the upper and lower ends of R, respectively. Since
u(a)− u(b) = ‖a− b‖, it follows from (20) that any point z ∈ R satisfies

u(z) = u(b) + ‖z − b‖ = u(a)− ‖a− z‖.(21)

Definition 8 (Rays of Length Zero). Denote by T1 the set of all points which lie
on transport rays. Define a complementary set T0, called the rays of length zero,
by

T0 := {z ∈ X ∩ Y : |u(z)− u(z′)| < ‖z − z′‖ for any z′ ∈ X ∪ Y, z′ 6= z}.

From these two definitions and the property (15) of u we immediately infer the
following lemma, whose obvious proof is omitted.

Lemma 9 (Data is Supported Only on Transport Rays). X ∪ Y ⊆ T0 ∪ T1.

To study the properties of rays, let us call a point z ∈ Rn an interior point of a
segment [a, b], where a, b ∈ Rn, if z = ta+ (1 − t)b for some 0 < t < 1. We denote
by [a, b]0 the set of interior points of [a, b]. The basic observation which goes back
to Monge is that transport rays do not cross.

Lemma 10 (Transport Rays Are Disjoint). Let two transport rays R1 6= R2 share
a common point c. Then R1 ∩R2 = {c} and c is either the upper end of both rays,
or the lower end of both rays. In particular, an interior point of a transport ray
does not lie on any other transport ray.
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Proof. First note the strict convexity of the unit ball ‖x‖ ≤ 1 asserted in Lemma 11
implies that equality

‖x− y‖+ ‖y − z‖ = ‖x− z‖
holds if and only if y lies on the segment [x, z].

Since R1 6= R2 share the point c, they cannot be collinear; otherwise (21) and the
maximality part of Definition 7 would force R1 = R2. Thus the two rays can only
intersect in a single point: R1∩R2 = {c}. It remains to prove either c = a1 = a2 or
c = b1 = b2, where ak denotes the upper end and bk the lower end of Rk, k = 1, 2.

We shall assume c 6= b2 and argue that this forces c = a1. It then follows that
c 6= b1 which by symmetry forces c = a2 to complete the proof. The other possibility
c 6= a2 is handled similarly, leading to the conclusion that c = b1 = b2 must be the
lower end of both rays.

Assuming c 6= b2 means b2 /∈ R1. By (21)

u(c) = u(b2) + ‖c− b2‖, u(c) = u(a1)− ‖a1 − c‖,
thus

u(a1)− u(b2) = ‖a1 − c‖+ ‖c− b2‖ ≥ ‖a1 − b2‖.
Strict inequality would violate the Lipschitz condition (20). Thus equality must
hold, meaning c lies in the segment [a1, b2] as well as R1 = [a1, b1]. Since b2 6∈ R1,
these two segments, like the two rays, are not collinear. Their sole intersection
point is a1, hence c = a1. By our above remarks this completes the proof: c 6= b1
hence c = a2 is the upper end of both rays.

Denoting the norm by N(x) := ‖x‖ and its square by F (x) := ‖x‖2, the next
lemma highlights some smoothness and strict convexity which follow from (4). From
(23) it is clear that the strict convexity is uniform over the sphere ∂B.

Lemma 11 (Norm Smoothness and Strict Convexity). If the norm N(x) := ‖x‖
satisfies (4), then F (x) := ‖x‖2 is of smoothness class C1,1(Rn). Moreover, the
unit ball B := {x ∈ Rn | N(x) ≤ 1} is strictly convex, and

|DN(x) y| < 1, DN(x)x = 1 for all y 6= ±x with ‖x‖ = ‖y‖ = 1,(22)

where DN(x) y denotes the pairing of DN(x) ∈ (Rn)∗ and y ∈ Rn.

Proof. Every norm N(x) is convex throughout Rn and bounded by some multiple
of the Euclidean norm: N(y) ≤ L|y|. Thus both N(x) and its square F (x) = ‖x‖2
are continuous functions. The midpoint convexity condition (4) therefore implies
convexity of F (x). We shall use the opposite inequality to conclude concavity of
g(x) := F (x)− L2Λ|x|2; indeed, for x, y ∈ Rn, g satisfies the midpoint estimate

g(x+ y) + g(x− y)
2

− g(x) =
F (x+ y) + F (x− y)

2
− F (x)− L2Λ|y|2

≤ ΛF (y)− L2Λ|y|2

≤ 0.

Now recall that the distributional second derivative of a convex function is a non-
negative definite matrix of Radon measures D2

ijF (x) [8, §6.3]. Concavity of g
implies a pointwise bound on this matrix: 0 ≤ D2F (x) ≤ 2L2ΛI. Thus F belongs
to the Sobolev space W 2,∞(Rn) and is differentiable Lipschitz continuously [6,
§5.8.2–3]: F ∈ C1,1(Rn).
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To address (22), first observe strict convexity of the closed unit ball: given two
distinct points a, b ∈ B, their midpoint must lie in the interior of B according to
(4): ∥∥∥∥a+ b

2

∥∥∥∥2

+ λ

∥∥∥∥a− b2

∥∥∥∥2

≤ ‖a‖
2 + ‖b‖2

2
≤ 1(23)

with λ > 0. Now the triangle inequality implies

DN(x) y := lim
t→0

‖x+ ty‖ − ‖x‖
t

≤ ‖y‖ ≤ 1(24)

while homogeneity yields DN(x)x = ‖x‖ = 1. Thus the supporting hyperplane to
the ball at x ∈ ∂B consists of those z ∈ Rn satisfying DN(x) z = 1. Strict convexity
prevents this hyperplane from touching the ball at more than one point, whence
(24) can be sharpened to DN(x) y < 1 for y ∈ B \ {x}. Similarly, DN(x) (−y) < 1
for −y ∈ B \ {x}, which concludes the proof of (22).

Lemma 12 (Differentiability of Kantorovich Potential Along Rays). If z0 lies in
the relative interior of some transport ray R, then u is differentiable at z0. Indeed,
setting e := (a− b)/‖a− b‖ where a, b are the upper and lower ends of R yields:

|Du(z0)y| ≤ 1 for all ‖y‖ = 1, with equality if and only if y = ±e.

Remark 13. This proof requires a modification of the Euclidean case dealt with by
Evans and Gangbo [7, Lemma 4.1].

Proof of Lemma 12. Choose z0 in the interior of R. By (21), for some small r0 > 0,
we have

u(z0 + te) = u(z0) + t on − r0 ≤ t ≤ r0.

Rescale u by setting

ur(z) =
u(z0 + rz)− u(z0)

r
for 0 < r ≤ r0.

Then ur satisfies the same Lipschitz condition (20) as u but is centered at ur(0) = 0.
Hence for some subsequence rk → 0 we have urk → v where the convergence is
uniform on every compact subset of Rn. Clearly v ∈ Lip1(Rn, ‖ · ‖) and

v(te) = t for all t ∈ R1.(25)

We shall now show linearity

v(z) = DN(e) z for all z ∈ Rn,(26)

by exploiting the Lipschitz condition v inherits from u together with the first order
Taylor expansion of N(e+ z/t) := ‖e+ z/t‖ around e guaranteed by Lemma 11:

v(te)− v(z)
t

≤ ‖te− z‖
|t| = ‖e‖ −DN(e)

z

t
+ o(

1
t
).

Subtracting v(te)/t = ‖e‖ from both sides, the two limits t→ ±∞ of this inequality
combine to yield (26).

We conclude that

lim
r→∞

u(z0 + rz)− u(z0)
r

= DN(e) z uniformly for z ∈ B1(0).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



12 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANN

This implies that u is differentiable at z0, with Du(z0) = DN(e). The remaining
assertions of Lemma 12 follow directly from (22).

The next lemma exploits uniform convexity and smoothness of the norm to
produce a quantitative estimate of how far away any two rays must be from crossing.
When F (x) = ‖x‖2, it states that the sums of the squares of the diagonals AC
and BD of any quadrilateral ABCD are controlled by the distance between the
midpoints of the shorter pair (in least squares sense) of opposite sides. In particular,
no quadrilateral can be folded in such a way that the midpoints of these two sides
are brought close together unless both pairs of opposite corners are also driven
together — with a particular rate. In the Euclidean or Hilbert space setting, the
rate constant (1 + Λ/λ)/(1 +λ) = 1 given by the polarization identity is seen to be
sharp by folding up a square. Alternately, the estimate (28) can be interpreted as a
reverse form of the triangle inequality, which holds for vectors that are sufficiently
aligned.

Lemma 14 (Twisted Quadrilateral Non-crossing Estimate). Let F : V → R be
any function on a vector space V , uniformly smooth and convex enough that for
some Λ, λ > 0 and all x, y ∈ V the following inequalities hold:

λF (y) ≤ 1
2
F (x+ y)− F (x) +

1
2
F (x− y) ≤ ΛF (y).(27)

If four points a, b, c, d ∈ V satisfy F (a− b) + F (c− d) ≤ F (a− d) + F (c− b), then

F

(
a− c

2

)
+ F

(
b− d

2

)
≤ 1 + (Λ/λ)

1 + λ
F

(
a+ b

2
− c+ d

2

)
.(28)

Proof. Applying uniform convexity (27) with both (x, y) = (a − c, b − d)/2 and
(x, y) = (b− d, a− c)/2 and then summing yields

(1 + λ)
[
F

(
a− c

2

)
+ F

(
b− d

2

)]
(29)

≤ F
(
a− c

2
+
b − d

2

)
+ F̃

(
a− c

2
− b− d

2

)
,

where F̃ (z) := [F (z) + F (−z)]/2. The desired inequality will follow if we can show
that the second-to-last term controls the last one. Applying uniform convexity
again yields

λ F̃

(
a− b

2
− c− d

2

)
≤ F (a− b) + F (c− d)

2
(30)

−F
(
a− b

2
+
c− d

2

)
,

either with or without the tilde. Uniformity of the smoothness gives

F (a− d) + F (c− b)
2

− F
(
a− d

2
+
c− b

2

)
≤ ΛF

(
a− d

2
− c− b

2

)
.(31)

But the left hand side of (31) dominates the right hand side of (30) by hypothesis,
so

λ F̃

(
a− c

2
− b− d

2

)
≤ ΛF

(
a+ b

2
− c+ d

2

)
.

Together with (29), this completes the proof of (28).
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The next lemma is crucial for the definition of the change to variables in which
one variable is along transport rays. The lemma shows that if transport rays inter-
sect a level set of u(z) in their interior points, then directions of rays have a Lipschitz
dependence on the point of intersection, provided distances from the point of in-
tersection to endpoints of a ray are uniformly bounded away from zero for all rays.
Taking x = 0 and F (y) = F (−y) symmetrical implies λ ≤ 1 ≤ Λ in (27), so the
Lipschitz constant of Lemma 16 is seen to satisfy C ≥ 1 with equality only in the
Hilbert space case.

Definition 15 (Ray Directions). Define a function ν : Rn → Rn as follows. If z
is an interior point of a transport ray R with upper and lower endpoints a, b (note
that R is uniquely defined by z in view of Lemma 10), then

ν(z) :=
a− b
‖a− b‖ .(32)

Define ν(z) = 0 for any point z ∈ Rn not the interior point of a transport ray. We
call ν(z) the direction function corresponding to the Kantorovich potential u.

Lemma 12 shows that on transport rays, the direction function ν(z) is nothing
but the gradient of u computed in the Finsler setting.

Lemma 16 (Ray Directions Vary Lipschitz Continuously). Let R1 and R2 be
transport rays, with upper end ak and lower end bk for k = 1, 2 respectively. If
there are interior points yk ∈ (Rk)0 where both rays pierce the same level set of
Monge’s potential u(y1) = u(y2), then the ray directions (32) satisfy a Lipschitz
bound

‖ν(y1)− ν(y2)‖ ≤ C

σ
‖y1 − y2‖,(33)

with constant C2 + λ = 2(1 + λ−1Λ)/(1 + λ) depending on the norm (4) and the
distance σ := min

k=1,2
{‖yk − ak‖, ‖yk − bk‖} to the ends of the rays.

Proof. Let zk, xk ∈ Rk denote the points at distance σ above and below yk on the
ray, so that

u(zk) = u(y1) + σ,(34)
u(xk) = u(y1)− σ,(35)

‖zk − xk‖ = 2σ,(36)
yk = (zk + xk)/2,(37)

and ν(yk) = (zk − xk)/2σ(38)

for k = 1, 2. Thus

‖ν(y1)− ν(y2)‖2 =
1
σ2

∥∥∥∥z1 − x1

2
− z2 − x2

2

∥∥∥∥2

,(39)

while uniform convexity of the norm (4) gives∥∥∥∥z1 − z2

2
+
x2 − x1

2

∥∥∥∥2

≤ 1
2
‖z1 − z2‖2 +

1
2
‖x2 − x1‖2(40)

−λ
∥∥∥∥z1 − z2

2
− x2 − x1

2

∥∥∥∥2

.
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Combining (34)–(36),

‖z1 − x1‖ = u(z1)− u(x2) ≤ ‖z1 − x2‖,
‖z2 − x2‖ = u(z2)− u(x1) ≤ ‖z2 − x1‖,

where the Lipschitz condition (20) controls the cross-terms. Lemma 14 therefore
applies to F (x) = ‖x‖2 and the four points (a, b, c, d) = (z1, x1, z2, x2), to yield∥∥∥∥z1 − z2

2

∥∥∥∥2

+
∥∥∥∥x1 − x2

2

∥∥∥∥2

≤ 1 + (Λ/λ)
1 + λ

∥∥∥∥z1 + x1

2
− z2 + x2

2

∥∥∥∥2

.(41)

Combining (39)–(41) with the identity (37) gives

σ2 ‖ν(y1)− ν(y2)‖2 ≤
(

2
1 + (Λ/λ)

1 + λ
− λ
)
‖y1 − y2‖2,

to complete the proof.

Remark 17. The proof of Lemma 16 uses only the Lipschitz property of u, and not
the optimality of u in the Kantorovich Problem 2. Thus its conclusions hold true for
any u ∈ Lip1(Rn, ‖ · ‖), if we call each segment [a, b] on which u(a)−u(b) = ‖a− b‖
a transport ray, and define the direction function ν accordingly.

3. Measure decomposing change of variables

It is in this section that we construct the change of variables on Rn which is
the heart of our proof. Lemma 16 suggests how these new coordinates must be
defined: n − 1 of the new variables are used to parametrize a given level set of
the Kantorovich potential u, while the final coordinate xn measures distance to
this set along the transport rays which pierce it. Thus the effect of this change of
variables will be to flatten level sets of u while making transport rays parallel. But
the conditions of the lemma make clear that we retain Lipschitz control only if we
restrict our transformation to clusters of rays in which all rays intersect a given
level set of u, and the intersections take place a uniform distance away from both
endpoints of each ray. These observations motivate the construction to follow.

We begin by parametrizing the level sets of u using a lemma of Federer [9, §3.2.9].
The key observation is that we only need this parametrization on the interiors of
transport rays, where Du 6= 0 exists in view of Lemma 12. From now on, it will be
convenient to fix a Euclidean structure in Rn. The Euclidean scalar product and
associated norm are denoted by (·, ·) and |z| := (z, z)1/2, while BR(z) denotes the
Euclidean ball of radius R centered at z ∈ Rn. Of course, a function is Lipschitz in
one norm if and only if it is Lipschitz in all norms, though the Lipschitz constants
may differ.

Lemma 18 (Bi-Lipschitz Parametrization of Level Sets). Let u : Rn → R1 be a
Lipschitz function, p ∈ R1, and Sp the level set {x ∈ Rn | u(x) = p}. Then the set

Sp ∩ {x ∈ Rn | u is differentiable at x and Du(x) 6= 0}

has a countable covering consisting of Borel sets Sip ⊂ Sp, such that for each i ∈ N
there exist Lipschitz coordinates U : Rn → Rn−1 and V : Rn−1 → Rn satisfying

V (U(x)) = x for all x ∈ Sip.(42)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONSTRUCTING OPTIMAL MAPS 15

Proof. Note that if Du(x) 6= 0 exists, then Du(x)(Rn) = R1. Federer [9, §3.2.9]
asserts that

{x ∈ Rn | u is differentiable at x and Du(x)(Rn) = R1}
has a countable covering consisting of Borel sets Ei such that there exist orthogonal
projections πi : Rn → Rn−1 in O∗(n, n− 1) and Lipschitz maps

Ûi : Rn → R1 ×Rn−1 and V̂i : R1 ×Rn−1 → Rn(43)

with

Ûi(x) = (u(x), πi(x)) and V̂i[Ûi(x)] = x for all x ∈ Ei.
Clearly the sets

Sip := Sp ∩ Ei(44)

cover Sp. For any fixed i ∈ N, define

U : Rn → Rn−1 and V : Rn−1 → Rn(45)

by

U := π ◦ Ûi, where π : R1 ×Rn−1 → Rn−1 is the projection (x1, X)→ X,

V (X) = V̂i(p,X) for all X ∈ Rn−1.

Clearly U and V are Lipschitz continuous, while U(x) = πi(x) for x ∈ Sip, and
V (U(x)) = V̂i(p, πi(x)) = V̂i[Ûi(x)] = x establishes (42).

For each rational level p ∈ Q and integer i ∈ N, we shall extend these coordinates
to the transport rays intersecting Sip. Taken together, these coordinate charts must
parametrize all points T1 ⊂ Rn on transport rays (cf. Definition 8). It is convenient
to define them on a countable collection of subsets called clusters of rays:

Definition 19 (Ray Clusters). Fix p ∈ Q, a Kantorovich potential u, and the
Borel cover {Sip}i of the level set Sp := {x ∈ Rn | u(x) = p} in Lemma 18. For
each i, j ∈ N let the cluster Tpij :=

⋃
Rz denote the union of all transport rays Rz

which intersect Sip, and for which the point of intersection z ∈ Sip is separated from
both endpoints of the ray by distance greater than 1/j in ‖ · ‖. The same cluster,
but with ray ends omitted, is denoted by T 0

pij :=
⋃
z(R

0
z).

Lemma 20 (Clusters Cover Rays). The clusters Tpij indexed by p ∈ Q and i, j ∈
N define a countable covering of all transport rays T1 ⊂ Rn. Moreover, each Tpij
and transport ray R satisfy:

Either (R)0 ⊂ Tpij, or (R)0 ∩ Tpij = ∅.(46)

Proof. A transport ray R = [a, b] has positive length by Definition 7. Along it,
the Kantorovich potential u is an affine function with non-zero slope, according
to Lemma 12. Thus there is some rational number p ∈ (u(a), u(b)), for which R
intersects the level set Sp := {x | u(x) = p}. The point x of intersection belongs
to one of the covering sets Sip ⊂ Sp of Lemma 18, and lies a positive distance from
each end of the ray, so R ⊂ Tpij for some j ∈ N.

Conversely, if the interior of some other ray R0 intersects one of the rays Rz
comprising the cluster Tpij , the non-crossing property of Lemma 10 forces R =
Rz ⊂ Tpij , which completes the proof of (46).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



16 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANN

Definition 21 (Ray Ends). Denote by E ⊂ T1 the set of endpoints of transport
rays.

On each ray cluster Tpij we are now ready to define the Lipschitz change of
variables which inspired the title of this section:

Lemma 22 (Lipschitz Change of Variables). Each ray cluster Tpij ⊂ Rn admits
coordinates G = Gpij : T 0

pij → Rn−1 ×R1 with inverse F = Fpij : G(T 0
pij) → Rn

satisfying:

(i). F extends to a Lipschitz mapping between Rn−1 ×R1 and Rn.
(ii). For each λ > 0, G is Lipschitz on T λpij := {x ∈ T 0

pij | ‖x− a‖, ‖x− b‖ > λ},
where a and b denote the endpoints of the (unique) transport ray Rx.

(iii). F (G(x)) = x for each x ∈ T 0
pij .

(iv). If a transport ray Rz ⊂ Tpij intersects Sip at z, then each interior point
x ∈ (Rz)0 of the ray satisfies

G(x) = (U(z), u(x)− u(z)),(47)

where U : Rn → Rn−1 gives the Lipschitz coordinates (42) on Sip.

Remark 23 (Flattening Level Sets). The final assertion of Lemma 22 implies: (a)
F maps the part of the hyperplane Rn−1 × {0} which lies within G(T 0

pij) onto Sip;
(b) F maps the segment where each “vertical” line {X} × R1 intersects G(T 0

pij)
onto a transport ray. Thus in the new coordinates (X,xn) ∈ Rn−1 ×R1, the level
sets of u are flattened: they are parametrized by the variables X = (x1, . . . , xn−1)
while xn varies along the transport rays.

Proof. Lemma 10 shows that rays do not cross, while Definition 7 (or Lemma 12)
shows that u is an affine function on each ray, with slope as large as permitted by
the Lipschitz constraint (20). Thus every point x ∈ T 0

pij lies on a unique transport
ray, and this ray intersects the level set Sp in a single point z ∈ Sip, so the expression
(47) defines a map G : T 0

pij → Rn−1 ×R1 throughout the cluster. It remains to
construct the inverse map F on G(T 0

pij) ⊂ Rn−1 ×R1. Let (X,xn) ∈ G(T 0
pij), and

let V be the map (42) parametrizing Sip. Then the point V (X) ∈ Sip is an interior
point of some transport ray R, both of whose endpoints are separated from V (X)
by a distance exceeding 1/j. Let ν( · ) be the direction function (32) associated
with the Kantorovich potential u, and define

F (X,xn) := V (X) + xnν(V (X)).(48)

That F inverts G (assertion (iii)) now follows from (42), (47) and the fact that u
is affine with maximal slope along the ray R.

To prove F is Lipschitz on G(T 0
pij) ⊂ Rn−1 ×R1, introduce

Λ := {X ∈ Rn−1 | (X, 0) ∈ G(T 0
pij)}.(49)

We first claim the ray direction ν ◦ V is a Lipschitz function of X ∈ Λ. Indeed,
recalling that V (X) ∈ Sip is separated from the endpoints of RV (X) by a distance
greater than 1/j, we invoke Lemma 16 to conclude that X,X ′ ∈ Λ satisfy

‖ν(V (X))− ν(V (X ′))‖ ≤ jC1 ‖V (X)− V (X ′)‖(50)

≤ jC2 |X −X ′|(51)
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because V : Rn−1 → Rn was Lipschitz in Lemma 18. To complete the proof that
F is Lipschitz, it remains only to bound xn in (48). Since the supports X and Y of
the original measures were compact, the transport rays Tpij ⊂ T1 lie in a bounded
set. It follows from the definition (47) of G that (X,xn) ∈ G(T 0

pij) is also bounded,
since u and U are Lipschitz on Rn. Finally, we can extend F to all of Rn−1 ×R1

while preserving the Lipschitz bound (51) using Kirszbraun’s theorem [9, §2.10.43],
to conclude the proof of assertion (i).

It remains to prove assertion (ii) of the lemma. Let λ > 0. We first show the
direction function ν( · ) to be Lipschitz on T λpij . Being discontinuous at the mutual
end of two rays, its Lipschitz constant must depend on λ. Let x, x′ ∈ T λpij lie on
the transport rays R and R′. If ‖x− x′‖ ≥ λ/2 there is nothing to prove, since

‖ν(x) − ν(x′)‖ ≤ 2 ≤ 4
λ
‖x− x′‖.

Therefore, assume ‖x− x′‖ < λ/2 and hence |u(x)− u(x′)| ≤ ‖x− x′‖ < λ/2. The
point y′ := x′ + [u(x)− u(x′)]ν(x′) then lies on the ray R′, since the ends of R′ are
at least distance λ from x′. Moreover, u(y′) = u(x′) + [u(x) − u(x′)] = u(x), and
the distances from x and y′ to the ends of R and R′ are at least λ/2 respectively.
Invoking Lemma 16 again yields:

‖ν(x) − ν(x′)‖ = ‖ν(x)− ν(y′)‖ ≤ 2C
λ
‖x− y′‖.(52)

Moreover, x′, y′ ∈ R′ lie on the same transport ray, and u(x) = u(y′), so

‖x′ − y′‖ = |u(x′)− u(y′)| = |u(x′)− u(x)| ≤ ‖x′ − x‖(53)

combines with the triangle inequality ‖x − y′‖ ≤ ‖x − x′‖ + ‖x′ − y′‖ to produce
the desired bound for ν( · ) on T λpij :

‖ν(x)− ν(x′)‖ ≤ 4C
λ
‖x− x′‖.(54)

Turning to G, we estimate

|G(x) −G(x′)| ≤ |G(x) −G(y′)|+ |G(y′)−G(x′)|.(55)

Since x′ and y′ lie on R′, definition (47) yields

|G(y′)−G(x′)| = |u(x′)− u(y′)| = |u(x′)− u(x)| ≤ ‖x− x′‖.(56)

Let z and z′ be the points where R and R′ pierce Sip. Since u(x)− u(z) = u(y′)−
u(z′), the same definition gives

|G(x) −G(y′)| = |U(z)− U(z′)|.(57)

Setting σ := u(z) − u(x), we have z = x + σν(x) and z′ = y′ + σν(x′). Also |σ|
is bounded by the diameter of the cluster T λpij . Because the coordinates U were
Lipschitz, we have

|U(z)− U(z′)| ≤ C3‖x− y′‖+ σC3‖ν(x)− ν(x′)‖(58)
≤ C3(2 + 4σCλ−1)‖x− x′‖(59)

from (53)–(54). Now (55)–(59) imply G is Lipschitz on T λpij , to complete the lemma.
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The next step is to address measurability of the sets Tpij and G(T 0
pij). As in

Evans and Gangbo [7], this is done with the help of the distance functions to the
upper and lower ends of rays:

Lemma 24 (Semicontinuity of Distance to Ray Ends). At each z ∈ Rn define

α(z) := sup{‖z − y‖ | y ∈ Y, u(z)− u(y) = ‖z − y‖},(60)

β(z) := sup{‖z − x‖ | x ∈ X , u(x)− u(z) = ‖z − x‖},(61)

where sup ∅ := −∞. Then α, β : Rn → R∪{−∞} are both upper semicontinuous.

Proof. We prove only the upper semicontinuity of α(z); the proof for β(z) is similar.
Given any sequence of points zn → z for which α0 := limn α(zn) exists, we need
only show α0 ≤ α(z). It costs no loss of generality to assume α0 > −∞ and
α(zn) > −∞; moreover, α(zn) < ∞ since the support Y of the measure µ− was
assumed compact. From (60),

α(zn)− 1/n ≤ ‖zn − yn‖ = u(zn)− u(yn)(62)

for some sequence yn ∈ Y. By compactness of Y, a convergent subsequence yn →
y ∈ Y exists. The (Lipschitz) continuity of u yields α0 ≤ ‖z − y‖ = u(z)− u(y) ≤
α(z) from the limit of (62), which proves the lemma.

Geometrically, the functions α, β have the following meaning: If z lies on a
transport ray R, then α(z) and β(z) are the distances (in ‖ · ‖) from z to the lower
and upper end of R respectively; thus at ray ends z ∈ E , exactly one of these
distances vanishes. If z ∈ T0 is a ray of zero length, then α(z) = β(z) = 0. If
z ∈ Rn \ (T0 ∪ T1), then either α(z) = −∞ or β(z) = −∞. We combine these
functions with our change of variables to show the clusters of ray interiors T 0

pij

are Borel sets, and to give a much simpler proof than Evans and Gangbo that the
ray ends have measure zero [7, Proposition 5.1]. In what follows, n-dimensional
Lebesgue measure is denoted Ln.

Lemma 25 (Measurability of Clusters / Negligibility of Ray Ends). The ray ends
E ⊂ T1 form a Borel set of measure zero: Ln(E) = 0. The rays of length zero
T0 ⊂ Rn also form a Borel set. Finally, for each p ∈ Q and i, j ∈ N, the cluster
T 0
pij of ray interiors and its flattened image G(T 0

pij) from Lemma 22 are Borel.

Proof. First observe that T0 = {z ∈ Rn | α(z) = β(z) = 0} while E = {z ∈ Rn |
α(z)β(z) = 0 but α(z) + β(z) > 0}. Both of these sets are Borel by the upper
semicontinuity of α and β shown in Lemma 24.

Therefore, fix p ∈ Q and i, j ∈ N and recall the Borel set Sip ⊂ Rn and Lipschitz
coordinates U : Rn → Rn−1 on it from Lemma 18. Since U is univalent (i.e.,
one-to-one) on Sip, it follows from Federer [9, §2.2.10, p. 67] that U(Sip) is a Borel
subset of Rn−1. Moreover, the set Λ defined in (49) is given by

Λ = {X ∈ U(Sip) | α(U−1(X)), β(U−1(X)) > 1/j}

according to (47), which with Definition 19 also yields the image

G(T 0
pij) = {(X,xn) | X ∈ Λ, −α(V (X)) < xn < β(V (X))}

of the ray cluster in flattened coordinates. Here V = U−1 is Lipschitz, so α ◦ V ,
β ◦ V are upper semicontinuous in view of Lemma 24. Thus we conclude that
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both Λ ⊂ Rn−1 and G(T 0
pij) ⊂ Rn−1 × R1 are Borel. Lemma 22(iii) shows that

the transformation F = G−1 back to the original coordinates is well defined and
univalent on G(T 0

pij). Since F extends to a Lipschitz function throughout Rn and
T 0
pij = F (G(T 0

pij)), we conclude, using Federer [9, §2.2.10] again, that T 0
pij is Borel.

To show the ray ends have measure zero, consider the corresponding points
G ⊂ Rn−1 ×R1 of Tpij in the flattened coordinate system:

G = {(X,−α(V (X))) | X ∈ Λ} ∪ {(X, β(V (X))) | X ∈ Λ}.
Using upper semicontinuity of α ◦ V and β ◦ V we conclude G is a Borel set, and
Ln(G) = 0 by Fubini’s theorem. Now E ∩Tpij = F (G). Since F : Rn−1×R1 → Rn

is a Lipschitz map, we can use Ln(G) = 0 and the Area formula [9, §3.2.3] to
conclude that Ln(E ∩ Tpij) = 0 (and hence is Lebesgue measurable). By Lemma
20, the clusters {Tpij} form a countable cover for E ⊂ T1, so Ln(E) = 0 to conclude
the proof.

As a particular consequence of this lemma, the set T1 of all transport rays is
Borel, being a countable union of Borel sets T 0

pij with E . Also, the sets Tpij are
Lebesgue measurable, being the union of a Borel set with a subset of a negligible
set.

Finally, we can take the clusters Tpij of rays to be disjoint. Indeed, enumerate
the triples (p, i, j) so the collection of clusters {Tpij} becomes {T(k)}, k = 1, 2, . . . .
For k > 1 redefine T(k) → T(k) \ (

⋃k−1
l=1 T(l)). Redefine T 0

(k) → T 0
(k) \ (

⋃k−1
l=1 T

0
(l))

analogously. We will continue to denote the modified sets by Tpij and T 0
pij . Note

that the structure of the clusters Tpij remains the same: for each Tpij we have a
Borel subset Spij := Tpij ∩Sp of Sip ⊂ Rn on which there are Lipschitz coordinates
U , V (42) satisfying

V (U(x)) = x for all x ∈ Spij .(63)

Indeed, since the new cluster is a subset of the old, the former maps U , V will
suffice. From the modification procedure it also follows that the ray property (46)
holds for the modified sets — which justifies calling them clusters — and that the
ray Rz corresponding to each z ∈ Spij extends far enough on both sides of Sp
(i.e., α(z), β(z) > 1/j) to define coordinates F , G on Tpij satisfying all assertions
of Lemma 22 (again, the original maps F and G work for the modified clusters).
The measurability Lemma 25 holds for the new clusters, as follows readily from the
modification procedure. Thus from now on we assume:

The clusters of ray interiors T 0
pij are disjoint.(64)

4. Mass balance on rays

Since we intend to solve Monge’s problem by constructing a map which moves
mass along rays, it is essential to know that f+ and f− assign the same amount
of mass to each transport ray. In the Euclidean case this is the content of Evans
and Gangbo [7, Lemma 5.1]. Here it remains true, but our proof exploits the
fact that the optimal maps sε(x) between f+ onto f− for the cost cε(x, y) =
‖x− y‖1+ε in Theorem 2(iv) accumulate onto transport rays of the limiting Kan-
torovich potential.

While individual rays all have mass zero, one can consider arbitrary collections
of transport rays instead. The ray ends, having measure zero, are neglected. Thus:
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Definition 26 (Transport Sets). A set A ⊂ Rn is called a transport set if z ∈
A ∩ (T1\E) implies R0

z ⊆ A, where Rz is the unique transport ray passing through z.
It is called the positive end of a transport set if A merely contains the interval [z, a)
whenever z ∈ A ∩ (T1 \ E) and a denotes the upper end of the transport ray Rz.

Examples. Any subset A ⊂ T0 of rays of length zero is a transport set, as are the
clusters of rays Tpij .

For Borel transport sets, such as T 0
pij , the following balance conditions apply.

Lemma 27 (Mass Balance on Rays). Let A ⊂ Rn be a Borel transport set. Then∫
A

f+(x) dx =
∫
A

f−(x) dx.(65)

More generally, if a Borel set A+ ⊂ Rn forms the positive end of a transport set,
then ∫

A+
f+(x) dx ≥

∫
A+

f−(x) dx.(66)

Proof. We will prove inequality (66) for a positive end of a transport set. Equality
(65) for transport sets then follows by symmetry.

Let A+ be a positive end of a transport set. Since T0∪T1 ⊂ conv[X ∪Y] contains
all transport rays by Definitions 7 and 8 and the supports of f± by Lemma 9, it
costs no generality to replace A+ by its intersection with T0 ∪ T1. Thus we assume
A+ ⊂ T0 ∪ T1.

Assume first that A+ is a closed set and that A+ does not contain any lower
ends of rays. Then A+ is compact since X ∪Y is bounded. Recall that our limiting
Kantorovich potential u was obtained from (14) and a limit (ϕεj , ψεj ) → (ϕ0, ψ0)
— uniform on X × Y — of potentials minimizing K(ϕ, ψ) on Jεj (X ,Y). Here the
convex costs cεj (x, y) = ‖x − y‖1+εj → c0(x, y) uniformly on X × Y as j → ∞ in
Proposition 3.

For r > 0, let Nr(A+) = {x ∈ Rn | dist(x,A+) < r} denote the r-neighborhood
of A+. Since A+ is the positive end of a transport set and closed and does not
contain any lower ends of rays, it follows that if y ∈ A+ and u(x)− u(y) = ‖x− y‖
for some x ∈ X , then x ∈ A+. Since u ∈ Lip1(Rn, d) and A+, X \ Nr(A+) are
compact sets, it follows that

inf
y∈A+, x∈X\Nr(A+)

[‖x− y‖ − u(x) + u(y)] ≥ δ(r) > 0.

By (14),

ϕ0(x) + ψ0(y) ≥ −‖x− y‖+ δ(r) for any y ∈ A+, x ∈ X \Nr(A+).

The uniform convergence mentioned above then yields

ϕεj (x) + ψεj (y) ≥ −cεj (x, y) +
δ(r)

2
for any y ∈ A+, x ∈ X \Nr(A+),

provided j > j0(r) is sufficiently large. From Theorem 2(iii)–(iv) it now follows
that sεj (x) ∈ A+ implies x ∈ Nr(A+) if j > j0(r). Here sεj : X → Y is the
unique optimal map between f+ and f− with respect to the cost function c(x, y) =
‖x−y‖1+εj . Since sεj pushes µ+ forward to µ−, we obtain µ+[Nr(A+)] ≥ µ−(A+).
But because A+ is closed, the limit r→ 0+ yields (66).
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If A+ is merely Borel, then we can replace A+ by A+ \E since E is a Borel set of
Ln measure zero and µ± are absolutely continuous with respect to Lebesgue. Thus
we assume that A+ ⊂ (T0 ∪ T1) \ E . Since A+ is Borel, for any δ > 0 there exists a
closed set C = Cδ ⊂ A+ such that Ln[A+ \ C] < δ. Denote by R+(C) the set

R+(C) = C ∪

 ⋃
z∈C∩(T1\E)

[z, a(z)]

 ,

where a(z) denotes the upper end of the transport rayRz . Continuity of u(·) implies
that R+(C) is closed. By definition, R+(C) is a positive end of a transport set,
and does not contain lower ends of rays since C ∩ E = ∅. Thus

µ+[R+(C)] ≥ µ−[R+(C)].(67)

Since A+ ⊃ C is a positive end of a transport set, R+(C) ⊂ A+ ∪ E . Moreover,
Ln(E) = 0, so µ±[R+(C)] ≤ µ±(A+). Finally, Ln[A+ \ R+(C)] < δ and the mea-
sures µ± are absolutely continuous with respect to Lebesgue, so µ±[A+ \R+(C)]→
0 with δ → 0+. Thus µ±[R+(C)]→ µ±(A+), and (67) implies (66).

5. Construction of the optimal map

This final section is devoted to the proof of Theorem 1 by constructing an optimal
map for Monge’s problem.

Proof. Step 1. Localization to clusters of rays. According to Lemma 6, it is
enough to construct a map s : Rn → Rn pushing µ+ forward to µ− which only
moves mass down transport rays: i.e., for any x ∈ X , the point s(x) must lie below
x on the same transport ray Rx, possibly of length zero. Here ‘down’ and ‘below’
refer to the constraint u(x) ≥ u(s(x)) from (18).

Decompose the set X ∪Y into the rays T0 of length zero, clusters of ray interiors
T 0
pij , and the ray ends E using Lemmas 9 and 20. The cluster property (46) implies

that any such map s satisfies s(x) ∈ T 0
pij almost everywhere on T 0

pij , while s(x) = x
on T0. Since the ray ends form a set of measure zero by Lemma 25, they are ne-
glected here and in the sequel. Thus we can construct an optimal map s separately
on each cluster T 0

pij and on T0. Indeed, suppose for each (p, i, j) we have a map
spij : T 0

pij → T 0
pij pushing µ+

|T 0
pij

forward onto µ−|T 0
pij

, and a map s0 : T0 → T0 push-

ing µ+
|T0

forward onto µ−|T0
. Here µ|A denotes the restriction of measure µ from Rn

to A ⊂ Rn. The clusters T 0
pij and T0 are disjoint and Borel by (64) and Lemma 25.

Thus the map s : Rn → Rn defined by

s(x) =
{

s0(x) for x ∈ T0,
spij(x) for x ∈ T 0

pij ,
(68)

is well defined, Borel, and pushes µ+ forward to µ−.
Consider s0 first. Since every subset A ⊂ T0 is a transport set, Lemma 27 shows

the identity map pushes µ+
|T0

forward to µ−|T0
. Thus we define s0(x) = x on T0. The

remainder of the proof is devoted to constructing maps spij : T 0
pij → T 0

pij pushing
µ+
|T 0
pij

forward to µ−|T 0
pij

which only move mass down transport rays.

Step 2. Change of variables. Fix p ∈ Q, i, j ∈ N and consider T 0
pij .

Denote µ±pij := µ±|T 0
pij

. By Lemma 22 the map F is one-to-one on G(T 0
pij), and
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F (G(T 0
pij)) = T 0

pij . Since F is Lipschitz, the Area formula [9, §3.2.5] yields∫
G(T 0

pij)

ϕ(F (x))f±(F (x))JnF (x) dx =
∫
T 0
pij

ϕ(z)f±(z)dz(69)

for any summable ϕ : Rn → R1. Here JnF denotes the n-dimensional Jacobian of
F . Define f̂± : Rn−1 ×R1 → R1 by

f̂±(x) =
{
f±(F (x))JnF (x) x ∈ G(T 0

pij),
0 otherwise.

(70)

The characteristic function ϕ = χG(T 0
pij)

in (69) shows f̂± is summable; it is obvi-
ously non-negative and Borel since Lemma 25 shows G(T 0

pij) Borel and bounded.
Introduce the measures dθ± := f̂±(x)dx. Comparing (3) with (69) gives

F#θ
± = µ±pij ,(71)

meaning the map F pushes θ± forward to µ±pij . From Lemma 22(ii)–(iii) we deduce
the inverse map G is Borel on T 0

pij , and G(F (y)) = y on G(T 0
pij). With (71) this

implies

G#µ
±
pij = θ±.(72)

From (71)–(72) it then follows that if a map ŝ : Rn−1 ×R1 → Rn−1 ×R1 pushes
θ+ forward to θ−, then the composition spij = F ◦ ŝ◦G pushes µ+

pij forward to µ−pij .
In addition, Lemma 22(iv) shows that when ŝ moves mass down vertical lines, i.e.,
satisfies ŝ(X,xn) ∈ {X} × [−∞, xn] for any (X,xn), then spij moves mass down
transport rays. Thus it remains only to construct ŝ : Rn−1 ×R1 → Rn−1 × R1

satisfying

ŝ#θ
+ = θ−, ŝ(X,xn) ∈ {X} × [−∞, xn] for any (X,xn) ∈ Rn−1 ×R1.

Step 3. Restriction to vertical lines. By Fubini’s theorem, the functions
f̂±(X, · ) are summable for a.e. X ∈ Rn−1. Let us introduce the distribution
function

Ψ±(X, τ) :=
∫ ∞
τ

f̂±(X,xn) dxn(73)

=
∫

R1
χ(0,∞)(xn − τ)f̂±(X,xn) dxn.(74)

Here Ψ± is non-negative and Borel throughout Rn [22, §8.8], with a continuous
non-increasing dependence on τ . For a.e. X ∈ Rn−1 we shall show:

Ψ+(X, τ) ≥ Ψ−(X, τ)(75)

holds for all τ ∈ R, with equality

Ψ+(X,−∞) = Ψ−(X,−∞) <∞(76)

as τ → −∞. These inequalities are interpreted to mean that at no point τ along
a transport ray can the mass of µ− above τ exceed the mass of µ+, though they
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balance in the limit (76). Note that Ψ±(X, τ) becomes independent of |τ | for large
|τ |, since f̂± had compact support in (70). The bound in (76) comes from Fubini’s
theorem applied to f̂± ∈ L1(Rn).

Let us first fix τ ∈ R, and establish (75) for a.e. X ∈ Rn−1. Consider the sets

Λ+ := {X ∈ Rn−1 | Ψ+(X, τ) < Ψ−(X, τ)},(77)

Ω+ := {(X,xn) ∈ G(T 0
pij) | X ∈ Λ+, xn > τ},(78)

F (Ω+) = {x ∈ T 0
pij | G(x) ∈ Ω+}.(79)

Noting that (Z, zn) ∈ Ω+ implies (Z, xn) ∈ Ω+ for every xn > zn with (Z, xn) ∈
G(T 0

pij), it is not hard to verify that F (Ω+) ⊂ T 0
pij is the positive end of a transport

set from (46)–(47) and Definition 26. Now Λ+ ⊂ Rn−1 is Borel like Ψ±, and
Ω+ ⊂ Rn is Borel by Lemma 25. Fubini’s theorem, (70), (73) and (77)–(78) yield∫

Λ+
[Ψ+(X, τ)−Ψ−(X, τ)] dX =

∫
Ω+

[f̂+(x)− f̂−(x)] dx.(80)

On the other hand, F (Ω) is Borel whenever Ω ⊂ G(T 0
pij) is, since F is one-to-

one and continuous on G(T 0
pij) [9, §2.2.10]. Choosing the characteristic function

ϕ = χF (Ω) in (69)–(70) yields∫
Ω

f̂±(x) dx =
∫
F (Ω)

f±(z) dz <∞,

hence ∫
Λ+

[Ψ+(X, τ) −Ψ−(X, τ)] dX =
∫
F (Ω+)

[f+(z)− f−(z)] dz ≥ 0(81)

from (80). Here the last integral is non-negative by Lemma 27, since F (Ω+) was
the positive end of a transport set. But the first integrand is negative by (77), so
we infer Ln−1(Λ+) = 0. Thus (75) holds for a.e. X ∈ Rn−1, depending on our
fixed τ . Fubini’s theorem then shows it holds for a.e. (X, τ) ∈ Rn. Therefore, fix
X0 ∈ Rn−1. The continuous dependence of Ψ±(X0, τ) on τ implies (75) is not
violated for X = X0 and any τ , unless it is violated on an interval of positive
measure around τ . Using Fubini again, we conclude for a.e. X ∈ Rn−1 that (75)
holds for all τ .

To obtain the equality (76), use compactness to fix τ < xn for all (X,xn) ∈
G(T 0

pij), so that Ψ±(X, τ) = Ψ±(X,−∞). We need the reverse inequality to (75),
so define

Λ− := {X ∈ Rn−1 | Ψ+(X, τ) > Ψ−(X, τ)},
Ω− := {(X,xn) ∈ G(T 0

pij) | X ∈ Λ−},
F (Ω−) = {x ∈ T 0

pij | G(x) ∈ Ω−}.

Note that this time Ω− is independent of τ , whence (Z, zn) ∈ Ω− implies (Z, xn) ∈
Ω− if (Z, xn) ∈ G(T 0

pij). It follows that F (Ω−) ⊂ T 0
pij is a complete transport set

(and not merely its positive end). Repeating the same argument as before, Lemma
27 implies∫

Λ−
[Ψ+(X, τ) −Ψ−(X, τ)] dX =

∫
F (Ω−)

[f+(z)− f−(z)] dz = 0
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instead of (81). This time the first integrand is strictly positive, so Ln(Λ−) = 0,
which completes the proof that mass balance (76) also holds for almost every X ∈
Rn−1.

This balancing of mass (76) is a consistency condition which enables us to solve
the one-dimensional transport problem on a.e. vertical line {X}×R1 separately. We
shall use inequality (75) to show the solution maps we construct verify tX(xn) ≤ xn
on R1. After that, it will remain only to prove that the resulting map ŝ : Rn−1 ×
R1 → Rn−1 ×R1, defined by ŝ(X,xn) = (X, tX(xn)), pushes θ+ forward to θ−.

Step 4. One-dimensional transport. Fix X ∈ Rn−1 for which (75)–(76)
hold. We will construct a map tX(x) ≤ x on R1 which pushes f̂+(X,xn) dxn
forward to f̂−(X,xn) dxn. Note that this map is not unique: among the possible
solutions we are free (and we elect) to choose the unique non-decreasing, lower
semicontinuous map. But this choice is arbitrary; the only important thing is that
our choices are consistent enough on different rays that we end up with a measurable
map on Rn.

We define tX using the distribution functions Ψ±(X, τ). Fix τ ∈ R1, and recall
that Ψ±(X, · ) is a continuous, non-increasing function which takes constant values
outside a compact set. By (76), there exists some ζ ∈ R1 which satisfies

Ψ+(X, τ) :=
∫ ∞
τ

f̂+(X,xn) dxn =
∫ ∞
ζ

f̂−(X,xn) dxn =: Ψ−(X, ζ).(82)

Of course ζ need not be unique, since Ψ−(X, · ) will not decrease strictly where f̂−

vanishes. But the set of all ζ satisfying (82) forms a closed segment (or half-line).
If we define

tX(τ) := inf{ζ ∈ R1 | Ψ+(X, τ) ≥ Ψ−(X, ζ)}(83)

= sup{ζ ∈ R1 | Ψ+(X, τ) < Ψ−(X, ζ)},(84)

then monotonicity of Ψ±(X, · ) shows tX non-decreasing, and the equivalence of
(83) to (84). Lower semicontinuity of tX( · ) follows from (83) and continuity of
Ψ±(X, · ), while tX(τ) ≤ τ follows from (75). Finally, we claim the map tX pushes
dθ+
X := f̂+(X,xn) dxn forward to dθ−X := f̂−(X,xn) dxn, or equivalently

θ+
X((tX)−1(A)) = θ−X(A) for each Borel set A ⊂ R1.(85)

Indeed, when A is a half-line (−∞, ζ), then (85) follows directly from the conditions
(82)–(84) defining tX . But half-lines generate all Borel sets, so (85) is established.

Step 5. ŝ pushes θ+ forward to θ−. Here ŝ : Rn−1 ×R1 → Rn−1 ×R1 is
defined as ŝ(X,xn) = (X, tX(xn)), where tX(xn) ≤ xn is from Step 4.

First we prove ŝ is Borel. It is enough to show that the function t : Rn−1×R1 →
R1 defined as t(X,xn) := tX(xn) is Borel. For each ζ ∈ R1 set

Tζ := {(X, τ) ∈ Rn−1 ×R1 | t(X, τ) > ζ}, and(86)

Mζ := {(X, τ) ∈ Rn−1 ×R1 | Ψ+(X, τ) < Ψ−(X, ζ)}.(87)

Observe that Mζ is Borel since Ψ± are, and Mζ ⊇Mζ+ε for ε > 0. We shall prove
Tζ = Mζ , to conclude that t(X, τ) is Borel on Rn.
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Indeed, if (X, τ) ∈ Tζ, then tX(τ) > ζ and we must have (X, τ) ∈ Mζ to avoid
contradicting (83). Thus Tζ ⊆ Mζ . Conversely, let (X, τ) ∈ Mζ . Continuity of
Ψ−(X, · ) in (87) shows (X, τ) ∈ Mζ+ε for some ε > 0. Thus t(X, τ) ≥ ζ + ε by
(84), and (X, τ) ∈ Tζ to complete the proof that Tζ = Mζ .

Having shown ŝ is Borel throughout Rn−1×R1, the fact that θ+(ŝ−1A) = θ−(A)
for each Borel A ⊂ Rn follows from (85) by Fubini’s theorem. Thus ŝ pushes θ+

forward to θ−. By Step 2 this yields maps spij = F ◦ ŝ ◦ G on each cluster T 0
pij

which push µ+
|T 0
pij

forward to µ−|T 0
pij

while only moving mass down transport rays.

Step 1 combines these maps in (68) to yield an optimal map s : Rn → Rn for
Problem 1.
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