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Abstract 
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Executive Summary 

This report introduces the notion of “uncertain numbers”, a class of mathematical objects 
useful for risk analysis that generalize real numbers, intervals, probability distributions, 

interval bounds on probability distributions (probability boxes), and finite Dempster- 

Shafer structures whose elements are closed intervals of the real line. The report will 

show that probability boxes and these finite Dempster-Shafer structures have a very close 
relationship and that it is always possible to convert one into the other (although not in a 
one-to-one way). The notion of uncertain numbers unifies several disparate methods 

currently used in risk assessments and provides a theoretical foundation for future work 
in uncertainty analysis. 

The report summarizes five different approaches to characterizing or representing 
uncertain numbers from information that may be available from empirical knowledge, 

theoretical argument or expert opinion. These ways include (1) simply making an 

assumption about the distribution shape of the underlying random variable and the 
associated parameters of the distribution, (2) decomposing the quantity in question in 
terms of a model involving other, more easily estimated quantities, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) using robust 

Bayes methods to update a class of possible prior distributions with a class of likelihood 
functions, (4) deriving the uncertain number from constraints known about the underlying 
random variable, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  collecting empirical measurements. In the fourth approach, 
constraints will specify a useful uncertain number if the analyst can describe limitations 

on the range of the random variable, limitations on its variance, or limitations on the 

probability density function. Additionally, qualitative information about the shape of a 
random variable’s distribution (such as whether it is symmetric, unimodal, convex, etc.) 

can tighten the estimate considerably. Several classical inequalities of probability theory 
are brought to bear on these problems and produce bounds that are both rigorous and best 
possible. The fifth approach for characterizing an uncertain number is with a collection 

of measurements. Methods are outlined to account for such collections that may contain 
(interval) measurement uncertainty, bounded censoring, sampling uncertainty, or any 

combinations thereof. General guidance is outlined about how to select methods for 
characterizing uncertain numbers. 

The report also reviews aggregation operations that would be useful for combining 

multiple estimates for an uncertain number that have come from different sources and 
which may include conflicting information. Twelve desirable properties of aggregation 
methods are described, including generality, closure, idempotence, commutativity, 
continuity, associativity, quasi-associativity, symmetry in arguments, preservation of 
intersections, preservation of enclosures, insensitivity to vacuousness, narrowness. 
Several aggregation operations are described, including intersection, enveloping, 
Dempster’s rule and its modifications, Bayes’ rule, stochastic mixtures, logarithmic 

pools, and multiple kinds of averages. Various weighting schemes to modify these 
aggregations are also discussed. Guidance on choosing an aggregation operator is 
outlined. 

addressed in an uncertainty analysis using probability boxes and Dempster-Shafer 

structures. A glossary of several of the technical terms used in the report is also 
provided. 

The report includes a brief discussion of model uncertainty and how it might be 



Symbols zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N is distributed as 

E is an element of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c 
U union 

n intersection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f plus or minus 

0 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEl 

is a subset of, also enclosure of uncertain numbers (Section 4.1) 

the empty set, i.e., the set having no members 

probability-box specified by a left side zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(x) and a right side E(x) where 

- F(x)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 F ( x )  for all x E '93, consisting of all nondecreasing functions F 

from the reals into [0,1] such that F ( x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI F(x)  I F(x).  (Section 2.1) 

{(SI , rn l ) ,  . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s,,rn,)} an enumeration of the elements of a Dempster-Shafer structure in 

JA+B 

H C ( 4  

inf 

normal(p, 0) 

'93 

SUP 

uniform(a, b) 
weibull(d, e) 

terms of its focal elements si and their nonzero masses mi 
a functionfwhose range is the set A and whose domain is the set B. In 

other words, for any element in A,  the functionfassigns a value that is in 

the set B 
the step function that is zero for all values of x<c and one for all x2c 

infimum (for a finite set, simply the minimum) 

a normal distribution with mean p and standard deviation 0 

the set of all real numbers 

supremum (for a finite set, simply the maximum) 

a uniform distribution ranging between a and b, where a l b  
a Weibull distribution with scale parameter (or characteristic life) d and 

shape parameter e, where Old, OIc 
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I Introduction 

Risk analysts recognize two fundamentally distinct forms of uncertainty. The first is 
variability that arises from environmental stochasticity, inhomogeneity of materials, 
fluctuations in time, variation in space, or heterogeneity or other differences among 

components or individuals. Variability is sometimes called Type I uncertainty, or less 
cryptically, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaleatory uncertainty to emphasize its relation to the randomness in gambling 

and games of chance. It is also sometimes called irreducible uncertainty because, in 

principle, it cannot be reduced by further empirical study (although it may be better 
characterized). The second kind of uncertainty is the incertitude that comes from 

scientific ignorance, measurement uncertainty, inobservability, censoring, or other lack of 
knowledge. This is sometimes called Type I1 uncertainty, or simply epistemic 
uncertainty. In contrast with aleatory uncertainty, epistemic uncertainty is sometimes 

called reducible uncertainty because it can generally be reduced by additional empirical 
effort at least in principle. 

valued but uncertain quantities. For instance, intervals (Moore 1966) have been used to 
represent purely epistemic uncertainty. For situations in which the uncertainty about 

quantities is purely aleatory in character, probability theory is usually preferred. When 
the gaps in our knowledge involve both aleatory and epistemic uncertainty, several 
competing approaches have been suggested. Some probabilists assert, for instance, that 
probability theory is sufficiently general to serve as the uncertainty calculus in this case 

as well. However, many disagree with this assertion. Walley (1 99 l), inter alia, argued 
that a theory embracing imprecise probabilities would be needed. Shafer (1976) argued 
that an approach that takes account of the indistinguishability of underlying states within 

bodies of evidence would be required. We discuss these ideas below. 

Several researchers have addressed the issue of representing incertitude or epistemic 
uncertainty within the context of probability theory. Several treatments of the problem 

have converged on essentially the same idea: that one can work with bounds on 
probability for this purpose. For example, this idea has been developed independently by 

Walley and Fine (1 982), Williamson (1 989), and Berleant (1 993). There are suggestions 
that the idea has its roots in Boole (1 854). Hailperin (1986) extensively developed the 

idea of interval probability in logical expressions. Hyman ( I  982) developed similar ideas 
for probabilistic arithmetic expressions in the density domain. Williamson and Downs 

(1 990) introduced interval-type bounds on cumulative distribution functions, which we 
call “probability boxes”, or “p-boxes” for short. They also described algorithms to 
compute arithmetic operations (addition, subtraction, multiplication and division) on 
pairs of p-boxes. These operations generalize the notion of convolution between 

probability distributions. Berleant ( I  993; 1996; Berleant and Goodman-Strauss 1998) 
described similar algorithms in the context of automatically verified computations. 

The Dempster-Shafer approach to representing uncertainty was articulated by 
Dempster (1 967) and Shafer (1 976). The approach has been somewhat controversial, 
particularly with respect to the appropriateness of Dempster’s rule for combining 

evidence. Yager (1 986) described how to compute arithmetic operations on pairs of 

Several disparate theories have been proposed to represent what is known about real- 



Dempster-Shafer structures. Oberkampf et al. (200 1) demonstrated how the theory and 
these convolutions could be used to account for epistemic uncertainty in engineering 

applications of risk analysis. 
The use of p-boxes and Dempster-Shafer structures in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArisk analyses offers many 

significant advantages over a traditional probabilistic approach (Ferson and Long 1995; 
Ferson 2002). They provide convenient and comprehensive ways to handle several of the 
most practical serious problems faced by analysts, including 

1. 

2. 
3. 
4. 
5. 

6. 
7. 
8. 

Imprecisely specified distributions, 

Poorly known or even unknown dependencies, 
Non-negligible measurement uncertainty, 

Non-detects or other censoring in measurements, 

Small sample size, 
Inconsistency in the quality of input data, 
Model uncertainty, and 
Non-stationarity (non-constant distributions). 

This document will illustrate how these problems can be handleh with p-boxes and 

Dempster-Shafer structures. 

on the real line. Section 3 reviews several methods for obtaining p-boxes and Dempster- 
Shafer structures from empirical information or theoretical knowledge. Section 4 reviews 

the aggregation methods available for synthesizing uncertainty from multiple information 
sources that has already been expressed in p-boxes or Dempster-Shafer structures. 

Section 5 introduces the problem of model uncertainty and discusses possible strategies 

to account for it in risk assessments. 

Section 2 explains the connection between p-boxes and Dempster-Shafer structures 



2 Probability boxes and Dempster-Shafer structures 

In the context of the real line, there is an intimate relationship between probability boxes 

and Dempster-Shafer structures which we will spell out in this section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. I Probability boxes (p-boxes) 

Suppose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF and E are nondecreasing functions from the real line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9? into [0,1] and 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(x )  I F(x )  for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx E %. Let [F,F]  denote the set of all nondecreasing functions F 

from the reals into [0,1] such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF ( x )  I F(x)  I F(x).  When the functions F and E 
circumscribe an imprecisely known probability distribution, we call [F ,F ] ,  specified by 

the pair of functions, a “probability box” or “p-box” (Ferson 2002) for that distribution. 
- 

This means that, if [F ,  E ]  is a p-box for a random variable Xwhose distribution F is 

unknown except that it is within the p-box, then E;‘ (x) is a lower bound on F(x) which is 

the (imprecisely known) probability that the random variable Xis  smaller than x. 
Likewise, F (x) is an upper bound on the same probability. From a lower probability 
measure* 

distribution functions using (Walley 199 1, page 203ff) 

for a random variable X, one can compute upper and lower bounds on 

- 

Fx(x)=l-l’(X > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx), 

- F x ( x )  = p ( X  I x). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As shown on the figure below, the left bound F is an upper bound on probabilities and a 

lower bound on quantiles (that is, the x-values). The right bound is a lower bound on 

probabilities and an upper bound on quantiles. 

X 

Figure 1: A probability box, or p-box, consisting of a left and right bound. 

*Walley (1 99 1) describes the lower probability for an event A as the maximum rate one would be willing to 

pay for the gamble that pays 1 unit of utility ifA occws and nothing otherwise. The upper probability of A 
can then be defined as the one minus the lower probability of the complement ofA. It is not irrational for 

someone to assess a lower probability for an event that is strictly less than its upper probability. When this 
happens, the event is said to have “imprecise probability” for that person. 



Williamson (1 989; Williamson and and Downs 1990) gave practical algorithms for 
computing bounds on the result of addition, subtraction, multiplication and division of 

random variables when only bounds on their input distributions are given. The 

algorithms employ upper and lower discretizations of the quantile function (i.e., the 

inverse of the distribution function) in a manner that rigorously contains all discretization 
error that arises from using a finite number of levels to represent a continuously changing 

function. These algorithms form the practical basis for a computational risk analysis that 
need not rely on unwarranted distribution assumptions or over-specification of 

information. 
Walley (1991) emphasized the idea that the use of imprecise probabilities, including 

distribution function bounds, does not require one to assume the actual existence of any 
underlying distribution function. One way that such a function might fail to exist is if the 

random process governing Xis not stationary in the sense that its distribution function is 
changing over time. Although not embracing this idea on its own merits, Williamson and 

Downs (1 990, page 1 10) did assert, “It is possible to work only with the.. .bounds 

themselves and not worry about the distributions within these bounds.” This suggests 
that this approach could be useful in risk analyses even when the underlying stochastic 

processes are nonstationary or could never, even in principle, be identified to precise 
distribution functions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.2 Demps ter-S h a fer structures 

In an ordinary discrete probability distribution on the real line, a nonzero probability 

mass is associated with each of the possible points of the distribution. All other values 

have a probability mass of zero and the probabilities for all the points in the discrete 

distribution add up to one. A Dempster-Shafer structure (Shafer 1976; Klir and Yuan 

1995) on the real line is similar to a discrete distribution except that the locations at 
which the probability mass resides are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsets of real values, rather than precise points. 

These sets associated with nonzero mass are called focal elements. The correspondence 
of probability masses associated with the focal elements is called the basic probability 

assignment. This is analogous to the probability mass function for an ordinary discrete 
probability distribution. Unlike a discrete probability distribution on the real line, where 
the mass is concentrated at distinct points, the focal elements of a Dempster-Shafer 
structure may overlap one another, and this is the fundamental difference that 
distinguishes Dempster-Shafer theory from traditional probability theory. Dempster- 

Shafer theory has been widely studied in computer science and artificial intelligence, but 
has never achieved complete acceptance among probabilists and traditional statisticians, 
even though it can be rigorously interpreted as classical probability theory in a 

topologically coarser space. (In the coarser space, each focal element is identified as a 
point.) 

A finite Dempster-Shafer structure on the real line ‘iR can be identified with its basic 
probability assignment, which is a map 



where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm(0)=0, m(ai)=pi for focal elements ai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc %, i=l,Z, ..., n, and m(D)=O whenever 

D+ai for all i, such that 0 <pi  and Cpi=l. To simplify matters, we'll also assume that the 
focal elements are closed intervals, rather than more complicated sets. Implementation 
on a computer of such a Dempster-Shafer structure would thus require storage for 3n 
floating-point numbers, one for each pi and two for each corresponding interval. 

with basic probability assignment m is the sum of all masses associated with sets that 

overlap with or merely touch the set b c  %. Thus, 

The plausibility function Pls:Z'+[O, I]  corresponding to a Dempster-Shafer structure 

Pls(b) = C m ( a ,  = C m ( a i ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 2 

anb#q5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, nb#q5 

The belief function Bel:2x-+[0,1] is the sum of all masses associated with sets that are 

subsets of b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE % so that 

Bel@) = c m(a) = m(ai) 

Clearly, Bel(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Pls(b). In fact, a Dempster-Shafer structure could also be identified 
with either of these functions. Given only one of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, Pls or Bel, one can compute the 
other two. 

generalize the notion of convolution between distribution functions. Yager (1986) also 

considered bounds on the distribution function of a random real-valued quantity 
characterized by a finite Dempster-Shafer structure. For a finite Dempster-Shafer 
structure with basic probability assignment m and n focal elements ai having masses pi, 

the upper bound for its distribution function is Pls(g(z)), where g(z) is the set of all real 

numbers less than or equal to z,  g(z)=(x: XE%, x I z>. Thus, the function is 

Yager (1 986) defined arithmetic operations between Dempster-Shafer structures that 

This is a right-continuous nondecreasing step function from the reals into [0,1] with at 
most n discontinuities located at the points inf(ai). At these points the jumps in the 
function are pi high. The associated lower bound on the distribution function is 
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This is a right-continuous nondecreasing step function from the reals into [0, I] with at 
most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn discontinuities located at the points sup(ai). At these points the jumps in the 
function are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp i  high. 

elements are closed intervals. As we have seen, this restriction permits several 

convenient simplifications in the formulas above. It allows us to define a Dempster- 
Shafer structure as a collection of pairs consisting of an interval and a mass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{([XI, yl ] ,  
ml), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA([x2, y2], m2), . . ., ([x,, y,], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm,)}, where xi 5 yi for all i, Cmi = 1, and yi + yj whenever 

In this report, we are interested primarily in Dempster-Shafer structures whose focal 

x. =x. 
Z J '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.3 Connection between the two structures 

Dempster-Shafer theory was created to account for the fact that measurements taken from 

the real world are often imperfect. Unless it is a point, a focal element represents a set of 

possible x-values that available evidence or measurement do not distinguish. This 
indistinguishability among the values in a focal element expresses the epistemic 
limitations of the evidence. On the other hand, the mass assigned to any particular focal 
element is a precise number. This amounts to having uncertainty about the x-value and 

certainty about the p-value. In contrast, the probability bounding approach represented 
by p-boxes addresses the uncertainty about probabilities and generally presumes that the 

underlying events can be specified precisely as points z on the real line or half lines g(z). 
This approach seems to consider the imprecision present in such problems to be primarily 

about the probabilities, rather than the x-values (contra Williamson 1989). Thus 
probability boxes express uncertainty about p but a kind of certainty about x. 

One might think that it would be natural to combine these two approaches so as to 
treat uncertainty arising in both x and i n p  simultaneously, but such an approach is not 
necessary. There is a duality between the two perspectives (Walley 1991), and, 

moreover, each can be converted to the other. The relationship between the Dempster- 
Shafer structures and p-boxes is not one-to-one; there are many Dempster-Shafer 

structures corresponding to a single p-box. Consequently, translating a Dempster-Shafer 

structure to a p-box is not an information-preserving operation.* However, the duality 
between the two kinds of objects appears to be quite useful for applications in risk 
analysis. The rest of this section demonstrates the interconvertibility between these 

objects. 
If we have a finite Dempster-Shafer structure composed of focal elements that are 

closed intervals of the real line, then we can specify it by explicitly listing the focal 
elements and their associated probability masses (([XI, y l ] ,  ml), ([xz, y21, m2), . . ., ([xn, yn], 
m,)}. For such a structure, one can always obtain from it an associated p-box. The left 

bound of the p-box will be defined by the function 

*For instance, the Dempster-Shafer structure with a single focal element {x : 0 I x < 0.1, or 0.9 < x I 1) 

leads to the same p-box as another one with a single focal element {x : 0 I x I 1 }, yet the first clearly 

contains much more information (i.e., that the value cannot be in the interval [O. 1, 0.91). Even when we 

restrict our attention to Dempster-Shafer structures with interval focal elements, there is some information 
lost in going to a p-box. For instance, the Dempster-Shafer structures {([l, 3],0.5), ([2,4], 0.5)) and 

{([1,4], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO S ) ,  ([2,3], O S ) }  both lead to the same p-box. 
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This is the cumulative plausibility function for the Dempster-Shafer structure. The right 

bound of the p-box will be defined by 

This is the cumulative belief function for the Dempster-Shafer structure. Yager (1986) 
recognized this pair of functions as bounds that generalize a distribution function for a 

random variable. The functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (z) define a p-box because they are each 

nondecreasing functions from the reals into the interval [O,l]  and the function E; (z)  is 

always less than or equal to E; (z) for every value of z. 
Conversely, if we have a p-box, it is always possible to obtain from it a Dempster- 

Shafer structure that approximates the p-box. For example, consider the p-box depicted 
below. The left and right bounds of the p-box are shown as thick, black step fimctions 
from zero to one along some unspecified real horizontal axis. To find a Dempster-Shafer 

structure corresponding to this p-box, simply draw a series of horizontal lines, one from 
each corner of the step function to the other bound. These horizontal lines are shown 

below as thin gray lines. Sometimes there is a corner on one bound that is at the same 
height as a corner on the other bound (as in the second gray line from the bottom). In this 

case the horizontal lines will be coincident. This process describes a collection of 

rectangles of various sizes and locations. The location of a rectangle along the horizontal 
axis defines a focal element of the Dempster-Shafer structure. The height of each 
rectangle is the mass associated with that interval. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 2: Discretization of a p-box. 



When the p-box has curves rather than step functions for its bounds, a discretization 

is necessary to produce the associated Dempster-Shafer structure, which will therefore be 
an approximation to the p-box. This idea is illustrated in the figure below. The 
rectangles have now become thin slivers. These slivers can, by construction, have equal 
height. In this case, the probability masses of the focal elements in the Dempster-Shafer 
structure will all be the same. Naturally, the more numerous these slivers, the better the 

approximation will be. See Section 3.5.6.3 for a prescription about how the endpoints of 
these approximating slivers should be defined. 

1 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 3: Equiprobable discretization of a p-box with continuous bounds. 

For the purposes of discussion in this document, we can define the “canonical” 
Dempster-Shafer structure associated with a p-box to be that approximation produced by 
using a discretization with 100 equiprobable thin rectangles or slivers. Formally 
speaking, the definition of a Dempster-Shafer structure calls for any slivers that are 
identical in breadth and horizontal location to be condensed into a single focal element. 

The mass associated with the focal element would be the sum of the all the masses 

associated with slivers identical to that focal element. However, there would be no 
mathematical difference if we didn’t bother with this condensation step. We could allow 
redundant elements (the same focal element listed more than one time), and there would 
be no fundamental difference, except in computational efficiency, between a Dempster- 

Shafer structure that has been condensed from a discretization and the original 
discretization that had redundant elements. 

characterization and aggregation were originally conceived for application either to p- 
boxes or to Dempster-Shafer structures. However, because of the very close connection 

between these two objects, it turns out that any characterization or aggregation method 

useful for one of these objects can also be applied to the other. Furthermore, we 

Most of the methods described in Sections zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 and 4 of this document for 
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conjecture here-but defer the proof for future work-that p-boxes and Dempster-Shafer 

structures are essentially equivalent for the purposes of risk analysis (Regan et al. 2002). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.4 Uncertain numbers 

Finally, it is worth noting that intervals and (precise) discrete probability 

distributions are each special cases of both Dempster-Shafer structures and p-boxes. An 
interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[a, b] can be identified with a Dempster-Shafer structure having a single focal 

element consisting of that interval with an associated mass of one. An interval can be 
identified with a p-box whose left bound is the unit step function at a and whose right 

bound is the unit step function at b. A precise distribution function can be identified with 
a p-box whose bounds are coincident with the distribution function. The Dempster- 
Shafer structure obtained by canonical discretization of this p-box would have focal 
elements that are point values. It would just be a discrete probability distribution that 

approximated the precise distribution function. 

of objects that include real numbers, intervals, probability distributions, p-boxes, and 
finite Dempster-Shafer structures whose focal elements are closed intervals on the real 
line. 

In this report, we will use the phrase “uncertain numbers” to refer to a general class 
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3 Characterization: where do they come from? 

Oberkampf et al. (2001) has argued that Dempster-Shafer theory might be a useful 
formalism for risk assessments. Ferson and Ginzburg (1 996; Ferson 2002) have made a 

similar claim for probability bounds analysis. Once one believes that Dempster-Shafer 

structures and p-boxes could be useful in the practice of risk analysis, a fundamental 
question is how to obtain them for use as inputs in calculations. In particular, how can 
we represent empirical and theoretical information in Dempster-Shafer structures and p- 

boxes? It turns out that there are basically five ways to do this: 

1. Direct assumption, 

2. Modeling, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Appeal to robust Bayes methods, 

4. Constraint propagation, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Observation of measurements. 

Each of these approaches will be reviewed and illustrated with numerical examples in 
this section. Although the most commonly used approaches may well be the first two 
listed above, the last two, propagation of constraints and observation of measurements, 

are perhaps the most objective and may merit the most attention. Throughout the rest of 
Section 3, we shall occasionally note whether the method being reviewed has the 

following properties: 

P Rigor-preserving: the resultant Dempster-Shafer structure or p-box is sure to 
completely bound the uncertainty so long as its specifications are sure bounds, 

> Best Possible: the resultant Dempster-Shafer structure or p-box could not be any 

tighter without more information, and 

P Sample Uncertainty: the resultant Dempster-Shafer structure or p-box represents 

a statistical confidence claim (such as “95% of the time the uncertain number is 
constructed it will completely enclose the true value or distribution”). 

Readers may elect to skip directly to Section 3.6, which outlines suggestions for how an 
analyst should go about picking a characterization method for use in a particular case. 
Section 4 on aggregation methods addresses the issue of how Dempster-Shafer structure 
or p-box estimates about a single quantity obtained from multiple sources can be 
combined. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1 Direct assumption 

In this approach, the analyst, or perhaps a consulted expert, simply makes up the input 
based on what is known about the underlying quantity. This is probably the easiest way 
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to get an input, and-for the same reason-it is also probably the hardest to defend to 

others. 

3.1.1 Basic idea 

The central justifying idea behind this approach is that, sometimes, scientists and 

engineers may have knowledge about a system including at least a partial mechanistic 
understanding of how the variation in a particular quantity arises. This knowledge 

enables the risk analyst to deduce from first principles what statistical distribution that 
variable should be modeled with. Various examples are given in the subsections below. 

When the information is detailed enough to specify a distribution completely, the p-box 

will degenerate to a precise cumulative distribution function (CDF). 
In other cases, physics-based or other mechanistic knowledge may be limited in a 

way that allows the analyst to specify the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshape or family of the distribution, but not to 
say precisely what the parameters of the distribution are. In this situation, it is 

straightforward to construct a p-box that encloses all possible CDFs. For some 
distribution families, only two CDFs need to be computed to enclose the p-box. For 

instance, the expression “uniform( [a, b], [c, 4)’’ might be used to specify a p-box for a 
variable that is sure to be uniformly distributed with a minimum value somewhere 

between a and b, and a maximum value somewhere between c and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd. This collection of 
distributions can be circumscribed by a pair of distribution functions. The left bound of 
the p-box is the cumulative distribution function for a uniform distribution between a and 

c. We can use the expression “uniform(a, c)” to denote this. It is the upper bound on 

probabilities and the lower bound on quantiles. The right bound of the p-box is 
uniform(b, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd), which is the lower bound on probabilities and the upper bound on 

quantiles. For most distribution families, however, four or more crossing CDFs need to 

be computed to define the p-box. For instance, if normal([a, b], [c, 4) specifies a p-box 

for a variable sure to be normally distributed whose mean is in the interval [a, b] and 
whose standard deviation is in the interval [c, 4, then the p-box is illustrated below. The 

upper part of the left side of the p-box is determined by the CDF of the normal 
distribution with mean a and standard deviation c. The lower part of the left side is 
determined by the distribution with mean a and standard deviation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd. The right side of 
the p-box similarly involves the b value for the mean but both values for the standard 

deviation. 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.5 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 4: A p-box whose bounds arise from varying parameters of a normal 

distribution within intervals. 

For the roughly two-dozen distribution families commonly used in risk analysis, this 

simple enveloping strategy is rigor-preserving. That is, if the intervals used are 
themselves rigorous bounds on the parameters of the distribution, this strategy yields 

structures that are rigorous bounds on the distribution. Moreover, they are also best 
possible bounds in the sense that they could not be any tighter and yet still enclose all 

possible distributions. If, on the other hand, the intervals used to specify parameters 

arose as confidence intervals (which are statistical rather than rigorous), then the p-box 
appears to contain sample uncertainty and represent a statistical claim about the 

underlying distribution, although the exact nature of this claim has not been articulated. 
Before we consider some numerical examples, we briefly review some of the 

circumstances and arguments that can be used to justify some particular distribution 
families. See also Section 3.4 for other ways to use partial information about a random 

variable to construct a p-box or Dempster-Shafer structure based on first principles. 

3.1.1.1 Normal distribution 

According to the central limit theorem, under some reasonable conditions, the sum of 
many small random variables tends to a normal distribution (also known in some quarters 
as the Gaussian distribution). The central limit theorem holds so long as the individual 
variates are roughly independent and have bounded variance, so that none dominates the 
sum. Thus, when the error in the quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx can be represented as the sum x = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx1 + x2 + . . . 
+ x, of a large number of small independent error components xi, the probability 

distribution for x is close to normal. This is the reason why the normal distribution is so 
frequently observed and used in practice (see, for example,Wadsworth, 1990). The 
normal distribution, like all other precise probability distributions, is a degenerate p-box. 
In some situations, we may only have intervals for the possible values for the parameters 

of the normal distribution. 
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3.1.1.2 Cauchy distribution 

There are many similar situations that lead to different distribution families. For 
example, in a setting similar to the central limit theorem, if we keep the variables xi small 

in some reasonable sense but allow them to have large (even infinite) standard deviations 
by allowing thick tails, we get distributions from the class of infinitely divisible 

distributions. This class includes not only normal distributions, but also Cauchy 

distributions, with probability density function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(x)=Ah~(A~+(x-a)~). 

3.1.1.3 Lognormal distribution 

Other examples of distributions that can be derived from first principles come from 

situations in which the error is caused by many small components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxj, but these 
components are combined with an operation other than addition. For instance, one 

situation commonly encountered is multiplicative noise, in which a value s is multiplied 

by some value so that s becomes s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk. For example, when a communication signal passes 

through the atmosphere, its amplitude changes depending on the specific properties of the 
medium. Suppose that we have several layers with independent noise values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAni and, 
correspondingly, independent multiplicative coefficients ki=l +nj. When a signal passes 

through each layer, it is multiplied by l+ni. By the time the signal passes through all the 
layers, it is multiplied by the product of many independent coefficients kj=l+nj. When 
we apply logarithms, the product turns into the sum, and the central limit theorem 

follows. Thus, the distribution for the product of many independent factors tends to be 

lognormal in shape. 

3.1.1.4 Extreme value distributions 

Another situation which is very useful in risk analysis applications is the situation of the 
"weakest link", when a certain event happens if at least one of the numerous quantities XI, 

. . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, exceeds a certain threshold xo. Thus, the event occurs if the largest x=max(xl, . . . , 
x,) of these quantities exceeds xo. To analyze such events, we therefore need to analyze 
the distribution of such maxima. It is known that under reasonable conditions, when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n+q the distribution of the maximum typically tends to one of three standard 

distributions: Gumbel or extreme value distribution ( F ~ ( X )  = 1 -exp(-exp(ax+b))), the 

Frechet (FII(x) = 1 -exp( 1 -(-x)-")) or the Weibull (F&) = 1 -exp( 1 -x")) distribution, 
collectively known as Gumbel-type distributions (Galambos, 1978; Wadsworth, 1990). 
Thus, for large n, we may assume that the distribution of x=max(xl, . . ., x,) can be 
described by one of these distributions. Extreme value distributions are widely used in 
reliability analysis to model a variety of phenomena, including failures under stress, 
temperature extremes, flood data, telephone data, and electrical insulator lifetimes. 

Gumbel(l958) and Castillo (1988) review the theory and describe many applications. 

3.1.1.5 Uniform distribution 

Symmetry or invariance considerations can sometimes justify an assumption about the 

shape of a distribution. For example, it may sometimes be the case that no values are 

more probable than any others. This implies of course that all values are equally 
probable. In such situations, it is reasonable to select a distribution for which the value of 
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the probability density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(x) is the same for all the points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx. In this case, we get a uniform 

distribution on an interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb], for which p(x)=ll(b-a) for all x E [a, b]. Probability 
values, for instance, are often modeled with uniform distributions. 

3.1.1.6 Exponential distribution 

Some components exhibit neither aging nor “burn-in” improvement, and their risk of 
failure is constant over time. If the probability of a correctly functioning system 

becoming faulty between times t and t+A does not depend on t, it may be reasonable to 
assume that this probability is indeed constant. This assumption leads to the exponential 

distribution, in which F(t)=l -exp(-At) for some constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD O .  This distribution might be 
appropriate, for instance, when component lifetimes are determined by accidental insults 

rather than as a result of gradual degradation of materials or wearing out of mechanical 

parts. 

3.1.2 Numerical examples 

The graphs below depict p-boxes for four cases in which the shape of the distribution is 
assumed to be known, but the relevant parameters of these distributions are known only 

to within intervals. For instance, the upper, left-hand graph depicts the case in which the 
distribution is known to be uniform with a minimum value somewhere in the interval [ 1, 
21 and a maximum value somewhere in the interval [5,6]. As these intervals grow 

narrower, the p-box approaches a precise probability distribution in a natural way. 

uniform( [ 1,2], [ 5,6]) 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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normal( [ 5.6,6], [ 1,l. 51) weibull( [ 1,2], [ 3,4]) 

1 2  3 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 7 8 9 1 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X 

-1 0 1 2  3 4 
X 

Figure 5: Example p-boxes associated with random variables whose distribution 
shape is known and whose parameters are known within intervals. 

Note that the upper, right-hand graph depicts a similar situation, except that the two 

intervals for the endpoints of the distribution actually overlap each other. This situation 
does not, in itself, seem very remarkable; it is certainly plausible that such a case could 

arise in practice. But it is worth noting that representing this case in a two-dimensional 
Monte Carlo simulation could be problematic. What would happen, for instance, if in 
one of the replicates the randomly selected minimum happened to be larger than the 

randomly selected maximum? A special strategy would be required to handle this 
anomalous case in the simulation. The reason, of course, is that the minimum and 

maximum values are not independent of one another. They are related by the constraint 

that the former must be less than or equal to the latter. There are, in fact, many such 
constraints among probability distributions. The parameters of a triangular distribution 
are another obvious example. Frey and Rhodes (1 998) have documented some of these 
dependencies in the beta and other distributions and shown how they can seriously 
complicate two-dimensional (second-order) Monte Carlo simulations. It is important to 

note that no evasive maneuver is necessary to represent such a case with p-boxes, 
however. By representing only the hull of the uncertainty about the underlying variable, 
the p-box avoids entanglement in this particular kind of complication. Ferson (2002) 

allows the computation of best possible p-boxes for several dozen named distribution 
families ranging from Bernoulli, beta and binomial to uniform, Wakeby and Weibull. 

to lie within the interval [5.6, 61 and whose standard deviation is within the interval [ 1, 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASI. The lower, right-hand p-box describes a Weibull distribution whose scale parameter 
(or characteristic life) is between 1 and 2, and whose shape parameter is between 3 and 4. 

Note that, although a normal distribution theoretically has infinite tails, the tails here are 
truncated to a finite range. The Weibull distribution is bounded on the left by zero, but is 

unbounded on the right. It too is truncated at some upper quantile. Where these 
distributions are truncated is a choice for the analyst, and is part of the assumption used 

The lower, left-hand p-box circumscribes a normal distribution whose mean is sure 
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to select these structures. See Section 3.4.4 for an argument why it is reasonable to 
truncate infinite tails. 

It is straightforward to compute the approximating Dempster-Shafer structure 

associated with these p-boxes in the canonical way (see Section 2.3). For instance, the 
canonical Dempster-Shafer structure associated with the upper, left-hand p-box 

uniform([l,2], [5,6]) would be the collection of 100 interval-mass pairs{ ([1, 2.04],0.01), 
([1.04,2.08], 0.01), ([1.08,2.12], 0.01), ([1.12,2.16], 0.01), ..., ([4.88,5.92], O.Ol), 

([4.92, 5.961, 0.01), ([4.96, 61, 0.01) >. 

3.1.3 Caveats 

Bertrand Russell expressed the fundamental caveat about making assumptions in a 
famous quip*: “Assumption has many advantages. Chiefly these are the same as those 
of theft over honest toil.” The essence of the problem is that an assumption merely zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsays 
something is so, which of course is rather different from really zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAknowing it to be so from 
empirical observation. Any conclusions that come from risk analyses based on inputs 

selected by assumption are necessarily contingent on these assumptions being true. This 
limitation, although obviously profound, nevertheless does not seem to have had much of 

a chilling effect on the propensity of analysts to employ this method for selecting inputs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1.3.1 Human tendencies to underestimate uncertainty 

It is well known in the psychometric literature (Kahneman et al. 1982; Henrion and 
Fischhoff 1986; inter alia) that humans, including both experts and lay persons, routinely 
and substantially underestimate uncertainty. This occurs, for instance, in almost every 

scientific and engineering discipline, ranging from predictions about the weather, to stock 
market forecasting and voter preference polling, from calculations about the speed of 

light to projections about how fish will be biting for anglers. Whenever humans rely on 
their perceptions to characterize uncertainty rather than studying it systematically and 

quantitatively, they will tend to make predictable errors. In general, subjectively assessed 
interquartile ranges are typically estimated to be much narrower than they actually are 
and therefore to include less than the nominal 50% of the actual variation, sometimes as 
little as half of what is expected. Underestimation of the tail risks is even worse. 

Subjectively assessed 98% confidence regions fail to include the true values 20 to 45% of 
the time, rather than the mere 2% nominally expected. This overconfidence is ubiquitous 

among humans, and pervasive even in scientific and engineering disciplines. Its 
consequences for risk analysis are obvious and substantial, especially when inputs are 
selected by assumption or, more generally, whenever uncertainty is assessed subjectively 

(see Gigirenzer 2002; Morgan and Henrion 1990, pages 102ff). 

3.1.3.2 Overzealous use of the central limit theorem 

The central limit theorem is widely abused in risk analysis as a justification for a normal 

or lognormal distribution shape. The mere fact that a variable can be partitioned into a 
sum of several quantities, or factored into a product of several quantities, will generally 

not ensure that the variable’s distribution will be normal or lognormal. The ancillary 

*The exact wording is variously quoted, perhaps because Russell found the need to restate it on many 

occasions. 
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conditions of the theorem, including independence and similarity of variance of the parts, 

are also needed for the application to be justified. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1.3.3 Tails wagging the distribution 

Exactly where the tails of an uncertain number are truncated can, in some unusual 
situations, have a non-negligible consequence for the rest of the p-box or Dempster- 

Shafer structure. The graph below illustrates the effect. The graph is a detail of the left 
tails of the results of two convolutions*. Depicted are the cumulative plausibility and 

belief functions resulting from adding (under independence) two uncertain numbers. The 

first uncertain number is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ,  which is represented as a canonical Dempster-Shafer 
structure approximating a normal distribution with mean in the interval [ 10, 1 11 and 

variance in [ 1,4]. The second uncertain number, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, is represented as a canonical 
Dempster-Shafer structure approximating a uniform distribution over the range [ 10, 201. 
Because a normal distribution in theory has infinite tails, it will be necessary to truncate 

the range of A to some finite range. (This is necessary for the computer to be able to 
handle the computation. But, because there are no physical variables with infinite ranges, 

the truncation would be desirable from a modeling perspective even if the computer 
could handle calculations with unbounded quantities.) But where should the tails of A be 

truncated? Will our choice make a difference to the results of calculations involving A? 
When A is truncated to the range [-lo, 301, the convolution with B yields the result 
shown with the gray lines. When the first addend is truncated outside [4.85, 16.151 

instead, the convolution yields the result shown with black lines. The figure shows that 
the choice about where the tails are truncated makes a difference not only in the leftmost 

focal element but also in the other focal elements comprising the tail of the structure. 
The effect is most pronounced in convolutions under independence and is largest near the 

tails, but is almost always small in magnitude even there. In most cases, except for the 

extreme focal element, the effect is so small that it is typically obscured by the width of 
the lines graphing the result. In rare situations, however, it may be important to assess 
the effect on the final results of the assumption about where the tails are truncated. 

0 10 20 30 
A + B  

(A  - normal, B - uniform) 

Figure 6: Left tails of p-boxes arising from convolution of A and B (see text) with 
different truncation limits for A.  

*Convolution is the generalization of addition and other arithmetic operations for distributions. See section 

3.2.1.1 for a discussion of convolution. 



3.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAModeling 

3.2.1 Basic idea 

The most important uncertain quantities characterized in risk analyses are estimated by 

modeling. For instance, we do not estimate the risk of system failure of the space shuttle 

by building many shuttles and deploying them in field tests to estimate the risk 
empirically. Nor would we trust the method of direct assumption (discussed in 

Section 3.1) in which an analyst’s intuition or principled argument is used to say what the 
distribution of risks looks like. In the case of the space shuttle, as indeed in most risk 
analyses, the estimation is obtained by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodeling the quantity or distribution of interest. 

In this approach, the estimation problem is broken into subproblems, which, it is hoped, 
are easier to solve. The desired estimate is then reconstructed from these pieces. Morgan 

and Henrion (1 992, page 1 16) call this approach disaggregation, and recount the reasons 
that it is in common use in quantitative assessments. Of course, this approach begs the 

question in the sense that it merely transfers the chore of getting the inputs to a different 

level. Nevertheless, the approach is so important and so pervasive that it merits 
consideration here. It is, after all, a fundamental approach used throughout risk analysis 
and scientific modeling in general. We typically do not have enough direct empirical 

information or expert knowledge about a quantity of concern and we resort to analysis, 
i.e., breaking it down into its component parts, to study it more easily. It is difficult, for 

instance, to produce a direct empirical estimate of the chance that a nuclear reactor core 
melts down; the sample size is, thankfully, too small. But we can make estimates that 

switches or pumps malfunction, that containments are breached, that fires or electrical 
surges occur. Using these estimates, together a physics-based understanding of how the 

reactor functions, we can synthesize a substantially better estimate of the risk of a core 
melt. 

The modeling approach to be employed in any particular case is determined by the 
modeler who understands something about the underlying physics or engineering. For 
instance, it is the modeler who decides whether the decomposition will be in terms of 

breaking a sum into its addends, or a product into its factors, or a quotient into its 
numerator and divisor, or some other kind of decomposition. There are many ways to 
decompose a quantity in question into other quantities. We outline here an assortment of 

the elementary ways. In practice, modeling often consists of several or even many of 
these steps, which are sequentially applied to build up the desired estimate out of the 
subproblems. These operations are convolution, transformations, enveloping, 
intersection, mixture, composition and deconvolution. Most of these operations are also 
described later in Section 4 because they are aggregation operators. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.2.1.1 Convolution 

In probability theory, convolution is the operation between distribution functions F and 
G, corresponding respectively to independent random variables X and Y, that yields the 
distribution of the sum X+Y. The notion can be generalized in several ways. First, we 

can speak of convolutions for functions other than sum, such as difference, product, 
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quotient, minimum, maximum, power, etc. Second, the random variables might be 

dependent rather than independent. And third, we might only have Dempster-Shafer 
structures or p-boxes rather than precise distribution functions. We will use the word 
convolution to denote any of several operations that generalize ordinary binary arithmetic 

operations on the reals, such as addition, subtraction, etc., to uncertain numbers such as 
p-boxes and Dempster-Shafer structures. 

structures under the assumption of independence. The convolution is a Cartesian product 
of the focal elements of the two operands. The requisite calculations are illustrated with a 

numerical example in Section 3.2.3. The algorithm for convolving p-boxes under 
independence (Williamson and Downs 1990; Berleant 1993; 1996) is essentially the same 
as that described by Yager. 

Using a convolution to model a desired quantity depends on the analyst being able to 

assert knowledge about the form of a model that relates the desired quantity to other 
quantities. Aside from knowing which operation (addition, subtraction, etc.) is involved, 

it is also important to know how the variables might be dependent on one another. Any 

assumption about this dependence needs justification, just as does the form of the model 

itself. Assuming independence for the sake of mathematical convenience may seriously 
underestimate or overestimate the uncertainty in the convolution. Fortunately, it is never 
necessary to make this assumption if it is not justified. Williamson and Downs (1990) 

give an algorithm for computing pointwise best possible bounds on the distribution of a 
sum (or difference, product, quotient, etc.) using a mathematical result due to Frank et al. 
(1987) based on copulas* (Nelsen 1999). The result is the best possible over all possible 

dependency or correlation structures. Berleant and Goodman-Strauss (1 998) describe an 

alternative strategy that is based on linear programming. 

that if the inputs are sure to enclose their respective quantities, the result of the 

convolution will also enclose the desired quantity, so long as the model is correct 
(Williamson and Downs 1990). Moreover, based on a theorem due to Frank et al. (1987), 
the algorithms will produce pointwise best possible results for any single convolution. 

When convolutions are chained together in a sequence to represent complex models, 
the results can be best possible so long as there are not multiple occurrences of a single 
uncertain quantity among the operands. This sensitivity to repeated variables seems to be 

a common feature of uncertainty calculi (see Manes 1982; Moore 1966). The Cartesian- 

product algorithms for the independent case are not even rigor-preserving in the case of 
repeated variables. The problem arises because of the inconsistency of using a 
formulation that assumes quantities are independent on variables (the repeated ones) that 
are manifestly not independent. This complication has been observed in a variety of 

schemes to perform arithmetic with probability information, including discrete 
probability distributions (Kaplan 198 1) and stepwise Monte Carlo simulation (Ferson 
1996). Hyman’s (1982) significance arithmetic arose as a strategy to control this 
problem. A very simple strategy that is often applicable is to use algebra rearrangements 

to re-express the model in a form that does not contain repeated variables. Another 
approach that is often appropriate when the model cannot be re-expressed in this way is 

to model the repeated variables as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAperfectly correlated rather than independent. 

Yager (1 986) explained how to compute convolutions for Dempster-Shafer 

These convolution algorithms for the general case are rigor-preserving in the sense zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

*A copula is the function that joins together marginal distributions to form a joint distribution function. 

29 



3.2.1.2 Transformation 

A model used to estimate the quantity of interest may be more complicated than a string 

of convolutions. For instance, it may also include transformations such as logarithm, sine 
or absolute value. Unlike a convolution, which takes two inputs, a transformation may 

take only one. Monotone transformations such as square root, logarithm, exponential, 

etc. are easy to compute for Dempster-Shafer structures and, via canonical discretization, 

p-boxes. The transformation is applied to each focal element according to the rules of 
interval arithmetic (Moore 1966). For instance, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD=(([xl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV I ] ,  ml), ([x2,y2], m2), . . ., 
([xn,yn], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm,)} is a Dempster-Shafer structure, then ln(D) can be computed as {([lnxl, 

In y l ] ,  m,), ([ln x2, In yz], m2), . . ., ([ln xn, In y,], m,)}, so long as every focal element is 
strictly greater than zero. The probability masses are not changed in the transformation. 
Such transformations are generally rigor-preserving and best possible. 

Non-monotone transformations are handled essentially the same way, although they 

can be trickier to implement, because different focal elements in the input can sometimes 

map to the same focal element in the output. Any transformation that is defined on 

intervals can be extended to Dempster-Shafer structures and therefore p-boxes by a 

canonical discretization. 

3.2.1.3 Envelope 

A model may also include other kinds of operations such as, for instance, an envelope 

operation. This operation is used when the analyst knows that at least one of multiple p- 
boxes encloses the distribution of the quantity in question. Enveloping can be applied to 

Dempster-Shafer structures by first converting them to p-boxes. If there are n p-boxes 

[ F , E , ] ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[c,F2], . . ., [E,E,], then their envelope is defined to be [F*,F*],  where 

F * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) = max( F1 (x), F 2  (x), . . ., F ,  (x) ) and F*(x) = min(El(x), &(x), . . ., &(x) ). This 
operation is clearly rigor-preserving and yields best possible results. Enveloping is 

discussed more extensively in Section 4.4. 

3.2.1.4 Intersection 

This operation is used when the analyst knows that each of multiple p-boxes encloses the 

distribution of the quantity in question. This kind of intersection can be applied to 
Dempster-Shafer structures by first converting them to p-boxes. If there are n p-boxes 

[ F , F , ] ,  [%,E,],  . . ., [ F , F , ] ,  then their intersection is defined to be [F*,F*],  where 

F * (x) = min( F1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x), F2 (x), . . . , F, (x) ) and E*(x) = max(El(x), E2(x), . . ., &(x) ). The 
operation is undefined if the resulting bounds cross each other so that strictly 

F * (x) < E * (x) for any x. This operation is both rigor-preserving (Rowe 1988) and yields 

best possible results. This intersection is discussed further in Section 4.3. 

- - 

- 

3.2.1.5 Mixture 

A model used to estimate an uncertain quantity may also include a mixture operation. 
Mixture models are appropriate for a quantity that is selected from one of several 
different values, with known probabilities. In the context of probability distributions, 

mixing has also been called “averaging” because the values of the distribution functions 
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are averaged together for every x-value. The result of mixing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn p-boxes [Fl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,El 1, 

[F2 ,E2], . . ., [F, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, E , ] ,  with respective weights WI, w2, . . ., w,, is [F*,F*],  where F * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) 

= (WI FI (x) + w2 F2 (x) + . . . + w, F n  (x)) / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC wi and F*(x) = (WI &(x) + w2 &(x) + . . . + 
w, F,(x))  / C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwi. The weights must be positive. 

The weighted mixture of IZ finite Dempster-Shafer structures with basic probability 

assignments ml, m2, . . . , m, has the basic probability assignment 

1 
m * ( A ) = -  wi $. Wimi ( A )  * 

I 

Again, the weights must be positive. When the focal elements are intervals, an equally 
weighted mixture of two finite Dempster-Shafer structures {([al, bl], ml), ([a2, bz], m2), 

.. ., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA([a,, h l ,  m,)> and {([cl, 41,  h), ([Q, &I, 4 . . ., O r ,  41, kJ> is just {@I, hl ,  m 1 4 ,  

( b 2 ,  b21, m24 ,  * e ,  ([a,, bll, m,/2), ([Cl, 41,  k 1 4 ,  m 2 ,  d21, k2/2>, . . . Y  ([Cn 41, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk w ,  
assuming the two structures have no focal elements in common. If they have common 

elements, a condensation step that sums the masses might be needed. 
When the mixture weights are known precisely, this operation is rigor-preserving 

and best possible. It is also possible to compute mixtures when the weights are known 
only to within intervals, but this is complicated by the constraint that weights must sum to 

one. When bounds for the weights are obtained from statistical confidence procedures, 
the resulting p-box or Dempster-Shafer structure will contain sample uncertainty. 

Mixing is also discussed in Section 4.7. 

3.2.1.6 Composition 

A model can also contain a composition, in which a Dempster-Shafer structure or p-box 

is used as aparameter in specifying another Dempster-Shafer structure or p-box. For 

instance, suppose that we know an uncertain quantity has an exponential distribution, but 

the only available estimate of its parameter is itself a Dempster-Shafer structure. A 
strategy to effect such a composition depends on the fact that a Dempster-Shafer structure 
(or a p-box once discretized) is but a collection of intervals with associated probability 
masses. This collection asserts that the uncertain quantity is within each of these 
intervals with the given probability. This interpretation allows us to compute the 
composition as the weighted mixture of the uncertain numbers generated by using the 

interval focal elements as the parameters. The weights used in the mixture are the masses 
associated with those focal elements. This strategy should work in all situations where 
interval parameters can be used as inputs. (A numerical example of composition is given 
below in Section 3.2.3.) 

consider any question about dependence. However, if there are multiple inputs in a 
composition, dependencies can become important. This can happen, for instance, if both 

parameters of Weibull distribution are estimated by Dempster-Shafer structures or p- 
boxes. In such a case, a Cartesian product such as that employed to compute 

convolutions will be necessary to realize the uncertain number. Research is needed to 
understand whether and how distributional constraints such as described by Frey and 

If, like a transformation, a composition uses a single input, there is no need to 



Rhodes (1998) should be taken into account when p-boxes and Dempster-Shafer 
structures are composed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.2.1.7 Deconvolution 

Deconvolution is an operation that untangles a convolution. For instance, if it is known 

that the convolution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX and Y yields Z, deconvolution is an operation that can obtain an 
estimate of, say, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX based on empirical estimates of both Y and Z. Deconvolutions are also 

called “backcalculations” in the risk analysis literature (Burmaster et al. 1995; Burmaster 
and Thompson 1995). Typically, deconvolutions are defined to maintain some critical 

property in the system. For instance, one might ask what constraints on X will guarantee 
that the Z that results from the forward convolution will not exceed its constraints. 

Algorithms to compute deconvolutions are under development, but it is already clear that 
they cannot generally be formulated in a way that yields best possible results. 

3.2.2 Caveats 

Breaking a problem into subproblems won’t be beneficial unless there is more 
information available to solve the subproblems than there is to solve the primary 

problem. It is not always altogether clear when one should break an estimation problem 

into subproblems and when it would be better to simply use whatever information is 
available to estimate a quantity directly. For most quantities, there is a choice between 

modeling and other approaches to estimation. Sometimes the level of decomposition 
needs to be taken further to tackle the subproblems by the same strategy. But, clearly, 
sometimes decomposition can be carried too far. Mosleh and Bier (1 992) reviewed the 
problem of finding the optimal level to which to decompose. 

This approach introduces the additional wrinkle of whatever uncertainty there may 
be about the model used for the reconstruction. This can be especially problematic when 

independence assumptions are used indiscriminately or are used without specific 

justification. Without a strategy to address this model uncertainty, any results would be 

contingent of course on the analyst having gotten the model correct. 

3.2.3 Numerical examples 

We will consider three numerical examples in this section. In each of the graphs shown, 
the ordinate will be cumulative probability. The abscissa will be the axis of the quantity 
in question. 

The three graphs below depict the modeling of a sum. The primary problem was to 
estimate a quantity Z which is known to be a sum X +  Y where the addends are 
independent. First, reliable estimates of Xand Y must be obtained, using any available 
method (including modeling). The quantity X is modeled as a lognormal distribution 

whose mean is the interval [20,23] and whose standard deviation is in the interval [3.5, 
4.51. The distribution is truncated at the 0.5th and 99.5th percentiles. The canonical 

Dempster-Shafer structure forXis {([11.0, 15.0],0.01), ([11.6, 16.71, 0.01), ([12.4, 17.11, 

O.Ol), ..., ([27.9, 35.71, O.Ol), ([29.2, 37.51, O.Ol)}. This is just the collection of intervals 
that when assigned masses of 0.01 best approximates the imprecisely specified 

probability distribution X. The quantity Y has a symmetric triangular distribution, with 
minimum value 10, mode 20 and maximum 30. The focal elements of this object are 
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very narrow intervals. Indeed, they could have been points, but are just wide enough to 
contain the representation error introduced by the canonical discretization. The 

Dempster-Shafer structure is therefore (([lo, 11.4],0.01), ([I 1.4 12.0],0.01), ([12.0 
12.4],0.01), ..., ([28.0 28.6],0.01), ([28.6 30.0],0.01)). Once these estimates are in 
hand, we can use convolution to compute the estimate of their sum. The resulting sum is 
shown in the graph on the right. 

convolution (addition, assuming independence) 
1 -  1 -  

- - 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 

- - 
- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.5 - 0.5 - 
- - 
- 

- 
- - 

0 -  
10 20 30 40 0 10 20 30 40 20 30 40 50 60 70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 7: Convolution (right) of x (left) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy (middle). 

How exactly is this addition computed? The matrix below shows a few of the 

calculations. The first line in each cell is an interval focal element and the second line is 

the probability mass associated with that focal element. The elements of X are arrayed 
along the top row of the matrix. The elements of Yare in the first column. The cells 

inside the matrix form the Cartesian product, crossing each element from X with every 
element from Y. The first line of a cell inside the matrix is determined by interval 

arithmetic on the corresponding focal elements from X and Y. Because the model asserts 
that the quantity is the sum of X and Y, each of these interval operations is addition. The 

second line in each cell is the probability mass associated with the interval on the first 
line. Note that the probability masses in the top row and first column are each 0.01; these 
are the mass that arose from the canonical discretizations. The masses inside the matrix 

are all 0.0001, which is the product (under independence) of 0.01 and 0.01. Because 
there are 100 focal elements in both Xand Y, there will be 10,000 focal elements in their 

sum. Williamson (1 989) describes a condensation strategy that can reduce this number 
back to 100 in a way that conservatively captures uncertainty. 
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addition, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[lo, 11.41 
0.01 
[11.4 12.01 
0.01 
[12.0 12.41 
0.01 

independent 

Other convolutions, such as subtraction, multiplication, division, minimization, 

maximization, powers, etc., can also be used. Algorithms to handle these cases are more- 
or-less straightforward generalizations of that for addition (Yager 1986; Williamson and 

Downs 1990; Berleant 1996; Ferson 2002). It is also possible to compute a convolution 
with a dependence assumption other than independence. 

The second example is illustrated in the next set of three graphs below. In this case, 
the analyst is confident that the desired quantity is an equal stochastic mixture of two 

other quantities. In other words, she is sure that the desired quantity is selected with 

equal probability from one of two other quantities, X and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY. In this example, these 
quantities have been estimated, respectively, by an interval [ 1, 31 and a quantity known to 

have a normal distribution with a mean in the interval [5.6,6] and a standard deviation in 
the interval [ 1, 1 S I .  The mixture operation involves (vertically) averaging the 

probability values of the respective bounds of the p-boxes Xand Y. This is equivalent to 
forming a Dempster-Shafer structure by pooling the focal elements from both Xand Y 
and simultaneously halving their masses (to keep the total of all masses equal to one). 
The nature of this operation is perhaps obvious from the picture of the result below and 
we need not give more detail about the particular algorithm used. The parts of the 
resulting mixture are so distinguishable because the inputs X and Y did not overlap much. 

[11.0, 15.01 [11.6, 16.71 [12.4, 17.11 ... [27.9,35.7] [29.2,37.5] 
0.01 0.01 0.01 0.01 0.01 
[21, 26.41 [21.6,28.1] [22.4,28.5] ... [37.9,47.1] [39.2,48.9] 

0.0001 0.0001 0.0001 0.0001 0.0001 

[22.4,271 [23,28.7] [23.8,29.1] ... [39.3,47.7] [40.6,49.5] 
0.0001 0.0001 0.0001 0.0001 0.0001 

[23,27.41 [23.6,29.1] [24.4,29.5] ... [39.9,48.1] [41.2,49.9] 
0.0001 0.0001 0.0001 0.0001 0.0001 

mixture (equal weights) 

[28.0 28.61 
0.01 
[28.6 30.01 
0.01 

1 

0.5 

0 

0.0001 0.0001 

[39,43.61 [39.6,45.3] [40.4,45.7] 
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Figure 8: Stochastic mixture (right) of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx (left) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy (middle) assuming even 50:50 

weights. 
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The last example in this section on estimation by modeling is composition. It is 
illustrated in the two graphs below. The desired estimate, shown on the right, was 

modeled as a normal distribution with variance equal to one and mean equal to another 
uncertain quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX. The estimate for X (on which the desired estimate was based) is 

shown on the left. It is the Dempster-Shafer structure {([1,2], 1/3), ([4,6], 1/3), ([9,10], 
1/3)). The composition was computed as the equal mixture (see Sections 3.2.1.5 and 4.7) 

of three p-boxes: normal( [1,2], l), normal( [4,6], 1) and normal( [9,10], l), that is, three 

normal distributions with means in the intervals [ 1,2], [4,6] and [9,10] and variances all 
equal to one. 

composition 
1 

0.5 

0 
0 10 -10 0 10 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 9: Composition (right) of the trimodal distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx as the mean of a normal 
distribution. 

3.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARobust Bayes methods* 

In this section, we explain how to obtain a p-box or Dempster-Shafer structure from the 

objects already developed by analysts using robust Bayes methods. Bayesian methods 

are an important way-some would say an essential way-by which inputs for a risk 
analysis are selected. In a regular application of Bayes' rule, a prior distribution and a 
likelihood function are combined to produce a posterior distribution, which may then be 
used as an input in a risk analysis. Bayes' rule is 

wherep denotes probability mass (or density), 8 is a value of the quantity in question, E 
denotes the evidence being considered, p(8) is the prior probability for a value 8, p(E I 8) 
is the conditional likelihood function that expresses the probability of the evidence given 

a particular value of 8, andp(E) is the probability of having obtained the observed 

"Bayes' rule is also a method of aggregation and is reviewed in that context in Section 4.6. 
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evidence. This divisor, sometimes called the normalizing factor, is the sum (or integral) 

with respect to 8 of the product of the prior and the probability of observing a value if the 

value were actually zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. This rule is applied for all values of 8 to obtainp(0 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE),  which is 

the distribution of 0 given the evidence. For most Bayesians, the prior distribution is 
obtained from the opinion or belief of the analyst. It is intended to represent, at least 

initially, the analyst’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsubjective knowledge before any specific evidence is considered. 

It may be the result of amorphous preconceptions or physics-based reasoning or a 
combination of the two. The likelihood function represents a model, also perhaps taken 
from the subjective knowledge of the analyst, of what data implies about the variable in 

question. It is part of the Bayesian dogma of ideal precision (Walley 1991) that both of 
these functions are precise. 

The connection of Dempster-Shafer structures and p-boxes to Bayesian methods is 

through the approach developed by Berger (1 985) and others known as robust Bayes. In 
robust Bayesian analysis, the insistence on having a single, precise prior distribution and 

a single, specific likelihood function is relaxed. In their places, entire classes of 
distributions and functions are used. In this section, we explain how to obtain a p-box or 

Dempster-Shafer structure from the objects already developed by analysts using robust 
Bayes methods. 

3.3.1 Basic idea 

Robust Bayes methods acknowledge that it is sometimes very difficult to come up with 

precise distributions to be used as priors (Insua and Ruggeri 2000). Likewise the 
appropriate likelihood function that should be used for a particular problem may be in 

doubt. In robust Bayes, standard Bayesian analysis is applied to all possible 
combinations of prior distributions and likelihood functions selected from classes of 

priors and likelihoods considered empirically plausible by the analyst. This approach has 
also been called “Bayesian sensitivity analysis”. In this approach, a class of priors and a 
class of likelihoods together imply a class of posteriors by painvise combination through 
Bayes’ rule. Robust Bayes also uses a similar strategy to combine a class of probability 
models with a class of utility functions to infer a class of decisions, any of which might 

be the answer given the uncertainty about best probability model and utility function. In 

both cases, the result is said to be robust if it’s approximately the same for each such pair. 
If the answers differ substantially, then their range is taken as an expression of how much 

(or how little) can be confidently inferred from the analysis. Although robust Bayes is 
clearly inconsistent with Bayesian idea that uncertainty should be measured by a single 
additive probability measure and that personal attitudes and values should always be 
measured by a precise utility function, the approach is often accepted as a matter of 
convenience (e.g., because the cost or schedule do not allow the more painstaking effort 

needed to get a precise measure and function). Some analysts also suggest that robust 
methods extend the traditional Bayesian approach by recognizing incertitude as of a 

different kind of uncertainty. 
The p-box associated with the resulting class of posteriors can be found simply by 

cumulating each of the posterior distributions and forming the envelope or convex hull of 

these cumulated posterior distributions. The associated Dempster-Shafer structure can be 
obtained from the p-box in the canonical way. 

36 



3.3.2 Numerical example 

Suppose that the prior distribution is within the class of all normal distributions having a 

mean within [-1, +1] and a variance within [ 1,2.5]. Suppose further that the likelihood 
function is also characterized by a normal shape, with a mean in the interval [ 14, 161 and 

variance in the interval [ 1.7,3]. In the illustration below, a few prior distributions and 

likelihood functions from their respective classes are drawn on a &axis in terms of 
density (the vertical axis not shown). Also shown on the same axis are several 
representatives of the (infinitely large) class of posterior distributions that are obtained by 
applying Bayes rule to every possible pair of prior distribution and likelihood function. 

Because the priors and likelihoods in this example are conjugate pairs, it is easy in this 
example to compute the posteriors. When a prior is normal with a known variance VI and 

a likelihood is normal with a known variance v2, the posterior distribution is normal with 

variance l / ( l /v~  + l/v2). Its mean is (mllvl + m2/v2)/(l/vl + 1/14, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAml and m2 are the 
means of the prior and likelihood respectively. These expressions allow us to compute 

the posterior that would arise from each combination of a prior and a likelihood. 

2o e -5 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 10 15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 10: Example of robust Bayes combination of several prior distributions and 

likelihood functions to obtain many possible posterior distributions. 

To get the associated p-box, we just have to cumulate each of the posterior 

distributions and find their convex hull. In this example, the resulting p-box is defined by 
the class of normal distributions having a mean in the interval [2.7, 101 and a variance in 
the interval [0.6, 1.41. This p-box is depicted below (truncated at the one-half and 99.5th 

percentiles). The abscissa is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 value, and the ordinate is cumulative probability. The 
associated Dempster-Shafer structure can be obtained from this p-box in the canonical 
way, simply by discretizing it into equiprobable horizontal slivers. In this case, the 

Dempster-Shafer structure would be the collection of interval-mass pairs { ([-0.0 165897, 
8.370371, O.Ol), ([0.301737, 8.50761],0.01), ([0.503706, 8.61084],0.01), ..., ([4.32963, 

12.71661, O.Ol), ([4.54594, 13.00791, 0.01) >. The left bound of the first focal element 
and the right bound of the last are determined by the truncation used in this example. 
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Figure 11: P-box resulting from enveloping all the posterior distributions (see text). 

3.3.3 Caveats 

The concerns that attend the use of Bayesian methods about specifying a single prior and 

likelihood are relaxed by the use of classes in the robust approach, but this approach is 

still subject to some of the remaining caveats associated with Bayesian methods in 
general. In particular, this approach exhibits what can be called the “zero preservation” 
problem. In this problem, any values on the real line for which the prior distribution is 
surely zero will remain with zero probability in the posterior, no matter what the 

likelihood is and no matter what new data may arrive. In the case of robust Bayesian 

analysis, the zeros are those regions of the real line where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall the prior distributions in the 

class are identically zero. This is a mathematical form of intransigence, in that a previous 
conception is immutable in the face of new evidence or argument. This is the extreme 

case of a more general problem of Bayesian methods having to do with their possible 
insensitivity to surprise in the form of unanticipated data (Hammitt 1995). For instance, 
consider the numerical example above. This example illustrates the not uncommon result 
that the posterior can substantially disagree with both the prior and the new data (Clemen 
and Winkler 1999). Analysts might prefer fidelity to one or the other when they are in 
conflict. Another somewhat troublesome result is that, despite the apparently surprising 

nature of the evidence, the posterior distributions are generally tighter (that is, have 
smaller variance) than the prior distributions. In the case of extreme surprise such as this, 

one might hope that a methodology would always yield a result that represented more 
uncertainty, not less. To be fair, we should point out that the wide discrepancy between 
the priors and the likelihoods was introduced in this example purely for graphical reasons 

to ensure the reader could visually distinguish the three classes of curves. One might 
typically expect the priors and the likelihoods to overlap much more broadly. The details 

of this example depend in part on the use of normality assumptions and could differ if 
other shapes were used. Nevertheless, this example does illustrate some of the 

characteristics of Bayesian methods that may be troublesome to analysts. 



Although the calculation in the numerical example above could be done almost by 
inspection, this is not generally possible. In fact, the computational difficulties associated 
with robust Bayes methods can be severe. Depending on how the class of priors and the 
class of likelihoods are specified, the actual calculations required may be rather 

burdensome. Berger (1 985) gives a review of this method and describes its application in 
practice. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.4 Constraint specification 

Constraint propagation uses available information about a distribution or its underlying 

random variable as constraints to derive p-boxes that encapsulate this information. This 

information comes from theoretical argument, analyst judgment, expert opinion or 
empirical data about surrogate cases. Although the methods described in this section 
have their most natural application to p-boxes, the associated Dempster-Shafer structure 

can always be obtained (except for any infinite tails) by canonical discretization from any 

p-box produced by one of these methods. 
In general, the problem of translating what is known about a quantity into rigorous 

and best possible bounds is a difficult problem. In this section, we review a variety of 

classical and recent results that can be used to circumscribe the distribution of a random 
variable given some limited information about it. The information that can be used 

includes limits on quantiles, information about summary statistics such as mean, mode or 
variance, and qualitative information about distribution shape, such as whether it is 

symmetric or unimodal. In many cases considered in this section, the calculation of the 
bounds is a relatively simple matter even though it formally implies consideration of an 

infinite family of distributions. However, we emphasize that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan analyst need not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfollow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
or even understand the details of these derivations in order to use them effectively in 
practice. Once established, they serve as a library of algorithms by which to construct p- 
boxes from given sets of information. 

Smith (1 995) reviews several techniques for deriving distribution bounds, including 
limitations on entropy, which we do not discuss. It is worth mentioning, however, that 
the methods described in this section are very similar in spirit to those used in 

applications of the maximum entropy criterion (Japes 1957; Levine and Tribus 1978; 
Grandy and Schick 1991; Lee and Wright 1994), in which the distribution that has the 
largest entropy from a class of distributions obeying certain constraints is selected to use 

as the input. The difference is that we use the envelope about the class of distributions as 
the model of the information rather than picking a single exemplary distribution from the 

class to use for that purpose. 
An issue that recurs several times in this section is how the limits on the distribution 

can be controlled so they are not vacuously large. For instance, if a p-box is the vacuous 

interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[-q a], it is likely to be of very little use computationally. To be practical, the 
range must be finite and the left bound of the p-box must be zero for sufficiently small x- 
values, and the right bound must reach one for large values. Three different strategies 
may be employed to ensure this convergence: range limits, variance limits, density 

limits. These are discussed in the subsections below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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3.4.1 Basic idea of range limits 

Sometimes an analyst can specify the possible zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArange of a quantity. This involves 

specifying what its smallest and largest possible values could be, its minimum and 
maximum. In some cases, the range may be deduced from theoretical limits, such as zero 

to one for a proportion. Sometimes analysts or domain experts may feel comfortable 
asserting a putative range from their specific or general knowledge about the quantity in 

question. In this case subsequent analyses will be contingent on the hypothesis that it 

actually encloses the true range of the quantity. 
If an analyst can specify the range, then the tails are simply truncated to this interval. 

In principle, if there is other information available, one may only require one endpoint of 
the range to construct a useful p-box. 

encountered situations in which the range and ancillary information is available. There 

are a few other special cases that are not explicitly reviewed here for which p-boxes have 
been worked out (see Ferson 2002). Moreover, there are, no doubt, many situations 

analysts will encounter for which no ready solutions have yet been developed. Such 
cases will require ad hoc analyses to derive rigorous and best possible procedures. 

In the following subsections, we consider a handful of the most commonly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.4.1.1 Minimum, maximum 

If it is know that the quantity cannot be smaller than a nor larger than b, then the interval 

[a, b] is used as the representation of this fact. This interval is mathematically equivalent 
to the p-box [H,(x), H&)], where H,(x) is the unit step function at c. The associated 

Dempster-Shafer structure for this case is {( [a,  b], 1)). 

3.4.1.2 Minimum, maximum, mean 

If, in addition to the range, the mean (i.e., the mathematical expectation) of a random 
variable is also known, the p-box can be tighter. Despite its simplicity, Rowe (1988) was 

apparently the first to publish the best possible inequality for this case. Let m, M and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 
be the minimum, maximum and mean values respectively. First consider the x-values 

between the minimum and the mean. The upper bound on probability over this range 
can be found by determining the largest possible values attained by a distribution 

function under the specified constraints. Consider an arbitrary value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx E [m, p ] .  The 
value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp of a distribution function at x represents probability mass at and to the left of x. 
However much mass there is, it must be balanced by mass on the right of the mean. The 
greatest possible mass would be balanced by assuming that the rest of the probability, 

1-p, is concentrated at M. Likewise, the arrangement of mass on the left side requires 

the least balance when it is all concentrated at the point x. These considerations lead to 

the expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApx + (1 - p )  M = p which can be solved to yield p = (M - p) / (M - x ), 
specifying the largest value of the distribution function for the value x. If there were any 

more probability mass at values less than or equal to x, the constraint of the mean could 
not be satisfied by any arrangement of mass at values less than or equal to M. Clearly 
then, the spike distributions defined by this expression describe the bounding distribution 

over the range [m, p ] ,  subject to the fundamental constraint 0 I p  I 1. 

has all its mass at the mean. Its distribution function is zero from m to p. Lower and 

The position of the lower bound is determined by the degenerate distribution which 
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upper bounds for values larger than the mean can be derived by similar (but inverted) 

arguments. The resulting p-box is then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[U(x), L(x) ] ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.5 - 

0 

i f x < p  

if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ x .  

4 

Note that this formulation can handle interval uncertainty about the estimate of the 
mean. The implementation would simply use interval arithmetic to compute the 

necessary values and enforce the constraint that probability must be between zero and 

one. 
These bounds are optimal in the sense that they could not be any tighter without 

excluding at least some portion of a distribution function satisfying the specified 

constraints. It is important to understand, however, that this does not mean that any 

distribution whose distribution function is inscribed within this bounded probability 
region would necessarily satisfy the constraints. 

discretization. 
The associated Dempster-Shafer structure can be obtained by canonical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.4.1.3 Minimum, maximum, median 

Even more potent information is knowledge about the median (the 0.5 quantile), which 
pinches the uncertainty about the distribution to a definite point at the 50% probability 

level. Having reliable knowledge of other percentiles would correspond to similar points 
at other probability levels through which we can be sure the true distribution, whatever it 

is, must pass. Of course, if the estimate of the median or some percentile is not a point 

but an interval, then this pinching is less severe. When the information about a quantity 
is limited to knowing the minimum, maximum and an interval estimate of the median, we 
obtain bounds on probability such as those depicted in the graph below. 

Figure 12: Best possible p-box based on knowledge of the minimum, median, and 
maximum values of a random variable. 
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The Dempster-Shafer structure for this object is just zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(([m, right(med)], O S ) ,  ([left(med), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MI, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.5)}, where m, M, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmed are the minimum, maximum and median values, and the 

right( ) and left( ) functions yield the right and left endpoints of an interval. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.4.1.4 Minimum, maximum, mode 

If one can assume that the underlying distribution is unimodal and that reliable estimates 
are available for the minimum, maximum and modal* values of the quantity, then the 

probability box like that shown in the graph below can be obtained by transformation of 
the interval p-box of Section 3.4.1.1. The justification for this transformation is beyond 

the scope of this report, but it is described by Smith (1 995; see also Dharmadhikari and 
Joag-Dev 1986; Young et al. 1988). 

? 
maximum 

++ 
mode 

? 
minimum 

Figure 13: Best possible p-box based on knowledge of the minimum median and 
maximum values of a random variable. 

Again, we emphasize that not every distribution contained in this region satisfies the 
given constraints. However, the bounds are optimal in the sense that they could not be 
tighter without excluding some distribution that does satisfy the specified constraints. 

3.4.2 Caveats 

The fundamental admonition about specifying the possible range of a quantity is not 
to underestimate it. The range is intended to represent the possible extent of the variable, 

not merely its likely extent or its observed extent. ‘Possible’ is usually bigger than 
‘probable’ or ‘actual’. The most extreme value ever observed may be far less extreme 
than the most extreme possible. In recognition of this fact, analysts should be careful not 
to be deceived by their data. 

It is always possible to use intersection (Sections 3.2.1.4 and 4.3) to combine p- 

boxes obtained by these methods, but doing so may be a suboptimal strategy. For 
instance, if one knew the range, mean and mode, one might try to use this information by 
computing the minimum-maximum-mean p-box and then intersecting it with the 
minimum-maximum-mode p-box. This strategy is rigor-preserving; so long as both p- 

boxes are sure to enclose the underlying distribution, their intersection will too. 
However, the strategy does not always yield best possible results, even if both p-boxes 

*The mode of a distribution is its most common value. 
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are themselves best possible. There may be some constraint or interaction that is not 
recognized by crude intersection. 

3.4.3 When mean and variance are known from sampling 

The classical Chebyshev inequality (Feller 1968, page 152; Allen 1990, page 79; 

Chebyshev 1874; Markov 1886) can be used to compute bounds on the distribution 

function of a random variable given that we know the mean and variance of the random 
variable. It is rare in practice, however, that an analyst would know the mean and 
variance of a random variable and yet not be able to say anything else about its 

distribution. Saw et al. (1984; 1988) derived bounds on distribution functions based on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sample estimates for the mean and variance that generalize the classical Chebyshev 

inequality. The bounds are for exceedance past an absolute value, so the inequality is 
double-sided. Shown on the graph below are the Chebyshev limit and the Saw et al. 
limits for various sample sizes for the right side of the p-box having zero mean and unit 
variance. (The p-box is symmetric.) The Chebyshev limit is the smooth curve that, 

generally, has the largest value. The Saw et al. limits are step functions in various shades 
of gray. In general, the higher the sample size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, the higher the curve. The Chebyshev 

limit corresponds to a Saw limit with a sample size of infinity. The right tail of each limit 
becomes unbounded at some probability higher than a critical level, which depends on 

the sample size. 
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Figure 14: Right sides of p-boxes based on sample means and variances (equal to 

zero and one respectively) for several sample sizes. 
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There are several surprising things about this plot. The first is that the decrease from 
the Chebyshev limit is as small as it is. The decrease is really very modest for small 

sample sizes, except at the right tail. What is both surprising and counterintuitive is that 
the tightening of the bound with increasing sample size is not monotonic. Indeed the 
bounds cross each other! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs explained by Saw et al. (1984), this can be understood as a 

result of the discreteness of the underlying distributions determining the limits. It is also 

surprising, as the authors point out, that some of the limits are slightly better than the 
original Chebyshev inequality at certain values of x. 

3.4.4 Means and variances always ‘exist’ 

Mathematically, the distribution of a random variable may fail to have a mean or 

variance. For instance, Student’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt distribution with two degrees of freedom theoretically 
has no variance because its formula does not converge to a finite value. Similarly, the 
quotient of independent unit normals, which follows a Cauchy distribution, has neither a 

variance nor mean. As a practical matter, however, we do not consider nonexistence of 

moments to be of any real significance for risk analysts. Infinite means and variances are 
merely mathematical bugaboo that need not concern the practically minded. All random 

variables relevant to real-world risk analyses come from bounded distributions. As a 

practical matter, even a very comprehensive risk analysis need never include a 
mathematically infinite distribution for any variable. Analysts concerned with infinite 
tails of distributions are addressing mathematical problems, not risk analysis problems. 
All the moments of any bounded distribution are finite and therefore ‘exist’ in the 

mathematical sense. 
On the other hand, just because the moments are finite, does not imply they are 

determinate. In fact, it may usually be the case that only an indeterminate estimate of a 

mean or variance is available. In such situations, we can use intervals to represent the 

value, whatever it is, in some range. We can then use elementary interval arithmetic 
(Moore 1966) and the methods described in this section to infer the implications of such 
moment estimates for p-boxes and Dempster-Shafer structures and propagate them 
through calculations even though we cannot specify their values precisely. 

3.4.5 Basic idea of density limits 

In some instances, analysts or the experts they consult may be able to describe upper or 

lower bounds on probability densities. Mallows (1 958) and Smith (1 990; 1995) discuss 
the use of bounds on probability density to constrain the cumulative probability function. 
In fact, this topic is classical, originating perhaps with Markov (1 898). Such bounds are 
shown in the display below. The black trapezoid marks a hypothetical pointwise upper 
bound on the probability density function. This bound can be called a “cap”. The shape 
of the cap need not be a trapezoid of course, and the only restriction on the cap is that the 

area under it must be greater than one. If it equals one, then the cap will completely 
specify a (precise) distribution. So long as the cap has a finite support” itself, the tails of 

the p-box or Dempster-Shafer structure must have (the same) finite support. The gray 
line marks a lower bound on the density, which can be called a “bubble”. The area of 

bubble must be less than one. If it is equal to one, then, again, the probability density 

*The support of such a function is the set of x-values over which it is not zero. 



function will be thus specified. Specifying a bubble does not reduce the extent of the 
tails, but it can substantially tighten the resulting p-box and Dempster-Shafer structure. 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 15: Hypothetical upper bound (cap, in black) and lower bound (bubble, in 

gray) on an unknown probability density function. 

Given that the underlying probability density function must lie inside the area 
circumscribed by the cap and the bubble, one can immediately deduce strict bounds on 

the cumulative distribution function. In addition to being rigorous, these bounds will also 

generally be best possible. 

This approach may be especially useful in interactive graphical elicitations, which 
can be helpful in group settings and for informants who are uncomfortable with 
specifying values numerically. 

3.4.6 Caveats 

The difference between knowing bounds on the density function and knowing bounds on 
the cumulative distribution function seems rather artificial. Some analysts may be hard to 

imagine how in practice one could know one but not the other. Perhaps the real practical 

advantage of this strategy is that it expresses the bounds in terms with which some 

experts or informants may feel more comfortable. 

3.4.7 Graphical example 

The gray lines in the graph below indicate the cap and bubble. These constraints don’t 

create any particular specifications about the moments or any order statistics. But they 
do give a general picture of the shape of the density. We see that values less than 1 and 
greater than 5 are impossible. We see that the values around 3 should be frequent in the 
distribution, although 3 may not be the mode. The resulting probability box implied by 
the cap and bubble is shown in black. Like all p-boxes, its vertical scale is cumulative 
probability. The bounds follow immediately from integrating (both from the left and 

from the right) the functions specified by the gray lines. The lower half of the left bound 
and the upper half of the right bound come from cap. The remaining bounds of the p-box 

come from the bubble. 

/ seem to say much directly or specifically about the distribution function, nor do they 
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Figure 16: P-box (black) resulting from upper and lower bounds (gray) on a 

probability density function. 

3.4.8 Qualitative shape information 

3.4.8.1 Positivity 

Knowing that a quantity in question cannot be negative can sometimes tighten the p-box 

for that quantity. This is perhaps the easiest constraint to account for. It can be done by 

transforming any p-box [E;, E]  to 

where Ho(x) is the unit step function at zero. (This step function is zero for all values of x 
less than zero and one for all values of x greater to or equal to zero.) The positivity 
transformation is clearly rigor-preserving, but it may not yield the best possible bounds on 

the quantity given all the available information. Similar transformations can be developed 
to reflect a constraint that a quantity must be in specific range, such as 0 to 1 or 1 to 100. 

3.4.8.2 Convexity (increasing density) 

A functionfix) is convex on an interval [a, b] if, for any two points x1 and x2 in [a, b], 
f ( ? h ( x ~  +x2) )5  !h(f(xl)+f(x2)). Narumi (1923) found the inequality 

F(x)2 1 - (pJ$-( l  -py/xr)/r),  

where py is the rth moment, r > 0, for the case when a distribution function F is convex in 

the open interval (0, x). Even when only the mean p = 1-11 is known, the resulting 

inequality F(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2 - 2py / x is remarkably potent, sometimes beating the Chebyshev 
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inequality which is based on the first two moments. If the distribution is convex over its 
support on the positive reals, this inequality limits the range to a finite interval. Further 
improvement is sometimes possible with the Narumi inequality if the variance is also 

known, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2 being computed as the sum of the variance and the square of the mean. It is 
hard to imagine that further moments will be available about any variable arising in 

practical risk assessments. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.4.8.3 Concavity (decreasing density) 

A distribution function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF is concave if its complement 1-8’ is convex (see previous 

section). Concavity means that the density function of the random variable is decreasing 
over its range, and thus this property can be regarded as a special kind of unimodality. 

Barlow and Marshall (1 964) showed that if a distribution function F is concave over the 

positive reals, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(pr / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ’> (r / (r + 1))‘. Like convexity, concavity can imply 
a strong improvement in bounds. But it is also possible to specify moments, or even a 
single moment, for which there is no concave function over the positive reals. Analysts 

must check that the p-box obtained from this inequality is feasible. 

3.4.8.4 Monotone hazard function 

There is a significant literature in statistics and reliability theory on ordering and 

bounding distributions based on assumptions about the hazard rate, which is also called 
the failure rate. The literature is synoptically reviewed in Johnson et al. (1 995). Let the 

random variable be the length of life for some component or system. Hazard rate is 
thought of as the probability of failure in the next instant divided by the probability of 

having survived until now. The divisor is called the survival probability and is itself just 
one minus the cumulative probability distribution. The formal definition of the hazard 

rate (failure rate) is 

r(x) = F’(x) / ( 1 - F(x)) 

where F is the distribution function for the length of life and the prime denotes 
differentiation. It is usually assumed that F(0) = 0, although this restriction can be 
relaxed. F(x) has an “increasing hazard rate” if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr(x) is an increasing function of x. Such 

functions characterize components or systems that exhibit senescence or aging so that the 
older they get the more likely they are to fail. F(x) has an “decreasing hazard rate” if r(x) 
is a decreasing function of x. These functions characterize systems that “burn in” or get 
more reliable as they age. The exponential distribution (see Section 3.1.1.6) has a 
constant hazard rate and therefore represents the boundary between these two classes of 

functions. 
Engineers can sometimes confidently assert that the lifetime distribution of a 

particular kind of component or system is in one category or the other. When they can do 

this, there will be an exponential distribution that bounds their possible distributions. 
When the analyst can identify some other aspect of their distribution that specifies this 
exponential, then it is possible to tighten the probability box used to estimate the length 

of life random variable. This will be possible in practice if, for instance, the mean (or 

bounds on it) of the distribution is known (or assumed). It will also be possible if the 
analyst can empirically specify what the initial hazard rate is (or an upper or a lower 
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bound on it). Barlow and Marshall (1 964) describe several way to use available 
information to find the limiting exponential distribution. 

enclose the distribution, then we can account for the additional constraint that the 

distribution is sure to have an increasing hazard function by replacing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[F ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE]  with 

[F*,F*] ,  where 

If the p-box [F1, FZ] is given as a structure that is certain, by other considerations, to 

- 

in which H,(x) is the unit step function at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz and E(x) is the limiting exponential distribution 

function. If the distribution is known to have a decreasing hazard rate, use the functions 

instead. 
Even if the hazard rate is known to be montone, this approach cannot be used when 

there is no way to identify the bounding exponential distribution, such as with a specified 

mean or initial hazard rate. And, of course, many distributions have hazard rates that are 

increasing and decreasing over different ranges of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, including, for instance, bathtub- 
shaped hazard rate functions commonly encountered in reliability analyses. For such 
functions, the simple strategy outlined above to tighten an estimating p-box won’t be 
useful, although a compound one treating different portions of the curve separately might 

be useful if knowledge is available about how hazard rate varies with time. 

Barlow and Marshall (1 964) explained how to obtain even tighter bounds by 
combining knowledge about monotonicity of the hazard rate with other information, 

including knowledge about the moments of the distribution, percentiles, and bounds on 
the hazard rate itself. If a distribution has an increasing hazard rate, it must be the case 

that the variance divided by the square of the mean must be between 0 and 1 inclusive. If 
it has a decreasing hazard rate, the quotient must be larger than or equal to 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.4.8.5 Numerical examples 

The graph on the left below depicts the p-box that results from applying a positivity 

transformation to a p-box that was specified by some previous argument (and the 
methods of Section 3.1.1.5) to be a uniform distribution whose mean is in the interval 

[2, 51 and whose standard deviation is in the interval [ 1,2]. The original p-box had the 
shape of a rhombus. The resulting p-box differs from it only in having the left tail below 
zero truncated, The graph on the right below depicts a p-box in black that results from 

applying a concavity transformation to a p-box that was specified by some previous 
argument (and the methods of Section 3.4.1.2) to a distribution whose possible range is 

the interval [0, 151 and whose mean is 1. Before the concavity transformation, the right 

bound of the p-box was at the location of the gray line. Thus, the difference between the 



gray line and the right bound of the black p-box is the improvement that comes from the 
assumption that the distribution is concave or has decreasing density. 
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Figure 17: Examples of applying positivity (left) and concavity (right) constraints to 
p-boxes (see text). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.5 Experimental measurements 

This section addresses how zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAempirical data can be used to construct p-boxes and 
Dempster-Shafer structures. Toward this end, we generalize the notion of an empirical 

distribution function. The two primary concerns in this generalization are measurement 

uncertainty and sampling uncertainty. 
Measurement uncertainty* (Taylor and Kuyatt 1994) is the incertitude or lack of 

knowledge about the precise value of a measured quantity. It may involve both random 
and systematic (bias) components. When measurement uncertainty is negligible, it may 

be reasonable to consider the results of measurements to be point values. This has been 
the routine practice in traditional risk analyses. When measurement uncertainty is large, 

however, or specifically when it is large relative to the variation among individuals in the 
population, this may not at all be a reasonable strategy. P-boxes and Dempster-Shafer 
structures allow us to account for this measurement uncertainty and carry it along in 
calculations in a consistent way. 

When measurements are made exhaustively in a population, there is no sampling 
uncertainty. When there are a great many samples made of a varying population, it may 
be the case that sampling uncertainty is negligible and analysts may feel confident that 

they have assembled an accurate picture of the variation in that population. But, in 
almost all risk analyses outside the insurance industry, sample sizes are typically very 

*In the past, measurement uncertainty was commonly called measurement error 
(Rabinovich 1993) in the scientific and engineering literature. This expression is a 

misnomer because it is not necessarily “error” of any kind. 



small and sampling uncertainty is consequently large. Accounting for sampling 

uncertainty has been the subject of a great proportion of statistical science over the last 
century. This section proposes a way to propagate through calculations the uncertainty 

that comes from both inexhaustive sampling and measurement imprecision. 

3.5.1 Intervals are natural models of measurement uncertainty 

Measurement uncertainty is associated with almost all measurements (Rabinovich 1993; 
Taylor and Kuyatt 1994). An interval is a natural model of measurement uncertainty in 
many if not most situations. Of course, an interval is not the only way to represent the 

measurement uncertainty of an observation, but it is certainly the most common way in 
science and engineering today. In many cases, the measurement intervals are given with 

the data values, either as an explicit interval (e.g., [3 1.77, 38.831) or in terms of an 

appended plus-or-minus range (e.g., 35.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 0.4, or 35.3 f 10%). Some measurements 
may be reported without explicit mention of any associated measurement uncertainty. Of 

course, this is usually a result of carelessness rather than perfect precision of the 
measurement. Long-standing convention among empiricists allows values to be reported 

using significant digits to make an implicit statement about error. For instance, the value 
“12.21” has four significant digits and it has an implied measurement uncertainty of 

f0.005, leading to an interval of C12.205, 12.2151. Likewise, the value “4800” has two 
significant digits and its implied measurement uncertainty interval is [4750,4850]. This 
convention allows us to infer measurement intervals directly from data reports. The 

measurement uncertainty for integral count data may under some circumstances be given 

as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk0.5 units. It is more common among physicists, however, to use plus or minus the 

square root of the count (this idea appears to be based on a Poisson model of counts). 

3.5.2 Basic idea about measurement uncertainty 

Measurements are often reported as an interval range described in the previous section 
together with a nominal point value sometimes called the “best estimate”. This triple of 

numbers can be represented as a triangle whose base represents the interval range and 
whose peak marks the best estimate. Such a triangle does not represent a triangular 
probability distribution or anything other than the three values that characterize the best 

estimate and range of possible values of a single measurement. Suppose that for a 
particular variable we have some data values represented as triangles distributed along an 
x-axis shown below. (In the illustration, we’ve shown the peaks to be centered over their 
bases and the bases to all have the same length, but neither condition is necessary.) The 

widths of the triangles represent measurement uncertainty in the data set, which is a kind 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAincertitude. The scatter of the collection of triangles reflects variability in the data set. 
Below the triangles, there is a graph on the same horizontal scale of the p-box implied by 
these measurements. The x-axis of this graph is the same as for the triangles; the ordinate 
is cumulative probability. The p-box is formed as two cumulative distribution functions, 

one based on the left endpoints of the triangle bases, and one based on the right 
endpoints. These functions correspond to the cumulative plausibility and belief functions 

for the empirical Dempster-Shafer structure formed by using the intervals of the triangle 
bases as focal elements and assigning equal probability mass to each. Yager (1 986) 



recognized these bounds as a generalization of the distribution function for Dempster- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S hafer structures. 
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Figure 18: P-box (below) corresponding to a data set (above) consisting of intervals 
(triangle bases) about best estimates (triangle peaks). 

The cumulative empirical distribution function (EDF) associated with these data 
values, which would traditionally be formed by cumulating the best estimates for each 
value, would be inside this p-box. If the measurement uncertainties associated with the 

data values are negligible, then the p-box will approach this EDF. If measurement 
uncertainties are large, the p-box will be wide. Measurement uncertainty, whether small 
or large, is commonly ignored by analysts when they construct EDFs. Notice that the p- 
box, on the other hand, comprehensively expresses the measurement uncertainty 
exhibited in the measurement values. The resulting p-box and its associated Dempster- 

Shafer structure, which generalize the empirical distribution function, can be used in 

subsequent calculations. 

3.5.3 Basic idea about censoring 

Because they can represent arbitrary bounded measurement uncertainty in a natural and 
comprehensive way, p-boxes and Dempster-Shafer structures provide an excellent way to 
account for the uncertainty arising from data censoring. Censoring is simply a kind of 

measurement uncertainty. It gets a special name because, unlike run-of-the-mill 
measurement uncertainties, it can often be very large and usually afflicts data within 
certain value ranges. For instance, censoring in the form of “non-detects” or values 
“below detection limit” is common in chemical concentration data. Statistical 

assessments are notoriously sensitive to data censoring. The most common strategy used 
in traditional statistical analyses to handling censoring uses simple substitution methods 



(e.g., replace each censored value by ?4 the detection limit). More advanced strategies 
employ rather elaborate distributional models that attempt to reconstruct the dubious 
values based on the patterns shown by the remaining values. Helsel(l990) reviews these 
strategies and notes that the current statistical methods zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 Break down when censoring prevalent, 

Become cumbersome or unworkable with multiple detection limits, 

Need assumptions about distribution shapes, and 

0 Yield approximations only. 

Helsel concludes that each of the traditional methods has limitations and none is reliable 
for general use. 

P-boxes and Dempster-Shafer structures, on the other hand, can readily express the 

uncertainty that arises from many kinds of censoring. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs an example, suppose the 

empiricists who produced the hypothetical data described in the previous section reported 
that some of the measurements were below their analytical detection limit. This would 

mean that, because of the resolution of the measurement devices they employed, they 
cannot be sure the true values are not zeros. Suppose that the thick gray triangles in the 

graph below represent the censored data values. Censoring means that no matter what 
lower bounds might have been reported for these data by the measuring device, their left 
endpoints should really just be set to zero. The right endpoints are the respective 

detection limits (which may be variable during the experiment). Because the nominal 
estimate that might have been reported is not really a best estimate in any sense, one 

might want to redrawn the gray triangles as rectangles ranging from zero to the respective 
detection limits. The left and right endpoints are then separately cumulated just as in the 

previous section. This resulting p-box, shown below the data, is trivial to compute, yet it 
obviously captures in a comprehensive way what this kind of censoring does to the 
available information. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h 
c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.3 
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Figure 19: P-box (below) from a data set (triangle, above) in which there is left- 
censoring (thick gray triangles). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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In contrast to the limitations of traditional approaches to censoring, an approach based on 

p-boxes or Dempster-Shafer structures 

Works regardless of amount of censoring, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Handles multiple detection limits with no problem, 

0 Makes no distribution assumptions, 

0 Uses all available information, and 

Yields rigorous answers. 

Moreover, this strategy can be used for interval-censoring or right-censoring as well as 
left-censoring, or indeed for almost any kind of fundamental or happenstance limitation 

on mensuration. 

3.5.4 Basic idea about sampling uncertainty 

The bounding empirical cumulative histograms described above form a complete 
description of the uncertainty from measurements, which is composed of both variability 

and incertitude, so long as all the members in a population of interest were measured. 

The more typical situation, however, is that the available data are just a small sample 
from a much larger population. If we collected another sample of measurements, the 

picture of variation and incertitude would probably be somewhat different. In 
recognition of this fact, one might define sampling error, analogous to measurement 
error, as the difference between an observed empirical distribution function and the true 

distribution function for the entire population. We use the expression “sampling 
uncertainty” to refer to the incertitude about the distribution function that arises because 

only a portion of the individuals in a population have actually been measured. For the 
unmeasured individuals in the population, one might hold that our measurement 

uncertainty about them is infinite, but statisticians have devised arguments based on 

random sampling that allow us to make some assertions about the population as a whole 
even though it has not been measured exhaustively. 

How should we account for sampling uncertainty that arises from measuring only a 

portion of the population? It would seem reasonable to inflate the uncertainty about the 
empirical histograms in some way. The sampling theory for probability bounds analysis 
and Dempster-Shafer theory needs more development, but one strategy suggests itself. 

Kolmogorov-Smirnov (KS) confidence limits (Kolmogorov 1941 ; Smirnov 1939; Feller 
1948; Miller 1956) are distribution-free bounds about an empirical cumulative 
distribution function. Analogous to simple confidence intervals around a single number, 

these are bounds on a statistical distribution as a whole. As the number of samples 

becomes very large, these confidence limits would converge to the empirical distribution 
function (although the convergence is rather slow). 

Theoretically, the left tail of the KS upper limit extends to negative infinity. But, of 

course, the smallest possible value might be limited by other considerations. For 

instance, there might be a theoretical lower limit at zero. If so, we could use this fact to 
truncate the upper (left) bound at zero. The right tail of the lower limit likewise extends 
to positive infinity. Sometimes there are constraints on the largest value of a quantity 

too. It may be reasonable to select some value at which to truncate the KS limit. 



This formula can be extended to the p-boxes described in the previous sections that 
were formed by integrating left or right endpoints of plus-minus measurement intervals. 

For instance, consider again the interval sampling data represented as black triangles in 
Section 3.5.2. The p-box used to characterize the data set is reproduced in the graph 
below with dotted lines. The 95% KS confidence limits applied to the same data form 

another p-box shown below with solid black lines. With only a few data points, we'd 
expect fairly low confidence in the empirical distribution function, but as the number of 

samples becomes large, the confidence limits get closer together. Note, however, that 
even for very large samples, the bounds cannot get closer than the incertitude from 

measurement uncertainty prescribes. Do we need to make a new derivation to justifj the 
use of the KS limits for this application in which we account for measurement 

uncertainty? This is not necessary, because the extension relies on an elementary 
bounding argument: We have a bound on the distribution function (that we get when we 
account for measurement uncertainty), therefore what we compute when we apply the KS 
method are just bounds on the KS limits. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 20: Kolmogorov-Smirnov confidence limits (black) assuming a sample size 
of 15 associated with an empirical p-box (dotted). 

Although we assume that each sample is independent of other samples, this does not 
imply (nor does this use of the KS limits require) that the locations of the true sample 
values within their respective measurement uncertainty intervals are independent. 
Indeed, because we recognize that empirical measurement uncertainty may include 

systematic errors, we expect that they will generally not be independent of each other. 
The KS limits make no distributional assumptions, but they do require that the samples 
are independent and identically distributed. In practice, an independence assumption is 
sometimes hard to justify. 

KS limits are widely used in probability theory and risk analyses, for instance as a 
way to express the reliability of the results of a simulation. However, it has not 

heretofore been possible to use KS limits to characterize the statistical reliability of the 

inputs, just because there has been no way to propagate KS limits through calculations. 
Probability bounds analysis and Dempster-Shafer theory allows us to do this for the first 

time in a convenient way. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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It is widely suggested that statistical confidence procedures can provide the inputs 

for rigorous bounding analyses (e.g., Grosof 1986), and this does not seem unreasonable. 
However, we note that a p-box defined by KS confidence limits is fundamentally 
different from the sure bounds formed by knowledge of moments or shape information 

that we discussed above. The KS bounds are not certain bounds, but statistical ones. The 
associated statistical statement is that 95% (or whatever) of the time the true distribution 

will lie inside the bounds. It is not completely clear what the consequences of changing 
the nature of the bounds will be for subsequent calculations based on them. Sampling 
theory for probability bounds is a current area of research. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.5.4.1 An alternative treatment of sample uncertainty 

This section gives another perspective about representing sample uncertainty that may be 

useful when sample sizes are extremely small. It also allows us to look carefully at how 

p-boxes are constructed with point values, non-overlapping intervals and overlapping 
intervals. In all the graphs of this section, the horizontal axis is the quantity of concern 
and the vertical axis is cumulative probability. In the three graphs below, there are only 
two members of the population, and they have both been sampled. Thus, the p-boxes 

represent population measures rather than mere sample measures. In the top graph, the 

measured values were 1 and 3, and there was no measurement uncertainty. In the middle 
graph, the measurements were the intervals [ 1,2] and [3,4]. In the bottom graph, the 
measurements were the intervals [ 1,3] and [2,4]. Notice that the left side of the p-box 

starts at zero and jumps at each interval’s left side by lln, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is the sample size (in 
this case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn=2). The right side starts at zero and jumps by l ln  at each interval’s right side. 

Population estimates 
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Figure 21: Empirical p-boxes for three data sets (see text), each having sample size 
equal to 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Notice that the assembly of points corresponds to simple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmixing (see Sections 3.2.1.5 
and 4.7) of the indicator functions for the data values. The upper graph is just the 
(vertical) average of the indicator functions of the two scalars which are the unit step 

functions at 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. In terms of the Dempster-Shafer structures, this corresponds to 
combining ((1, 1)) with ((3, 1)) to yield ((1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO S ) ,  (3,OS)). Likewise, in the middle 

graph, we are mixing (vertically averaging) two intervals; the structures (([ 1,2], 1)) and 
{([3,4], 1)) are mixed to yield {([1,2], 0.5), [3,4], 0.5)). Forming a distribution of 

quantities is, essentially, forming a equally weighted mixture of the elements. 

In the next set of three graphs, the measured data are exactly the same: 1 and 3 for 
the top graph, [ 1,2] and [3,4] for the middle graph and [ 1,3], [2,4] for the bottom graph. 

But in this case, there are many more than two members of the sampled population, none 

of which have been measured. One perspective, due to Laplace, is that random sampling 
of n values divides the range into n +I domains, each of which is equally likely to be the 
subrange from whence the next sample point will be taken (Solana and Lind 1990). 

Under this perspective, the left side of each p-box starts at the value ll(n+l) and jumps 
by ll(n+l) at each interval’s left side. Thus, it reaches unity at the largest left side. The 

right side of the p-box starts at zero and jumps by ll(n+l) at each interval’s right side. It 
therefore only reaches nl(n+l). The tails of the p-boxes in these three cases therefore 

extend to infinity in both directions. 

Sample estimates 
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Figure 22: Alternative formulations of p-boxes for data sets of size 2. 
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This operation can also be interpreted as a mixture, just as the previous, population- 
estimate constructions were. The difference is that, here, the elements are mixed together 

with a vacuous element. This element is the infinite interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[-a, +m]. It is also the 

Dempster-Shafer structure (([-a, +a],  1 ] and the p-box [H(-m), H(+m)], where H(x) is 
the unit step function at x. The weight given each element in the mixture is the same, but, 

with the addition of the vacuous element, each weight is ll(n+l) rather than lln. 

those obtained from the Kolmogorov-Smirnov approach. This perspective could be 
useful if the risk assessment is not about the entire population, but only about the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnext zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sample to be drawn from the population. Even this application is dubious, however, 

because Laplace's idea, although attractive, clearly embodies an equiprobability model of 
what might better be considered incertitude. 

It is clear that the results computed under this perspective differ considerably from 

3.5.5 Numerical examples 

In this section, we will consider several numerical examples, including variation without 

incertitude of any kind, with sampling uncertainty, with measurement uncertainty, and 
with both sampling and measurement uncertainty. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.5.5.1 Variation alone (without measurement or sampling uncertainty) 

Suppose we have measured the following 15 data values: 17, 11, 14, 38, 15,3, 15, 16,20, 

25,21,28, 8, 32, 19. These values are plotted below as spikes (note that the two values 
at 15 overlap), and below that as a cumulative distribution function. 

0 10 20 30 40 

0 10 20 30 40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X 

Figure 23: Empirical distribution function (below) corresponding to a data set 
(spikes, above). 



In both plots, the horizontal axis is, say, some physical parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX such as a transport 

coefficient or a geometric dimension. In the lower plot, the vertical axis is cumulative 

probability from zero to one. The step function is the empirical distribution that we get 
by cumulating the point estimates from the empirical values. This distribution is a 

complete and comprehensive characterization of the variation among these data values. 
If these data are an exhaustive sampling of the entire population in question, then the 
distribution is a complete and comprehensive characterization of the variation in the 

population. The distribution is, of course, a degenerate case of a p-box for which the 
distribution serves as both the left and right bound. It is also the Dempster-Shafer 

structure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA((3, 1/15), (8, 1/15), (11, 1/15), (14, 1/15), (15,2/15), (16, 1/15), (17, 1/15), 
(19, 1/15), (20, 1/15), (21, 1/15), (25, 1/15), (28, 1/15), (32, 1/15), (38, 1/15)}, which is a 

degenerate case because the intervals are simple points. 

3.5.5.2 Variation with sampling uncertainty 

If the data values mentioned in the previous section are not a comprehensive collection 
from an entire population, but only a sample of the values from that population, then 
there is incertitude about the precise distribution function. We call this incertitude about 
the distribution function “sampling uncertainty” (although the expression “sampling 

error” is sometimes used for the same thing in the statistical literature). Based on only 15 
data points, we’d expect relatively low confidence in this empirical distribution function 

as a characterization of the distribution for the entire population. The 95% Kolmogorov- 

Smirnov confidence limits are shown below as solid lines around the grayed empirical 
distribution function. The associated statistical statement is this: 95% of the time such 

bounds are constructed from random samples, they will totally enclose the true 
distribution function. 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.5 

0 
0 10 20 30 40 

X 
Figure 24: Kolmogorov-Smirnov confidence limits (black) about an empirical 

distribution function (gray). 



The bounds are computed with the expression min( 1, max(0, DF(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD(a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn))) ,  
where DF denotes the best estimate of the distribution function, and D(a, n )  is the one- 
sample Kolmogorov-Smirnov critical statistic for intrinsic hypotheses for confidence 

level 100( 1-a)% and sample size n .  The values for D(a, n )  were tabled by Miller 

(1956). At the 95% confidence level, for a sample size of 15, the value of D(a, n)  is 
0.33760. The proof that there is such a number D that can be used to create confidence 
limits for entire distributions was given originally by Kolmogorov in 1933 (his 1941 
paper is the first in English). While solving the related problem of inferring whether the 

difference between two empirical distribution functions is significant, Smirnov (1 939) 

gave a first-order formula to compute D. Feller (1948) unified and simplified the 
derivations of both Kolmogorov and Smirnov. Miller (1 956) synthesized subsequent 

work that improved the formulation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD and gave extensive tables that are still in use 

today. 
KS confidence intervals are distribution-free constructions, which means that they do 

not require any knowledge about the shape of the underlying distribution. They do, 
however, assume that samples are identically distributed and independent of one another. 

If these assumptions are justified, then one could consider these bounds as a p-box that 

characterizes the population. The associated Dempster-Shafer structure can be obtained 
by discretization in the canonical way. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.5.5.3 Variation with measurement uncertainty 

What if data values are reported with a plus-or-minus range representing the empirical 
measurement uncertainty? Suppose these are the data: 3+3, 8*5, 1 1*5, 14k4, 15*4, 
15*4, 16*4, 17*3, 19*3,20&3,21*2,25*2,28*1, 32&1,38*1. These data are displayed 

below as little triangles where the locations of the peaks mark the best estimates and the 

bases mark their associated plus-minus intervals. Below the triangles is a plot of the p- 

box from these data. It characterizes the uncertainty about the distribution function that 
results when we account for the measurement uncertainty represented by the plus-minus 

intervals. The upper bound is found by cumulating the left endpoints of the intervals; the 
lower bound by cumulating the right endpoints. 
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Figure 25: Empirical p-boxes (below) corresponding to data set (triangles, above) 

containing measurement error. 

This pair of bounds, taken together, is analogous to the empirical distribution 
function. The associated Dempster-Shafer structure is (([0,6], 1/15), ([3, 131, 1/15), ([6, 

161, 1/15), ([lo, 181, 1/15),([11, 19],2/15), ([12,20], 1/15), ([14,20], 1/15), ([16,22], 
1/15), ([17,23], 1/15), ([19,23], 1/15), ([23, 271, 1/15), ([27, 291, 1/15), ([31, 331, 1/15), 

([37, 391, 1/15)}. 

3.5.5.4 Variation with both measurement and sampling uncertainty 

Applying the approach described in Section 3.5.4, we can apply the Kolmogorov- 

Smirnov limits to the measurement uncertainty bounds too. The result is shown below. 
The associated Dempster-Shafer structure can be obtained by canonical discretization. 
As can be seen from the graph below, unless there is some ancillary argument that 
truncates the range of the variable X, fully two third of the slivers from the canonical 

discretization will have infinite endpoints. The discretization is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(([-a, 191, 1/15), ([-a, 

1/15>, ([6,29], 1/15), ([lo, 331, 1/15), ([11, 391, 1/15), ( [ l l ,  a ] ,  1/15), ([12, a ] ,  1/15), 

20],2/15), ([-a, 221, 1/15), ([-a, 231, 1/15), ([0,23], 1/15), ([0,23], 1/15), ([3,27], 

( [ 1 4 , 4 ,  1/15), ([16,aI, 1/15), ( [ 1 7 , 4 ,  1 W } .  
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Figure 26: Kolmogorov-Smirnov confidence limits (black) about p-box (gray) 
accounting for both measurement and sampling uncertainty. 

3.5.6 Caveats 
The attraction is great for “just using the data” to prescribe the inputs for any analysis. 

But there are dangers too. The principle danger for risk analyses is that “the data” are 
usually but a very narrow window on a vast realm of possibility. Have we observed the 

most extreme values possible for a quantity? Given the smallness of the data sets 

typically available to analysts, the chances are slim that we can claim that they are 
representative of the distribution tails. The alternative to constructing the inputs directly 
from the data would be to model the data with parametric distributions or p-boxes. When 

we do this, we filter the available data through our engineering judgment to specify the 
inputs. Although the dangers of modeling are substantial too, it can often help analysts 
see beyond the limitations and strictures of a data set. 

3.5.6.1 Practical limitations of Kolmogorov-Smirnov 

There is a practical limitation of the Kolmogorov-Smirnov approach. It is that the 

bounds outside the data range depend on the choice of the smallest and largest possible zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx- 
values, which are used to truncate the KS limits. How does this choice about the tails 
affect the assessment? As we discussed in Section 3.1.3.3, there is a danger of the tails 
wagging the distribution in the sense that this choice substantially influences the resulting 
assessment. In some cases, there are natural or theoretical limits that are easily identified 

by the engineer or subject matter expert. In other cases, the issue should be studied as in 
sensitivity analysis. For instance, suppose that one of the results of interest in the 

example of Section 3.5.5.4 is the mean of the quantity. Given the measurement and 
sampling uncertainty, this mean would be characterized by an interval whose endpoints 

correspond to distributions at the left and right sides of the p-box. Clearly, the bounds of 
this interval would depend on where the tails are truncated. If we suppose that the lowest 



possible value of the quantity is zero, we can study the effect of varying the upper limit 
on the interval estimate of the mean. The graph below illustrates how the choice of the 
maximum affects the bounds on the mean. This dependence of the upper bound is linear, 

although the slope would be shallower if the sample size were larger than 15. 

100 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 100 150 200 

Maximum possible value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 27: Upper and lower bounds on the mean estimated from Kolmogorov- 
Smirnov limits as the maximum value (at which the limits are truncated) varies. 

If we assume that there could be no larger value in the population than has already 
been observed in the sample, then the upper bound on the mean would be 30.3, which is 

the smallest upper bound value plotted in the graph. The lower bound on the mean is not 
affected by the choice of the maximum possible value at which the KS limits are 

truncated. 

boxes is discussed in the next section. 
A more fundamental but theoretical limitation of using KS limits to construct p- 

3.5.6.2 Sampling theory for p-boxes and Dempster-Shafer structures 

Convolutions with p-boxes assume that the true underlying distributions are surely 
contained within the input p-boxes. If this is the case, then the algorithms are guaranteed 
to enclose the convolution distributions (Williamson and Downs 1990; Berleant 1993). 
If, in fact, the p-boxes are not sure bounds, but represent mere statistical claims of the 
form “95% of the time such bounds are constructed, they will contain the true value (or 
distribution)”, this guarantee will be void. The equivalent convolution operations for 

Dempster-Shafer structures were likewise defined by Yager (1 986) without reference to 

any sort of sampling theory that would justify the use of confidence intervals in their 
construction. Consequently, when confidence interval procedures are used to produce 
intervals, p-boxes, and Dempster-Shafer structures, their use in subsequent calculations is 
only contingent on the implicit hypothesis that the structures appropriately enclose the 

respective true distributions. 

A comprehensive theory that incorporates and generalizes the sampling theory of 
traditional probabilists would be needed to fully just@ the use of confidence procedures 
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to create p-boxes. Such a theory would allow information based on sample data to be 
used to make projections about entire populations. The development of such a theory 
requires further research. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.5.6.3 Plotting position 

All discussions of empirical distribution functions must consider the minor controversy 
about “plotting position” which addresses exactly how much and where the function is 
incremented in relation to the observed data. One method commonly employed uses the 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F,(Xi) = i / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n + 1) 

to set the value of the empirical distribution function. In this formula, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is the sample 

size and i stands for the rank order (1,2, . . . , n)  of the measurement. Also commonly 

employed is the function 

F,(x~) = ( i  - 0.5) / ~1 

which is known as Hazen plotting. Indeed, there are many possible formulas to choose 
from. Several of these have desirable properties, but none has yet emerged as the 
standard way to construct the empirical distribution function. When data are very sparse, 

the choice of plotting position can make a substantial difference for the resulting p-box 

and therefore on the Dempster-Shafer structure discretized from it. We also have the 

additional problem of deciding what value should be used for F, for values of x between 
measured values. Williamson and Downs (1 990) suggested using an outward-directed 
scheme to conservatively and rigorously capture measurement uncertainty illustrated by 
the figure below. 

Figure 28: Conservative plotting scheme (step functions) to connect values 
(squares) of a function. Ordinate is cumulative probability. 

In this display, there are two sets of four points, each representing decided values of the 
empirical distribution function. The four points on the left and the line segments 
connecting them would be used to characterize the left bound of a p-box (that is, the 

upper bound on probabilities or lower bound on quantiles). The four points on the right 

and their line segments would be used to characterize the right bound of a p-box (lower 
bound on probabilities or upper bound on quantiles). This scheme traffics on the 
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monotonicity of distribution functions. Given that the points represent reliable samples 
of the boundaries of uncertainty about a distribution function, these outward-directed line 

segments surely contain all distribution functions so circumscribed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.5.6.4 Confusion about measurement uncertainty 

It may not always be obvious what measurement uncertainty is associated with a 
particular measurement. This is especially likely for historical data that were collected 

before the widespread appreciation of the importance of such considerations. In tabular 
summaries of data, the essential information about measurement uncertainty may have 
been lost. This is particularly true for computerized versions of such tabular summaries 

where the number of digits originally recorded in a measurement may be obscured or 

misleading. In such cases, it may be desirable to infer what the likely measurement 

uncertainty would have been, rather than to neglect it entirely by assuming there was no 

measurement uncertainty. 

3.5.6.5 Non-interval representations of measurement uncertainty 

Some theoretical treatments of measurement uncertainty, most notably the IS0 standard 
(Dieck 1997; see also Taylor and Kuyatt 1994), hold that measurement uncertainties 

should be modeled as a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnormal distribution centered at the best estimate, rather than an 
interval. This model represents a theory about measurement uncertainty that is entirely 

different from-and largely incompatible with-that considered here. The normal 

distribution model is justified theoretically and most reasonable in practice when errors 
are small and independent and the only interest is in obtaining the best estimate possible. 
In a context where the concern focuses on tail risks and measurement uncertainties are 

typically large and often biased and correlated, this approach does not seem to offer the 
flexibility needed for use in risk analyses. The normal distribution model has been most 

widely used to characterize the measurement of physical constants such as Plank’s 
constant, etc. It would be possible to replace each given normal distribution with an 

interval of appropriate width, but the details of how this might best be done would require 
further investigation. 

3.5.6.6 Unbounded censoring 

Not all types of censoring are immediately amenable to characterization with p-boxes and 
Dempster-Shafer structures. Only those forms for which finite bounds on the censored 
values can be specified are easy to handle. Non-detects which are left-censored values 

that must be positive and various kinds of window-censored values present no problem. 

But if the censored data are unbounded and there is no way to bound the values post hoc, 
then the uncertainty cannot be represented in a finite p-box or Dempster-Shafer structure. 
Examples of unbounded censored data would include, for instance, unobserved times to 
failure or arrival times. If such values could be arbitrarily large, then a p-box or 
Dempster-Shafer structure that is faithful to the data and its uncertainty would necessarily 

have infinite support. 



3.6 Which method should be used? 

Most of the problems faced by risk analysts are simultaneously characterized by urgency 
and lack of relevant data. In this context, the most practical advice about which method 

should be used to obtain the inputs is to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse anything and everything that works. This 
short section presents a synopsis of the properties of the characterization methods 
considered in this report and a checklist of questions to guide the analyst to methods that 

may be appropriate for constructing p-boxes and Dempster-Shafer structures. 

3.6.1 Summary of properties 

In the outline below, we summarize the properties of the various methods for 

characterizing uncertain numbers with p-boxes and Dempster-Shafer structures. The 
notation RP (Rigor-preserving) means that the resultant Dempster-Shafer structure or p- 
box is mathematically rigorous so long as its specifications are. Mathematical rigor 
implies that, subject to its assumptions, the structure is guaranteed to enclose the 
underlying distribution or quantity. The notation BP (Best Possible) means that the 

resultant Dempster-Shafer structure or p-box could not be any tighter without more 

information. The notation SU (Sample Uncertainty) means that the resultant Dempster- 
Shafer structure or p-box represents a statistical confidence claim rather than a rigorous 

statement about the underlying distribution or quantity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Assumption 

Rigorous bounds on parameters (RP, BP) 

Confidence intervals on parameters (SU) 

Envelope (RP, BP) 

Imposition (RP, BP) 
Mixture 

Modeling 

Weights precise (RP, BP) 
Weights uncertain 

Rigorous bounds on weights (RP, BP) 
Confidence intervals on weights (SU) 

Convolution (RP, BP if no repeated parameters) 
Composition (RP, BP) 

Deconvolution (generally not BP) 
Robust Bayes (SU) 

Constraint specification 
Markov inequality (RP, BP) 
Rowe’s range-mean inequality (RP, BP) 
Chebyshev inequality (RP, BP) 

Inequality of Saw et al. (SU) 
Cantelli inequalities (RP, BP) 

Karlin and Studden’s Chebyshev systems 
Positivity constraint (RP) 

Symmetry constraint 
Unimodality constraint (mode known) (RP, BP) 
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Increasing or decreasing hazard function (RP, BP) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Experimental measurements 

Interval measurement uncertainty (RP, BP) 

Censoring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(RP, BP) 
Sampling uncertainty with Kolmogorov-Smirnov confidence limits (SU) 

3.6.2 Checklist of questions 

The list of questions below can guide the analyst to a useful strategy for transforming the 
available empirical and theoretical knowledge about a quantity into an estimate of it in 

terms of a p-box or a Dempster-Shafer structure. If the answer to a question is “yes”, 

follow any questions that may be indented underneath. The number in bold is the number 
of the section in this report that addresses the method that could be useful to you. This is 
not a flowchart. There is not necessarily only one path through this thicket of questions. 

If the answers to more than one series of questions are all yes, it will probably be possible 
to produce more than one estimate. Because each such estimate is reliable, they can then 

be combined with the intersection aggregation operator (Section 4.3) to yield an 

improved estimate. 

Do you have measurements of the quantity? (3.5) 
Of the entire population? (3.5.2,3.5.3) 
Of a sample from a population? (3.5.4) 

Can you limit the range? (3.5.6.1) 
Can you limit the possible range of the quantity? (3.4.1) 

Do you know (bounds on) the mean? (3.4.1.2) 
Do you know (bounds on) the mode? (3.4.1.4) 
Do you know (bounds on) the median or other quantiles? (3.4.1.3) 

Can you put upper limits on the probability density? (3.4.5) 
Can you put lower limits on the probability density? (3.4.5) 
Is the quantity necessarily positive? (3.4.8.1) 
Is the distribution function convex? (3.4.8.2) 
Is the distribution function concave? (3.4.8.3) 
Is the hazard function increasing or decreasing? (3.4.8.4) 
Can you express the quantity in a model in terms of other better known quantities? (3.2) 
Do you specify a set of prior expectations for the distribution of the quantity? 

Can you construct a set of likelihood functions? (3.3) 
Can you mechanistically justify a particular distribution shape? 

Can you bound the parameters? (3.1) 
Do you have multiple estimates for the quantity? (4) 

Are all the estimates reliable? (4.3) 

66 



4 Aggregation: how are different sources combined? 

The methods reviewed in the previous section of this report have implicitly assumed that 

the information used to fashion the Dempster-Shafer structure or p-box was internally 
consistent. This might be a reasonable assumption when all the information comes from 

a single source, such as single expert advisor or a single measurement protocol. Of 

course, risk analysts are not insulated from the proverbial expert who “disagrees with 
himself’ or from apparently inconsistent readings from a measurement protocol device. 

And the possibility of collating contradictory information becomes all the more likely as 
multiple experts are consulted and as different or complementary measurement schemes 

are employed. 
The previous sections assumed that the analyst wanted to obtain a Dempster-Shafer 

structure or p-box. In Section 4, we assume the analyst already has more than one 

Dempster-Shafer structure or p-box for a single quantity and needs to somehow combine 
these estimates into a single coherent expression about what is known about the quantity. 
We discuss several strategies for combining different estimates, including 

1. null aggregation, 

2. intersection, 

3. envelope, 
4. Dempster’s rule and its modifications 

5. Bayes’ rule, 
6. mixture, 

7. logarithmic pool, and 
8. averaging. 

After a preliminary discussion of the desirable mathematical properties that an 

aggregation method would have in Section 4.1, a separate section is devoted below to the 
consideration of each of these strategies. Intersection and enveloping are addressed in 
Sections 4.3 and 4.4 respectively. Dempster’s rule is considered in Sections 4.5, and 

Bayes’ rule is reviewed in Section 4.6. Mixing, logarithmic pooling and averaging are 

treated in Sections 4.7,4.8, and 4.9 respectively. The attention given each strategy 
reflects in part how useful it might be for the kinds of problems we expect to encounter in 
real-world applications of risk analysis. Section 2 of Oberkampf et al. (2001) gives a 
synopsis of those problems. 

Averaging, mixing and some of the variants of Dempster’s rule can be generalized 
by applying weights to the various estimates being aggregated. In Section 4.10, we 
consider several different weighting schemes. In Section 4.1 1, we discuss strategies to 

handle the case when estimates are only a small sample of a larger population of interest 
and ways to handle model uncertainty. Section 4.13 offers advice on selecting which 

aggregation method to use in a particular situation. 
In this report, we don’t discuss aggregation strategies that lead to fuzzy numbers 

(Kaufmann and Gupta 1985), hybrid numbers (Ferson and Ginzburg 1995) or fuzzified 
Dempster-Shafer structures (Yager 1986). For the sake of limiting the report to a 



manageable size, neither do we review the larger philosophical questions of data fusion 
or the more specialized area of statistical meta-analysis. 

Many of the estimates to be aggregated will contain some degree of subjectivity. 
This is obviously true for expert opinions, but it is also true of many empirical estimates. 

This report is not primarily concerned with aggregating subjective belief or subjectively 
quantified statements (although the methods described herein may be useful for them). 

Insofar as they are of interest here, the estimates to be aggregated fulfill roles as 
quantitative scientific or engineering judgments or claims that we take to be reliable for 

the most part. We recognize that errors and mistakes are possible in these inputs, and 
several of the methods we consider will indeed be useful in uncovering such 
inconsistencies. Nevertheless, we seek analyses appropriate for the case where evidence 

is objective. We will assume that the evidence we use as input is largely free of personal 
belief and idiosyncratic opinion. In quantitative risk analyses, we do not care about what 

one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbelieves about a system so much as we are concerned with what one knows about it. 
Clearly, this can be a fine distinction, but we think it is an important one. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A rather large literature has developed over the last thirty years on the aggregation of 
evidence represented in Dempster-Shafer structures. The focus of this literature has been, 

of course, Dempster’s rule and its various arguments and revisions. Sentz and Ferson 
(2002) reviewed many of the most important of these rules. Section 4 of the present 

report, having been thereby freed of the scholarly obligation to review this literature, will 
focus instead on several aggregation approaches we expect to be useful in synthesizing 

expert opinion and empirical evidence about real-valued but uncertain quantities for use 
in risk analysis. For the most part, many of the approaches we review have not 

previously (or at least widely) been considered for use with Dempster-Shafer structures. 
This apparent novelty is certainly not the result of any complexity or subtlety or 
nonobviousness of the method. Instead, it may simply be that this literature has rarely 

considered the use of Dempster-Shafer structures in the context that motivates the present 

report, that of risk analyses typically involving convolutions of uncertain but real-valued 
quantities and a special concern with extreme or tail events. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.1 Desirable properties of aggregation methods 

From a purely mathematical viewpoint, we could consider arbitrary operations for 
combining estimates involving uncertainty. However, we want to combine different 
estimates in a sensible and meaningful way. There are some requirements that the 
aggregation operation should satisfy. These requirements are not absolutely necessary 
because, in addition to arguments in favor of these requirements, there are usually some 

counterarguments. However, it is desirable to consider to what extent these aggregation 
operations satisfy these commonsense requirements. We describe these natural 
requirements in detail below. We will find that what seems like commonsense in one 

situation may not be entirely reasonable in another context or when the type of 
information is different, and therefore the descriptions include any counterarguments or 
caveats about a requirement that should be kept in mind. 

Depending on what is more convenient in a given context, we will use both the 
notation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“X*Y’ and the notation “A(X,Y)” to denote aggregation operations, where X and 

Yare the individual estimates of some quantity. Given two probability boxes B1 = 



[ q , F , ]  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB2 = [%,E,], we will say that Bl is tighter than B2, whenever both FI (x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

F Z  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF&) I &(x) for all x. We sometimes express this by saying that B2 encloses 

B1. We will symbolize this fact as Bl B2. (Obviously, this relation is a partial ordering 

because, given any two p-boxes, it may be the case that neither encloses the other.) If, 

instead, one or both of Bl and B2 are Dempster-Shafer structures, the statement refers to 
their respective cumulative plausibility and belief functions through the canonical 
discretization (see Section 2.3). This allows us to say that a Dempster-Shafer structure is 
tighter than another, or that one encloses another, without ambiguity. Note that the 
statement has nothing to do with the number of elements in the Dempster-Shafer 

structures. For instance, the structure {([1,3], 0.25), ([2,4], 0.5), ([3,5], 0.25)) is tighter 
than the structure (([ 131, l)]  because the pair of plausibility and belief functions of the 

former fit inside those of the latter. 

- 

4.1.1 Generality 

To be most useful, an aggregation method should work with real numbers, intervals, 
probability distributions, p-boxes and Dempster-Shafer structures, and arbitrary finite 
combinations of these various kinds of objects. Moreover, the aggregation method 
should generalize operations on these various structures. For instance, if the method 
gives one answer when applied to real numbers, it should give an equivalent answer 

when applied to distributions that are delta functions. Likewise, the results from applying 

it to intervals should be consistent with results from applying it to degenerate p-boxes or 

Dempster-Shafer structures that are information-theoretically equivalent to the intervals. 

(See also continuity in Section 4.1.5.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Counterargument. It might be argued that it is sometimes natural to treat different 

kinds of objects differently. For instance, it may not be disturbing to an analyst that an 
aggregation method treats real numbers and probability distributions differently. They 
are, after all, different things. 

4.1.2 Closure 

It would be convenient if an uncertain number (Section 2.4) were always the result of 

applying an aggregation operation to a collection of uncertain numbers. If this is the 
case, the operation is said to be closed in the space of uncertain numbers. 

Counterargument. It may not be entirely reasonable to expect that a single 
uncertain number can always fully or appropriately express the complexity of an arbitrary 
collection of uncertain numbers. 

4.1.3 ldempotence 

What if there were two identical estimates of X? What if two experts or empiricists come 
up with exactly the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, how can we combine their knowledge? A natural idea is 
that if two experts came up with the same uncertainty, this means that this is the right 

representation of this uncertainty, so both experts are right. In other words, if we 
combine uncertainty zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX with itself, we should end up with exactly the same uncertainty X, 
i.e., we should have X*X=X.  This “agreement preserving” property of an aggregation 
operation * is called idempotence. It seems reasonable that an aggregation operation be 
idempotent. 



Clemen and Winkler (1999) mention a related property called unanimity, which can 
be thought of as a pointwise version of idempotence. If all the estimates agreeing about 
the probability (or bounds on the probability) for a particular value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx implies that the 

aggregation will have the same probability (or bounds) for that value, then the 

aggregation is said to have the unanimity property. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Counterarguments. Suppose that two experts come up with exactly the same 

description of their uncertainty: that the (unknown) value x of the desired physical 

quantity belongs to the interval [0, I]  with probability more than 90%. What would the 

result of aggregating these uncertainties be? If the two experts were using exactly the 
same sources of information and used the same arguments to process these sources, then 
the fact that these two experts came up with exactly the same conclusion simply confirms 

that they both did the correct computations. So, when we aggregate these two 

uncertainties, we should get the exact same uncertainty. In this case, idempotence is 

justified. But what if the two experts used independent sources of information and end 

up with exactly the same conclusion-that x E [0,1] with probability 90%? In this case 
the fact that two experts, based on independent sources of information, came up with the 
same conclusion, increases the reliability of this conclusion. In this case, the result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX * X  
of combining the two identical uncertainties Xis that x belongs to the interval [0,1] with 
some probabilityp>90%. In other words, in this case, X*Xis different fromX-so there 

is no idempotence. Other examples where idempotence should not be demanded are 

stories told to a police officer or evidence about a historical event. If several independent 

witnesses tell exactly the same story, its reliability increases. 

4.1.4 Commutativity 

A seemingly natural requirement is that if we have two sources of information about an 
uncertain quantity collected from two experts or two empirical devices then the result of 

aggregating their information zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX and Y should not depend on the order in which these two 
different pieces of information are presented. In other words, we should have X*Y=Y *X. 
This property is called commutativity. 

of the two sources of information. Commonly, however, one source of information is 
more reliable than the other. For example, when we combine information coming from 
two experts, it is normal to give more weight to the opinion of a more respected expert 
who has a history of better estimates and better predictions. If we weight one input more 
than another, then clearly switching the inputs (but not switching the weights 

accordingly) would yield a different numerical result. Consequently, the weighted 
aggregation operation will not be commutative. Another situation in which one might not 
expect an aggregation to be commutative is when earlier estimates tend to influence later 

estimates. The asymmetry of this influence could make commutativity an unreasonable 
restriction. 

Counterarguments. Commutativity makes sense if there is no reason to prefer one 

4.1.5 Continuity 

What if we have two different estimates X and Y, and a third estimate X’ which is very 

close to X, which we symbolize as X’ X. Because X’ x X, it is reasonable to require that 

X*Y is close to X’ * Y. Symbolically, X* Y x X‘ * Y. In other words, it is reasonable to 



require that a small change in one of the uncertainties Xto  be aggregated lead to only a 

small change in the result of the aggregation. This property is called continuity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Counterarguments. At first glance, continuity seems natural, but there are 

examples when it is counterintuitive. One such example is the case when each estimate is 
an interval of all possible values of the desired quantity. In this case, if one piece of 

information is that the quantity should be in the interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[x-, x'], and the other piece of 

information is that this same quantity should be in the interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy = b-, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy'], this means that 

the actual value x should belong to both intervals. The set of all the values which belongs 

to both intervals x and y is the intersection x n y = [max(x-, y-), min(x', y')] of these 
intervals. So, in this case, the aggregation operation is simply an intersection. One might 

expect this operation to be continuous. After all, both the lower endpoint max(x-, y-) and 

the upper endpoint min(x+, y') of the intersection interval are continuous functions of the 

parameters x-, x+, y-, and y" that characterize the intervals to be aggregated. So, a small 

change in one of these four parameters leads to small changes in the endpoints of x n y .  
But intersection is not continuous. Continuity of a function requires that a function both 

be defined and have a value that is the same as its left and right limits. What happens if 
we slowly move the interval y so that its intersection with x becomes smaller and smaller 

and finally disappears? When there is no intersection, the aggregation operation is 
undefined and thus it fails to be continuous. Any modification of the aggregation 

operation to make it continuous would, in this case, fail the spirit of intersection and thus 
be counterintuitive and perhaps unwelcome. 

4.1.6 Associativity 

It is natural to require that if we have three different sources of information X ,  Y, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, 
then the result of aggregating the corresponding pieces of information should not depend 
on the order in which we aggregate these three pieces. We can first combine Xand Y into 

a combined knowledge X *  Y, and then combine the resulting aggregation with Z to obtain 
in (X* Y)*Z. Alternatively, we can combine Y and Z into the aggregation Y *Z first, and 

then combine the result with X, yielding X*( Y *Z). It is reasonable to expect that both of 
these ways will lead to identical results, (X*Y) *Z=X*(Y*Z).  In mathematical terms, 

this requirement is called associativity. 
Counterarguments. There are several aggregation operations that are not 

associative but which are nevertheless considered eminently reasonable ways to combine 

estimates. The best example is perhaps numerical averaging. For example, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX* Y is 

taken to mean the average ofXand Y, then (0" 1)*2 = 0.5*2 = 1.25, although 
0*( 1 *2) = 0" 1.5 = 0.75, which is not the same as 1.25. Because associativity is not a 

feature of numerical averaging, the property must not be essential for a useful 
aggregation operation. 

4.1.7 Symmetry 

When an aggregation operation can take several operands at once, it may be too 
cumbersome to talk about it only in terms of how it behaves for only two at a time. The 

property that generalizes those of associativity and commutativity for the case with many 
arguments is called symmetry. Let A denote an aggregation operator that can take a 

variable number of arguments, which are denoted X,. If A(X1, X2, . . ., Xn) = A(X&), X0(2), 



. . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX&,) for all permutations (T of the arguments, the operation is called symmetric (in its 
arguments). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Caveat. Symmetry makes sense if the estimates should all be weighted equally, or if 
any needed weighting can be taken care of in a step prior to the aggregation itself. 

4.1.8 Quasi-associativity 

The fact that simple averaging is not associative belies the larger truth that it is usually 

used in an associative way. Few analysts would actually average each new datum with 
the running average with equal weights. Instead, they would typically weight the running 
average and the new datum in a way that reflects their respective reliabilities. For 

instance, if M is the current value of the running average and it is based on a total of n 
separate estimates X I ,  X2, . . ., Xn, then it might combined with a new datum Xn+l with the 
formula (nM + X,+l)/(n+l). Of course, this is equivalent to pooling all the data together 
and forming an average once as in the expression (XI + X2 +. . .+ Xn, + Xn+l>/(n+l). These 

operations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare associative and they suggest a way to disassemble the parts of a non- 

associative operation and reconstruct them in an associative way. Yager (1 987b) used the 

notion of quasi-associativity to describe operations for which this could be done. If there 
exists an multiargument operation A"(X1, X2, . . . , Xn) that is symmetric, i.e., A"(&, X2, . . . , 
Xn) = An(X&), X0(2), . . ., Xo(n)) for all permutations (T of the arguments, and An=2(X, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY) = 

X*Y, then the operation * is said to be quasi-associative. 
Counterargument. The only counterargument for quasi-associativity is that, like 

associativity (Section 4.1.6), it is evidently not an essential property of a useful 

aggregation operation. 

4.1.9 Intersection-preserving property 

One might expect that any agreement that may exist among the estimates to be 
aggregated would persist in the result of the aggregation. One aspect of agreement is 
covered by the idempotence property (Section 4.1.3), but another aspect of agreement 

concerns the mutual uncertainty among the estimates. In particular, consider the 
intersection of the three interval estimates [ 1, 81, [3, 51, and [4, 121, which is the interval 
[4,5]. Each of the three estimates considers the values in this interval as possible. Of 

course, if they didn't all overlap, the intersection would not exist. But, given that it does, 

perhaps the intersection should be a part of the result of an aggregation operation applied 
to the three intervals. 

Intersections of intervals, p-boxes and Dempster-Shafer structures can be computed 
with the intersection operation (Section 3.2.1.4). Because of their inherent precision, a 
collection of real numbers wouldn't have an intersection unless the real numbers all 
happened to be identical. Likewise, a collection of probability distributions would not 
have an intersection unless all of the probability distributions are identical. It is clearly 
possible, then, for estimates to broadly overlap without having an intersection. The 

intersection identifies the portion of epistemic uncertainty common among the estimates. 

It may be reasonable to expect an aggregation operation to preserve an intersection, 
if one exists, in its result. Given that none of the estimates makes a specific claim about 
the quantity within the region of intersection, one might be surprised to find that, 
together, somehow they do. An operation that respects the intersection of uncertain 

numbers would tend to preserve any agreement about the epistemic form of uncertainty 
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that exists among the estimates. In the special case that the xi are intervals, if& n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX2 n 

. . . n X, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc &XI, X2, . . ., Xn) whenever XI n X2 n . . . n X, # 0, the operation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is said to 

be intersection-preserving. More generally, for uncertain numbers Xi, the aggregation 
operation is intersection-preserving if the aggregation of XI, X2, . . . , and X, encloses their 

intersection whenever one exists (intersection is taken in the sense of Section 3.2.1.4 and 
enclosure is taken in the sense of Section 4.1). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Counterargument. Bayes’ rule, Dempster’s rule, logarithmic pooling and 

averaging under independence are not generally intersection-preserving. If one 

nevertheless considers these to be useful aggregation operators, then this property is 
evidently not an essential one for aggregations. This property will usually be irrelevant 

when the estimates are all real numbers or all probability distributions because they will 
generally not have intersection in the first place. 

4.1.10 Enclosure-preserving property 

It might also be reasonable to expect that tightening the uncertainty in any input estimate 
could only tighten the aggregation result that used it. In other words, it would be 

surprising if the result of an aggregation could get wider (more uncertain) even though 

the input estimates were narrower. If Xi’ E Xi necessarily implies that A(&, 1 2 ,  , . . , Xi’, 
. . ., Xn) E A(X1, X2, . . ., Xi, . . ., X,), the operation A is said to enclosure-preserving. 

Counterargument. Like the notion of the preserving intersection, the idea of 
preserving enclosure is only useful for intervals, p-boxes and Dempster-Shafer structures. 

Precise real numbers wouldn’t enclose each other unless they happened to be identical, 
and the same is true for precise probability distributions. 

4.1 .I 1 

What should be done if one of the experts consulted has no opinion at all on the question 

asked? Or, what if the expert’s opinion is that no one knows the answer to the question. 

If one of the estimates to be aggregated is the vacuous interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[-a, +a], or its equivalent 

p-box [H-&), H+&x)] or Dempster-Shafer structure (([-a, +a], l)}, one might expect 
that the aggregation operation should ignore this estimate. How else would an abstention 

be treated? If A(X1, X2, . . ., X,, [-a, +a]) = A(X1, X2, . . ., X,), the operation is said to be 
insensitive to vacuousness. 

Counterargument. Although it might be appropriate to ignore an abstention, it 
might not be so reasonable to ignore a positive claim of general ignorance. For instance, 
if one of the experts asserts that none of the other experts’ estimates are tenable and that 
the scientific discipline is too immature to support any claim on the subject, it would be 

hard to dismiss this assertion simply because it is inconvenient. Many aggregation 
operators are sensitive to vacuousness. Indeed, no operation could be otherwise if it 
reflects the number of estimates being aggregated. 

Insensitivity to vacuousness 

4.1 . I 2  Narrowness 

One might think it desirable that an aggregation operation not offer results that go beyond 

the span of the original estimates. To do so would be to engage in a kind of aggregation 
activism that could seem anti-empirical in spirit. For instance, if one estimate is [ 1, 51 
and the other estimate is [2,6], one might look askance at an answer that suggested the 



value might be 10. An operation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is called narrow if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(X1, X2, . . ., Xn) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE envelope(X1, 

X,, . . ., Xn), where envelope is the operation defined in Section 3.2.1.3. Some property 

like narrowness would seem to be a basic feature of any well behaved aggregation 
method. 

modifications of intersection reflect inconsistency among the estimates by partially 
enlarging uncertainty beyond the span of their inputs. Likewise, all strategies to account 

for statistical sampling uncertainty among the estimates inflate the uncertainty beyond 
that seen in the original estimates. Insisting that an aggregation operation be narrow 

would incapacitate any such strategy. 

Counterargument. Some aggregation operations such as Dempster’s rule or certain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2 Null aggregation 

An alternative idea to aggregation is to keep all the estimates separate and perform 

multiple, contingent analyses for each separately. Although this is hardly an approach to 
aggregation, it deserves mention only to point out that it is an option available to the 

analyst who cannot decide on an aggregation. The drawback of course is that this 

approach yields no overall synthesis about the result of calculations, but it can provide 

direct answers to some fundamental questions that beset analysts. 
Usually, analyses would include a computationally intensive sensitivity or ‘what-if 

study. The computational costs increase as a combinatorial function of the number of 
variables for which no aggregation is made, and, of course, these costs can become quite 
significant very quickly. For instance, if there were three variables, each of which had 

only five possible alternative values, then null aggregation would require 53 = 125 
separate analyses. It is sometimes possible to obtain perhaps most of the utility of a 

what-if study that makes no decisions about aggregation at a fraction of what would be its 

computational cost by using an enveloping strategy (Section 4.4) instead of null 
aggregation. 

4.3 Intersection 

When the estimates to be aggregated represent enclosures of the uncertainty about a 
quantity, that is, when each comes with a claim that the quantity is sure (in some strong 
sense) to lie within limits given by the estimate, then intersection is perhaps the most 

natural kind of aggregation to use. The idea is simply to use the smallest region that all 
estimates agree is possible with high confidence as the aggregation result. For instance, 
if we know for sure that a real value a is within the interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = [ 1,3], and we also know, 
by some separate argument or evidence, that a is also within the interval y = [2,4], then 

we may conclude that a is certainly within the interval x n y = [2, 31. 
For interval inputs XI, x2, . . . , x,, the formula for intersection is the familiar form 

+ - -  
xl n x2 n . . . n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxn = [ max(x1 , x2 , . . ., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx~), min(xl+, x2+, . . ., x, ) ] 
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where xi- = inf(x 1 x E xi) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi’ = sup@ 1 x E xi) are the respective endpoints of the 
intervals. (If the intervals are all closed, then inf and sup can be replaced by min and max 
respectively.) 

The most general definition of intersection can be specified in terms of probability 

boxes. If there are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn p-boxes F1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ F , F , ] ,  F2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[E,F,],  . . ., F, = [c,F,], then their 

intersection is defined to be 

where 
F1 * F* * . . . * F, = [ F * (x), F*(x)] 

F * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(XI = min( F1 (XI, F 2  (XI, . . ., F ,  (x) ), 

E* (x) = max( F 1 (4, F 2 (4, . * * , F n (4 1. 

The operation is defined whenever 

the analyst knows (or is highly confident) that each of multiple p-boxes encloses the 
distribution of the quantity in question. The argument that leads to intersection for p-boxes 
is exactly the same bounding argument that is used for intervals (Rowe 1988). 

cumulative plausibility and belief functions of such structures form p-boxes. The result of 

aggregating these p-boxes can then be translated back into a Dempster-Shafer structure by 
canonical discretization (see Section 2.3). 

As mentioned in Section 3.2.1.4, the intersection operation on uncertain numbers is 

rigor-preserving in that if the claims represented by the separate estimates are true, then the 

result of the intersection is also sure to enclose the quantity (Rowe 1988). This method is 
also best possible in the sense that it could not be any tighter given the stated information. 

Intersection also enjoys most of the properties outlined in Section 4.1. It is idempotent, 
commutative, and symmetric in its arguments. It is intersection-preserving, enclosure- 

preserving, insensitive to vacuousness, and narrow. 

various subcategories of uncertain numbers, the result, if it exists, will be another 

uncertain number from the same class. For instance, the intersection of a collection of 
intervals, if it exists, is another interval. Likewise, the intersection of p-boxes will be a p- 

box. Intersection is a general operation (sensu Section 4.1.1) in that it can be applied to, 
and it yields coherent results for, all the kinds of estimates we consider in this report. 
However, it will usually not be useful for real numbers or precise probability 

distributions. The reason, of course, is that these objects express only variability and no 
incertitude. In this regard, they are making very specific statements about what a 

quantity is or how it varies. Unless the inputs happen to be identical, the intersection 
among real numbers, or among precise probability distributions, usually does not exist. 
Where it is defined, intersection is continuous, but it is not a continuous operation 
generally. The reason is that as the overlap becomes smaller and eventually disappears, 

the operation suddenly fails to yield a result. 
Despite its several desirable properties, some analysts feel that intersection has only 

limited utility for aggregation because it requires the very strong assumption that the 

* (x) I F * (x) for all x. This operation is used when 

This formulation extends to Dempster-Shafer structures* immediately. The 

When the intersection operation is applied to collections of estimates within the 

*The idea of intersection is also integral in the definition of Dempster’s rule and most of its variants (see 

Section 4.5). However, in that context, it is used at an entirely different level. 



individual estimates are each absolutely correct. It might be ill advised, for instance, to 
apply this operation to expert opinions if any of the experts might be wrong. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn real 
problems accounting for uncertainty, wrong opinions may of course often be more 

abundant than correct ones. 

4.3.1 Numerical example 

Suppose we want to aggregate the following three estimates, each of which we take as a 

completely reliable estimate of a quantity: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X =  [0, 501, 

Y -  normal( [5, lo], [2,3]), 

The first estimate Xis  just an interval. The second Y is a p-box (see Section 3.1) 

specified by the class of normal distributions whose means are between 5 and 10 and 

whose standard deviations are between 2 and 3. The third estimate Z is a Dempster- 
Shafer structure that may have come from expert opinion or empirical observations. The 

sequence of three graphs below depict the p-boxes corresponding to these three inputs. 
The tails of the graph for Y extend to infinity in both directions. The left tail of the graph 

for Z extends to negative infinity. These three graphs are depicting the cumulative 
plausibility and cumulative belief functions of the corresponding Dempster-Shafer 

structures. The Dempster-Shafer structure for Xis {([0, 501, 1)). For computational 

purposes, this is the same as {([0,50], O.Ol), . . ., ([0,50], 0.01)) in which there are 100 
redundant intervals, each with mass 0.01. The canonical Dempster-Shafer structure for Y 
is {([-a, 20.3],0.01), ([-6.6,20.9], O.Ol), ([-5.3,21.2], O.Ol), ([-4.4, 21.5],0.01), ..., 
([8.5, 34.41, O.Ol), ([8.8, 35.31, O.Ol), ([9.1, 36.6],0.01), ([9.7, a ] ,  0.01)). Zis already 
expressed as a Dempster-Shafer structure. For computational purposes, it can be 
canonically discretized so that it has 100 (partially redundant) focal elements, each with 
mass 0.0 1. This would mean, for instance, that there would be 10 redundant copies of the 

first focal element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[-a, 1221, each with a mass of 0.01, and 40 copies of the second focal 

element and so on. 

-20 0 20 40 60 
-100 iii 0 100 T 

200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 29: Three uncertain numbers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, Y, 2 (see text). 
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The graph below depicts the intersection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY * Z of the three estimates in terms of the 
p-box. The left and right sides of the p-box are also the cumulative plausibility and belief 
functions, respectively, of the associated Dempster-Shafer structure. The structure itself 

is { ([0, 13],0.16), ([0.0277, 13],0.01), ([0.229, 13],0.01), ([0.423, 13],0.01), ([0.611, 
131, O.Ol), ..., ([12, 35.271, O.Ol), ([12,36.63], O.Ol), ([12, 501, 0.01) }. This structure 
was obtained simply by intersecting the respective focal elements from the canonical 

discretizations of the three inputs, and then accumulating the masses of any redundant 
elements. 
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Figure 30: Intersection of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX,  Y, and 2. 

portions that are step functions come from the Dempster-Shafer structure Z. The interval 
estimate Xis  also important because it defines the range and constrained both the left and 
right tails more strongly than either the p-box Y (which is theoretically unbounded) or the 

Dempster-Shafer structure 2. 

The curved portions of this result come from the input p-box Y of course. The 

4.3.2 Strategies when the intersection is empty 

Intersection satisfies so many of the desirable properties for aggregations that it seems 
reasonable to try to fix what is essentially the single problem with it: that it doesn’t give 
any answer at all when the estimates don’t overlap. Let’s consider the question in the 
simplest situation of aggregating two intervals x and y .  What happens if we slowly move 

the interval y so that its intersection with x becomes smaller and smaller and finally 
disappears? So long as it is not empty, because we assume both uncertainty intervals to 
be 100% reliable, we conclude that the result of the aggregation is the intersection. 
However, when the intersection becomes empty, it clearly means that the two intervals 

cannot both reliably contain the (unknown) value of the estimated quantity. 
Consequently, at least one of these two intervals is erroneous. If we do not know which 
of the two intervals is erroneous, then we might conclude about the actual value of the 
underlying quantity is that either it belongs to the first interval x (and the second interval 

is erroneous), or it belongs to the second interval y (and the first interval is erroneous). 
But, if this is all that can be said, then the best we can say about the quantity is that it lies 

somewhere in the union x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu y of the two intervals. This union is not an interval, so, if we 
want an interval that is guaranteed to contain the quantity, then we might take the 



smallest interval that contains this union. This is the envelope (convex hull) described in 
the next section. Whether we take the union itself or the envelope, the aggregation result 

is not at all close to the intersection and so the continuity property does not hold. It does, 
at least, always yield zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsome answer and that may be the most important thing in practice. 

Another argument holds that the lack of an overlap for estimates that are both 
supposed to be rigorous enclosures suggests a fundamental error somewhere that 
deserves the analyst’s special attention. Under this argument, perhaps the result that 

should be given when there is no overlap is the vacuous interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[-a, +a]. This doesn’t 

repair the continuity of the operation either, but it may be more generally appropriate 
than the union or envelope as the default. It is clear, in any case, that an empty 

intersection will require some sort of reconsideration by the analyst. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.4 Envelope 

In the previous section on intersection, it was presumed that all of the estimates to be 

aggregated were completely reliable. When the analyst instead is confident only that at 
least one of the input estimates encloses the distribution of the quantity, but doesn’t know 

which estimate it is that does, enveloping should be used to aggregate the estimates into 

one reliable characterization. Such knowledge could arise from a mechanistic 
understanding of a system. For instance, if there is water in a hermetically sealed 

compartment, an engineer might be able to conclude that it must have gotten there either 
from condensation of water vapor or a leak in the containment. Knowledge that at least 
one of several scenarios must be correct could be obtained from a process of elimination. 
Enveloping is a strategy that allows a risk analysis to proceed even though the 

eliminations could not be taken to completion to identify a single scenario. 

In general, when the estimates to be aggregated represent claims about the true value 
of a quantity that have uncertain reliability individually, enveloping is often a prudent 

aggregation method to use. The idea is to identify the region that any estimate suggested 
might be possible as the aggregation result. For instance, if one opinion or measurement 
says the value is 1 and another says it’s 2, we might elect to use the interval [ 1,2] as our 
aggregated estimate. 

If there are n p-boxes F1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ q , F , ] ,  F 2  = [%,E2], ..., Fn = [E,Fn], then their 

envelope is defined to be 

where 
F1 *F2* ... * F  n = [ F *  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4, E *  (41 

F*(x)=max(FI(x), F2(x), ..., F n ( X ) ) ,  
- - 

E * (4 = min(E 1 (4, E2 (XI, * * *, F n  (4 ). 

This operation is always defined. It is used when the analyst knows that at least one of 
multiple p-boxes describes the distribution of the quantity in question. 

This formulation extends to Dempster-Shafer structures immediately. The cumulative 
plausibility and belief functions of such structures form p-boxes. The result of aggregating 
these p-boxes can then be translated back into a Dempster-Shafer structure by canonical 

discretization (see Section 2.3). 



For interval inputs x1, x2, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxn, the general formulation for enveloping reduces to the 
convex hull 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi- = inf(x I x E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi) and xi+ = sup(x I x E xi) are the respective endpoints of the 
intervals. 

Enveloping is not the only way that the estimates could be aggregated under the 
assumption that at least one of the inputs encloses the distribution of the quantity. One 

could, instead, simply take the union of the estimates. Using union for this purpose is 
roughly equivalent to null aggregation (Section 4.2) in that it can quickly become 

computationally unwieldy. The advantage of the envelope is that it is closed in the set of 

uncertain numbers. The envelope of reals or intervals is an interval. The envelope of 
probability distributions, p-boxes or Dempster-Shafer structures is a p-box. 

possible. Like intersection, enveloping enjoys most of the properties outlined in 

Section 4.1. It is general, idempotent, commutative, and symmetric in its arguments. It is 
intersection-preserving, enclosure-preserving, and narrow. Unlike intersection, it is 

continuous and always produces an answer whenever the inputs are uncertain numbers. 
However, enveloping is not insensitive to vacuousness. In other words, it is sensitive 

to claims of general ignorance and even abstentions that make no claim about the quantity. 
This means that if only one informant expert or empiricist offers an inconclusive opinion or 

the vacuous interval as the measurement result, it will determine the result of the 
aggregation. The overall result of enveloping will be as broad as the broadest input. The 

simplistic strategy of just omitting any vacuous estimates before computing the envelope 
would not be sufficient in practice. This is because any estimate that is not vacuous but 

just very wide could still swamp all other estimates. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As mentioned in Section 3.2.1.3, the envelope operation is rigor-preserving and best 

4.4.1 Numerical example 

We aggregate the following five estimates with the envelope operation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v= 5.3, 

w= [8, 101, 

X= weibull( 15, 3), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y = normal( [3,4], [2, 3]), 

Z =  { ([-1, 51, 0.25), ([8, 13],0.5), ([12,20], 0.15), ([0,40], 0.1) >. 

The first two estimates are a real number and an interval respectively. The third is a 
precise probability distribution from the Weibull family with a scale (characteristic life) 
parameter of 15 and a shape parameter of 3. The fourth estimate is a p-box specified by 
the class of normal distributions whose means are between 3 and 4 and whose standard 
deviations are between 2 and 3 (see Section 3.1). The fifth estimate is a Dempster-Shafer 

structure that may have come from expert opinion or empirical observations. The display 
below depicts the envelope V * W * X * Y * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 of these five estimates in terms of the 

resulting p-box. The left and right sides of this p-box are also the cumulative plausibility 
and belief functions, respectively, of the associated Dempster-Shafer structure. The 
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structure itself is { ([-4.73, lo], 0.01), ([-3.98, 10],0.01), ([-3.16, 101, 0.01), ..., ([5.07, 

201, 0.01), ([5.16,20], O.Ol), ([5.25,20], 0.01), ([5.3,40], 0.12) }, This result was 
obtained in a manner very similar to the computation described for intersection in 

Section 4.3.1. Each of the five inputs were canonically discretized into data structures 
composed 100 intervals (each with mass O.Ol), and convex hulls were computed from the 
five intervals at each of the 100 discretization levels. The result was condensed into a 

Dempster-Shafer structure by accumulating the mass from any redundant intervals. 
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Figure 31: Envelope of five uncertain numbers. 

4.4.2 Using envelope when estimate reliabilities are uncertain 

Enveloping is commonly employed in a variety of decision-making contexts where the 
reliability of individual estimates is uncertain. For example, local police responding to a 

reported skyrage incident at the Albuquerque Sunport initially arrested 14 people. All but 
one were released the same day. The reasoning of the arresting officers must have been 
similar to that offered by the envelope aggregation. In the section on intersection, it was 
presumed that each of the estimates to be aggregated was completely reliable. The 
reasoning behind the intersection operation is like that of a logician who knows two 
things with certainty and can conclude from them something surer. But when a police 

officer arrives at the scene of a disturbance and hears several conflicting stories, he or she 

may not be able to judge which witnesses are credible. The cop doesn’t have the surety 
of the logician about any of these stories. Thinking that one of the stories is probably 

true, or at least feeling that none of the stories can be assumed to be false, an officer 
might choose enveloping (that is, arresting everyone implicated by anyone) as a prudent 
strategy. 

An important limitation of using enveloping for the case when the reliability of the 
estimates is unknown is that it relies on the hypothesis that some estimate is true. 
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Enveloping is sure to totally enclose the distribution of a quantity only if at least one* of 

the original estimates does so. Yet, in the case where the reliability of each of the 
estimates is unclear, it may not be certain that any of the estimates actually does this. All 
of the witnesses could be lying or be simply mistaken. Therefore, when the reliability of 
the individual estimates to be aggregated is uncertain, enveloping will often be a useful 

strategy, but it will not be an infallible one. 

4.4.3 Caveat 

Given that enveloping will be applied in situations such as that described in the previous 

section where one is not certain that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAany of the estimates will enclose the distribution of 
the quantity, how can an analyst ensure that the envelope will be broad enough to actually 
do so? The analyst must somehow ensure that the envelope is broad enough to enclose 
the true variation and uncertainty about the quantity. Unfortunately, this responsibility is 

not easily satisfied with any simple recipe. 
What if the estimates to be aggregated are only samples collected from some larger 

population and it is really this population as a whole that is our interest? The question of 
accounting for sampling uncertainty as a part of the aggregation process is addressed in 

Section 4.1 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.5 Dempster’s rule and its modifications 

The central method in the Dempster-Shafer theory of belief functions is Dempster’s rule 

for combining evidence (Shafer 1976; Dempster 1967). Because the rule has some 
counterintuitive properties, various alternative versions of the rule have been offered by 

various authors (e.g., Yager 1983;1985; Zadeh 1986; Yager 1987; Halpern and Fagin 
1992; Baldwin 1994a; Chateauneuf 1994; Dubois and Prade 1994; Kreinovich et al., 
1994; Kruse and Klawonn 1994; Saffiotti 1994; Spies 1994; Yager et al., 1994; Zhang 
1994; Mahler 1995; Srivastava and Shenoy 1995; Yager 2001). In this section, we 

briefly describe only three of the most important of the versions of the combination rule 
for Dempster-Shafer structures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA considerably more extensive review of this literature 
is available in Sentz and Ferson (2002), which also contains several numerical examples 

of these and other combination rules. 

4.5.1 Dempster’s rule 

The combination via Dempster’s rule of two independent Dempster-Shafer structures 
having basic probability assignments ml and m2 is another Dempster-Shafer structure 
whose basic probability assignment is (Shafer 1986) 

“Because enveloping is often broader than union, it might also enclose the true distribution even if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnone of 

the original estimates does. However, such an outcome cannot be assured. 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, B and C are, in this report, closed intervals of the real line, and 

is the mass associated with the conflict present in the combined evidence. Because all of 

the focal elements of one Dempster-Shafer structure are convolved with those of the 
other (that is, all possible pairs are considered), Dempster’s rule can be characterized as a 

convolutive intersection (cf. convolutive averages in Section 4.9.1). For this reason, the 
question of the dependence between the Dempster-Shafer structures to be aggregated 
arises. Shafer (1984) emphasizes that Dempster’s rule applies when the arguments or 

bodies of evidence to be aggregated are independent. Voorbraak (1 99 1) pointed out that 
Shafer’s notion of independence is not the same as that of stochastic independence in 

probability theory. As Couso et al. (2000) explore, there are many variations of the 
notion of independence once the strictures of probability theory are relaxed. In principle, 

it would be possible to fashion a version of Dempster’s rule that makes a different 
assumption about the dependence between the estimates being aggregated, or even one 
that does not make any assumption about the dependence between the estimates. 

Shafer structures by canonical discretization. An interesting fact is that the vertical 

distance between the left and right bounds of the resulting p-box at any point x will be 

proportional to the product of the comparable vertical distances at the same point of all 
the p-boxes being aggregated. When the rule is applied to precise probability 
distributions, it is equivalent in the limit” to logarithmic pooling (Section 4.8). In this 

case, the density function of the aggregation result is proportional to the product of the 
density functions of the distributions being aggregated. When the rule is applied to 
intervals, it reduces to simple intersection. 

Like intersection, Dempster’s rule technically satisfies the generality criterion 
discussed in Section 4.1.1, but it will not be useful for aggregating real numbers. The 
rule is commutative and associative, but not idempotent or continuous. Dempster’s rule 

is narrow in the sense that its results will always be within the envelope of the input 

estimates, but, because it can give results that are tighter than the intersection of these 
estimates, it is not intersection-preserving. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA counterexample can be constructed with the 
Dempster-Shafer structuresA = {([4,14], 1/3), ([8,18], 1/3), ([12,22], 1/3)) and B = 

{([8,18], 1/3), ([12,22], 1/3), ([16,26], 1/3)}. The intersection (sensu Section 4.3) ofA 
and B is just C =  {([8,14], 1/3), ([12,18], 1/3), ([16,22], 1/3)}, as is clear from inspection. 
The result of applying Dempster’s rule to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and B yields D = {([8,14], (1/9)(9/8)), 

([16,18], (1/9)(9/8)), ([16,22], (1/9)(9/8))}, where the multiplier (9/8) accounts for the 
fact that one of the pairs of intervals does not have an intersection. The result of the 
aggregation does not enclose the intersection, thus the operation is not intersection- 

preserving. 

Dempster’s rule can be applied to p-boxes by first converting them to Dempster- 

([8,181, (1/9)(9/8)), ([ 12,141, (1/9)(9/8)), ([ 12,181, (2/9)(9/8)), ([ 12,221, (1/9)(9/8~, 

*Actually, there are different ways to go to the limit (Halpern and Fagin 1992; cf. Shafer 1986). One of 

these ways makes Dempster’s rule and Bayes’ rule equivalent. Another way suggests that Dempster’s rule 
applied to precise probability distributions should yield a density function that is the maximum of the 

density functions of the estimates being aggregated. 
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Dempster’s rule is enclosure-preserving and insensitive to vacuousness. However, 
the rule will sometimes produce counterintuitive answers when there is substantial 
conflict among the aggregated estimates (Zadeh 1986). The following example illustrates 

the problem. Suppose we are to aggregate two Dempster-Shafer structures that have the 

forms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD1 = ( (A,  0.999), (B, O.OOl), (C, O.O)> and 0 2  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ (A ,  O.O), (B, O.OOl), (C, 0.999)), 
where A = [1,2], B = [3,4], and C = [5,6]. Both D1 and 0 2  agree that B is very unlikely, 

yet the result of the aggregation under Dempster’s rule is ( (B,  l.O)>, just because B is the 

only area of agreement between the two input structures. Sentz and Ferson (2002) review 
this issue. Voorbraak (1 99 1) reviews several other weaknesses of Dempster’s rule. 

4.5.2 Yager’s rule 

Dempster’s rule forgets all the mass that was lost to inconsistency between the bodies of 
evidence. This essentially ignores the conflict that may be present. Yager’s (1987) 

modification to the rule assigns the mass that would otherwise be lost to the universal set 

instead. For the purposes of this report, the universal set is always the real line %. The 

basic probability assignment of the result is 

i f D z %  

if D = %, ::’+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC, 
m(D) = 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD is a closed interval of the real line, 

and again 
BnC=D 

Like Dempster’s rule, this rule is commutative, but neither idempotent nor continuous. It 

fails to be associative, but Yager shows the obvious generalization that makes the rule 
quasi-associative and symmetric in its arguments. The lack of idempotence means that 

Yager’s rule is not intersection-preserving. It is easy to find counterexamples that show 
that it is not enclosure-preserving either. But it is narrow and insensitive to vacuousness. 

Yager’s rule is an important contribution to the literature of Dempster-Shafer structures 

because it offers a reasoned way to handle large disagreement between bodies of 
evidence. 

4.5.3 Disjunctive consensus 

In another attempt to correct the shortcomings of the original version of Dempster’s rule, 
Dubois and Prade (1986; 1992) define an alternative that is based on unions rather than 

intersections 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB and C are, in this report, closed intervals of the reals. In the same way that 
Dempster’s rule is a convolutive intersection, this rule is a convolutive union. Because 

this rule produces Dempster-Shafer structures whose focal elements are not closed 
intervals whenever B and C happen not to overlap, this rule is not closed in the space of 
uncertain numbers defined in Section 2.4. If we replace the union condition for the 

summation with an enveloping condition, then the disjunctive consensus rule becomes 

where env(B, C )  denotes the convex hull of the intervals B and C. This “envelope 
variant” of Dubois and Prade’s disjunctive consensus is closed in the space of uncertain 

numbers. This means that every time it is applied to real numbers, intervals, probability 
distributions, p-boxes or finite Dempster-Shafer structures with interval focal elements, it 

would produce a result that is also from this same assemblage. 

We mention that the connection between Dubois and Prade’s rule and this envelope 
variant is very close. If all the focal elements of all the Dempster-Shafer structures to be 
aggregated overlap with each other, then the two rules would yield the same result. Even 
if they don’t, the cumulative plausibility and belief functions of the Dempster-Shafer 

structure arising from disjunctive consensus would be exactly the same as that arising 
from the envelope variant. This means that the associated p-boxes resulting from the two 

rules would be the same. 

Both disjunctive consensus and the envelope variant of disjunctive consensus are 
defined for any Dempster-Shafer structure and therefore are general in the sense of 

Section 4.1.1. Interestingly, the results of simple enveloping (Section 4.4) are tighter 
than the results of disjunctive consensus because the latter involves a convolution, the 
Cartesian product of all unions, rather than only the level-wise unions. Disjunctive 
consensus is commutative and associative, but it is not idempotent. Because simple 
enveloping produces aggregations that can be tighter than the results of disjunctive 

consensus, this rule is not narrow. It is also sensitive to vacuousness, but it is 

intersection-preserving and enclosure-preserving. 

This aggregation method yields results that can be as counterintuitive as those of 
Dempster’s rule. For instance, Jon Helton (pers. c o r n . )  notes that aggregating two 

Dempster-Shafer structures, each of which has the form (([0,1], O S ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA([-00, 001, 0.5)), 

yields the answer (([0,1], 0.25), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA([-a, 001, 0.75)). Thus, although both inputs agree that 
the quantity is within the unit interval with mass 0.5, their aggregation is somehow much 
less sure, offering only 0.25 mass for being in the same interval. This behavior is perhaps 
even worse than the counterintuitive behavior that Zadeh (1 986) criticized in the original 

version of Dempster’s rule. Nevertheless, the aggregation rule based on disjunctive 
consensus remains an important version of Dempster’s rule that is widely used in the 

literature of Dempster-Shafer structures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.6 Bayes’ rule 

The Bayesian aggregation methods described in the literature are usually applied to 
probability distributions reflecting expert opinion. In this section, we imagine that 
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Bayes’ rule is used to aggregate uncertain numbers that might represent expert opinion or 

empirical evidence, or both. Bayesians generally hold that how one should collect and 

analyze data depends on what use will be made of those data. This perspective might 
therefore look disapprovingly on the intention of this report to catalog methods by their 

general utility rather than for a specific purpose. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As mentioned in the earlier discussion in Section 3.3.3, the computational burdens 

associated with applying Bayes’ rule can be substantial. In particular, there is usually no 

closed-form solution available for computing the integral in the denominator of Bayes’ 
rule, unless the prior and likelihood happen to constitute a “conjugate pair” for which the 
analytical details work out nicely. For instance, under particular assumptions, the 

following pairs of likelihood (from which observations are drawn) and prior yield the 

given posterior distribution: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Likelihood 
Bernoulli 
Binomial 

Poisson 
Negative binomial 

Normal 
Normal 

Exponential 

Prior 
Beta 

Beta 
Gamma 

Beta 

Normal 
Gamma 
Inverse-gamma 

Posterior 
Beta 
Beta 
Gamma 

Beta 

Normal 
Gamma 
Inverse-gamma 

For these pairs, updating rules permit the immediate specification of the posterior’s 
parameters from those of the prior and statistics from the data. For the assumptions 

underlying the use of these conjugate pairs and details on exactly how the calculations are 
to be made, consult standard references on Bayesian methods (e.g., Lee 1997; Sander and 

Badoux 1991; Berger 1985; DeGroot 1970; Gelman et al. 1995). Naturally, the existence 

of these conjugate pairs greatly simplifies the demands of applying the rule and are 

widely used for the sake of convenience, but of course they are very restricted in scope 
and obviously require distributional assumptions. 

Bayesian methods are regarded by many analysts as the best (or even the only 
coherent) way to represent and manipulate uncertainty in the context of decision making 
(French 1985; Genest and Zidek 1986; cf. Cooke 1991; Clemen and Winkler 1999). 
Unfortunately, it seems clear that the touted advantages of Bayesian methods 

(collectively called “rationality”) do not generally extend to the problem of aggregating 

uncertain numbers. For instance, Mongin (1 995) showed that, under certain conditions, 
Bayesians cannot aggregate the preferences of multiple rational decision makers in a way 
that simultaneously satisfies the Bayesian axioms and the Pareto property (that is, 
whenever all decision makers agree about a preference, the aggregation result also has 
that preference). French (1985) pointed out the impossibility of any aggregation method 
simultaneously satisfying all the propertiesone would hope for. Jaffray (1 992) considered 
the even nastier problems of generalizing Bayesian updating to belief functions and 

interval probabilities. 

numbers estimating a single quantity. Winkler (1 968) provided a Bayesian framework 
for addressing the aggregation probability distributions and formulating a weighting 

There are actually several ways that Bayes’ rule could be used to combine uncertain 
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scheme. Lindley et al. (1 979) described two ways to do aggregation in a Bayesian 
context. The first way, which they call the “internal” approach, presumes that there is a 
true probability and the various inconsistent estimates of it constitute the available 

evidence about this true probability. The second approach, which they call “external”, 
does not explicitly concern itself with the true probabilities, but instead addresses only 

the problem of deriving coherent probabilities based on the original set of incoherent 
assessments. Both approaches require the participation of an analyst-different from any 

of the experts providing estimates-who performs the aggregation. It is the coherent 
probabilities of this analyst, as informed by the available evidence from the various 

sources or by opinions of the various experts, that is to be the result of the calculation. In 

this sense, these approaches are not so much methods of aggregation per se, but rather 
merely another avenue for elicitation. 

Clemen and Winkler (1 999) note that the Bayesian paradigm is very difficult in 

practice to apply to the problem of aggregation. The biggest problem is creating the 
conditional likelihood fimction, which must itself be a comprehensive model of the 

interrelationships between 8 and the various estimates about it. In particular, it must 
characterize the precision and bias of the individual estimates and model the dependence 
among them. This dependence involves the degree and manner in which the estimates 

are associated with or related to each other. Clemen and Winkler (1 999) review several 
different Bayesian models for aggregation that have been suggested by various authors. 
Typically, for instance, we might expect different experts to have correlated estimates. 

Space limitations preclude a comprehensive review of the possible Bayesian 
approaches to the problem of combining potentially conflicting estimates. In any case, if 

they require the existence of an analyst whose beliefs must be elicited separately, we 
cannot create numerical examples that fairly compare the Bayesian approaches with the 

other methods of aggregation described in this report. 

The mathematical properties of a Bayesian method of aggregation will depend on 

which of the many possible models is actually used in calculation. Nevertheless, there 
are some behaviors that would usually be associated with any Bayesian approach. For 
instance, because there are no convenient general algorithms applying Bayes’ rule, 
practical problems are often computationally challenging. The Bayesian aggregation 
methods that have been described are defined for precise probability distributions, 

although they could perhaps be extended to probability boxes via robust Bayes methods 

(see Section 3.3). They could be applied to Dempster-Shafer structures by first 
converting them to p-boxes. When applied to intervals, Bayesian aggregation typically 
reduces to intersection (Section 4.3). It is not really general in the sense of Section 4.1.1, 

however, because it gives no answers except in trivial cases when it’s applied to real 
numbers. Because Bayes’ rule strongly emphasizes agreements, aggregations would not 
be idempotent. It is not continuous; it fails to produce an answer if the prior and 
likelihood do not overlap. It is likely to sensitive to vacuousness and not be intersection- 
preserving, but is probably would be enclosure preserving and narrow. 

See Section 3.3.2 for a numerical example of Bayes’ rule applied to p-boxes. 



4.7 Mixing 

The idea of a stochastic mixture is that there are multiple values of a quantity that are 
expressed at different times, or in different places or under different situations. In the 

proverb of the blind men who encountered an elephant, very different stories were 

recounted. One, feeling the trunk, said the elephant was like a snake. One, feeling the 
elephant's leg, insisted the animal was like a tree. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA third, feeling the animal's side, 
asserted that an elephant was like a wall. The point of the proverb is that all of these 
things are true at the same time. Stochastic mixture offers a perspective that can see how 

a quantity, like an elephant, can manifest different or conflicting values. Using mixtures 

to aggregate estimates treats any disagreement among these estimates as though it is 
variability. Unlike averaging (Section 4.9) mixing does not erase the disagreement, but 

rather condenses it into a single distribution (or p-box or Dempster-Shafer structure) that 

fully expresses it. In the context of a quantitative risk analysis that intends to carefully 
distinguish epistemic and aleatory uncertainty, it would be inappropriate to apply this 

approach to a case where the disagreement among the sources represents amorphous 
incertitude. That would be the same mistake as modeling incertitude about a quantity 
with a random variable. Our position is that mixtures are only appropriate when the 
disagreement among the various estimates represents actual variability. 

4.7.1 Mixture 

The simplest mixture is an unweighted mixture using arithmetic averaging of the 

distribution functions. The mixture of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn p-boxes [F, ,E1], [F2 , E 2 ] ,  . . ., [F, ,E,] is 

where 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF * (x) = (F1 (x) + F2 (x) + . . . + F n  (x)) / n 

* (x) = ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) + (x) + . . . + E ,  (x)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 n . 

The mixture of n finite Dempster-Shafer structures with basic probability 
assignments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn 1 ,  m2, . . . , m, has the basic probability assignment 

1 

n i  
m * ( A ) = - C m , ( A ) .  

When the focal elements are closed intervals, a mixture of two finite Dempster-Shafer 
structures is essentially a pooling of the focal elements with the masses halved. For 
instance, the even mixture of the Dempster-Shafer structures 

and 

is the structure 



This formula is correct so long as the two structures have no focal elements in common. 
If they do have common elements, a condensation step would sum the masses for 

identical focal elements. 
Unlike most of the aggregation methods considered so far in this report, there is no 

difficulty whatever for the mixture algorithm if the input estimates have inconsistencies. 

Even total disagreement can be captured. If the mixing aggregation is applied to real 

numbers, the result is a discrete probability distribution whose masses are at those same 
real values. If intervals are used as inputs, one gets a p-box. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA mixture of probability 
distributions is another probability distribution. And mixing is a closed operation in the 

space of p-boxes or of Dempster-Shafer structure whose focal elements are closed 

intervals. Thus, mixing is general in the sense of Section 4.1.1. It is clearly also 
idempotent, commutative and continuous. It is not associative, but it is quasi-associative, 
and the multiargument version is symmetric in its arguments. Mixtures are intersection- 

preserving, enclosure-preserving and narrow, but they are sensitive to vacuous inputs. 

4.7.2 Weighted mixture 

The previous section discussed even mixtures, that is, mixtures whose components had 
equal frequencies. It is also possible to aggregate estimates with a weighted mixture. 

Because we use mixtures as representations of actual variability, it would not be 
appropriate to base weights on the mere credibility of the estimate. Instead, the weights 
should correspond to the frequencies with which each estimate occurs in the overall 

population modeled with the mixture. For instance, if we have an estimate of the 

performance of a material during summer months and an estimate of its performance 
during winter months, the weights with which the two estimates might be aggregated 

would reflect the relative frequencies of summer and winter months. 

The result of mixing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn p-boxes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ F , F , ] ,  [E,f, ]  , . . ., [E,F,],  with respective 

weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw1, w2, ..., wn, is [F* ,F* ] ,  where 

The weights must be positive. See Section 4.10 for a discussion on how weights can be 
selected to reflect the relevance of different estimates. 

The weighted mixture of n finite Dempster-Shafer structures 

assignments mt, m2, . . ., mn has the basic probability assignment 

with basic probability 
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where the weights must be positive. The aggregation for Dempster-Shafer structures can 

be accomplished, again, by a straightforward pooling algorithm that weights the masses 

appropriately. 

this weighted mixture is also known as the “linear opinion pool” (Stone 196 1) 

In case the uncertain numbers are represented by precise probability distributions, 

wherep denotes a probability density and the positive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw i  sum to one. (It turns out that 

mixtures are computed in the same way whether in the density or the cumulative realm.) 
In principle, the weights could be different for different values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, but this generality is 

probably not needed for most risk analysis problems (cf. Section 4.10). The linear 
opinion pool is perhaps the most commonly used aggregation method in probability 
theory. 

Weighted mixing is closed in the space of uncertain numbers (Section 2.4) and 

general in the sense of Section 4.1.1. It is idempotent and continuous, but it is neither 

commutative nor associative. It is neither quasi-associative nor symmetric in its 
arguments. Weighted mixtures may not be intersection-preserving or enclosure- 

preserving, but they are narrow. They can be sensitive to vacuous inputs. 
When the mixture weights are known precisely, the mixture aggregation is rigor- 

preserving in the sense that the result will surely contain the distribution of the quantity in 

question. This presumes, of course, that the input estimates enclose their respective 

conditional distributions and the weights are an accurate reflection of the relative 
frequencies of the various conditions. The mixture aggregation is also best possible in 

the sense that it could not be any tighter given only this information (ie., the input 

estimates and their frequencies as weights). It is also possible to compute mixtures when 
the weights are known only to within intervals. 

Weighted mixture models have also been suggested in another aggregation context. 
Moral and Sagrado (1 998) suggested a scheme for aggregating imprecise probabilities* 

for the case of distributions on a discrete event space. They intended it for aggregating 
expert opinion, but it could be useful for combining uncertain numbers whatever their 
origin. Their scheme is essentially a generalization of linear pooling and envelope 

(Section 4.4) via a one-parameter linear combination. If their parameter c is set to zero, 
then the result of the aggregation would be the same as a linear pooling with uniform 

weights. The result is a precise probability distribution whenever the input estimates are 
precise. The aggregation also reflects any agreement among the estimates by tending 
toward the favored estimate. If the parameter c is set to unity, the aggregation yields the 
convex set of the imprecise probabilities. In this case, the number of estimates that may 
be in agreement is irrelevant. 

*Imprecise probabilities are related to, but much more complex than, either probability boxes or Dempster- 

Shafer structures. They are often expressed in terms of closed convex sets of probability distributions. 
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4.7.3 Numerical examples 

The graphs below depict three different mixtures. The mixture in far left graph is an 
unweighted arithmetic mixture of the intervals [ 1,2] and [3,4]. This aggregation would 
be appropriate if, for instance, the quantity varies with equal frequency between two 
states. The states are represented by the two intervals, whose widths represent the 
incertitude about the exact value or values taken by the quantity in each of the two states. 

This aggregation would be inappropriate if we did not know the relative frequencies of 

the two states. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs the incertitude within each state decreases so that the intervals 
approach point values, the resulting mixture approaches a two-mass discrete distribution. 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 4 0 4 8 

Figure 32: Three different mixture results. 

6 10 

The middle graph above depicts the (unweighted, arithmetic) mixture of two 

Dempster-Shafer structures: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD1 = { ([ 1, 51, O S ) ,  ([3, 6],0.5) } and 0 2  = { ([2,3], O S ) ,  

([2,9], 0.5) }. As in the previous example, this aggregation is appropriate only if the 
frequencies of the two states are known and equal. In this case, our empirical knowledge 
about the value(s) taken on by the quantity in each of the two states is more detailed than 
it was for the example that mixed two intervals. Evenly mixing the two Dempster-Shafer 

structures, which are themselves even mixtures of two intervals, implies considerable 
information about the quantity. It says that a quarter of the time the quantity is between 1 
and 5 ,  a quarter of the time it is somewhere in the interval [3,6], a quarter of the time it is 

in [2,3] and the rest of the time it is in [2,9]. But this is all that is being said. The 
quantity may be varying within these intervals, or it may have some fixed value in an 

interval that it always takes on. We don’t know when the quantity is any particular 
interval, only that it occupies each interval with an overall frequency 0.25. 

The far right graph above is the mixture of two normal distributions. The 
distribution with mean is 5 and a standard deviation of 1 has a weight of 5/6. The other 

distribution with mean is 10 and a standard deviation of 0.5 has a weight of 1/6. The tails 
of the resulting mixture distribution are truncated for the sake of the display. The result 
of this mixture is essentially perfect statistical knowledge about the behavior of the 

quantity. The mixture is a precise distribution that characterizes the frequencies of all 

possible values it takes on. 
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4.8 Logarithmic pooling 

When the inputs estimates are all probability distributions, a commonly used aggregation 
method is the logarithmic opinion pool 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(x) denotes the probability associated with the value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw i  are weights, and k is an 
normalization factor that ensures that all the probabilities add to one. This formulation 
requires certain restrictions on the weights to ensure that the result is a probability 
distribution, but actually permits negative values for some weights. Note this aggregation 

is defined in the density domain. (Pointwise multiplication of cumulative distributions 

yields the same result as the maximum convolution.) 
The use of pointwise multiplication for all values along the x-axis and the 

normalization harken to Bayes' rule (Sections 3.3 and 4.6), but the method lacks the 
interpretation of the operands as prior and likelihood. It does however mimic Bayes' rule 

in certain respects, such as exhibiting the zero preservation problem. This aggregation 
method also exhibits what Clemen and Winkler (1 999) call "external Bayesianity". 

Suppose an aggregation has already been computed from several estimates. If new 
information becomes available about the quantity, one could update each estimate 

separately and then re-aggregate them, or one could simply update the previously 
computed aggregation. Logarithmic pooling satisfies external Bayesianity because it 

doesn't make any difference which of these approaches is used. 

In principle, this formula can be applied to to p-boxes by applying it for each 
member of the class of probability density functions that are compatible with each p-box, 

cumulating the class of resulting density functions and finding their envelope. One might 
think that the formula could be applied to Dempster-Shafer structures by computing for 

each value x the associated interval of possible probability densities. The upper bound of 
this interval would be the sum of the masses of all focal elements of the Dempster-Shafer 
structure that intersect with the value x, and the lower bound would be the mass 

associated with any singleton focal element at x, if there is one, and zero otherwise. (The 
lower bound is so low because all of the density could flow to other points in a focal 

element that is not a singleton.) One would expect that interval arithmetic could then be 
used to do the multiplication, but this approach stumbles on the normalization factor 
which introduces further complexity to the problem. In any case, the formula can be 
applied to Dempster-Shafer structures by first converting them to their associated p-boxes 
by canonical discretization. 

normalization is straightforward for probability distributions in a computer discretization. 

The problem becomes considerably more challenging computationally for other uncertain 
numbers however. Logarithmic pooling for aggregation is usually limited to precise 

probability distributions, but it could be extended to probability boxes and Dempster- 
Shafer structures via analystical approaches comparable to robust Bayes methods (see 

Section 3.3). When applied to intervals, logarithmic pooling reduces to intersection 
(Section 4.3). It is not really general in the sense of Section 4.1.1 because it gives no 

There is no convenient formula for finding the normalizing factor k, but the 
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answers except in trivial cases when it’s applied to real numbers. Because logarithmic 
pooling strongly emphasizes agreements between its operands, it is not idempotent. It is 
associative however, so it is also quasi-associative and symmetric in its arguments. But it 

is not continuous; it fails to produce an answer if the estimates do not overlap. 

Logarithmic pooling is, however, commutative. It is sensitive to vacuousness and is not 
intersection-preserving, but is enclosure preserving and narrow. 

See Section 4.12 for some numerical examples of logarithmic pooling. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.9 A veraging 

Averaging is very widely used as a way to simplify the clutter of multiple opinions and 

evidence into a manageably concise representation. In the process, all of the variation 
present in the data is usually erased. Consequently, we believe that the appropriate uses 
of averaging in risk analyses are fairly rare. Indeed, without specific justification, 

averaging is perhaps the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAleast appropriate way to aggregate disparate evidence or 

opinions. 

scalars when they are averaged together. Mixing (Section 4.7) of probability 
distributions is sometimes called “averaging” too because the densities or distribution 
functions are averaged, but this operation does not generalize what we do when we 

average scalars. To see why this is so, consider the mixture of two distributions, each of 
which is a delta distribution (i.e., each is a scalar value without variability or incertitude) 

such as is shown on the graph below on the left. The distribution functions of the two 

scalars are depicted as gray lines. Each is a degenerate distribution function; it is a spike 
rising from zero to one at the value of the scalar. (In principle, the distribution function is 

a step function having value zero for all values less than the scalar and one for all values 
greater than or equal to the scalar. To keep the figures simple, only the vertical spikes of 
these step functions are shown.) The 5050 mixture of these delta distributions is 
obtained by vertically averaging the values of the two distribution functions. To the left 

of gray spike corresponding to the smaller scalar, both distribution functions are zero, so 
their average is zero too. To the right of the spike for the larger scalar, both functions are 

one, so their average is too. Between the two spikes, the distribution function for the 
smaller scalar is one but the distribution function for the larger scalar is zero. The 

average of zero and one in this region is one half. Thus the distribution function for the 
mixture, which is shown as a dotted line on the left graph below, is a step function with 
two steps. The first step is at the smaller scalar from zero to one half, and the second step 

is at the larger scalar from one half to one. It corresponds to a distribution having equal 
mass at two points, namely, the two scalars. But, notice that this distribution function is 
utterly unlike what we would expect from simply computing the numerical average of 
two scalar values. As depicted in the graph on the right, the scalar average of these two 

real values yields another real value, that is, another delta distribution, half way between 
the two scalars. It is shown as a dotted vertical spike. Unlike mixtures, the aggregation 

operations we call averages (which are defined in the subsections below) do generalize 
scalar averaging in the sense that, when they are applied to delta distributions, they yield 
delta distributions that correspond to the scalar averages. 

The aggregation methods described in this section generalize what is done with 
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Figure 33: Mixture (dotted, left) and average (dotted, right) of two scalar numbers 

(gray spikes, left and right). 

Nota bene: In this report, the unmodified word “average” does not refer to 
averaging distribution functions. We are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaveraging uncertain numbers. In this context, 

we think that our definitions for average and mixture are etymologically and 
mathematically more reasonable, for the reasons explained above, than any convention 

that would ambiguously use one word to refer to both averages and mixtures or would 
confuse language by defining average so that it has different meanings depending on 

which kind of uncertain numbers are to be combined. To merit the name, an averaging 
operation should give results equivalent to the results of analogous scalar averaging 
whenever it is applied to real numbers. Analysts who are familiar with usage in which 

“average” usually denotes functional averaging are cautioned that our context here is 
different from conventional probability theory and the difference requires this slight 
change in terminology. To denote functional averaging of distribution functions, we use 

the term “mixture” or, sometimes, “vertical averaging”. 

4.9.1 Convol ut ive averag i ng 

When real numbers are averaged, they are added together and the sum is divided by the 
number of addends. Because the generalization of addition for uncertain numbers such as 

p-boxes and Dempster-Shafer structures is convolution (see Sections 3.2.1.1 and 3.2.3), it 
makes sense to generalize averaging for uncertain numbers by using this operation. 
Suppose that we are given n Dempster-Shafer structures, specified in terms of their basic 
probability assignment functions ml, m2, . . ., m,. Then their (unweighted) convolutive 
average under independence has the basic probability assignment defined by 

This formulation follows directly from the definition of convolution for Dempster-Shafer 
structures on the real line given by Yager (1 986). The convolutive average for p-boxes is 

obtained immediately by first canonically discretizing them and applying the same 
formula. The cumulative plausibility and belief functions of the result form the average 

p-box. If the separate estimates should be weighted, the formula becomes 



m(C> = c 
C= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, D, + w 2  D, +.. .+ wn D, i 

where w i  is the weight associated with the ith Dempster-Shafer structure such that CI 

and O<wj. 
=1 

The convolutive average can also be defined for cases in which the estimates to be 

aggregated are not independent of one another. If the dependence is known, then the 

average will be based on a convolution that expresses the distribution of the sum given 
that dependence. If the dependence is not known, then bounds on the distribution of the 
sum (Frank et al. 1987; Williamson and Downs 1990) can be used instead. 

the abscissa is the axis for the quantity of concern. In each of the four cases, the input 

estimates are shown with gray lines and the resulting average is shown with black lines. 
Each object is shown as a cumulative distribution function or a p-box (i.e., a cumulative 
plausibility and a cumulative belief function). The upper, left-hand graph depicts the 

average of two real numbers. The Dempster-Shafer structures for these real numbers are, 

say, ( (a ,  l)} and { (b, l)}, where a and b are the real numbers. The formula for the 
convolutive average gives the mass for any interval C that is the set-average of focal 

elements from the two Dempster-Shafer structures. Because there is only one focal 
element in each structure, there is but one interval C that gets any mass. It is of course 

the degenerate interval [(a+b)/2, (a+b)/2], and it gets all of the mass. Consequently, the 
convolutive average is just the degenerate Dempster-Shafer structure (((a+b)/2, l)}, 

which is equivalent to the simple scalar average (a+b)/2. The upper, right graph depicts 

the average of intervals. Assuming the input intervals are [al, a21 and [bl, b2], a similar 
calculation shows that the answer is equivalent to the set average [(al+b1)/2, (a2+b2)/2]. 
This answer is just the interval whose endpoints are the averages of the respective 
endpoints from the two inputs. The two lower graphs depict the average of precise 

probability distributions and the average of Dempster-Shafer structures. 

Convolutive averages are depicted in the four graphs below. In each of these graphs, 

Scalars Intervals 

Probability distributions P-boxes and Dempster-Shafer 
1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ej 0.5 

k k 
3 3 
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Figure 34: Convolutive averages (black) of different kinds of inputs (gray). 
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You may be able to detect that the averages for the lower two graphs are slightly 
steeper than their respective input estimates. This is a result of the independence 

assumption. The difference in the slantedness of the averages compared to the input 
estimates becomes more and more exaggerated as the number of estimates increases. If 

there are many probability distributions of roughly comparable dispersions to be 
averaged under independence in this way, the convolutive average will approach a scalar 
(vertical bar) relative to the breadths of the inputs. This is another consequence, of 

course, of the central limit theorem. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs asymptotically many p-boxes of roughly similar 
dispersion are combined under independence, the convolutive average tends to an interval 
whose width reflects the overall incertitude (horizontal breadth) of the input estimates. 

The convolutive average is general in the sense of Section 4.1.1. Although not 
simply associative, it is commutative and quasi-associative, and it is symmetric in its 

arguments when applied to multiple estimates simultaneously. It is easy to show with 
counterexamples that convolutive averaging is not intersection-preserving. The operation 

is enclosure-preserving, but it is sensitive to vacuousness. 
A single example will suffice to show that the convolutive average is not idempotent, 

narrow or intersection-preserving. Consider the unit uniform distribution uniform(0,l). 
Its convolutive average with itself is the triangular distribution ranging on the unit 
interval with a mode at %. Because the average of the uniform distribution with itself is 

not the same distribution, the operation fails to be idempotent. In this example, the 
envelope of the inputs is just the same uniform distribution. Because this envelope does 

not enclose the average, the operation fails to be narrow. Likewise, the intersection of the 
inputs is again just the uniform distribution. 

4.9.1.1 Numerical examples 

Suppose that the estimates depicted in the three graphs below are to be averaged together. 
The one of the far left is the cumulative distribution function for a uniform distribution 
ranging from 4 to 9. The middle graph depicts the cumulative plausibility and belief 

functions for the Dempster-Shafer structure { ([2,3], 1/3),([5,8], 1/3), ([-1,121, 1/3) }. 
The graph on the right is a p-box for a unimodal random variable ranging between 0 and 

10 with mode 2. 

1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.5 1 , 

n 

i 
-10 0 10 20 -10 0 

Figure 35: Three uncertain numbers. 

10 20 -10 0 10 20 

The convolutive average assuming independence among all three estimates is shown 
below on the left in terms of its cumulative plausibility and belief functions. A similar 

95 



display on the right depicts the result from the general convolution that does not assume 
anything about the dependence among the three estimates. The graph on the left was 

obtained by canonically discretizing the three uncertain numbers displayed above and 
applying the formula for (unweighted) convolutive average. The graph on the right was 
obtained using algorithms described by Williamson and Downs (1 990) and based on 

methods developed by Frank et al. (1987). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA discussion of these algorithms is outside 

the scope of this report, but this example was included to demonstrate that such averages 

can be computed without any independence assumptions. 

Independent General 

0 10 0 10 

Figure 36: Convolutive averages of three uncertain numbers, assuming 
independence among the inputs (left) and assuming nothing abou 

(right). 
their dependence 

4.9.2 Horizontal average 

How could an average for uncertain numbers be defined so that it would be idempotent? 
One way is to define it in terms of averaging quantiles, rather than in terms of a 

convolution. This would amount to averaging cumulative distributions (or p-boxes or 
Dempster-Shafer structures) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhorizontally. It turns out that horizontal averaging is 
equivalent to a convolutive average under the assumption that the inputs are perfectly 
dependent on each other so that they have maximal correlation (Whitt 1976). If there are 

n p-boxes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[F,  E ,  ] , [E, F 2  ] , . . . , [c, En ] , then their (unweighted) horizontal 

(arithmetic) average is defined to be [F*,F*], where 

and the superscripted "-1" denotes the inverse function. This operation then simply 

horizontally averages the respective edges of the p-box. A p-box can be obtained from 
any Dempster-Shafer structure as its cumulative plausibility and belief functions. In the 
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case of averaging a collection of precise probability distributions, the right and left 
bounds are the same and the expressions above reduce to a single one that computes the 

quantile of the average zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF'@) as the simple average of the quantiles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF;'@). In the case 

of interval inputs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[xi-, x:], this just becomes the weighted average of the endpoints, 

[xl-,xl+I * ... * [  x;,xn+]=(lln)[x1-+ ...+ x,-, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXI++ . . .+ x,+]. 

This operation is clearly idempotent and, like convolutive averaging, generalizes 

the averaging of scalars. There is a weak precedent for using this operation in risk 
analyses. Apparently, for a brief period during the 1980s, horizontal averaging was used 
to aggregate the probability distributions representing expert opinion in the NUREG- 

1150 studies (J. Helton, pers. comm.; Hora and Iman 1989). In addition to being 

idempotent, the horizontal average is also general in the sense of Section 4.1.1. Although 
not simply associative, it is quasi-associative and symmetric in its arguments when 

applied to multiple estimates simultaneously. Horizontal averaging is commutative. It is 
clearly intersection-preserving, and it is also narrow and enclosure-preserving, although it 

is sensitive to vacuousness. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.9.2.1 Weighted horizontal average 

In computing this average, we may elect to weight the various estimates differently. In 
this case, the quantile intervals are given by 

where the weights w i  must be positive and sum to unity. The first expression will always 

be less than or equal to the second so long as ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF j ) - '@)  is less than or equal to (Ei)-'@) 
for allp, which will be true so long as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFi (x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Ei (x) for all x for each i. In the case of 

precise probability distributions, the right and left bounds are the same and the 

expressions above reduce to a single one that computes F'@) in terms of F['@). In the 

case of interval inputs [xi-, x:], the expressions collapse to the elementwise weighted 
average of the endpoints, 

[XI-, XI+] * . . . * [xn-, X,+] = [w1 x1- + . . . + w, x; , w1 XI+ + . . . + wn xn+]. 

Weighted horizontal averaging is general, idempotent and continuous. It is neither 
associative nor commutative. Like other weighted schemes, it is neither symmetric in its 
arguments nor quasi-associative. Like other averages, it is sensitive to vacuousness. 

It may make sense to select weights to reflect the reliability of each input estimate. 
One might argue that intervals, p-boxes and Dempster-Shafer structures wear their 
reliabilities on their sleeves in that those with greater reliability have tighter bounds. If 

wider bounds correspond to worse estimates, then it may be reasonable to assign smaller 
weights to inputs that have larger incertitude so that their effect on the average is less. 

On the other hand, as was mentioned earlier, one of the most common facts about science 
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is that empirical uncertainty is typically underestimated. This may mean that the wider 
an estimate is, the more reliable it is. After all, the broadest error bounds are given by the 

most sophisticated experts, who have seen how variable the world is and know how 
limited their own knowledge is. Because of this we might trust estimates with greater 
uncertainty more than those with less and therefore weight them accordingly. 

4.9.3 Numerical examples 

The two graphs below depict various kinds of horizontal averages of the same three input 
estimates used in the numerical example described in Section 4.9.1.1. The graph labeled 
“Horizontal average” shows the cumulative plausibility and belief functions (the p-box) 

for the unweighted arithmetic horizontal average of the three uncertain numbers. It 
should be compared with the convolutive averages depicted in Section 4.9.1.1. The 
weighted average shown in the graph to the right was based on weights for the three 
inputs of 0.2 for the uniform distribution, 0.7 for the Dempster-Shafer structure, and 0.1 

for the p-box. Unsurprisingly, it fairly closely resembles the Dempster-Shafer structure 
with the largest weight. 

Horizontal average Weighted horizontal average zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

-10 0 10 20 -10 0 10 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 37: Unweighted (left) and weighted (right) horizontal averages of three 

uncertain numbers. 

4.9.4 Caveats 

All averaging operations tend to erase disagreement among the estimates, rather than 

capture this disagreement so it can be propagated through subsequent calculations in a 

comprehensive risk analysis. As would be expected, they generally contract the range of 
possible answers compared to other aggregation techniques. When applied to discrete 
distributions, they give results about intermediate values that may be impossible. For 

these reasons, averaging may not be a suitable default technique for aggregation. 



4.70 Where do the weights come from? 

Several approaches to aggregation, including mixing, averaging and some versions of 
Dempster’s rule, allow estimates to be weighted before they are combined. The ability to 
use weights when combining estimates in an aggregation greatly increases the flexibility 

of the methods to account for a variety of ancillary considerations in an analysis. 
Weighting is usually used to account for differences in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArelevance of the different 

inputs as estimates for a particular quantity. There are various considerations an analyst 

might wish to capture in a weighting scheme. Among the most common include 

(1) reliability, (2) frequency, (3) temporal sequence, and (4) magnitude order. 

trustworthiness of informants, and the stature of experts. Sometimes the weights 
representing reliability are easy to quantify, such as when they are determined by sample 
size or closeness to a quantitation limit. In other case, such as when they represent 

subjective judgments about expert advice or testimony, they may be extremely difficult to 

quantify. The analyst’s temptation in the latter cases is to assume equal weights. But this 

choice is rarely an appropriate default in the case of uncertainty. 

reliability. For intervals, specificity might be some decreasing function the interval’s 
width; for p-boxes or Dempster-Shafer structures it might be a function of the area 

between the bounds or the integral of cumulative plausibility minus cumulative belief. 

After all, these objects ostensibly manifest their own reliability.As discussed in 
Section 4.9.2.1, however, this idea does not always withstand careful scrutiny. It would 

seem to require, for instance, that real numbers be given very large weight, even though 
their apparent precision is probably illusory. 

Frequency weighting is often used for forming stochastic mixtures. For instance, if it 
is known that 75% of the time a quantity is characterized by one set of estimates and 25% 
of the time it is characterized by a different set of estimates, it makes sense to use these 

numbers as weights in computing the mixture distribution. Another example of 
frequency weighting is the use of area weighting to reflect non-uniform spatial sampling. 

For instance, suppose that a spatially varying quantity has been sampled irregularly 
across geographic space. The areas of the Thiessen polygons* about each measurement 

might be used as spatial weights when forming the mixture estimate of the distribution 
for the spatial variation in that quantity. 

Sometimes the temporal sequence in which estimates are collected is very important. 
For instance, reliability and relevance of historical documents are often strongly weighted 

by their age relative to some event. In particular, documents dating close to (but not 
before) the event are weighted heavily and more recent documents are given lesser 
weights. An opposite temporal weighting is common for military reconnaissance. For 
instance, a general might reasonably give more credence to fresh reports. In this case, the 

weighting might be very sharp if current reports are weighted with a value near 1 and old 
reports are weighted near zero. 

Reliability refers to things like sample size used to derive empirical estimates, the 

One might think to use the specificity of the estimate itself as a weight representing 

* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A Thiessen polygon about a sample location (among a collection of such sample locations) is the set of 

points that are closer to that location than to any other location from the collection. Thus ‘polygon’ is a 

misnomer because it is the points interior to the polygon that form the set. 
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Another source of weights is the magnitude of the estimates themselves. The 
archetypal example of this is Olympic scoring of athletic performance in which the 
highest and lowest scores are thrown out (i.e., weighted with zero) before an average is 

computed. Such a weighting scheme might be reasonable in contexts beyond the 
Olympic games. For instance, it will commonly be useful in other situations involving 

expert elicitation if the analyst suspects certain kinds of bias or prejudice among the 
experts. It can even arise in situations involving only objective measurements. For 

example, sometimes the measurement protocols used in chemical laboratories depend in 

part on the concentration present. Very low concentrations and very high concentrations 
are typically hard to measure well. In such cases, there is nothing in particular about a 

measurement, other than its magnitude, that makes it questionable in any way. 
Nevertheless, a low or high value might deserve a diminished weight if they are likely to 
be associated with greater imprecision. Yager (1 988; Yager and Kacprzyk 1997; Klir and 

Yuan 1995) describes a class of aggregation operators based on ordered weighted 

averages (OWA) of surprising generality. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. I I A ccoun ting for small sample size 

What if the estimates to be aggregated are only a small number of samples taken from a 
population of values? In that case, even the envelope aggregation, which yields very 

broad results, may not be broad enough to account for the distribution tails of the 
underlying population that we cannot usually observe because of our small sample size. 

The uncertainty of any aggregation result should be inflated somehow to account for 

small sample size. We have already broached the issue of accounting for sample 
uncertainty in Sections 3.5.4 and 3.5.6.2, and we acknowledged there that the theoretical 
foundations for a sampling theory for uncertain numbers have not yet been developed. 
Still, some analytical strategies that might be useful in practice present themselves. 

If the samples are independent of each other and collected at random from the same 
population that is the focus of interest, then one could employ Kolmogorov-Smirnov 

confidence intervals (Section 3.5.4) to inflate the uncertainty about an estimate obtained 
by a mixing aggregation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs already discussed, these samples could be real numbers or 

intervals. It seems reasonable to think that more general uncertain numbers could also be 
employed, but no algorithms currently exists to do so. Of course, without independence, 
Kolmogorov’s approach makes no statistical claim. And without random sampling, there 
is no assurance that the picture emerging from sampling will be representative of the 
population of interest. 

4.12 Summary of properties and operations 

The properties of the aggregation methods reviewed in Section 4 are summarized in the 
table beginning on page 102. Mathematical properties are arranged in columns of the 
table in the order of their importance (generality is most important). The aggregation 

operations are arranged in order of their usefulness as generic tools in risk analysis 
(enveloping is most useful). The letter Y in a cell means that the aggregation operation 

of that row has the property of that column; the letter N means it does not. 



Motivations and counterarguments for the various properties relevant for an 

aggregation operator are detailed in Section 4.1. They are restated synoptically here. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A denote an aggregation operator, and let X, Y, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 denote uncertain numbers (e.g., 
intervals, probability distributions, p-boxes or Dempster-Shafer structures) which are the 

arguments of A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P A is general if it can be applied to real numbers, intervals, probability 

distributions, p-boxes and Dempster-Shafer structures and combinations thereof 
in a consistent way. 

P A is closed if A(X1, . . ., Xn) is an uncertain number whenever X I ,  . . ., Xn are. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P A is symmetric in its arguments if A(X1, X2, . . ., Xn) = A(Xo(l), Xo(2), . . ., X&)) for 

all permutations o. 

P A is idempotent if A(X, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX) = X for all X. 

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is intersection-preserving if intersection(X1, . . ., Xn) 
the intersection exists. 

P A is enclosure-preserving if X I  ’ E XI implies A(Xl’, . . . , Xn) c_ A(X1, . . . , X ) .  

P A is narrow if A(X1, . . ., Xn) c envelope(X1, . . ., Xn). 

P A is insensitive to vacuousness if A(X1, . . ., Xn, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[-a, +a]) =A(&, . . ., Xn), 

> A is continuous if A(X, Y) + A(2, Y) as X + 2 and A(X, Y) + A(X, 2) as X-+ Y 
for all X, Y, 2. 

P A is commutative if A(X, Y) = A( Y, X) for all Xand Y 

> A is associative if A(X, A(Y, 2)) = A(A(X, Y), 2) for all X, Y, 2. 

P A is quasi-associative if there exists an operation &XI, X2, . . . , Xn) that is 
symmetric in its arguments, and An=2(X, Y) = A(X, Y). 

A(X1, . . ., Xn) whenever 

None of these properties is absolutely essential because, as we have shown, there are 
reasonable examples for which requiring any of these properties would be 
counterintuitive. See Section 4.1 for a discussion of each of these properties and 

arguments for and against using them as criteria for aggregation operators. 
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Table 1 Summary table of mathematical properties of aggregation methods. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Aggregation operator 

Envelope 

Intersection 

Mixture, unweighted 

Mixture, weighted 

Horizontal average, 

unweighted 

Horizontal average, 

weighted 

Logarithmic pooling 

Convolutive average 

Dempster’s rule of 
combination 

Yager’s rule 

Disjunctive consensus 

Null aggregation 

Aggregation operator 

General 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

General 

Closed 

Y 

N 

Y 

Y 

Y 

Y 

N 

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 

Y 

N 

N 

Closed 

Intersection- Enclosure- 
Symmetric Idempotent preserving preserving 

Y Y Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY 

Y Y Y Y 

Y Y Y Y 

N Y N N 

Y Y Y Y 

N Y Y N 

Y N N Y 

Y N N Y 

Y N N Y 

Y N N N 

Y N Y Y 

Y N Y Y 

Intersection- Enclosure- 
Symmetric Idempotent preserving preserving 
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Aggregation operator 

Envelope 

Intersection 

Mixture, unweighted 

Mixture, weighted 

Horizontal average, 

unweighted 

Horizontal average, 

weighted 

Logarithmic pooling 

Convolutive average 

Dempster’s rule of 
combination 

Yager’s rule 

Disjunctive consensus 

Null aggregation 

Aggregation operator 

Narrow 

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y 

Y 

Y 

Y 

Y 

Y 

N 

Y 

Y 

Y 

Y 

Narrow 

Insensitive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 

Y 

N 

N 

N 

N 

N 

N 

Y 

Y 

N 

N 

Insensitive 

Continuous 

Y 

N 

Y 

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y 

Y 

N 

Y 

N 

N 

Y 

Y 

Continuous 

Commutative Associative 

Y Y 

Y Y 

Y N 

N N 

Y N 

N N 

Y Y 

Y N 

Y Y 

Y N 

Y Y 

Y Y 

Commutative Associative 

Quasi-assoc. 

Y 

Y 

Y 

N 

Y 

N 

Y 

Y 

Y 

Y 

Y 

Y 

Quasi-assoc. 
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Although the various aggregation operations can sometimes agree, they generally 
yield very different results. Figure 38 through Figure 40 over the following pages depict 
three sets of nine aggregations of two inputs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and B. The operations are intersection 

(Section 4.3), mixture (4.7), envelope (4.4), the logarithmic pool (4.8), convolutive 

average (4.9. l), horizontal average (4.9.2), Dempster’s rule (4.5. l), Yager’s rule (4.5.2) 
and the envelope variant of disjunctive consensus (4.5.3). In the first set of nine 

aggregations, A and B are overlapping intervals. In the second set of nine, they are 
precise probability distributions whose ranges overlap. In the third set of nine 

aggregations, the two inputs are broadly overlapping p-boxes (or Dempster-Shafer 
structures). The inputs used for each set of nine aggregations are depicted in the pair of 
graphs on the left of each page. (For the illustrative purposes of these graphs, the 
aggregation operations have been applied to two inputs of the same kind, but the methods 

can generally be applied to many inputs and these inputs can be arbitrary combinations of 

any kind of uncertain number, including reals, intervals, probability distributions, p- 
boxes, and Dempster-Shafer structures.) All inputs and all twenty-seven results are 

displayed as p-boxes or cumulative plausibility and belief functions. Thus, the abscissas 
are the x-variable (that is, whatever zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and B are estimates of), and the ordinate in 
cumulative probability. Note that there is no solution for intersection when the inputs are 

probability distributions. The result for Yager’s rule for this case is the vacuous result 
(because the “agreement” between two probability distributions has vanishingly small 

measure). In the case of p-boxes, Yager’s rule has infinite tails. All twenty-seven results 

were computed from their respective inputs by straightforward* application of the 
algorithms for each method as described in Section 4. 

*The only result that might be surprising is that of logarithmic pool for p-boxes. The following example 

explains the left bound on the aggregation that results from using robust methods on the p-boxes. Suppose 

that the distribution for A is actually an even stochastic mixture of a uniform distribution over the interval 
[O.O, 1.011 and a uniform distribution over [3.01, 41. This distribution falls within the p-box given for A .  
Suppose the distribution for B is actually a uniform distribution over [ 1, 31. This is the left side of the p- 
box for B and is therefore consistent with its specification. Because these two distributions jointly have 

nonzero mass only over the interval [1, 1.011, the result of applying the logarithmic pool to them yields the 

(uniform) distribution over [ 1, 1 .O 11. The overlap can be made as small and as close to one as desired, 

leading to a limiting delta distribution at the x-value of one. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA similar example can be constructed for a 

delta distribution at 4. The zero preservation property of the logarithmic pool guarantees that all the 

distributions that could possibly result from its application are constrained to the intersection of the 

supports ofA and B. In this case, that intersection is [0,4], so the bounds of the logarithmic pool 
aggregation cannot be any larger than those shown. 
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Figure 38: Nine aggregation operations applied to interval inputs A and B (left). 
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Figure 39: Nine aggregation operations applied to probability distributions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and B 
(left). 
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Figure 40: Nine aggregation operations applied to p-boxes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and B (left). 
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4.73 Choosing an aggregation operator 

The conclusion at the end of Section 3 on characterization was to use any and all of the 

methods outlined there. The choice of aggregation operators is a very a different story. 
Here, the selection of the appropriate operator to use is a more delicate matter, whose 
consequences will typically be important for an assessment. The selection ought to be a 

considered decision that is based on what is understood about the various information 
sources and their interrelationships. 

The list of questions below can guide you to a useful strategy for selecting the 
aggregation operator most appropriate for a given circumstance. If the answer to a 

question is “yes”, follow any questions that may be indented underneath. The number in 

bold is the number of the section in this report that addresses the method that could be 
useful to you. This is not a flowchart, but there may be a question whose answer 
determines the best strategy to use. This means that, unlike the suggestions in 
Section 3.6.2, an analyst is generally zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot free to follow multiple paths and use different 

methods according to one’s taste or the method’s performance. The different operators 

are appropriate for different contexts. In particular, an operation that is appropriate for 
aggregating variability will probably not be suitable for aggregating incertitude. 

Likewise, one that is well adapted to handle incertitude may be suboptimal for handling 
variability. 

Do the different estimates represent variability (aleatory uncertainty)? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4.7) 
Should a weighting scheme be used? (4.7.2) 

Are the estimates logical or reliable empirical enclosures? (4.3) 
Do the intersections fail to exist? (4.3.2) 

Is at least one of the estimates an enclosure? (4.4) 
Are the reliabilities of the estimates uncertain? (4.4.2) 
Are the estimates samples of a larger population of interest? (4.11) 
Are the estimates independent of one another? (4.5) 
Is it important in incorporate the prior beliefs of the analyst? (4.6) 
Will it be necessary to do sensitivity studies for each estimate anyway? (4.2) 
Is it appropriate to ignore variability? (4.9,4.9.2) 

Is a weighting scheme needed? (4.9.2.1) 
Are the estimates independent? (4.9.1) 
Are the estimates independent of each other? (4.9.1) 



5 Model uncertainty 

In many areas of physics, the appropriate model to use for a particular situation is well 
established. However, in some areas, there is still controversy among scientists about 
how to best describe the physical interactions in a system. This is often the case in new 
areas of science and in scientific fields where empirical investigation is difficult or 

expensive. It is also especially true in domains of study involving performance of new 

materials or new system designs, and behavior of systems under abnormal or extreme 
conditions. These domains are very common in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArisk assessments. 

By “model uncertainty”, we refer to that incertitude about the correct form that the 
model should take. Are the mathematical expressions right? Are the dependencies and 

interactions among physical components reasonably and accurately represented? Are the 
submodels appropriate for the situation and do they mesh together coherently? The 

model in a risk assessment includes all the structural decisions made by the analyst (or 
modeler) that govern how the parameters interact. Each of these decisions is in principle 

subject to some measure of doubt. Model uncertainty is about whether or not those 
parameters are combined together in the right way, In most cases, it is a form of 
incertitude or epistemic uncertainty because we are unsure whether their constructions 

are reasonable and complete. 

Model uncertainty is distinguished from parametric uncertainty, which is the 
uncertainty about the value(s) of a particular constant or variable. Risk analysts have 
many computational tools available to them to assess the consequences of parametric 

uncertainty. But analyses consist of statements about both parameter values and the 

relationships that tie the parameters together. These relationships are expressed in 
models. This means that model uncertainty could be just as important, or even more 

important, than parametric uncertainty. Despite this, almost all risk analyses and, indeed, 
statistical analyses in general neglect this source of uncertainty entirely. Ignoring model 

uncertainty could lead to over-confident inferences and decisions that are more risky than 
one thinks they are. A risk analyst who constructs a single model for use in an 
assessment and then uses it to make forecasts is behaving as though the chosen model is 

actually correct. Draper (1995) argued that model uncertainty should be taken very 
seriously in computing forecasts and calculating parameter estimates. How should this 
be done? 

A traditional Monte Carlo analysis might handle model uncertainty by creating a 

new parameter, say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, to represent which model to use (e.g., Apostolakis 1995; Morgan 
and Henrion 1990; cf. Cullen and Frey 1999). If there are two possible models, this 

parameter would be represented as a Bernoulli random variable taking on both possible 
values with probability determined by the relative likelihoods that either model is the 
right one. If this probability is unknown, the traditional approach is to assume both 

models are equiprobable. If there are several possible models, then the parameter m 
would be a more general discrete variable, whose values would again be equiprobable 
unless the relative probabilities of the different models were known. Finally, if there are 
infinitely many models possible, but they can be parameterized in a single-dimensional 

family, then a continuous version of the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn can be used. In all cases, values for 
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this variable are randomly generated in the Monte Carlo simulation. Which model is 
used is determined by the random value. Typically, the model selection would happen in 

the outer loop of a two-dimensional simulation (in which the inner loop simulated 
variability), but this is not essential. The result of the Monte Carlo simulation depends 

then on a randomly varying model structure. This approach requires that the analyst 
know, and be able to enumerate or at least continuously parameterize, all the possible 
models. 

The Bayesian approach to handling model uncertainty, which is called Bayesian 

model averaging (Raftery et al. 1997; Hoeting et al. 1999), has essential similarities to the 
Monte Carlo approach, and it will typically produce similar if not identical results. Until 

very recently, analysts chose a single model and then acted as though it had generated the 
data. Bayesian model averaging recognizes that conditioning on a single selected model 

ignores model uncertainty, and therefore can lead to underestimation of uncertainty in 
forecasts. The Bayesian strategy to overcome the problem involves averaging over all 
possible models when making inferences about quantities of interest. Draper (1995) 

suggested employing standard techniques of data analysis, but when a good model is 

found, embedding it in a richer family of models. By assigning prior probabilities for the 
parameters of this family of model and treating model selection like other Bayesian 
parameter estimation problems, this approach produces a weighted average of the 

predictive distributions from each model, where the weights are given by the posterior 

probabilities for each model. By averaging over many different competing models, this 
approach incorporates model uncertainty into conclusions about parameters and 

predictions. In practice, however, this approach is often not computationally feasible 
because it can be difficult to enumerate all possible models for problems with a large 

number of variables. However, a variety of methods for implementing the approach for 

specific kinds of statistical models have been developed. The approach has been applied 
to many classes of statistical models including several kinds of regression models 

(Hoeting et al. 1999). 
The Monte Carlo strategy to account for model uncertainty and Bayesian model 

averaging are similar in that they both use what is essentially a mixture of the competing 
models. Aside from the technical burden of parameterizing the space of possible models 
and assigning a probability to each, there is a far greater problem with the approach that 
these strategies use. In representing model uncertainty as a stochastic mixture of the 

possible models, this approach effectively zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaverages together incompatible theories 
(Finkel 1995). It is equivalent in this respect to the approach to modeling what is 
fundamentally incertitude as an equiprobable stochastic mixture (the uniform 

distribution). This approach is due originally to Laplace, but when it is applied in risk 
analysis to the study of distributions (rather than estimating point values), it can 
underestimate* the true tail risks in an assessment. The potential results are distributions 

that no theories for any of the models would consider reasonable. 

the models rather than an average or mixture of models. Because model uncertainty 
In light of this problem, it may be a more reasonable strategy to use an envelope of 

*Some probabilists maintain that one can use stochastic mixtures to represent model uncertainty and that 

this does not average alternative models so long as the results are presented properly. It is hard for us to 

see how this is a tenable position if we want to be able to interpret the probabilities in the output of a 
quantitative risk analysis as frequencies. 
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typically has the form of doubt about which of a series of possible models is actually the 

right one, such an approach would propagate precisely this doubt through subsequent 
calculations. An enveloping approach would clearly be more comprehensive than the 

traditional approach based on model averaging. We note that it would even be able to 
handle non-stationarity of distributions, which is another important source of uncertainty 

that is usually ignored in traditional assessments for lack of a reasonable strategy to 

address it. Unlike the Monte Carlo and Bayesian model averaging strategies, an 
enveloping approach will work even if the list of possible models cannot be enumerated 

or parameterized. So long as we can somehow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbound the regions in any output or 
intermediate variables that depend on the choice of the model, we can represent and 

propagate the uncertainty about the model in a comprehensive way. 
How can one bound a class of models without enumerating or parameterizing them? 

There are several examples of how this can be done. The manifestations of model 
uncertainty are extremely numerous, but there are some particular forms for which useful 

bounding approaches have been developed. These include uncertainty about distribution 
family, dependence, choice among specific competing theories, and choice among 

unknown theories when consequences are bounded. We briefly mention the relevant 

strategies for handling these situations below in turn. 
Model uncertainty about distribution family is the focus motivating the development 

of both robust Bayes methods (Section 3.3; Berger 1985) and the analytical techniques 
for probability boxes (Ferson 1996; 2002; Berleant 1996). It is fair to say that an analyst 

using these techniques could conduct a distribution-free risk analysis that makes no 
assumptions about the families of statistical distributions from which variables are drawn. 

Obviously some assumptions or evidence is necessary (such as constraints on the range 
or moments, or empirical sampling data), but no assumption about the statisticalfamily of 

distributions need be required. These techniques allow an analyst to fully explore the 
consequences of model uncertainty about distribution shape. 

The available techniques are just as comprehensive for model uncertainty about the 
dependencies among random variables. In general, dependency is captured in a copula 

which is a real-valued function of two (or more) variables (the inverses of the distribution 
functions for the two random variables). Solving a problem originally posed by 
Kolmogorov, Frank et al. (1987) developed the mathematical tools to compute bounds on 

arithmetic functions of random variables about which only marginal information is 
available. Williamson and Downs (1 990) implemented these tools and extended them to 

the case when only bounds on the marginals are known. Note that the resulting bounds 
on the answer are not equivalent to those obtained by merely computing the result under 

all possible correlation coefficients from -1 to +l; they are slightly wider. Nevertheless, 
the resulting bounds are known to be best possible (Frank et al. 1987). 

An accounting for model uncertainty can be done by enumeration if it can be 
narrowed to a controversy among a finite list of specific competing theories. In a variety 
of cases, there are two or a few models that have appeared in the scientific literature as 
descriptions of an incompletely understood phenomenon. In some cases these models are 

extreme cases of a continuum that captures the possible ways that the phenomenon could 
work. In other cases, the models are the idiosyncratic products of individual scientists, 

and the resulting collection of models cannot be claimed to be comprehensive in any 
sense. In either case, so long as the model uncertainty in question is about only these 



specific models, then surveying each model and enveloping the results they produce will 
suffice to construct the bounds needed for analysis. If the number of competing models 
is small, a null aggregation strategy that studies each possible model in turn might even 

be workable. 
Even in situations where we cannot list the possible models because there are 

infinitely many of them, it may still be possible to bound the consequences of model 

choice. Trivial cases include models that influence a probability value. We know that 
the probability is constrained to the interval [0,1], no matter what the model is. 

Nontrivial cases depend on specific knowledge of the physics or engineering of the 
system under study. Note that it is often possible to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbound the results in such situations, 
even though we could not possibly form a mixture distribution. 

The strategies of enveloping (Section 4.4) and null aggregation (Section 4.2) are 

generally useful for representing model uncertainty. In some cases where different 

mechanisms appear to be acting in different circumstances, mixing (Section 4.7) may be 
appropriate. Bayesian model averaging (Hoeting et al. 1999) is similar to mixing in that 
functional averages of distributions are computed. The other aggregation operations 

considered in this report (intersection, Dempster’s rule and its variants, and averaging) 
would probably not be reasonable for use with model uncertainty because they really 

focus on parametric uncertainty per se. 
Many analysts make a reflexive criticism that bounding approaches may lead to very 

wide uncertainties. Certainly it is true that bounding can lead to large uncertainties, but 

the width of the uncertainty is irrelevant if those bounds can be shown to be best possible 
or are otherwise small enough to lead to useful risk analyses that support effective 

decision making. In any case, it is better to have a correct analysis that honestly 
distinguishes between variability and incertitude than an analysis that depends on 

unjustified assumptions and wishful thinking. We argue that a correct analysis does not 
mistake ignorance on the part of the analyst for variability in a natural system. 

Assumptions that incertitude in one variable will tend to cancel out incertitude in another 
variable, or that extremes from one model will be tempered by outputs from another 

model are little more than wishful thinking unless they can be supported by affirmative 
evidence of the supposed variability. Not knowing the value of a quantity is not 
equivalent to the quantity varying. Likewise, not knowing which model is the right one 
to use does not mean that it is reasonable to suppose that each model governs the system 

part of the time. Indeed, this seems like the most unlikely situation of all. It has always 
been easy to get tight bounds on uncertainty if we’re not constrained to account for what 
is known and what is not known. If the price of a correct assessment is broad uncertainty 
as a recognition or admission of limitations in our scientific knowledge, then we must 

pay that price. 
Although there are several important forms of model uncertainty that are amenable 

to a complete assessment by enumeration or bounding, there are, of course, other forms 
of model uncertainties that remain difficult to address in comprehensive way, such as 
choice of what parameters to use and choice about the level of abstraction and depth of 

detail to incorporate into the model. For such uncertainties, the family of possible models 
may be infinite-dimensional and the analyst may lack any natural way to bound the 
parameters that depend on the model selection. 



6 Conclusions 

Uncertain numbers are a class of objects that include intervals, probability distributions, 
probability boxes, and Dempster-Shafer structures on the real line. Real numbers are a 

degenerate special case of uncertain numbers. By their ability to simultaneously 
represent incertitude (or epistemic uncertainty) and variability (or aleatory uncertainty) in 

a single data structure, uncertain numbers are especially suited for use in quantitative risk 
analyses. Incertitude is expressed in the widths of intervals that are the focal elements 

composing a Dempster-Shafer structure. Variability is expressed by the scatter of those 

intervals. Incertitude is also expressed in the breadth between the left and right sides of a 
probability box, and variability is expressed in the overall range and steepness of the 
probability box. An interval is a special case because it expresses pure incertitude. 

Likewise, a probability distribution expresses pure variability. (These ideas are contrary 
to the common notion championed by Bayesians that probability is fully capable of 

expressing both incertitude and variability by itself.) 
A Dempster-Shafer structure on the real line can always be converted into a 

probability box, although some information about the internal arrangement of masses 

may be lost in the conversion. Conversely, a probability box (specified by a pair of 
distribution functions) can be identified with an equivalence class of Dempster-Shafer 

structures. The equivalence class consists of all of those Dempster-Shafer structures 

whose cumulative plausibility function is the same as the left bound of the probability 
box and whose cumulative belief function is the same as the right bound of the 

probability box. The interconvertibility of probability boxes and Dempster-Shafer 
structures is very important because it allows analysts to use tools developed in either 
theory to solve risk assessment problems. 

Section 3 reviewed the variety of ways that data and expert knowledge can be 
quantified as uncertain numbers. These ways include 

direct assumption, 

modeling, 

robust Bayes methods, 
constraint specification, and 
synthesis of experimental measurements. 

These are the approaches available to a risk analyst for selecting the inputs to be used in 
the risk assessment. 

Direct assumption is the derivation (or sometimes merely the intuitive choice) by the 
analyst of a probability distribution or other uncertain number based on the analyst’s 

understanding of the engineering principles or underlying physics involved. For instance, 
the normal distribution is often motivated by an appeal to the central limit theorem. The 
disadvantage of direct assumption as a way to specify uncertain numbers is that it cannot 

usually be justified by any empirical evidence or explicit model. Because humans 
routinely and severely underestimate their own uncertainties, even about processes within 
their professional domains, inputs selected by direct assumption should probably receive 

careful review. 
The use of modeling to choose an uncertain number for use in a risk analysis divides 

the problem into subproblems. Instead of directly selecting the representation for the 
quantity of interest, it is analyzed in terms of other quantities which (it is hoped) are 



easier to quantify. The quantity of interest is then computed from these estimates via the 

model. The advantage of modeling over direct assumption is that the analyst’s mental 
reasoning leading to the choice is made explicit by the model. This explicitness improves 

the transparency and the reviewability of the selection. There are a variety of models that 
can be used, including finite combinations of convolutions (additions, subtractions, 
multiplications, divisions, etc.), transformations (logarithm, square root or absolute 

value), aggregations (enveloping, intersection, stochastic mixtures, etc.), compositions 
and deconvolutions. Algorithms to effect all of these operations are available for 

uncertain numbers. 
Section 3.3 considered the use of robust Bayes methods for the purpose of obtaining 

uncertain numbers for use in risk calculations. Although Bayes rule is often considered a 
method for updating estimates with new evidence, in this context it can also serve as a 

means of characterizing an uncertain number from a single source. Ordinary Bayesian 
updating is accomplished with a single prior distribution and a precise likelihood 
function. In robust Bayes, the requirement to specify a particular prior and likelihood is 
relaxed and an entire class of priors can be combined with a class of likelihood functions. 

Because the resulting class of posterior distributions can be represented by a probability 

box, robust Bayes constitutes a means of obtaining an uncertain number. 
The maximum entropy criterion is used by many analysts to select probability 

distributions for use in risk assessments from limited quantitative information that may be 

available about a random variable. For instance, if only the minimum and maximum 
values of the random variable are known with confidence, an argument dating back to 
Laplace asserts that a uniform distribution over that range is the best model for the 
variable. This distribution, out of all of the distributions that have the same range, has the 

largest statistical entropy. Likewise, if the mean and variance are somehow the only 
pieces of available information about a random variable, a normal distribution has the 

largest entropy and would be selected for use under the maximum entropy criterion. 

quantitative information. Instead of selecting a single distribution from the class of all 
distributions matching a given set of constraints, this approach simply uses the entire 
class of those distributions. For instance, if the risk analyst only knows the minimum and 

maximum possible values for a random variable, then the set of distributions having the 
specified range will be represented as a probability box. In this case, the probability box 

is equivalent to an interval with the same range and also to a degenerate Dempster-Shafer 
structure with one focal element. Best possible probability boxes have been derived for 
many different cases that might arise in practice. These include, for instance, cases in 
which the following sets of information are known (or can be assumed): {min, max}, 

{min, max, mean], {min, max, median}, {min, max, mode], and {sample mean, sample 
variance}. Qualitative constrains on the shape of the distribution may also be accounted 
for to tighten the uncertain number. For instance, techniques are known that can account 
for positivity (nonnegativity) of the random variable, convexity or concavity of the 

distribution function, and monotonicity of the hazard function. It is also possible to 

derive bounds on the distribution function, and thus specify an uncertain number, by 
limiting the probability density over various real values. Such information is sometimes 

available to analysts from their previous scientific study of a system. Sometimes the 
constraints represent design constraints that are to be built into a system. The extensive 

Section 3.4 described a parallel strategy for selecting uncertain numbers from limited 
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available library of special cases forms a ready alternative to appeals to the maximum 

entropy criterion. 
The use of experimental measurements in developing uncertain numbers was 

described in Section 3.5. Uncertain numbers can represent the variability in a data set, in 

essentially the same way as an empirical distribution function does. Unlike empirical 
distribution functions, however, they can also represent the natural measurement 

uncertainty that may have accompanied the collection of the original data. This 
measurement uncertainty could include the ordinary plus-minus intervals commonly 

reported with most kinds of measurements. It could also include many forms of 

statistical censoring. The uncertainty could even include the sampling uncertainty that 
arises from measuring only a sample of a larger population of quantities. All of these 
kinds of uncertainty can be represented in a comprehensive way with a single uncertain 

number. 

numbers and proffered a checklist of questions to guide analysts in the use of these 

methods. 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 considered the issue of how different estimates of a single quantity or 

distribution should be combined. It reviewed twelve properties of aggregation methods 

and considered the arguments for and against requiring each property for an aggregation 
method. Although none of the properties was clearly essential for an aggregation 
operator, we think that some of the properties are especially important to consider when 

choosing a method. In particular, it seems reasonable that the aggregation method should 

Section 3.6 reviewed strategies for selecting methods for characterizing uncertain 

1) be applicable to all kinds of uncertain numbers (generality), 

2) yield an uncertain number as a result whenever its arguments are uncertain 
numbers (closure), 

3) yield the same answer no matter what order the estimates appear in (symmetry 
in arguments), 

4) preserve any agreement that may exist among the estimates (idempotence and 
the intersection-preserving property), and 

5) never widen answers if inputs get tighter (enclosure-preserving property). 
The generality and closure properties are obviously matters of convenience. 
Nevertheless, they are, just as obviously, important considerations. The other properties 

seem both entirely reasonable and usefully broad in scope. 

probabilists. However, the controversy may simply be the result of prejudice in favor of 
established aggregation methods. For instance, if Bayes’ rule and logarithmic pooling 
were idempotent, it seems doubtful that many would have any serious objection to this 

property. To those who are not already committed to the notion that Bayes’ rule is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe 
way that uncertainty should be aggregated, it is hard to imagine that a reasonable method 
should give different results depending merely on the order in which the evidence is 
considered. Some have also argued against symmetry. For instance, they suggest that a 

general’s conclusion about the battlefield depends on the order in which he receives 
reconnaissance. Although it may be that the general’s conclusion does depend on the 
order in which messages are received, it is not clear that this means that it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshould be. In 
the context of dispassionate risk analyses based on empirically measured quantities about 

engineered devices, it seems highly implausible to think that which answer is correct 

The symmetry and idempotence properties are controversial among some 



should depend on which of a series of measurements happen to be taken first. Bayesians 
recognize the intrinsic attraction of this symmetry when they emphasize that Bayes’ rule 

asymptotically converges to the right answer after many data sets have been combined. 
Their difficulty, of course, is that risk analysts rarely have (asymptotically) many data 

sets to combine. They typically must make forecasts and draw inferences in the short 

term. 

its mathematical properties. The different methods that are available are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdoing diffeerent 
things and each may be useful in a particular circumstance. Intersection (Section 4.3) 
may be clearly most useful if all the estimates are completely reliable. Enveloping 
(Section 4.4) may be more reasonable if the reliability of the estimates is unknown. 
Mixing (Section 4.7) may be appropriate if the discrepancies among the estimates 

represents variability that should be factored into the analysis. The least useful general 
strategy for aggregating uncertain numbers is perhaps averaging (Section 4.9), because it 

tends to erase uncertainty rather than capture it for subsequent propagation. But even 
averaging may be appropriate if the relevant feature of the system is an integral of the 

variable measured. Bayes’ rule (Section 4.6) might be superior when subjective 
probabilities are involved. Three of the many variants of Dempster’s rule (Section 4.5) 
were discussed, but it is not completely clear under what circumstances any of these 
variants would be the most appropriate method of aggregation. Nevertheless, some 
version of Dempster’s rule will no doubt continue to be widely used whenever estimates 

are expressed as Dempster-Shafer structures. Section 4.13 offered a list of questions that 

may serve as a helpful roadmap to choosing the aggregation method to use in a particular 
situation. 

Which aggregation operation yields the tightest result for a given collection of 
uncertain numbers depends in part on whether the uncertainty in the inputs is primarily 

incertitude or variability. Nevertheless, one can recognize the following rough order of 
the aggregation operations in terms of the breadth of uncertainty in their results. 

In practice, however, analysts rarely select an aggregation strategy based solely on 

Tightest: Dempster’s rule, 

intersection, 
convolutive averaging, 
horizontal averaging, 

mixing , 
logarithmic pooling, 
enveloping, 
Yager’s rule, 

Broadest: disjunctive consensus. 

Note, however, that this ranking is not hard and fast. If the uncertain numbers being 
aggregated are all intervals, or if they are all precise probability distributions, the order 

shifts somewhat. 

like parametric uncertainty, model uncertainty can be either incertitude or variability. 
When it is the latter, it is best to represent it with a stochastic mixture. When it is the 
former, a mixture model is inappropriate and it should be represented using a bounding 

approach such as enveloping. 

Section 5 considered the treatment of model uncertainty. Its main thesis is that, just 



7 Future research directions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As already mentioned in Sections 3.5.4, 3.5.6.2 and 4.1 1, research is needed to develop a 
comprehensive theory that incorporates and generalizes the sampling theory of traditional 
probabilists and fully justifies the use of confidence procedures to create p-boxes and 

Dempster-Shafer structures and their subsequent use in risk assessment models. Such a 

theory would allow information based on sample data to be used to make projections 

about entire populations. One possible strategy to account for small sample size would 
be to use the inequality of Saw et al. (1988) described in Section 3.4.3 to obtain non- 
parametric bounds on the underlying distribution. This approach assumes that the 
samples are real numbers. It might be possible to generalize it to the case of interval 

estimates, but clearly fundamental research would probably be necessary to develop the 
approach to accept more general uncertain numbers as the estimates. 

Another conceivable strategy to account for small sample size would be to combine 
ordinary statistical confidence procedures with a modeling assumption about the 

distribution shape. As discussed in Section 3.1, the shape of the overall distribution 
family could be posited by direct assumption, or perhaps justified by mechanistic 

knowledge. If the sample values are all real numbers, then ordinary statistical procedures 
can be used to obtain confidence limits on, for instance, their mean and variance. In 
conjunction with the assumption about shape, these interval parameters would specify p- 

boxes that account for sampling variation. This approach extends Grosof s (1986) idea of 
using statistical confidence procedures to come up with intervals to an even more 

ambitious one that would empower confidence procedures to specify p-boxes as well. If 

the sampled estimates are intervals rather than point values, then calculating the needed 

confidence intervals becomes much more difficult. In fact, the computation is NP-hard, 

although there are algorithms that may produce close-to-best-possible bounds more 
conveniently (Ferson et al. 2002). The problem for more general uncertain numbers has 
not yet been considered. Coming up with a mean might not be very difficult, but what is 
the variance of a collection of p-boxes or Dempster-Shafer structures? Further research 
is needed in this direction. 



8 Glossary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
aleatory uncertainty The kind of uncertainty resulting from randomness or 

unpredictability due to stochasticity. Aleatory uncertainty is also known as 
variability, stochastic uncertainty, Type I or Type A uncertainty, irreducible 
uncertainty, objective uncertainty. 

best possible A upper bound is best possible if it is the smallest such bound possible. A 
lower bound is best possible if it is the largest lower bound possible. 

bound An upper bound of a set of real numbers is a real number that is greater than or 

equal to every number in the set. A lower bound is a number less than or equal to 
every number in the set. In this report, we also consider bounds on functions. These 

are not bounds on the range of the function, but rather bounds on the function for 

every function input. For instance, an upper bound on a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(x) is another 

function B(x) such that B(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 F(x) for all values of x. B(x) is a lower bound on the 
function if the inequality is reversed. If an upper bound cannot be any smaller, or a 
lower bound cannot be any larger, it is called a best possible bound. 

composition The formation of one function by sequentially applying two or more 

functions. For example, the composite functionf(g(x)) is obtained by applying the 
function g to the argument zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and then applying the functionfto this result. 

conjugate pair In Bayesian estimation, when the observation of new data changes only 
the parameters of the prior distribution and not its statistical shape (i.e., whether it is 

normal, beta, etc.), the prior distribution on the estimated parameter and the 
distribution of the quantity (from which observations are drawn) are said to form a 
conjugate pair. In case the likelihood and prior form a conjugate pair, the 
computational burden of Bayes’ rule is greatly reduced. 

convolution The mathematical operation which finds the distribution of a sum of 

random variables from the distributions of its addends. The term can be generalized 

to refer to differences, products, quotients, etc. It can also be generalized to refer to 

intervals, p-boxes and Dempster-Shafer structures as well as distributions. 
copula The function that joins together marginal distributions to form a joint distribution 

function. For the bivariate case, a copula is a function C: [O,l]x[O,l]+[O,l] such 

that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(a, 0) = C(0, a)  = 0 for all a ~ [ O , l ] ,  C(a, 1) = C(1, a)  = a  for all a ~ [ O , l ] ,  and 

C(a2, b2)-C(al, b2)-C(a2, bl)+C(al, bl) 2 0 for all al,a2,bl,b2~ [0,1] whenever al<a2 
and blIb2. For any copula C, max(a+b-1,O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI C(a,b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI min(a,b). 

cumulative distribution function For a random variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, the probability F(x) that X 
will take on a value not greater than x. If the random variable takes on only a finite 

set of values, then F(x) is the sum of the probabilities of the values less than or equal 
to x. Also known as a distribution function. 

known and constant scalar value. This distribution therefore lacks all variability and 
incertitude. Its shape is that of the step function H,(x), where c is the value of the 

scalar. 

delta distribution The cumulative distribution function associated with a precisely 
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Dempster-Shafer structure A kind of uncertain number representing 

indistinguishability within bodies of evidence. In this report, a Dempster-Shafer 

structure is a finite set of closed intervals of the real line, each of which is associated 
with a nonnegative value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, such that the sum of all such m's is one. 

distribution function For a random variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, the probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(x) that X will take on a 

value not greater than x. If the random variable takes on only a finite set of values, 
then F(x) is the sum of the probabilities of the values less than or equal to x. Also 

known as a cumulative distribution function. 

Epistemic uncertainty is also known as incertitude, ignorance, subjective uncertainty, 

Type I1 or Type B uncertainty, reducible uncertainty, and state-of-knowledge 
uncertainty. 

focal element A set (in this report, a closed interval of the real line) associated with a 
nonzero mass as a part of a Dempster-Shafer structure. 

H,(x) The step function that is zero for all values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx less than c and one for all values 

equal to or greater than c. 
imprecise probabilities Any of several theories involving models of uncertainty that do 

not assume a unique underlying probability distribution, but instead correspond to a 
set of probability distributions (Couso et al. 2000). An imprecise probability arises 

when one's lower probability for an event is strictly smaller than one's upper 

probability for the same event (Walley 199 1). Theories of imprecise probabilities 
are often expressed in terms of a lower probability measure giving the lower 

probability for every possible event from some universal set, or in terms of closed 
convex sets of probability distributions (which are generally much more complicated 
structures than either probability boxes or Dempster-Shafer structures). 

incertitude The kind of uncertainty arising from imperfect knowledge. Incertitude is 
also known as epistemic uncertainty, ignorance, subjective uncertainty, Type I1 or 

Type B uncertainty, reducible uncertainty, and state-of-knowledge uncertainty. 

infimum The greatest lower bound of a set of values. When the set consists of a finite 
collection of closed intervals, the infimum value is the same as the minimum value. 

interval A kind of uncertain number consisting of the set of all real numbers lying 
between two fixed numbers called the endpoints of the interval. In this report, 
intervals are always closed so that the endpoints are always considered part of the 

set. 

inverse function For a function y = F(x), an inverse function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF' takes y-values in the 

range of the function F to x-values in the domain of F in such a way that F'(F(x) )  = 

x and F(F'(y))  = y. For instance, if F(x) is the distribution function for a random 

variable X giving the probability associated with the event X l x ,  then the inverse 

function F'(p) is the value of x associated with any valuep. An inverse function 

does not necessarily exist for any function, but any one-to-one function will have an 
inverse. 

lower probability The maximum rate for an event A one would be willing to pay for the 
gamble that pays 1 unit of utility if A occurs and nothing otherwise. 

mean The probability-weighted average of a set of values or a probability distribution. 
The mean is also called the expected value or the expectation of a random variable. 

It is the first moment of a probability distribution. 

epistemic uncertainty The kind of uncertainty arising from imperfect knowledge. 
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measurement error The difference between a measured quantity and its actual or true 

value is called measurement error. The term is also used to refer to the imprecision 
or uncertainty about a measurement, although the term measurement uncertainty is 

now preferable for this meaning. 

measurement. 

values, taken on by a random variable. This value is the 50th percentile and the 0.5 
quantile of a probability distribution. 

measurement uncertainty The uncertainty (incertitude) about the accuracy of a 

median A magnitude that is greater than half of the values, and less than half of the 

mode A value that occurs most frequently in a set of values or a probability distribution. 
Monte Carlo simulation A method of calculating functions (often convolutions) of 

probability distributions by repeatedly sampling random values from those 
distributions and forming an empirical distribution function of the results. 

p-box A probability box. 
precision A measure of the reproducibility of a measured value under a given set of 

conditions. 
probability box A kind of uncertain number representing both incertitude and 

variability. A probability box can be specified by a pair of functions serving as 

bounds about an imprecisely known cumulative distribution function. The 
probability box is identified with the class of distribution functions that would be 

consistent with (i.e., bounded by) these distributions. 
quantile A number that divides the range of a set of data or a distribution such that a 

specified fraction of the data or distribution lies below this number. 
random variable A variable quantity whose values are distributed according to a 

probability distribution. If the potential values of the random variable are a finite or 
countable set, the random variable is said to be discrete. For a discrete random 

variable, each potential value has an associated probability between zero and one, 

and the sum of all of these probabilities is one. If the random variable can take on 
any value in some interval of the real line (or any rational value within some 

interval), it is called a continuous random variable. 
real number A real number is an element from the real line consisting of positive and 

negative integers, rational numbers, irrationals and transcendental numbers. A real 
number is a rational number or the limit of a sequence of rational numbers. Real 
numbers are sometimes called scalars. 

rigorous Exact or sure, as opposed to merely approximate. 
robust Bayes A school of thought among Bayesian analysts in which epistemic 

uncertainty about prior distributions or likelihood functions is quantified and 

projected through Bayes rule to obtain a class of posterior distributions. 

arising from incomplete sampling of the population characterized by the statistic or 
distribution. 

scalar A real number. 
stationary Characterized by an unchanging distribution function. 

support The subset of the domain of a distribution function over which the function is 

sampling uncertainty The incertitude about a statistic or a probability distribution 

neither perfectly zero nor perfectly one. 
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supremum The least upper bound of a set of values. When the set consists of a finite 

collection of closed intervals, the supremum value is the same as the maximum 
value. 

two-dimensional Monte Carlo A kind of nested Monte Carlo simulation in which 

distributions representing both incertitude and variability are combined together. 

Typically, the outer loop selects random values for the parameters specifying the 
distributions used in an inner loop to represent variability. 

uncertainty. Uncertain numbers include intervals, probability distributions, 

probability boxes, Dempster-Shafer structures as special cases. Uncertain numbers 

also include scalars (real numbers) as degenerate special cases. 
uncertainty The absence of perfectly detailed knowledge. Uncertainty includes 

incertitude (the exact value is not known) and variability (the value is changing). 
Uncertainty may also include other forms such as vagueness, ambiguity and 

fuzziness (in the sense of border-line cases). 

gamble that pays 1 unit of utility if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA does not occur and nothing otherwise. 

is also associated with aleatory uncertainty, stochastic uncertainty, Type I or Type A 
uncertainty, irreducible uncertainty, objective uncertainty. 

uncertain number A numerical quantity or distribution about which there is 

upper probability The minimum rate for an event A one would be willing to pay for the 

variability The fluctuation or variation due to randomness or stochasticity. Variability 
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