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ABSTRACT

.

paper describes the construction and implementation of an auto-..

programming system. An autoprogiammer is aninteractive coDilb.ter system

which, accepts is input example calculations, and which yields computer*

programs for .014, these calculationa,
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paper describes the construction and icIplementation of an auto -'.

programming system. An autoprogiammer is an.interactive corn ter system

which:accepts is input eZample calculations, and which yields computer
-

programs for slollgthese calculations,
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1. -*INTRODUCTION

An autoprogrammer is an interactive
Computer progrx4ing system which

tautomatically constructs Computer programs from example
computations executed

by the user. the example calculations
-are done in a scratch pad fashion

at a computer display
using a light pen or other graphic input device, and

the system stores
a detailed history of all of the steps executed in the p1rocess.

Then the system
automatically synthesizes the shortest possible program which

is capable of executing the observed examples.

The autoprograxing concept as a program
construction'technique attempts

to' divide the
responsibilities of man'and machine as optimally as possible

giving the man the creative tasks of choosing
the data' structures and

furnishing the algorithm while the machinawproduces
the actual code of the

,

io ,

ptograq. The user works in'the
familiar domain of concrete examples ashe

44

pushes the information
around in the daiaistructures by hand. Be does not.

need to mentally viaualiz46
the effects of his, instructions sin ;e they, take

Place on the screen before his eyes. The code created by the machine is

guaranteed to preCleely mimic the actions of.the user in his examples.

Language sxntax in the traditional sense is totally.absent from the user's

point of view except for the correct ordering of the graphic inputs.

This work is aided-at the development of a simple, ryliable,effe,:tiiq,

and convenient program sYnphesizer. Features will be described here which

_,help-the ilser correctly codplete his examples, which enable-him to be7

somewhat carefree about the style of his inputs, and which enable him to

find and correcepri4rath
errors by dealing with the effects of the program

rather than the program itself. It is assumed that,the user will change1

liis mind often during, the ,synt sis process, that he will want'to add and
%._

-deletegdata i scructvres at unpredictablL timei, thathe will mike mistakess

4 .'.

.

.



in his 4amplepethat must be - corrected, that ha will want. tall sublioutines

that have trot yet been created, anal that he nay priolSide information in

fragmentary manner. The system described here allows for all of these.

possibilities without losing Its basic sinplicity.of design.

The next section describes the computational environment provided by

r
an autoprogra-er within which the user can execute his examples. Section

3 will introduce the basic formalisms to be used in this paper. In Section-.

4, we will dissibe the program synthesis system and show that it is both,

sound and Complete in thl fol4owing senses: we 'can guarantee that a synthe-
4.

sized program will correctly execute jhe given exaples'(soundnets) and that

every poss ible program (or its' equivalent) can be ad by ourosiltem

(completeiess). Section 5 'will give some of features whi4 can be built

into an autoprogrammer td increase its'cOnveni nce and will discuss how they

are incorporated init the total design. Secti will discuss sore

programing detail of our current system and vll give some progr

it as used to create..

o

7
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2. DOING THE EXAlifILE$

1

An example calculaticebegins 1:ritliAdeclaration of the name .of the

toutine,to be cteated and.any parameter .inputs to be included with4ts_call.

Then the data ItructurAs whic are to appear 'on the screen are4declared. On.

are
.

_ .0

our current system, these declaratlons are made at the teletype aftbOugh they'

.

,

4.

could 1)6 input graphically as are most 'other commands. The declarations. :.

include not only arrays and variables buralso pointers into arrays.. That

.0

is if I has value 3 and is listed as a pointer into linear array A, then 6 .'.

,
.

'V.
*

arrow labeled I l'point to the third location in A. We can rqfier graphically ..
/ s

/e
Nto the location A(I) by touching the pointer and to location A(3) by touching f

-

the actual location A(3). This usage will become clear in the e to

follow.

4.

4E
4'

Once thA data structures have, appeared on the screen, one may begin

the sample calculation using the' graphic input Vice. Probablr,the best:

such device for auteprogramming would be a touch sensitive drface od the

display screen, but on our current system we haveusedsalight,pen.. -We suspect

4

that a touch sensitive screen would yield a mtich better System because it

.

.
would accept iyputs at a much hgher rate a nd Would.allow-the pregrammer to

;
use bothands. In any case will 'refer to one graphic input, one pair *

of x,y-coordinat .as a touch or a hit.

N 1

Tfie commands to the system are,indicafed by a touch sequentially 63
.-

t
, .

the command,dame which appears-on the scres and each of its dPecands. Let
'

pi stand for the i-th graphical hit after the command is designated. That is,

Suppose we touch sequltially the instruction move followed by I and J. Then
I

t,
.

,
.

.

p1-I, pr.', and by the definition given belati, thecantents of I will be
. . . m . .

dad into 3.,

:,/ '1
.- =

We ii need eight commanddin °Air forthcoming example:

2-1

4

t
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P it

start

mov'e

#

*

the first igstructton.in any pr:OgrAta"..

P2 ± P1'

p1ip.2 or if there are

p2 p2-p1 or if there are

.three aperanda

,
three operands:-

an:
8, .0.

01

:

4".-P1472.

4"

'L

subst this is 'asplecial operatorinvinted for.the.purpose of thia.-4.

...-

akample: apply the gramlatical rule With left hand side at
, .

p1 and rightithandiide at pi_to string p3 at loEation.p4 and

put the result

. '

erences,BCp2 references

XYZ, p
3
references ABC6i, and p

4
'2;; then AXYZDE *ill be entered

s Into location p5. (Typically, a subroutine would be synthesized

to do this task rather than creating suCt,en'operator.)

length - yields the length of,stri

print -

belt endssexecution ofthe revtine glad returns control to the calling

types out)on the te letype the String

*

(I routine.

It is also necessary to indicgte to the system when a Condition is being

checked. For example, in a sorting. routine we note that two i ems are-out of

order before we exthange them: note A(I)>A(3). So for checking conditions,

,Ls have the relations >, and < available with the usual definAions* and ,
- ,

terminal which is. defined for the purposes of the following exp1e. The 10'

predicate terminal yields A_23.1u; of true, if and only if its operand pi:.

has all terminal symbols as defined below- .

Let us suppose that Cte wish to create a program called GENERATOB4which

generates and prints all of the terminal strings that can be produced by
\ ..

or less applicatians,of ;vies of an arbitrary grammar starting from a given
4

l
s '

iri tial string. The algorithm will be ,t43 generate alossible immediate
. - ..

*If X and Y are strings of different length and the shortest one his length i,.

themXY'il thi i chiricters of X and Y are identieal.
_ .

2-2 .9

IP



A

e 1
successors of the inftial string add to store them, on -s stack. Then it will

.
load the top atring from the stack, generate all Of Its immediate successors'

and add them to, the stack, ,and Sq forth. Terminal.strings v;111 be immediately

printed, and deleted from the-stack as they are generated, and nonterminal,

4

strings resulting from H appliCatione of rules will )0e deleted to insure

termination.of the computation.` I

A 1

The autoprogrammer will need an example'cdmputationr7tamich to

construct the program mid we will *chOose the grammar {BA-*BBA, ABA -+a} using..

\
initial string ABA and searching to a depth of N = 2. The nonterminals in

this grammar are A and B, and the :clip eirdinal symbol is a. The data
-1.

4

structures will bee:.

STRING

LEVEL

Which holds the Current 'String being processed,

which give's the depth o f generationiof STRING,

N as defined above,

LEFT and RIGHT 7 to hold ihd'aeft and right sidesof the grammatltal rides,

!MULES to hold the number of rules' in the Crammer,

TRSTACK and LEVSTA9 oldthe stored strings aniLheir levels,' -end

.S.

the p ointers-, Z, end J.

Figure 1 shows how these structures willlappear on.the screen after they are

declared. P is a special substring-pointer which references all of the convents
*

of STR1NG'fr om the p-th character. onw ards. Thus, if.? = 3 and STRING =

"ABCDB", then MING(P) = "CDE".
-

the calculation proceeds as shown in Figure 2 where the commands ''axe

given n,the leftmost column and their results in the thjor data st,uctures

are Illdicated to the right. Thudr, the first hit isthe start instruction,
. .....

411.

thtsecond is move, the

,

third* the literal 0 at-the bottom of the
.

screen, the
...

I
.

r

fourth is J, and so forth.' Scpning down the figure, one can see the pointei

P being advanced across STRING searching for an application of rule 1 of the
.

._ -. .
V,

.

2 -3



STRING

ABA

P

I

fa

R.

- LEFT

BA

ABA

I

ej

RIGHT

GENERATOR

*-0

LEVEL

NORULES

2

N

STRSTACK

.

J

itefalS: 0 1 2 3 4 5 6 7' 8 9

- start #
move

04
+.

sbbst

;ength

print

Si

halt

LEVSTACK

I
_ -

I .

FIGURE 1. The autoprogrammer screen-before thd satnple calCulation begins.

I.



nstruceion

,,
ti

STRING LEVEL I STRSTA K LEVSS'ACiCstart.r
2 'move 0 LEVEL

...
3 move- 0 .J

4 move 1 L.

5 move -0 P
.' ,

6 + 1 P
,

7 -I- 1 2 :
*

. 8 note LEFT(I);= STRING(P)
.

.

.9 "+ 1 J
. -,.

101 subst LEFT(I) RIGHT(I) STRINt P STRTACK(J)
11 + 1 LEVEL LEV5TACKCI)
12 - + 1 P

, ...

13 no tq lengthXLEFT (I) )
>Length (STRING (P) )

14 + 1 I

15 move 0 P

16 + 1,I1 ,

17. + 1 J q
,

,,
>

18 subs.t LEFT() RIGHT(/' STRING P STRSTACK(J)
19 + 1 LEVEL LEVSTACK

20 note terminal STRSTACK,(3)

21 print STRSTACK(J)
#

22 - 1 J

23 + 1 P

24 + 1 I . P
25 n'bte I>NORULS

26
. ove STRSTACK(J) STRING I27 mbve- LEVSTACK (ag ) LEVEL

.
, A

28 - t J -)

29 move 1 I

2. 30 move 0 P
ABBA r

31 + 1 P AO*

ABBA
32 ±714/

ABBA
+ 1 P

k+ -

, ...k
ABBA

1 J .

subst LEFT(I) RIGHT (I) STRING P STRSTACK(J) , r .
e 36, + I LEVEL IfEVSTACK(J)

.

..

37 note LEVSTACK(J) = N
3.13, -,1 J .

39' + 1 P
dr- ABBA

ho ,-i. 1 ,

41 move 0 P
' {ABBA -

42 -+ 1 P
ABBA

; 43 + 1 P
; ABBA

4 + 1 P ABBA
43 + 1. I .
46 note J -.. 2
47 halt =,--, # .

. ...,... ...

1 a ..,+.
4 ..- .I

l1 :..e f ' -
`FIGURE 2. The steps of iirt -example calculaion:

.
generating terminal strings from a grammar.,

,...,

.0 .1%.,.... 0.

L.

e

ABA 0

ABA
ABA

'ABA

ABA

.t

1

1..

ABBA

2

1

,

3

*

a ,ABBA

*

ABBA

ABBBA

3

1,1

2

. ., . - ._
*This instrtion s inserted autajntically using the continue feature of Section 5.../ . .

. .. . . -
`-

-. k 2Ls .12'i
:-.



,-

Na.
grammar.: iin step 7, we discove rule I can be applied whichyields,the

. .. . .

, .

string ABBA in step 9. Then the second
I.

rule of the grammar is applied yielding

string,a which fa printed out:-Vinally string ABBA is brought in from the,

stack and its successors are generated in the starch for a terminal string.

The halt instruction.termipates the calculation.

Of course, in actual practice,-, ;he user never sees,anything like Figure. .;
2, add his total experienCe is with the display Of Figure 1 and the movement

of information from place-to place. We have found that a progtammer4can

execute a surprisingly long sequence of steps without er as the

method well in mind. However, sul,leing sequenc are almost never'nec4bsarj,

as will be shown in later sections.
_ ..A'

_ v

The careful 'reader will, #serve that tide condition (LET(Ii) = STR1N6(P)
-..

of .step 7 should havd also been noted immecliately after step ,l5 and immediately

after step 32. In fact, there are other places in the calculation where
. . --

Conditions were omittdd. The rule is'that ilevery condition is properly

inserted at feast once .in the.eeIculation,tbe synthesis technique properly

. .

constructs the program. S
-

. ;
sq't.'

. .

( : After one or several example calculations are cdMplete,the.program is

synthesized as described in-the following-sections.
.?

-4

A

'13

2-6

a



5

y

, 3. " BASIC/DEZINITIONg

.0*

4:

. -

.

. /

..

- Before it'is)possible to define the synthesis method and study its
.

t
.

." lirOperiles, it is ngcesiary toilnttoduce some notation. A computation.will
.

be thought.of as .a sequence 0
steps with ,the instructions J.,. being: executed,

6
.,

.. the discrete tiMes t = 1:2,3,;., : m
t
.for t = 00., i,... will designate

a Complete description of the computer
memory immediately before instruction

, . 4i
t 1

has been peifcirmed. Thu;,. instretion i
t
will operateon memory cAtents

.. .)
m

r-- 1
to yield m

t
which may be written in functional notation as m

t
= i

t
(m

t 1.
.

. .

)

------.
.a

Actually
i

may yield many differeqdesults since i
t
Might be,.fort(mt-1) ,

4 / . Is
example, Ii ;ead instructidn so we pr e'r to write m

t
o i

t
(m

t-1
), Referring to

the above example in Figure 2, f= start, i2 = move 6 r," and so forth.

m , .... may be thoug of as sequential photographs of the.displayedo

data structures.as computation progresses.

The symbol a will designate an atomic predicate or atom with value true or

is measurable by the machine for the purpose of making bt.endhing
false wh

decisiOns. "A(I) > A(J)" and "LEFT(I) = STRING(4)".are examples of atoms taken

from the.previous 'section. A signed atom.will be either an atom or or a

Vnegateatam -7 a. .A condition ct is a predicate which is a (poftibly empty)

conjunction of atoms and/or their negation. cttill be represented

,

set of signedNittoms but we will also
.

use a functional notation
,

.. cjmt-1)
1 .

lich-will have value true if and only if all Of its unnegated atoms applied
-t

.---

to m
t-1

are true and all of its negated atoms applied to m
t-1

are telse. Tf

c.
t

is thg'empty set 4, its Value is true.

rtt = (c
t t

ip a
OW

ruction pair executedat time t. That
. ,

is, at ti4i4,condition.c was observed to be true and

was executed.,,A computation may thus be vitgvallzed as

snapshots:s0arated by condition- instruction pairs:

e>

14

then instruction i
t

a slquence of memory



and

r
1

r
2

'r

mf

r
n

CS course, pany of the conditions ct will be the triviarempty condition.

A partial trace T of a computStion will be defined at thle (2n+1)-tuple.

T = (mn,r1,1211,r2,m2,....,rn,mn)

where for each t = we have

rt = (ct,it),

m E it (m
t-1)'t t-1

c
t
(m
t-1

) is true, and c ='0.

The instructions available in the autoprogramming language will be

denoted and
H
where I

o
is a dotnothing startyingtrtaion

and
PIH

is'the halt instruction. Every program will have exactly one occurrence

of
o
and usually

T 7 (mn,ri,mi,r1, .

and r
n
= (cn,IH).

r

one occurrence of IR. A trace will be a partial trace

n n
) with the additional requiremelatathat Xl = (0,I0)

A particular instruction, say 16 = move R_S, may occur

many times in the same program so that it will be necessary to label each

such occurrence separately. We will db this by concatenating an integer

prefix to the instruction name so that, for example, thtee occurrences of

16 would be designated 116, 216, and 316,. These will be called labeled

'instructions and the positive integer prefix k-will be call6d the label.

An incomplete program P is a finite set of triples of the forM

(q
j
,c
k
,q

e
) where each-q -And qe is a labeled instruction and.c, is a condition

. -

and where the fog:Ric/wing restriction holds:

If (q,c,e) s poand (q,421,q") c P and there exists m

) = c'(m) = true, then c ift c' and q' =31'.

such that

Thus an incomplete program is ilinite set of labeledipstinctions connected

by triples.or transitions which are each associated with a particular condition.

r



.

A transition is.ta if its condition ie triue,.and no tWo applicable tren-

sitions..can ever,b4 simu aneously 'satisfied. An aample" of this Moore

.machine type, representation
appears in Figure3.. This program is called

. e

incomplete becauge -there is no start- instruction I anebecause the tran--
..,

-----%lits.1
.

.sition {.--01.4) out*oi state 2)f 4 miq4lrig.
.

Now ,ewe defide,n-operato

-

'-' 4 h
,

,...akes as arguments,an incomplete

. Otogb
.

program P and an inst4ct4on I:
.,... \

. .

B(P4I)={al(j1,-,q)a for some j,c, and'q and aec or ,nn aec)

1
-pr..-\. B(P,I) is the set of-all atoms which are observed on transitions leading

away from*I in pro t am P.

'f
.

operator B' is def i

from these etoms:

B(P;I)

s umlng that B(P,I) = then another(--

he set of all minterms can be constructed

Note that H'(P,I)-mayvbe empty.

a
2
,...,-n a01.

Neprogram P will be an incomplete program'with the additional require

ments that,

(i).for all I (where'{ # I
H
) such that (j1--,c,q)eF for soms4c, and q,

ti(c1(j1,c,q)cP)*= Bt(P,I)'for each such j, and

(2) there is'exactly one start. nstruction, aamely%I
o
, and

(lIo,c,q)cP for some,c and q.

The first requirement means, that every minterm in B'(P,I) must be represented

in a transition out of every occurrence-of I. Therefore, after any instruction

I in the program is exec, there will be exactly one transition condition

',Ls:,

satisfied to a next instruction until the halt is reached. The_ Second
*.

requirement asserts that there,must be exactly one start instruction.- An

example of a program,can'be Constructed if the transitions'(rro,441I1) And

(21'1,{7-1 a),LI)., are 4dded'tothe incomplete .prrim of Figure 3';
A i

f.

3-1
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)(I

Before introducing the synthesis akiptithm, it will be helpful to

broad-6 the above definition of B so that_it can operate on a set S of

partial traces.

/1
5(6,1) ° (-alTeSi I=it for some it in trace T add acc

itl
or ' acct

+l
in T.

t' ; \.

'Bare B(S,I) is the pet of all atoms which are observed in condiiiqns following

I nn a trace 'f in S. Consistent with the preVious definitions; if B(S ;I)

then define Bt(S,I)

--I a2,...,, ak)1,

' . /

7

;

r*

-

4
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4. THE PROGRAM SYNTHESIS ALGORITHM

The synthesis algorithm will be defin d in terms'oflout operators,

Q1,Q2,Q3, and Q4. Let S be a set of partf 1 traces; we will define Q1(S)

ft.

to be another set of partial traces as follows: if T=(m ,(c i'
'

) m ...,(c,i ),m
o 1' 1 -n m n

is in S, then T'n(mo,(ci,i1),mi',...:,(c!4.n),mn)
is in Qi(S)where c =,41 and

for t = 2,3,...,n, C'EBT(S, J.- ) and citm ) is_orue. (If B'CS,i' . -.4,t t -1 t -1 .

then c'
t
= 414 Nothing else is in-Q (S)* Notice that c

t
is uniquely defined

since there can be only one minters ck in B' (S,it _1) with the property that

ct (gt-1
)' is, true.

Q1 is the ope ratiovwhimh inserts into each tr#te all conditions
A

which may have been omitted by the user. Examining the trace T of Figure 2,

one seed that the atoms I>NORULES and ..7=0 ...can immediately follow the instrucoion
As

+ 1 I. Thus

B( {T), + 1 I) = CI>N0RAI.ES,
a

0

B' ( {T1, + 1 I) -{fi>poRuus, 3-o),

(I>NORULES; -,J=0),

(--iI>N0HULES, J=0),

f-,I>NIORULE$,--13=0)).-

Iv(

QI({1} is a trace similar to the one in Figure 2 except that pne of the

four minterms in B'((T), + 1 I) will appear after every occurrence-of,+ 1 I,
.

4 6 41

-

and certain-other conditions will be similaily inserted after other instructions.

Let g be a function which puts an order on a s t of partial et-aces. For

4
.

example, g(S)-may be the set_S of partial traces ordered the sequence

in which they were received.- If g(S) = is the ordeied set

of partial traces Ti = Om
0
(i)

'

r
1
(J)

'

m 4-1)
) )

emu
(i)

)_j = la,..

then-define f(g(S)) to be the (2(n1+n2+a

8

)+2k-1)-tuple



(1) (1) (1)
,m

(1)
f(g(S)) = (II (1),r ,r1 r ,u

1

ni

0 (2)

3 " 1 ,r {2),m -(2),d
n2

2

411L

(k) (k)
,r,

(k)
,m

(k)
)mo rl '

ak ak

Z.

where d is, called a dummy transition and is distinct from all other symbols

in the formalism. Then (g(S)) is one long partial trace with all of the

partial traces of S concatenated together and separated by dummy transitions d.

Let T = ,r
n
,m
n
) be a partial trace which miy be made

--______- up of a concatenation of several traces, and let U be an n-tuple of positive

integers U =
/
(u

1
,u

2'
, u

n
). Then

Q
2
(TX) ,c ,u I r ft d,

j j+1 j+1 j+1

r a (c ),' r ft d,

1- it J+1

r

i+1
= (c

j+1'
i
j4-1

), u
j

and

*

Yu
j+1

are in U = (u1,u2, , u

n
), and

T = (m
o
,r

1
,m 1;

,r
n
,m ))

Q
2
-(T,U) is a et of triples which constitute an incomplete program if U'is

chosen properly U is the s't of labels which will be applied to the im-

4
structions in trace r in the synthesis of the program-. An example n -tuple

that would work is C = (1,2,3,-..,n) which yields a linear program.with no

branching. UsinkthisU'and the trac of'Ffgure 2, one can begin constructing

Q2(T,U):' (1 start, 4, 2 move 0 J), (2 cove 0 J,4i, 3 move 1 I), etc-. The

purpose of Q
3
will be to find a program which is more interesting than this

_linear one.

We will peed a function h wW.ch counts the number of instances o

instructions in prOgram. Defl.ne IS td be the'cardinality of the set S,

and let Z be a set of.tripbEs.

19
4-2
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b(Z) =Ii03a((x,ytz)s2 or (y,z,x)a)}1

...

,
% Thus, if Z is a set of-triples

representing a program P, then 11(Z) is 'the
- '

number of different instarre's of instructions in P. ,

. .

%- ,

Nit WU m (P1012; ,u
n
) and U' =

''

(u'
l

u2' ,u') are two integer

n-tuplesthen we define U<U1 if there is a j, 15.35n, s ch that
,

.
.

.

u1 = ui, u2i,
,ujr1 = ui_1, uj<ui..iLet k and k' be integers and U and

U' be m-tuples, then we define (kii,U)<(k.!,W) if k<k' or if k=k: and U<U'.

11This puts an ordering on a Set of such pairs (k,U) and allows us to peak

of cgd_nimi=

Define (k U
S
) to be the miail-um paii (k,U) with tbetp;op-erties that

k = h(Q2(f(g(Q1(S)7),-U)) and Q2(f(g(Qe)),U) is an incomplete

program. Define

.

Q3(S):=.Q2(f.(g(yS))).,Us) which is the desired incomplete program.

Intuitively, one enumerates the set of pairi (k,U) in lac easing order until

found such that Q2(f(g(Q1(S))),U) is an incomplete pr . Host of:

the possible values for (k,U) will yield a nondeterminiSM in the flaw 61
r'

conrol thus violating the definition of an incomplete program. The enumeration

44,
will certainly halt somewhere because there alwiys exists eAtrivial solutio6

liT"fy\

(n11,2,3, ,n). A pseudo-provam for computing Q3(S>;Mi* look some-,
.

thing like this:

for k = 1 step 1 utitil infinity do
)

for each 1,(1,2,3, ,n) such that h(Q2(f(g(Q1-0))),U) k.ao.

it if Q2(f(g((ii(S))),U) is an incomplete program then

halt and return Q (S)=Q2(f(g(4(6)),),'U);

20
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V?

.

F

DThis ppoiram will never enter an infinite calculation:on,any given value

of k because there are only 'a finite number of n..tuples U which satisfy

U5(1,2,3, ,n). The art of performing this ca1cUiation 9fficibutly is

discusse d in some detail in [3) and will not be f6rttier considered here.

r
. ._

For most programs of the size and complexity conaiderir in this paper,
.

this
t

.

.

calculatiaftcan b, completed, in less than one hund ed.mIlliseconds.

We will/review the above synthesis ink:stags by doing a s le exam
.. , $,..., .

SA.Ippose a calculation is perfOrmed with the instruction sequeq r fl,I1,012,11,
A'

(+ a),/
E.

Theirthe partial trace is -/-

T = OF.;(4sT ) ;(4 1022,0,1.2 ,3# 4#11),m4,C{rm a},Is),115).4..

If S = {T}, then
.

a) and E(S,I1) = fla), all: Now assn .e thtt
r-'

ai(m ) and a(m,2 ) are true. Q
1
-inserts all applicable mint into f.

Q1(5) f(m0;(et,Ii)smis((a),I1),m2c<{a},I2)1m4k14,,I1),m4s,({, Cia),m5.))
.

IL

Next it is necessary to find a minimum (k,U).-atich thatQ2(f(g(Q1(S))),U) is

an incomplete.machine, Enuierating each-postal:0 JZ U), we find:

t.

k=
9 .

k =2

k = 3

k = 4

no U' a__

no U"s

U = (1:1,1,1,1) nondeterainistic

U = (1,1,1,2,1)'nondeferministic

k = 4 -U = -(1,2,1,1,1) incomplete 'program
s.)

This terminates the search so ks=4and Us =(1,2;1,1,1): Thus 113 can.be Computed:

Q3($) = Q2(f(g(Q1(S))).Us)
.

= {(111,{a},211),(211,-{a),1I2)

The.resultingincomplete program appears in Figure

4-4 14'

(111,{-, a },11B)1 .

c



F.

lI

e

c

111
a

4

p fa)

21

(a)

C.

I

.

4'

. .

FIGURE 3. Incomplete program Q3(S) = {(111,14,211),(2I1,{41I2),(112,4,11i).

(1I (4-1 a) 1I )).
t.-.

I

rs

22
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so"

We will define one tore operator Q4 which will convert incomplete

progras with initial states into programs, However, Q3(S) has the desired

properties of §Oundness and completeness, and we will, therefore, prove

these two theoreit bifore etntinuing: e ,

1

We will sa; \hap A-incomplete program P can execute a partial t,race

T = (mo,r1,14r2 ,f ,mn
' n

) if there exiikk u u . un and C',,,c4 c'.
l' 2' '" 1 2' "

such that for each j P 1,2, )n-1, (ujij:ci41,uj.i.lij41) e P where

ti

e '(32 ) is true. (We continue to follow the notation r
j
= (c

j j
) for1 j

j =

Theorem 1. If S is a set of ..partial traces, then Q
3
(S) is an incomplete

-program which can execute each trace T in S.

1*-

The proil follows essentially from the definitions of the various

opeiators. Assume for simplicity tkoS has.only one trace, S {T) where

4.1 (m ,r on ,

o 1 1 :
r
n
,m
n
)

0

and each r
i

= (c
i

,i

i

). It is necesearsy-to show

that there exisOu
l'

u
2'

, u and
''''-'' n'

c'
1

c'
2

c' such that for each

j = 1o-1 (ujij, city uj.41,i;:1)11111Qs$4) where ci.41 (mi).is true.

-But Q3(S)- f yf(g(Q/(S)));Us) and-Us provides the n constants u1,u2,u3, un.
,

. t

,
(U

'

= (u- u u
' 2 3'

,un)). Furthermore, f(g(Q1(S)Ar(mo,(ci,i1),m1,(ci,iiS l

4 . .... ,*(cn ',in)
n

,mf) where .cal = 4. and C.;41. (111j) is true for j = 1,2, ,n-1 by

definition of f,g, and Qi. By definition of Q2 we note that

(ujij, Clifi, Uifiii41)
c
Q3 (S) for each j = 1,2, ,n-1 which completes

1k4Ne
,the proof. A simple extension of these observations will complete the VOOD

for the Ease where S has 1q1 traces.

. .

Theorem 1 guhranteit?at the synthesized program vs) will be able to

execute all of the given example traces i? S. The next theorem assures us



_

that =if a user -begins executing
example" calculations for some program P,

the system will synthesize a correct program Po after only a. finite nwaWAr of

example(s have been compaeted. P
o have,the property that it cam execute

,Ths. 0

every calculatj.on that P could execute,'and this convergence property will

hold without regar! to the$order of presentation of the examples. The corollaty

will futher assert that if P is "complete then Po will be "equivalent" to P.

a

4

a

24
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'Theorem 2. LiF P be an incomplete program andlet yl2,.... be any enumeration

of all of the partial traces executable by P.* Then there exists a finite
-.. ,- e.

k and some incomplete program Z
o

such that
' i

(1) Po = Q3 ({T1,T2, ,T
i
}) fbr all ttk, ).

(2) Po can execute each Ti, i = 1,2,3, ,.and

(3) no program with fewer instances of instructions than P
o

can execute

each.T i = 1,2,3,

,

This result also has a simple proof. Suppose ? hasexactly p instances 4

-
of instructions. Notice that the construction of (13 involves a complete

Search through the space of all possible incomplete programs which could

execute the traces and which have i instances ofestructions for i = 1,2, ..-

Since P F 1 exist somewhere in the enumeration done by '13, the enumeration

be bounded, and Q3({1.1,T2, . ,Ti}) will yield either P or some in,

/ complete program which precedes P in theenumeration. Thus, there eXister'

nice v such that for all i, Q3({T1,T2,......,Ti}) need enumerate no more

than v incomplete programs before it can yield its answer. Define

-P = Q
3
( {2,T ...,Ti }) for each i = 1,273,..., and we can think of

P P 12

3'
mg a sequence of guesses at the answer P

o
over a period of

time. Then the set {P i=1,2,....} by the above argument has finite cardinality.

Also notice that any incomplete program P' that is chosen at some time (3j

such that Y =P ) and, later rejected (3jisuch that PIO ,) can never be
J

.X
iti

, ii-j,+

f

,). This is because ifP' ,is
rejected when it is found unable to execute T1,T2, ,T

P-it
then it will'

chosen again-(not 3j" such thaiPi=P

certainly be unable to execute T
1
,T

2
...,T So the finiteness .

We assume that P can execute only countably any different partial traces.
! t

25
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of the set {PiIi = 1,213, ) and the inability to return to previoutly

, .

rejected guesses implies result (1)-of the theorem. P
o
can execute every

T
i
by Theorem land has minimal size by-construction which completes the

proof.

Programs P1 and P2 111.1,be_sai be equivalent if for every partial

trace7 which begins with the start

only if P2 can ex

`ondI
o
;12

1
can execute T if and

4-
e' T.

Corollary.: If -P is a (complete) program; then P
o
of Theorem 2 is equivalent

to dy4

Since Theorem 2 asserts that P
o

can execute every partial trace

executable by P, it is only necessary to show that P can execute every partial

by Po which begins with-lIo. Assume the contrary that there

is a T = (mo,((,110), ml, (c ),.. ..,(cn,in),mn) which Po can execute

but.P cannot Theta there is a largest prefix of T, 6ay T' = (m
o o

),m
1'.

,ekiik),mtdr;0<k<n, which P can execute. Furthermore, since

P is complete, it can validly continue v and can execute T" = Omo,(4,110),mi,

(c2,i2),

(c
2'

i
2
)

'

,(ck,ik),mk,(c',P),m ) for some c',i', and m' where (c',i')

tck+1416-1) . ght Po cannot execute T" which contradicts Theorem 2 and completes

.

e '

tl('proof. (Comment: Po may not be completeleven though it is equivalent to

P.) .

These results are neither new nor surpriaing considering ear] er paers,

in grammatital infereace j5, 6,..7]. Notice that even though Theorem 2

guarantees that'the correct incomplete program-Po will be found after some

finite time k, there is no way of knowing at any given time i whether or

4
not P

o
has been found. Thus; there is no proof of correctness intrinsically

4-9
26



.111.1.

bait into the systeC.1 and at any time, the next partial trace T
i+1

c*se the system to oliscard7lp current guess of,P
o

and try a new one.

Thi kind of learning is known elsewhere as identification -in the limit

7
[5,' 6, 7).

OA
This means that the programmer in debugging his code is theoretically

nk

no better off with this system than he was wiuh traditional programming-

techniques. Re still must find errors.by running test cases and by studying

his code. From a practical point of'view, however, we hope that the auto-

programmer will provide facilities that w)11 speed this process considerably.

Applying the synthesis technique to the trace of Figure 2'yields

,1), twenty-three l's followed by 2 followed by

seventeen l's. The resulting incomplete program, is shown in Figure 4.

This would, be a correct complete program except that two triples are missing,

AP (4. 1 P,{LEFT(I) STRING(P), length (LEFT(I)) > length '(STRING(P))), + 1 I)

and (+ 1LEva LEVSTACK(J), {terminal (STRSTAQ0)),LEVSTIG(J) = N), print

STRSTACK(J)): Instruction labels are omitted in Figure 4 because all but

one of them are 1.

Omitted triples in an. incomplete program can often be guessed ind

filled ip correCtlyto pnoducea complete program. For example, in Figure

5a, the condition la
l'

::31 a
2
) has not been observed'after instruction 1I

1

and {-I a
1,
-1 a

2
) has not been observed after 2I'

1
These omissions can _take

place either because it is imPossible-fer-tht-associated conditions. occur

(such as J>2 and J<O1 or because efiey simply have not yet been observed .1lv c.-
in the traces.. In any case, arbitrary addition of.the wiping transitions

will not destroy the guarantees of Theorems 1 and 2 and can often be done to

achfeve quicker co/r-vrgence to the- desired program. In the case of Figure'

5a, it would seem natural that 111 followed billy a
2
1 would lead to the

1

,

27
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start

'move 0

{
move 0,J

move 1

move 0 P

I
+ 1 P

(-va eh

(--,a
4'

a
6

)

I

,(a a
2-
)

l'

4.11(navtava2)

+ 1 I

(a
4 6)

a

move STRSTACK(J) STRING

move LEVSTACK(J) LEVEL

- 1, J

halt

+ 1 J

subat LEFT(I) RIGHT(I)

STRING PURSiAeKTJ)

1 LEVEL WggPqr,t,P7Y.-

...-__

a , -4 a
5
}

print STRSTACK(J)

a
1

= (LEPT (I) = STKING(P))

a
2
= (length(LEFT(I))length(STRING'(P)))

a
3
= (terminal STRSTACK(J))

a
4
= (I>NORULES)

a5 = CLEVSTACK(J)'= 20'

a
6
= (J = 0)

Ab
'FIGURE 4. The program synthesized from the trace of-,Figure 2. (The dotted'

transitions, one of which is erroneous,, are inserted by Q4.)'

28
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IF
same instruction as*1I

I
followed by {a

l'
a
2
} and 1I2-fa lowed by{-/

and {a
1

a2} would also lead to the
0
same next instruction. This results in

' the simplified diag/am_ef Figura 5b. In other words, a reasonable heuristic

for completing the-gi'Ogram is to add transitions so as to minimize the total

complexitz of the boolean expressions on the instruction-to-instruction

4
transitions For the purposes of this paper, it is not important to more

clearly define Q4(S) other than to say that if Q3(S) is an incomplete program

with a start instruction 1I
o

, then Q4(S) is a complete program constructed

by' adding triples to Q(S). Hopefully Q4(S) will etter ximate the desired

program than Q3(S).

Let us assume that Q
4

operates on the incomplete program of Figure 4

and adds the two missing transitions"as shown with the dotted lines.. It

1

turns-out that one of 'these additions has introduced an error into the

program, and one of the purposes of the next section will be to show how

this error can be found and corrected.

4

2
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. .

FIGURE 5a. Two instances of instruction I
1

in an incomplete program.

FIGURE 5b. the sametwoA.nstances after the operation Q4.

1'
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5. SYSTEM DESIGN AND MAJOR FEATURES

The general organization of the autoprogramming system is shown in

Figure 6 where the major functional units are

-

40*.

(1) the display and top level routines Which interface 10.th the

user and which'transier user commands to the rest of the system,

(2) the interpreter which inputs instructions and data structure-

contenxs and outputs changes in the data structure contents, and/

(3) the- :synthesizer which, inputs sets of partial' traces and outputs

incomplete or 6Ompllie programs.

The major storage areas keep the following information for each ro

to be synthesized:

(1) Data structure display,information including each data structure

aame, type, dimensions, organization, location on the display,

pbinter Information, etc:

C._
(2) Data structure contents: the actual values currently held in

each location.

(3) Computation traces from which the routine is to be created.

/4) The, ynthesixed program.

A typical usage of the System is easy to visualize. The programmer

enters- the name of the routine to be created; we will call it "routine 2".

/A' 4

Then he declares the data structures to be associated with this roytine,

and their descriptions are entered into the Data Structure Display Information

area s shown in Figure 6. Now this ,iiiicirmatiori is available to the,diigay

I- rou in so that the user will see these strictures on the screen. It prep-
A

aration for doing an example calculAtion, he switches the system to local mode

and enters the examOle data into the data structures. Local mode insures

that the instructions he uses will not become part of the trace and will

not be synthesized into the Rrogram. Be can do any other hand calculation

4.%
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Display and

Top Level

-Routines

Instructions During
sow m. ow do mwm. ow Im 41110.~. OM dm.

Continue

.T

41

Instructions

Ar

Declarations

Routine
1111MII,

utine

a

t.)

Data Structure
Interpreter

Changei in
I

Data Structure Contents

Synthesizer

1 -4 1

Data Structure . Data

Display Information ttructure

Contents
I.

Routine 1

IP* 4,

Tr es

C

FIGURE 6. Major programs and storage a

I

Routine 2



a

se,

C

4

he watts while in 1 mosie without affecting the ;races. Each instruct

he performs that causes changes in the data structures is immediately updete

on the screen. yben he is ready to begin the example, he switches the syst

(

to global node and now all instr=uctions performed are saved in the trace

storage area for routine 2. The synthesizer is openitive at all tines V 6img

the smallest incomplete
program cOmpatl, with the graces to date in the

program area for routine 2.
'Th.140,11,complete program -Cali be revised after

ever3 new trace instructionvelthout significant
computational loss, and with'

important benefits to the user to heexplained later in this section. After

the user completes the partial trace (with or without a halt instruction),

synthesizer applies Q4 to turn routime.2 into a complete program.

At this point, the user =ay either begin testing the current VdrSion

of routine 2 or do another example. It is imporkant no r=-=7-ber that the
r

traces may be partial and need not inn ude either a start instruction or d

halt. Thus, the user =ay want to say: "After reading J, if-J =,1 tilen;

print A and if J * 2 thdn print B". This fragmentary information

nay

be

input to the system with two iartialrtraces: read J, note J =4print A

and read J, note J * 2, print. B. The synthesized programyill always be /

thetsmallesr program compatible with -the given traces and the result
-

. .

these two new traces will be additional transitions "glued" into the ready

created' program! Usually. because of the nature of programs,' they will be

added at the correct position in thearogram. If they are later found to

be incorrectly inserted, the programmer can do another partial rrace increasing

41
' the amount of information aboiut these instructions. .kor exa=ple he mi0;

input: "After K is incre=spted and J is read, then if J - 1, print A

Rut users quickly learn what they =ust input to get the desiredepiogram and

such trial and error revisions are not typical.

33
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The fact that the synthesizer continuously maintains an updated v5sion

4f --the incompletsj4ogram during trace creation enables us to add at extremely

important featufe to the system. It may be that while the user is executing an

example, a partial program will be created 'Which is quite capable of ntinuingof

or even completing his example for him. If this is true,-he shoul ainly

turn control over Lo this pail prograi and save himself the trouble of L

doing the instructions by hand. For example, if he wishes to add a column

t4 numbers, the loop required to do the summing would probably exist in the

updated program after he has added the first two or three numbers, and this

partial program could sum the rest ot the column automatically. The continue

feature then works as follows: The system at all times keeps track of which,'

instruction in the current incomplete program corresponds to the last

instruction in the current trace. If the given instruction in the incomplete

program is followed by a valid transition, the command continue appears on

the user's screen along with the other instructions. If the user wishes:---N
A I

to let the synthesized.incomplete program issue the next instruction rather

'than ding it himself, he touches the continue comaild. Then he can observe

the results of this' continue, and if it is correct and the continue command c.

still r j = ins'on the screen, he can repeatedly hit continue to carryon

the e...amp-1e:\If continue command produces incorrect results, he can,

t the backup cond, undo the effect of the last instruction, and'inAii

the correct instruction by hand.

The inclusion of such features means that the experience of doing examples

inserted instructions.

sp.

The ogritmer pushes the system through new parts of 'the desired program,

should be thOught of as bimply a ;rag string of

uses continue to do other parts of .the example, backs up, insertivinstructions

now and then, returns to continue, and so forth. 'the reader should examine

34
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Figure 2 again to see how much of that'ex

wittithe-continue feature.

c could be done automatically

The backup command is available on the sysrem at all'timea'so that the

user can undo any instructions that he haicexecuted and decided to erase.

The backup can be used tedly even t.Vthe point of erasing a complete

trace.

The process of discoverin errors on this syttem is similar to that

using =Ire
6

conventional systems. e nay printA9t and study the synthesized

a
code, and one may run a number-of test amples. Suppose the example of

Section 2 is run again as a teat with N set to value 1. The synthesized

program shouild still. find one terminal string, specifically, thestring a,

but it fails to beca Q4 of the last section inadvtrtantly inserted an

error. Not real4 ag why the prograe did not print the correct result, we

F.

can display the data structures, initialize to do the'example with N 1,

. and in local mode use continue to advatce the calculation through, step-by-stepf---

It will all go perfectly until:the instant string-a is put on the stack atd

'is supposed to be printed. Much to our surprise, the synthesized program.

immediately erases a from the stack"and proceeds to the next step. At this

' point, we can back the calculation up to the point where a was about to be

put on the stack, switch to globe mode to create a-partialtrace, use continue

to put a on t)e="stack again, insert the pritt STRSTACK(i) instruction, use

continue to check that theLcalekation is proceeding normally, and terminate

the partial trace. Jibe synthesized program will now include a colrectedc

_-

transition which will. do this example and all other examples correctly. Notice

that the cause of error was discovered by examining the effect of the code

in the data structures, and the error/was-removed by forcing correct action

at the point of error. Thus, errors can be found and corrected without direct

referenCe to the code. ,
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The example of Section 2 is now in perfect working order but, as usual,.

the programmer may wish to Change it in someway. This can be done using

the override feature while running a new sample calculation. Assume that it

is desired to put a counter COUNT into the program which counts the number

of terminal strings which have been printed, and then it is dedired to.print

the total count-before halting. the programmer first declares the new variable

so that it will appear,on the screen. (Declarations can be made Or.deleted

at any time.) Then he initializes the data structures to do'an example,

. -

sets the mode to global, and used continue to begin advancing automatically

through the example. Immediately after the start instruction, he touches

the override command, loads zero into COUNT, and then returns to usage of

the continue Instruction. The effect of the override command is to return

to all previous trace's and replace thet3,i y term that would have

been executed 4t this point by the 'dummy_ symbol d. Since ,this symbol' d is

used as a sigarator between traces, such
an insertaion effectively cuts the

trace into two partial trades as well as eliminating the unwanted transition.

The programmer noir proceeds forward'with the continue feature until a

terminal string i$ printed at which time he touches override, increments

1----IDOUNT,,and returns again to continue._ As he Proceeds, he wil4be gratified

to... :0e COUNT automatically incremented as other terminal strings are generated

It

since the continuously updated program will have already incorporated his

change. Finally, just before the halt instruction, the programmer uses

.
override one more tine to cause COUNT to be prAnted. The automatically

synthesized program will be identical to thee..2trlier version except that

7

the variable count is now included and will be correctly initia zed, incre-

----Zted, and printed.

The fact that the override feature chopiCup earlier traces does

6

got affect the convergence guaranteed by Theorem 2. That theorem states
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that any enumeration of partial traces converges on the desired andand thus

an arbitrary amount of chopping on the early traces will not prevent a correct

C

synthesis. Of course,'-the,decision to alter the synthesized program means

that the goal program Po has been thanged, and the purpose of tflerrace

' deletions made verride is to make the'set of traces compatible with the

new goal progl m. Becau4e chopping of the traces does not eliminate convergence,

the override featur used without limit to make changes to a synthesized

program. The only cost in/using this feature is a slower convergence to Po

. due to the information lost in he deletions.

The subroutine feature enabl programmer to build a large Program

:but of many smaller ones and to properly modularize his task. -With an

autoprogr er, it also makes it poesOle to deal with shorter traces.and

fewer data Structures on the screen. As e'ch new subroutine is created, some

of its data structures can be designated as arguments to be supplied at the

time of the call. One of the instructions available on the screen is CALL

SUBROUTINE which bay be used like,any other instruction.

is hit at any time, the names of all subroutines created

If CALL SUBROUTINE

to date including

the current subroutine appear on the screen and the user can designate which

, -

one A wants. Then he touches among the current data structures the arguments

for the routine. After the subroutine cAal is made, the connections at (a)
'

and (b) ineg.gure 6 are moved to, say, (c) and (d) to reference the called

2
program and its data structure contents. These connections, of course, return

to (a) and (b) when the subroutine execution terminates.

;N.

Many Mmes a programmer in the.pfbcess of doing an example suddenly

realizes that he wouldlike to call a subroutine to do a task that he

not anticipated. in t4iscase, he can execute CALL $UBROUTINE and type

in the name of the desired subrolef ine even though it does not yet e*ist:

Then hp can inserj on the screen the results the subroutine would have yielded

37
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A if it did exist and proceed onward. Thus, he. can -do top down programming

in a fairly convenient manner. If he wishes to execute this routine before

creating its supporting subroutines, he, of Course musitbe willing to fill

in by had the results of every call to every nonexistent subroutine.

ti
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6. . AN IMPLEMENTED AUTOPROGRAMMER

1
An autoprogramming system for integer calculations has been implemented

and tested extensively by the authors. The system uses a Digital Equipment

Corporation Model 340 display_with light pen connected to a PDP-10 compUter.

The implemented instructions are add, subtract, multiply, divide, movil,

read, write, call subroutine', and note greater than, equal to, or less than.

The allowed data structures are individual variables, linear, and rectangular

integer arrays.

Be5ause some of the featdres described in this paper hav'e only recently

Seen developed, they were not,incorpOrAted'into the original design. The

synthesis algorithm In this paper, for example, allows the user to freely

omit conditionals during a sample calculation a's long as each conditional

.is properly inserted at least once. The implemented system makes more

stringent requirements on the user. Continuous updating of the synthesized

program during a computation is not available so the continue and override

,

features are not included. This system does, haweyer, include a convenient

subroutine feature with recursion, the bacl5up feature, local and global modes,

and the ability to add and remove data structures at. will.

The 'Data Structure Contents array of Figure 6 was implemented using a

hash coding scheme with the key computed from a combination of the datA

1
structure name, Its associated subroutine name, the level of the call_(in

a hierarchy of calls), and the array indexes, if any. This organization

.4 1

is quite convenient in that, it makes the subroutine feature recdrsiVe without

any additional coding and it effectively increases all arrays to an finites

kize as long as the hash table is not full. Thus, an array\which is declared

1

to be two-by-two will appear on the screen to be that size -apt synthesis_
.

time. However, at execution time when the subroutine is called, it can

39
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reference and use the 100,100- 'h entry of the array without

,

overflow. Thii is quite important because the limited.size

screen prohibits the declaration of large arrays.

concern about

of the display

An example program synthesized on this system appears in Figure 7,

the sorti4g algorithm kn "quicksort" [8]. The program accepts three

arguments

(

a.linear array A to be sorted and the bounds N1 and N2 for the

sdrt. QUICKSORT (A,N1,N2) reorders the entries A(N1+1)eA(N1+2), ,A(N2)-
4oVE,

into ascending order. One 'can create this routine by executing the Jlgorithm

on the example Iist (2,7,1,6,3). Set the pointers P1 and P2 to the entries

q.,
given by N1 and N2:

2 7 1 6 3 ,

t

P1 P2

Advance pointer P1 until we note that A(P1)>A(P2):

2 7

P1

1` 6 3

P2

Exchange those entries and then decrease P2 until we again note that A(P1)>A(P2):,

2 3 1 6 7

P-1 - P2

C

Exchange those entries and increase P1 until P1=P2.

2 --/ 3- 6 7

P1TP2

Decrease P1 by one, call recursively QUIKCSORT (A,N1,P1) and QUICKSORT

(A,P2,N2) to complete. the sort, and halt. Because the.programlis not synthe-

sized until the trace As completed on this fstem, the recursive calls to

QUICKSORT result in a message from the system: "This routine does not exist"..

/(

Bu; the trace is correct and the fact that the calls result im no action-arr's

the time of the example calculation is of no concern, If it is important to
N / a

. IV
have the results of calls to nonexistent routines updated on the screen during

40
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Ar

P1

40

w
4

Start

P1 4- N1

F2 N2

+ 1- P1

4

L----N1 = N2

Halt

tie

41'

- 1 P2

A(P1) >A(P2) A(P1) >A(P -2)

'Temp .4::::..A(1)_

A61) A (P 2 )

k(P2) Temp

Temp 4- A(P1)

ACP1) 4- A(P2)

A(P2) 4- Temp,

- 1 Pl"

I

Call QUICKSORT (A,N1,Pi)

Call QUICKSORT,SA,P2,Ni)

Halt

FIGURE 7. A sorting routine created

with an/autoprogrammer:

QUICKSORT U.1111,N2)

Ak
P1 = P2

crr
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f-
a sample calculation, these results

can be inserted by hand using local mode.

Next 'we execute another example cateulatioh'sorting
the list (2,1)

and an example'with arguments N1 = N2 =-0: After completing these three

traces, the program ofylgure 7.is correctly sypthesized.

,Careful examination of Figure 7preveals that thii autoprogrammer handles

conditionals differentlyfrolethe algorithm of Section 4. After executing

an instruction,"the transition with the true condition is taken, and 'if no

Condition is true, the unlabelled transition is taken. Unfortunately, this
.

occasionally leads to.a nandeterminism with two ors more valid transitnrns

which must be resolved either with additional traces'or by answering a'query

from the system.

Another'program created on the autoprogr as a compiler for a

simple ALGOL-like language called Y73. Tide la ge has ,leen'Used as

the source language for a compiler writing 'exercise in programming classes

aadhas only integer mode, no"arrays, and no subroutine feature. the

available key words in Y73 are READ, WRITE,. BEGIN, END; WHILE, POS, and

NPOS. The WHILE statement has the'form WHILE e .x. p; which means "while

arithmetic expression e has the property x, continue repeating program p".

x is either POS {positive) or NPOS (not positive) and R IA a program bracketed -

by s BEGIN and an END. A typical program in Y23 appears in Figure 8. The

object code Ior the.campiler was IBM 370 machine language.
.41

Of course,- both the input, and the output for tt".6. compiler had toba

cdded -into inter by hand because tha current autoprogrammer handles
. 4

only integers. Thus, the input tokens,were coded 1 for +, 2 for'-,

8 fOr ;, , 10 for READ., , and 17 for BEGIN. Identifiers wera

coded 21,22, ,29, and constants were coded.430 for 0, 31 for 1, etc.

This means that the input program was a sequence of integers; in the case

of the program of Figure 8, it would be 17b, 10,'21,
.

At
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BEGIN

*READ N;

WRITE N;,_ 1.

WHILE N-1 .POS .

BEGIN

WHILE N-N/ 2*2. . pos . -

BEGIN

N;

TRITE N;

. END;

ELI);

WRITE N;

END;

N = N/2;

-0 *

FIGURE -8. A program in the language Y73 Ala was compiled with an auto,-

programmer created-'compiler.
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example output instruction from this compiler would be "load ineo

register 5 from the location
addressed by base register 12 with a displacement.

of 20". This instructionrwouldbe 58560014 in IBM hexadecimal and would be
't

pridted-out by.the autoprogramMed compileras,

INST" = 88

R1 =

R2 = ;.2

88 (decimal) = 58 (hexadecimal

ExCepi for this coding problem, the object code was directly executab)p on

the IBM machine.Alhg,READ and Wilit instruction were implemented with locally

defined supervisor call instructions.

This autoprogramming systft has been used to create the above mentioned

compiler which involved fifteen subroutines, a program synthesizer similar

to the Q3 fudttion described above, and dozens of'other programs. The amount

of effort required to produce thede programs does not differ greatly from

that required using more conventiona systems. It is hoped that ae all the

features discussed in the Paper become implemented and as others are

developed, autoprogrimming,will, in fact, become a dedirable alternative

to conventional systems.

-5.
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i. DIStUSSION

Auteprogramimg is* by natiirs's language independent coact, and can

provide the context for many different kinds of computing. The approach is
.

designed to put the user in intimate contact with his data structures and

the events which affect them.-dt-enables the user to create,- debug, and

r .
,

.
..

modify his program by working w141 the-effects of the code rather than the
..

- .

.

code itself. The approach puts the an and machine in a truly inEer4tive

relation hip at the tine wheh the source code is being created, and it

breaks away from-the batch mode psychology: Aftlte he prorgtam, type the code,

and compile.

. . ,

Our research has emphasized simplicity of design both in the autaprogram.-
.

ming language and in the total Osten. Becayse the.language is without
*

.
". .

syntax in the traditional sense'and because the results of each iastructiOn

are updated immediately before the user's eyes, the amount of-training reqa,red

for a new user is minimal. We believe that the special systemlfeatures

such as continue, backup, and-override should be few in number and so simple

and obvitous in their operation that the novice progra==er can use the=

immadiately,and without hidden dangers,

Our current work is aimed at developing language features And error

correction mechanisr..s which will enable the programmer to be more casual

and less detailed in his execution of examples and to still maintain the

expectation that a correct program will be created.

I
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