
DOI: 10.1007/s00145-001-0008-5

J. Cryptology (2002) 15: 97–102

© 2001 International Association for
Cryptologic Research

Constructing Pseudo-Random Permutations with a
Prescribed Structure∗

Moni Naor
Department of Computer Science and Applied Mathematics,

Weizmann Institute of Science,
Rehovot 76100, Israel

naor@wisdom.weizmann.ac.il

Omer Reingold
AT&T Labs - Research,

180 Park Avenue, Bldg. 103,
Florham Park, NJ 07932, U.S.A.

omer@research.att.com

Communicated by Joan Feigenbaum

Received 10 August 2000 and revised 30 September 2000
Online publication 9 April 2001

Abstract. We show how to construct pseudo-random permutations that satisfy a cer-
tain cycle restriction, for example that the permutation be cyclic (consisting of one cycle
containing all the elements) or an involution (a self-inverse permutation) with no fixed
points. The construction can be based on any (unrestricted) pseudo-random permuta-
tion. The resulting permutations are defined succinctly and their evaluation at a given
point is efficient. Furthermore, they enjoy afast forwardproperty, i.e. it is possible to
iterate them at a very small cost.

Key words. Pseudo-random permutations, Cycles, Block-ciphers, Involution, Cyclic
permutations.

1. Introduction

A family of permutationsP` = {Pk : {0,1}n 7→ {0,1}n|k ∈ {0,1}`} is called (crypto-
graphic)pseudo-randomif it satisfies the following:

Succinct Representation:For a permutationPk ∈ P, k can be thought of as the key.
The length̀ of k should be small, i.e. polynomial inn.

∗ An extended abstract of this paper appears inProc. of the Twelfth Annual ACM–SIAM Symposium on
Discrete Algorithms(SODA), 2001. Part of this work was done by the first author while visiting Stanford
University and the IBM Almaden Research Center.

97

98 M. Naor and O. Reingold

Efficient Computation: Given k ∈ {0,1}` andx ∈ {0,1}n computingy = Pk(x)
can be done efficiently. Similarly, giveny ∈ {0,1}n computingx = P−1

k (x) can be
done efficiently. Efficiently means in time polynomial in`.

Indistinguishability: It is computationally infeasible to distinguish whether a given
permutationτ is (i) a random member of the familyP or (ii) a truly random
permutation onn-bit strings. The access the distinguisher has to the permutationτ

is black-box, i.e. it can givex and obtainτ(x) and givey and obtainτ−1(y) for x’s
andy’s of its choice.1

We measure theadvantage ε of distinguishing cases (i) and (ii) as a function
of m, the number of times the distinguisher gets to call the black-box forτ (in
either direction) andt , the running time of the distinguisher. Ideallyε should be a
negligible function iǹ times a polynomial int andm.

Pseudo-random permutations were defined by Luby and Rackoff [5] as a formal-
ization of block-ciphers. They also showed how to construct such families based on
pseudo-random functions, as defined by Goldreich et al. [2]. These permutations and
constructions have received much attention since then (see, e.g. [6]).

Suppose now that we are interested in constructing a pseudo-randomcyclicpermuta-
tion, i.e. a familyC of cyclic permutations (the cycle type of a cyclic permutation consists
of a single cycle that contains all the elements) whose members cannot be distinguished
from a random cyclic permutation. Such a question arises, for instance, from the work of
Shamir and Tsaban [8] who wanted to define succinctly and generate anon-repeatingse-
quence of randomly lookingn-bit valuesX1, X2, If one has a random looking cyclic
permutationτ , then definingx1 = τ(1) andXi+1 = τ(Xi) yields such a sequence.

In this work we show that it is possible to solve this problem and in fact a more general
one. For any fixed cycle type, it is possible to construct a family of permutations with
the prescribed type that is indistinguishable from a random permutation of this type.

1.1. Definitions

We now formally define the permutations we are trying to construct. A cycle type of
a permutationτ is a list stating how many cycles of each size there are inτ , e.g. if
τ = (164)(57)(238), then the cycle type ofτ is “one cycle of size 2 and two cycles of
size 3” (which can be denoted by{(2,1)(3,2)}). Let C be a cycle type. We say that a
family of permutationsFC = {Pk : {0,1}n 7→ {0,1}n|k ∈ {0,1}`} is pseudo-randomof
typeC if it satisfies the following:

Cycle Type: EachPk ∈ FC has cycle typeC.
Succinct Representation:The length̀ of k (the key ofPk) should be small (poly-

nomial inn).
Efficient Computation: Given k ∈ {0,1}` andx ∈ {0,1}n computingy = Pk(x)

can be done efficiently. Similarly, giveny ∈ {0,1}n computingx = P−1
k (x) can be

done efficiently (in time polynomial iǹ).

1 Sometimes a distinction is made as to whether the inverse permutation is available to the adversary or not,
but we always assume that it is available.

Constructing Pseudo-Random Permutations with a Prescribed Structure 99

Indistinguishability: It is computationally infeasible to distinguish whether a given
permutationτ is (i) a random member of the familyFC or (ii) a truly random
permutation of cycle typeC. The access the distinguisher has to the permutationτ

is black-box, i.e. it can givex and obtainτ(x) and givey and obtainτ−1(y) for x’s
andy’s of its choice.

We measure theadvantage ε of distinguishing cases (i) and (ii) as a function of
m, the number of times the distinguisher gets to call the black-box forτ (in either
direction) andt , the running time of the distinguisher.

2. The Construction

Let C be a cycle type of permutations onN = 2n elements. Letσ be some fixed
permutation onn-bit strings whose cycle type isC. We assume that it is easy givenx to
find σ(x) as well asσ−1(x) (this is indeed the case for the examples we have in mind).
For instance, if we are interested in cyclic permutations, thenσ can be(0,1,2, . . . ,2n−
1)). Let P` = {Pk : {0,1}n 7→ {0,1}n|k ∈ {0,1}`} be a family of pseudo-random
permutations. ThenFC, the family of pseudo-random permutations of cycle typeC, is
defined as

FC = {Fk = Pk ◦ σ ◦ P−1
k |k ∈ {0,1}`}.

In other words, a permutation inFC is determined by aǹ-bit key that defines a permu-
tation Pk ∈ P`. To evaluateFk(x) one computesP−1

k (σ (Pk(x))). In order to evaluate
F−1

k (y) one computesP−1
k (σ−1(Pk(y))). Both directions require two invocations of the

original pseudo-random permutation and a single evaluation ofσ or σ−1.

Why does it work? The fact that the members ofFC have the desired cycle type follows
from a well-known theorem in elementary group theory that states that the cycle structures
of the permutationsσ andπ ◦ σ ◦ π−1 are the same.2 We can show an even stronger
statement:

Theorem 1. Let σ be a some permutation with cycle type C and letπ be a random
permutation, then the permutationπ ◦ σ ◦ π−1 is distributed uniformly among the
permutations with the same cycle type C asσ .

Proof. Let σ , τ andτ ′ be three permutations with cycle typeC. Define two sets of
permutations5 = {π | τ = π ◦ σ ◦ π−1} and5′ = {π | τ ′ = π ◦ σ ◦ π−1}. It is enough
to show that5 and5′ have the same size. The main observation is that there exists a
permutationP such thatτ ′ = P ◦ τ ◦ P−1. Given this claim we get a one-to-one and
onto mapping between5 and5′: every permutationπ ∈ 5 is mapped toπ ′ = P ◦π . It
remains to prove the claim. Let(i0, i1, . . . , i c) be a cycle inτ and let(i ′0, i

′
1, . . . , i

′
c) be a

cycle of the same length inτ ′. It is easy to see that(P−1(i0), P−1(i1), . . . , P−1(i c)) is a

2 Körner [4] says that some may label this fact as a candidate for the dullest theorem, but it turns out to
have played an important role in cryptography (and world history), in the breaking of the Enigma, the Second
World War German encryption machine.

100 M. Naor and O. Reingold

cycle in P ◦ τ ◦ P−1. Therefore, if we defineP(i ′j) = i j for j = 1 · · ·m, we get that the
cycle inτ is mapped to a corresponding cycle inτ ′. To defineP such thatτ ′ = P◦τ ◦P−1,
we can just continue mapping all of the cycles inτ to a unique corresponding (same
length) cycle inτ ′. Note that this (arbitrary) correspondence between cycles is possible
sinceτ andτ ′ have the same cycle type.

From this theorem we can deduce the security of the construction:

Theorem 2. Suppose that we have an adversary D that can distinguish with advantage
at leastε whether a given permutation is(i) a random member ofFC or (ii) a random
permutation with cycle type C, while making m calls to the permutation and running in
time t. Let tσ be the time required to evaluateσ andσ−1. Then there is a distinguisher D′

for the familyP that runs in time O(t · tσ) and makes2m calls to the input permutation
and hasε advantage of distinguishing a member ofP from a truly random permutation.

Proof. The theorem follows from a simulation argument: givenπ as a black-box,D′

simulatesD on the permutationτ = π ◦ σ ◦ π−1; wheneverD requests the evaluation
of its input permutationτ on a pointx, D′ requests forπ(x) and then requests forπ−1

onσ(π(X)); it then feedsD with the result (a similar process is done whenD requests
the inverse ofx). D′ outputs the same guess (“random”/“pseudo-random”) asD.

Clearly if D makesm calls to the input permutation, thenD′ makes 2m calls. Let
D[τ] denote the output ofD when the input permutation isτ . From Theorem 1 we can
conclude that

Pr[D[τ] = “random” |τ is random of cycle typeC]

= Pr[D′[π] = “random”|π is random]

and by the the construction ofFC

Pr[D[τ] = “pseudo-random”|τ ∈ FC] = Pr[D′[π] = “pseudo-random”|π ∈ P].

Hence if D distinguishes with advantageε, so doesD′. The number of calls to the
input permutationD′ makes is twice that ofD. The running time ofD′ is similar to that
of D, except thatD′ needs to callσ or σ−1 for each operation (which takes timetσ).
Thus we obtain the desired result.

3. Applications and Properties

Involutions. An interesting family of permutations this method allows us to construct
are pseudo-random involutions. An involution is a permutation that is the inverse of
itself. The advantage of using such permutations for encryption is that the encryption
operation and decryption operation are identical (this is not necessarily a good property
for an encryption scheme, but it may be useful in some situations). The encryption done
by the Enigma was an involution.

The construction is exactly as in Section 2. Fixσ to be the involution mapping eveni ’s
to i+1 and oddi ’s to i−1. Then the resulting familyFI = {Fk = Pk◦σ◦P−1

k |k ∈ {0,1}`}
is a family of pseudo-random involutions with no fixed points.

Constructing Pseudo-Random Permutations with a Prescribed Structure 101

t-Wise independent permutations. The combinatorial counterpart to cryptographic
pseudo-randomness is (almost)t-wise independence. While there are no known good
constructions ofexact t-wise independent permutations fort > 3, various approxima-
tions are possible (see [6] for a discussion). Suppose that we are interested in a family of
t-wise independent permutations that has cycle typeC, i.e. considering the permutation
at anyt values has the same distribution as a random permutation with cycle typeC. If we
have a familyH of 2t-wise independent permutations, thenHC = {h ◦ σ ◦ h−1|h ∈ H}
is a t-wise independent family with cycle typeC. This follows from appealing to The-
orem 2. Similarly, ifH is anapproximationto a 2t-wise independent permutation, then
HC is a related approximation to at-wise independent family with cycle typeC.

Fast forward property. The construction ofFC has the appealing property that it is
possible to iterateFk on itself at “zero” cost. To computeF (m)

k (x) for any m, x and
Fk ∈ FC note that

F (m)
k (x) = P−1

k (σ (Pk(P
−1
k (σ · · ·)))) = P−1

k (σ (m)(Pk(x))).

Therefore, assumingσ is such where fast forward is possible, then computingF (m)
k (x)

has the same complexity asFk(x). For instance, in the case of the cyclic permutation,
performingm iterations amounts to computingP−1

k (Pk(x)+m mod 2n).

We can therefore allow the adversary queries of the form(x,m) that will be answered
by F (m)

k (x). Here, again, a simple adaptation of Theorem 2 implies that such queries
cannot enable the distinction ofFk from a random permutation of the given cycle type,
unlessP is weak as well.

Finally, another operation that can be performed efficiently and is relevant when the
cycle type contains cycles of medium length is to test whether two elementsx1 andx2

are in the same cycle of the permutationFk. If x1 andx2 are in the same cycle, then there
exists anm such thatx2 = F (m)

k (x1) and thereforePk(x2) = σ (m)(Pk(x1)). Thereforex1

andx2 are in the same cycle iffPk(x2) andPk(x2) are in the same cycle inσ (which we
assume can be determined easily).

4. Open Problems

We showed how to construct a family of pseudo-random permutations where it is possible
to iterate the permutation quickly. However, this works only for a fixed cycle type. The
question is whether it is possible to construct a family of permutations such that:

(i) The cycle type distribution is close to that of a random permutation.
(ii) It is possible to iterate a member of the family very quickly.

(iii) The family is indistinguishable from truly random permutations even with fast
iteration queries.

Using the approach of this paper it is sufficient to construct a family of permutations
C that satisfies (i) and (ii). Composing it with a (regular) pseudo-random permutation
will yield property (iii) as well. Note that a pseudo-random cyclic permutation satisfies
properties (ii) and (iii) (but not (i)), since it is not easy to distinguish such a permutation
from a random one (it should require roughly 2n/2 evaluations).

102 M. Naor and O. Reingold

Another interesting question is whether it is possible to construct pseudo-random
functionsthat can be iterated. The need for such functions (or thek-wise independent
version of them) arises in algorithmic applications such as Pollard’s rho method [7] and
Hellman’s time–space tradeoff for the inverting function ([3], see also [1]). Here, again,
the approach of this paper tells us that it is sufficient to come up with a familyF of
functions that has the correct distribution on the “tree structure” as well as the ability
to compute iterations, but is not necessarily pseudo-random. Then for anyP that is a
(regular) family of pseudo-random permutations, the family{P−1◦F◦P|F ∈ F, P ∈ P}
has all the desired properties.

References

[1] A. Fiat and M. Naor, Rigorous time/space trade-offs for inverting functions,SIAM J. Comput. 29 (1999),
790–803.

[2] O. Goldreich, S. Goldwasser and S. Micali, How to construct random functions,J. Assoc. Comput. Mach.
33 (1986), 792–807.

[3] M. E. Hellman, A cryptanalytic time-memory tradeoff,IEEE Trans. Inform. Theory26 (1980), 289–294.
[4] T. W. Körner,The Pleasure of Counting, Cambridge University Press, Cambridge, 1997.
[5] M. Luby and C. Rackoff, How to construct pseudorandom permutations and pseudorandom functions,

SIAM J. Comput. 17 (1988), 373–386.
[6] M. Naor and O. Reingold, On the construction of pseudorandom permutations: Luby–Rackoff Revisited.

J. Cryptology12(1) (1999), 29–66.
[7] J. M. Pollard, A Monte Carlo method for factorization,BIT 15 (1975), 331–334.
[8] A. Shamir and B. Tsaban, Guaranteeing the diversity of pseudorandom generators. Manuscript. Available:

http://www.cs.biu.ac.il/~tsaban/papers.html .

