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Abstract

We illustrate the correspondence between uncertainty sets in robust optimization and some pop-

ular risk measures in finance, and show how robust optimization can be used to generalize the

concepts of these risk measures. We also show that by using properly defined uncertainty sets in

robust optimization models, one can construct coherent risk measures, and address the issue of the

computational tractability of the resulting formulations. Our results have implications for efficient

portfolio optimization under different measures of risk.
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1 Introduction

Markowitz [34] was the first to model the important tradeoff between risk and return in portfolio selection

as an optimization problem. He suggested choosing an asset mix such that the portfolio variance is

minimum for a fixed target level of expected return. It is now known (Tobin [42], Chamberlain [13])

that the mean-variance framework is appropriate if the distribution of returns is elliptically symmetric

(e.g., multivariate normal). In this case, the optimal mean-variance portfolio allocation is consistent

with any set of preferences for market agents in the sense that given a fixed expected return, any

investor will prefer the portfolio with the smallest standard deviation. However, when returns are not

symmetrically distributed, or when a downside risk is more weighted than an upside risk, variance is

not an accurate measure of investor risk preferences. Markowitz [35] acknowledges this shortcoming and

discusses alternative risk measures in a more general mean-risk approach. Such considerations and the

theory of stochastic dominance (Levy [32]) spurred interest in asymmetric or quantile-based portfolio

risk measures such as expectation of loss, semi-variance, Value-at-Risk (VaR), and others (Jorion [27],

Dowd [17], Konno and Yamazaki [29], Carino and Turner [11]). Generalizations of these approaches

to worst-case risk measures when the distributions and the parameters are themselves unknown have

been studied for the variance and the VaR risk measures (Halldorsson and Tutuncu [25], Goldfarb

and Iyengar [24], El Ghaoui et al. [19]). Artzner et al. [1] introduced an axiomatic methodology to

characterize desirable properties in risk measures. They named risk measures that satisfied their four

axioms coherent. A popular example of a coherent risk measure is Conditional Value-at-Risk, or CVaR

discussed in Rockafellar and Uryasev [38, 39].

If one thinks of future asset returns as unknown parameters, one can view the portfolio problem as

an optimization problem with uncertain coefficients. It is then natural to approach it with tools for

optimization under uncertainty, such as the recently developed robust optimization techniques. The main

idea in robust optimization is that the optimal solution must remain feasible for any realization of the

uncertain parameters within a pre-specified uncertainty set. The “size” and “shape” of the uncertainty

sets are usually based on probability estimates on the quality of the solution. It has been observed

(Ben-Tal and Nemirovski [2]) that by stating the portfolio optimization problem as one of maximizing

return subject to the constraint that future returns varies in an ellipsoidal uncertainty set defined by

the covariance structure of the uncertain returns, the robust counterpart of the portfolio optimization

problem is reminiscent of the Markowitz formulation. This paper builds on this observation and presents

a unified theory that relates portfolio risk measures to robust optimization uncertainty sets.

Most generally, our contribution is to bring together several important results in the theory of risk
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measures that have so far been disparate, and to add our perspective on computational tractability and

definitions of risk measures in a new context - that of robust optimization. Our specific contributions

can be summarized as follows:

(a) We show explicitly how risk measures such as standard deviation, worst-case VaR, and CVaR can

be mapped to robust optimization uncertainty sets. Some of these results exist in the literature,

but we present them in a unified framework, and further study how the idea of considering worst-

case outcomes in robust optimization can be used to generalize the concepts of these risk measures.

For example, we develop a model for the worst-case CVaR based on partial moment information

when the exact distributions of uncertainties are unknown. This result extends the worst-case VaR

results of El Ghaoui et al. [19].

(b) We show how incoherent risk measures can be made coherent based on information about the

support of the distribution of uncertainties in the optimization problem. While this observation

can be obtained alternatively using Theorem 2.2 in Ruszczynski and Shapiro [40], our goal is to

provide an explicit representation for practitioners looking to apply this theory in portfolio selection

problems. We use duality theory to construct specific uncertainty sets that map to coherent risk

measures, and to address the issue of the computational tractability of the resulting problems. We

also explore the validity of probability bounds on the constraints in doing so, which is important

for practical applications.

(c) Computationally, we study the effect of modifying incoherent risk measures into coherent risk

measures on both theoretical and realized portfolio performance. These findings have implications

for efficient portfolio optimization under different measures of risk.

While completing this paper, we became aware of work by Bertsimas and Brown [5] that relates

robust linear optimization to coherent risk measures. Both our and Bertsimas and Brown’s paper address

relationships between uncertainty sets in robust optimization and risk measures in finance; however,

the approaches and the contributions of the two papers are different. Bertsimas and Brown’s focus is

on providing guidelines for selecting uncertainty sets in robust linear optimization applications based

on the risk preferences of the modeler and specify uncertainty sets formed from available realizations of

the uncertain data in the problem. In particular, they use the representation theorem for coherent risk

measures that relates to the supremum of the expected value function over a family of distributions, and

show, for example, that a class of coherent risk measures called comonotone for a discretely distributed

random vector leads to polyhedral uncertainty sets. In contrast, we use mainly duality techniques to

relate polyhedral and conic uncertainty sets with coherent risk measures. More generally, our approach

is to use uncertainty sets in robust optimization as a starting point for constructing risk measures in
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finance, with the goal of understanding better structural relationships between uncertainty sets and risk

measures and improving computational tractability. This approach leads, for example, to show that a

moment cone based uncertainty set using semidefinite programming can lead to the worst-case CVaR

measure. Recent work by Ben-Tal et al. [4] is also based on the same spirit.

The structure of this paper is as follows: In Section 2, we review some popular financial measures of

risk and the notion of coherent risk measures. In Section 3, we draw a parallel between using the concept

of risk measure in finance and handling optimization problems with uncertain inputs. In Section 4, we

review the main concepts of robust optimization, and analyze financial risk measures in the context

of robust counterpart risk measures. In Section 5, we link the notion of coherent risk measures to

robust optimization uncertainty sets, propose a method for constructing coherent risk measures from

uncertainty sets, and prove that the probability of constraint violation remains the same for the resulting

coherent robust counterpart risk measures. We illustrate the technique with a numerical example.

2 Risk Measures in Finance

In this section, we review the idea of portfolio risk measures in finance, list some of the most commonly

used risk measures, and discuss the concept of coherent risk measures.

Consider a random vector z̃ that is defined on a probability space (Ω,F , P ) where Ω is a set of

“outcomes”, F is a set of “events” and P : F → [0, 1] is a function that assigns probability to events.

In portfolio optimization, z̃ could denote the underlying factor values in a factor model for returns or

the returns of the assets themselves. We restrict our attention to the space of portfolio returns defined

as an affine combination of the random variables (includes constants):

V ∆= {ṽ : ∃(v0, v) such that ṽ = v0 + v′z̃} . (1)

Throughout the paper, the random vector z̃ is assumed to have finite and strictly positive definite

covariance matrix. Given two random variables in ṽ, w̃ ∈ V, in which ṽ = v0 + v′z̃ and w̃ = w0 + w′z̃,

we use the notation ṽ ≥ w̃ to represent state-wise dominance, i.e., v0 + v′z ≥ w0 + w′z for all z ∈ Ω.

Similarly, ṽ > w̃ denotes strict state-wise dominance, i.e., v0 + v′z > w0 + w′z for all z ∈ Ω. A risk

measure ρ(ṽ) : V → R assigns a real value to the random variable ṽ ∈ V. The smaller the value of the

risk, the more desirable the portfolio is.

As an example, suppose the random asset returns are given as r + Az̃ in a linear factor model. By

moving the mean returns to r, we can assume without loss of generality that the factors z̃ have zero

means. Such factor models for returns are widely used in finance (see, for example, Litterman et al.
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[33]). Let the vector x denotes the asset allocation weights that are chosen from a subset X ⊆ Rn. The

set X could include constraints on the portfolio structure such as

(a) e′x = 1 (e is the vector of ones; the weights of all assets in the portfolio add up to one),

(b) x ≥ x ≥ x (upper and lower bound constraints), etc.

The random portfolio return is then defined as:

x′r + x′Az̃ ∈ V,

with (v0,v) = (x′r, A′x) in (1). The portfolio optimization problem is then to find the minimum risk

portfolio in the set of feasible portfolios:

min ρ
(
x′r + x′Az̃

)

s.t. x ∈ X .
(2)

2.1 Examples of Risk Measures

Most generally, risk measures in finance can be divided into two main categories: moment-based and

quantile-based. The roots of moment-based risk measures can be traced to classical economic utility

theory, while quantile-based risk measures have arisen as a consequence of advances in the theory of

stochastic dominance. In this subsection, we list three of the most commonly used risk measures: mean-

standard deviation (or, equivalently, mean-variance), Value-at-Risk (VaR), and Conditional Value-at-

Risk (CVaR).

Mean-Standard Deviation

The classical mean-standard deviation portfolio allocation approach employs the risk measure

ρα

(
v0 + v′z̃

) ∆= −E
(
v0 + v′z̃

)
+ ασ

(
v0 + v′z̃

)
,

where E(·) and σ(·) are the expected value and the standard deviation of the random portfolio return and

α is a parameter associated with the level of the investor’s risk aversion. The mean-standard deviation

risk measure is an example of a moment-based portfolio risk measure - it incorporates information

about the first and second moments of the distribution of returns. Higher moments of the distribution

of returns have been suggested as well (Huang and Litzenberger [26]); however, such risk measures have

not become as popular due to computational and estimation difficulties.

In contrast to moment-based risk measures, quantile-based risk measures are concerned with the

probability or magnitude of losses. The advantage of the quantile-based approach to risk measurement

is that asymmetry in the distribution of returns can be handled better.
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Value-at-Risk (VaR)

The most popular quantile-based risk measure is Value-at-Risk. VaR measures the worst portfolio loss

that can be expected with some small probability ε (ε typically equals 1% or 5%). Mathematically, the

(1− ε)-VaR is defined as follows:

V aR1−ε

(
v0 + v′z̃

) ∆= min{t : P
(−v0 − v′z̃ ≤ t

) ≥ 1− ε}

Computationally, optimization of VaR is difficult to handle unless the distribution of returns is assumed

to be normal or lognormal (Duffie and Pan [18], Jorion [27]). Heuristics for optimizing sample VaR

have been proposed in Gaivoronski and Pflug [22] and Larsen et al. [30]. Sample-based approximations

with probabilistic guarantees for VaR have been analyzed in Campi and Calafiore [9, 10], Farias and

Van Roy [16], and Erdogan and Iyer [21]. El Ghaoui et al. [19] suggested an approach that optimizes

the worst-case VaR for given mean and covariance matrix of the asset returns.

Conditional Value-at-Risk (CVaR)

In recent years, an alternative quantile-based measure of risk known as Conditional Value-at-Risk

(CVaR) has been gaining ground due to its attractive computational properties (Rockafellar and Urya-

sev [38, 39]). CVaR measures the expected loss if the loss is above a specified quantile. Mathematically,

the CVaR formulation can be written as:

CV aR1−ε

(
v0 + v′z̃

) ∆= min
a

(
a +

1
ε
E

(−v0 − v′z̃ − a
)+

)
.

It can be shown that V aR1−ε (v0 + v′z̃) ≤ CV aR1−ε (v0 + v′z̃). Hence, CVaR is often used as a

conservative approximation of VaR (Rockafellar and Uryasev [39]). Furthermore, CVaR possesses the

desirable property that it is a coherent risk measure. We will review the concept of coherent risk

measures in the following subsection.

For the risk measures described above, the parameter α (in the case of mean-standard deviation)

and ε (in the case of VaR and CVaR) determines the risk-averseness of the decision-maker.

2.2 Coherent Risk Measures

The risk measure ρ : V → R assigns a real value to each uncertain outcome ṽ ∈ V. By convention,

ρ(ṽ) ≤ 0 implies that the risk associated with an uncertain outcome ṽ is acceptable. A risk measure

ρ(·) is coherent if it satisfies the following four axioms (Artzner et al. [1]):

Axioms of coherent risk measures:

(i) Translation invariance: For all ṽ ∈ V and a ∈ R, ρ(ṽ + a) = ρ(ṽ)− a.
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(ii) Subadditivity: For all random variables ṽ, w̃ ∈ V, ρ(ṽ + w̃) ≤ ρ(ṽ) + ρ(w̃).

(iii) Positive homogeneity: For all ṽ ∈ V and λ ≥ 0, ρ(λṽ) = λρ(ṽ).

(iv) Monotonicity: For all random variables ṽ, w̃ ∈ V such that ṽ ≥ w̃, ρ(ṽ) ≤ ρ(w̃).

In addition, we define a coherent risk measure as proper if it satisfies the following condition:

• For all ṽ ∈ V with positive variance, ρ(ṽ) > E(−ṽ).

A proper coherent risk measure ensures that the risk of an asset with random returns is always greater

than its risk-neutral value.

One important consequence of the coherent risk measure axioms is preservation of convexity, which

is important for computational tractability in portfolio optimization (Ruszczynski and Shapiro [40]).

3 Risk Measures and Optimization under Uncertainty

The framework of risk measures in portfolio optimization described in the previous section can be

extended to more general optimization problems with parameter uncertainties. Consider a linear opti-

mization problem:

min c′x

s.t. ai(z)′x ≥ bi(z), i ∈ I
(3)

where x denotes the vector of decision variables, ai(z), bi(z), i ∈ I are data that depends affinely on

the factors z. Without loss of generality, we assume that c is known exactly and the uncertainty affects

only parameters z. For any fixed solution x, the constraint ai(z)′x ≥ bi(z) may become infeasible

for some realization of z. In many applications of optimization, ensuring constraint feasibility for all

realization of uncertainties can be overly conservative. In such problems, we can tolerate some risk of

constraint violation for the benefit of improving the objective. Therefore, it is natural to extend the

optimization framework using risk constraints as follows:

min c′x

s.t. ρi (ai(z̃)′x− bi(z̃)) ≤ 0, i ∈ I
(4)

with ai(z̃)′x − bi(z̃) ∈ V for i ∈ I. Model (4) is called the risk counterpart of (3). In particular, if we

define risk as the probability that the constraint violation will be more than a pre-specified constant ε

(i.e., if we introduce chance constraints as in Charnes and Cooper [14]), formulation (4) is equivalent

to VaR optimization.
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Even if the nominal problem without uncertainty is computationally tractable, the choice of the

risk measure can affect the tractability of the risk counterpart. Under the VaR risk measure, the risk

counterpart can become non-convex and intractable. Since coherent risk measures preserve convexity,

risk counterparts with the CVaR measure are generally easier to optimize than VaR. Though con-

vexity is maintained, an important consideration with regards to tractability is also whether a risk

measure can be computed to an arbitrary accuracy. This is essential when an optimization problem

contains constraints that need to be satisfied with high reliability, such as in the case of structural

design (see Ben-Tal and Nemirovski [3]). For example, the computation of CV aR1−ε (v0 + v′z̃) involves

multidimensional integration, which is a computationally challenging task. While the integrals can be

approximated through Monte Carlo simulation, the number of trials in order to achieve high reliability

can be prohibitive. At the same time, if first and second-moment information about the distribution

of the uncertainties is available, the mean-standard deviation risk measure has better computational

characteristics despite the fact that it is not a coherent risk measure.

4 Uncertainty Sets in Robust Optimization

In practice, the exact distributions of uncertain parameters in optimization models are rarely known.

Robust optimization handles this issue by requiring the user to specify a (deterministic) uncertainty set

for the parameters based on some (possibly limited) information about their values. The key idea is

then to find an optimal solution to the problem that remains feasible for any realization of the uncertain

coefficients within the pre-specified deterministic uncertainty set. The robust counterpart analogous to

the portfolio optimization problem (2) with risk measures is then formulated as:

min
(

max
z∈U

− (
x′r + x′Az

))

s.t. x ∈ X,

(5)

where − (x′r + x′Az) is the loss of the portfolio and U is a deterministic uncertainty set that is mapped

out from the uncertain factors independent of x. Typically, the uncertainty set is convex and its size

is related to some kind of guarantee on the probability that the constraint involving the uncertain data

will not be violated (see El Ghaoui et al. [20, 19], Ben-Tal and Nemirovski [3], Bertsimas and Sim [7],

Bertsimas et al. [8], Chen et al. [15]).

In view of (2) and (5), we define the robust counterpart risk measure for any ṽ = v0 + v′z̃ ∈ V as

ηU
(
v0 + v′z̃

) ∆= max
z∈U

− (
v0 + v′z

)
= −min

z∈U
(
v0 + v′z

)
. (6)
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In line with the convention for risk measures, ηU (v0 + v′z̃) ≤ 0 implies that the risk associated with

the violation of the uncertain constraint, v0 + v′z̃ ≥ 0, is acceptable. Therefore, one can think of the

definition of an uncertainty set as the definition of a risk measure on the uncertainties involved.

4.1 Examples of Uncertainty Sets and Corresponding Risk Measures

We illustrate the correspondence between risk measures and robust optimization uncertainty sets with

examples next. These examples show also that robust optimization uncertainty sets can be used to

generalize the definitions of risk measures in finance.

Ellipsoidal uncertainty set

One of the most commonly used uncertainty set in robust optimization is the ellipsoidal uncertainty

set. Assume that the primitive uncertainties lie in the ellipsoidal uncertainty set given as:

Eα
∆=

{
z : ‖Q−1/2z‖2 ≤ α

}
.

The robust-counterpart risk measure is then defined as:

ηEα

(
v0 + v′z̃

) ∆= − min
z∈Eα

(
v0 + v′z

)
.

This corresponds to minimizing an affine function over a single ellipsoidal constraint and is solvable in

closed form (see Ben-Tal and Nemirovski [3]). The robust counterpart risk measure is equivalent to

ηEα

(
v0 + v′z̃

)
= −v0 + α

√
v′Qv, (7)

where the factors z̃ are assumed to have zero means and covariance matrix Q. Clearly, the ellipsoidal

uncertainty set maps to the mean-standard deviation portfolio risk measure discussed in Section 2.1.

The ellipsoidal uncertainty set also arises in the worst-case (1− ε)-VaR risk measure discussed in El

Ghaoui et al. [19]. Suppose the random factors z̃ have zero mean and covariance matrix Q, but the

exact distribution is unknown. Let P denote the set of all possible probability distributions with the

given mean and covariance matrix. The worst-case (1− ε)-VaR is then defined as:

wcV aR1−ε

(
v0 + v′z̃

) ∆= min{t : inf
P∈P

P
(−v0 − v′z̃ ≤ t

) ≥ 1− ε}.

As shown in El Ghaoui et al. [19], this reduces to the mean-standard deviation risk measure with

α =
√

(1− ε)/ε:

wcV aR1−ε

(
v0 + v′z̃

)
= ηE√

(1−ε)/ε

(
v0 + v′z̃

)
.

Polyhedral uncertainty set
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Another commonly used uncertainty set in robust linear optimization is the polyhedral uncertainty

set. We show the connection between a particular data-driven example of this uncertainty set and CVaR

for a given discrete distribution.

Theorem 1 Consider a random vector z̃ with the discrete distribution P(z̃ = zk) = pk, k = 1, . . . , M .

The robust counterpart risk measure for the uncertainty set

U1−ε =





z :

∃u ∈ RM

z =
∑M

k=1 ukzk
∑M

k=1 uk = 1

0 ≤ u ≤ 1
ε p.

is the conditional value risk measure

CV aR1−ε

(
v0 + v′z̃

)
= ηU1−ε

(
v0 + v′z̃

)
,

Proof : The equivalent representation of the (1− ε)-CVaR is

CV aR1−ε (v0 + v′z̃) = mina,y a +
1
ε

M∑

k=1

pkyk

s.t. a + yk ≥ −v0 − v′zk, k = 1, . . . ,M

y ≥ 0.

Using strong duality from linear programming:

CV aR1−ε (v0 + v′z̃) = maxu −
M∑

k=1

uk(v0 + v′zk)

s.t.
M∑

k=1

uk = 1

0 ≤ u ≤ 1
ε p,

or equivalently:

CV aR1−ε (v0 + v′z̃) = −minu,z (v0 + v′z)

s.t. z =
M∑

k=1

ukzk

M∑

k=1

uk = 1

0 ≤ u ≤ 1
ε p.

10



This clearly yields the desired uncertainty set.

As mentioned earlier, Bertsimas and Brown [5] provide a generalized result about the relationship

between data-driven polyhedral uncertainty sets and so-called comonotone risk measures in finance.

They show that the entire space of such polyhedral uncertainty sets can be finitely generated by the

class of CVaR risk measures.

Moment cone uncertainty set

We now show the equivalence between a specific moment cone uncertainty set and the worst-case

CVaR risk measure. Suppose the probability measure P of the random factors z̃ is not exactly known;

rather it is known to lie in a set P ∈ P. It is natural in this setting to define the worst-case (1−ε)-CVaR

risk measure as:

wcCV aR1−ε

(
v0 + v′z̃

) ∆= sup
P∈P

CV aR1−ε

(
v0 + v′z̃

)
. (8)

Tractable formulations for specific choices of P have been obtained in Zhu and Fukushima [43] and

Čerbáková [12]. We use a more general moments approach to characterize the set of distributions P
and derive the corresponding uncertainty set. Let

Id
∆= {β ∈ Nm : β1 + . . . + βm ≤ d} ,

be an index set indexed by β = (β1, . . . , βm) that defines the set of monomials of degree less than or

equal to d in the variables z̃ = (z̃1, . . . , z̃m). Suppose we are given the moments m ∈ R|Id|. Let M(Ω)

denote the set of finite positive Borel measures supported on a compact set Ω. We define the set of

feasible probability measures as:

P =
{

P ∈M(Ω) : EP

(
z̃β

)
= mβ ∀β ∈ Id

}
, (9)

where z̃β = z̃β1
1 × . . . × z̃βm

m . We explicitly include β = 0 and m0 = 1 in (9) to ensure that the

measures are probability measures. A simple model could include mean, variance, covariance and range

information on z̃. Note that no explicit assumption on independence is made, thus naturally extending

the multi-dimensional model of CVaR to dependent distributions.

For Ω ⊆ Rm, let the cone of moments supported on Ω be defined as:

Mm,d(Ω) =
{

w ∈ R|Id| : wβ = EP

(
z̃β

)
∀β ∈ Id for some P ∈M(Ω)

}
,

and the cone of positive polynomials supported on Ω be defined as:

Pm,d(Ω) =
{

y ∈ R|Id| :
∑

β∈Id

yβzβ ≥ 0 ∀z ∈ Ω
}

,
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where y = (yβ)β∈Id
is the coefficients of the polynomial. These cones are dual to each other (Karlin

and Studden [28]); namely the closure of the moment cone is precisely the dual cone of the set of

non-negative polynomials on Ω:

Mm,d(Ω) = P∗m,d(Ω).

We now show the connection between the moment cone uncertainty set and the worst-case CVaR

risk measure.

Theorem 2 Consider a random vector z̃ with known moments m ∈ Mm,d(Ω). Assume that Ω is

compact. Then, the robust counterpart risk measure for the uncertainty set

U1−ε =





z :

∃w, s ∈ R|Id|

zj = wej j = 1, . . . ,m

w + s = 1
ε m

w, s ∈Mm,d(Ω)

w0 = 1,

is the worst-case conditional value at risk measure

wcCV aR1−ε

(
v0 + v′z̃

)
= ηU1−ε

(
v0 + v′z̃

)
,

where ej is a m-dimensional vector with 1 in the jth component and 0 otherwise.

Proof : Using the result from Rockafellar and Uryasev [39], the worst-case (1 − ε)-CVaR can be

expressed as:

wcCV aR1−ε

(
v0 + v′z̃

)
= sup

P∈P
inf
a∈R

(
a +

1
ε
EP

(−v0 − v′z̃ − a
)+

)
. (10)

By changing the order of the supremum and infimum in (10), we have:

wcCV aR1−ε

(
v0 + v′z̃

) ≤ inf
a∈R

(
a +

1
ε

sup
P∈P

EP

(−v0 − v′z̃ − a
)+

)
.

Firstly, note the objective function is linear in the probability measure P and convex in decision variable

a. Furthermore, the value of a is guaranteed to lie in a bounded interval for a fixed ε ∈ (0, 1). Hence

the min-max and the max-min problem coincide in the optimal value (see Shapiro and Kleywegt [41]).

Under strong duality conditions for the moments problem, we have:

sup
P∈P

EP

(−v0 − v′z̃ − a
)+ = infy m′y

s.t. y + (a + v0, v
′,0)′ ∈ Pm,d(Ω)

y ∈ Pm,d(Ω).
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Substituting this dual formulation for the inner problem into the worst-case CVaR problem, we obtain

wcCV aR1−ε

(
v0 + v′z̃

)
= infa,y

(
a +

1
ε
m′y

)

s.t. y + (a + v0, v
′,0)′ ∈ Pm,d(Ω)

y ∈ Pm,d(Ω).

Dualizing this formulation, we obtain the primal moments formulation:

wcCV aR1−ε

(
v0 + v′z̃

)
= supw,s −v0 − v′z

s.t. zj = wej j = 1, . . . , m

w + s =
1
ε
m

w, s ∈Mm,d(Ω)

w0 = 1,

(11)

which yields the desired result.

For a fairly large class of Ω, membership in the moment cone Mm,d(Ω) can either be represented

exactly or approximated using semidefinite constraints (Lasserre [31], Zuluaga and Pena [44]). Examples

for which the representation is exact and polynomial sized in the dimension of the problem include:

(a) Discrete support Ω = {z1, z2, . . . , zM}. In this case, the representation simply reduces to linear

constraints.

(b) Ω =
∏n

i=1[ai, bi] with a finite set of known marginal moments. In this case, the representation

reduces to semidefinite constraints (see Zuluaga and Pena [44], Bertsimas, Natarajan and Teo [6]).

More generally, the membership constraint can be represented asymptotically by using larger and

larger semidefinite relaxations (Lasserre [31]). Examples of such Ω include:

(a) A bounded polyhedron

(b) Compact set with a bound B known apriori such that Ω ⊆ {z : z′z ≤ B2},
Theorem 2 generalizes the idea of worst-case VaR introduced by El Ghaoui et al. [19] to worst-case

CVaR. It should be noted that while extending the former notion to higher order moments is not easy

(due to the non-convexity of the formulation), it seem easier to obtain stronger approximations for

worst-case CVaR.

Moment generating function uncertainty set

We next consider an uncertainty set that is implicitly defined from the moment generating functions

of the uncertain return factors z̃. We assume that z̃j , j = 1, . . . , m are stochastically independent and
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their moment generation functions, gj(θ)
∆= E (exp(θz̃j)) are well defined. Motivated by Nemirovski and

Shapiro’s approximation [36] on the chance constrained problem, we define the risk measure:

ζ1−ε (v0 + v′z̃) ∆= inf
µ>0

(
µ ln(E(exp(−(v0 + v′z̃)/µ)))− µ ln ε

)

= inf
µ>0


−v0 + µ

m∑

j=1

ln(gj(−vj/µ))− µ ln ε


 .

Nemirovski and Shapiro [36] show that the risk measure is computationally tractable if the moment

generating functions gj(θ) are computationally tractable functions, which is indeed the case for common

distributions. Moreover, they show that ζ1−ε(·) is an upper bound of the (1 − ε)-CVaR risk measure.

The key idea of bound comes from the observation that

w+ ≤ µ

e
exp(w/µ) ∀µ > 0.

Hence,

CV aR1−ε (v0 + v′z̃) = inf
a

(
a +

1
ε
E

(−v0 − v′z̃ − a
)+

)

≤ inf
a,µ>0

(
a +

µ

eε
E(exp((−a− v0 − v′z̃)/µ))

)

= inf
µ>0

(
µ ln E(exp(−(v0 + v′z̃)/µ))− µ ln ε)

)

= ζ1−ε (v0 + v′z̃) .

where the second equality follows from choosing the minimizers a∗ as follows

a∗ = µ ln E(exp(−(v0 + v′z̃)/µ))− µ− µ ln ε.

Consequently,

V aR1−ε

(
v0 + v′z̃

) ≤ CV aR1−ε

(
v0 + v′z̃

) ≤ ζ1−ε

(
v0 + v′z̃

)
.

Under the assumption that z̃ are independently distributed and that their moment generating func-

tions are computationally tractable functions, the risk measure ζ1−ε(·) is convex and is computationally

tractable. However, it is a weaker approximation of the VaR measure compared to the CVaR measure.

Theorem 3 Consider a random vector z̃ in the sample space Ω in which the elements are independently

distributed and their moment generating functions are computationally tractable. Define the uncertainty

set

B1−ε =
{
z : (−z, 0, 1) ∈ Ψ∗

1−ε

}
,

where Ψ∗
1−ε is the dual cone of

Ψ1−ε = cl






(y, µ, t) : µ

m∑

j=1

ln
(

gj

(
yj

µ

))
− µ ln ε ≤ t, µ > 0






 ,
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in which cl(·) denotes closure of the set. Then

ζ1−ε

(
v0 + v′z̃

)
= ηB1−ε

(
v0 + v′z̃

)
.

Moreover, B1−ε ⊆ CH(Ω), where CH(Ω) represents the convex hull of Ω.

Proof : As noted by Nemirovski and Shapiro [36], the function

φε(y, µ) = µ

m∑

j=1

ln
(

gj

(
yj

µ

))
− µ ln ε

is jointly convex in y and µ > 0. Therefore, the cone Ψ1−ε is convex, closed with nonempty interior.

Furthermore, since z̃j has zero mean, for nonzero random variable z̃j we have gj (y) → ∞ if and only

if |y| → ∞. Hence, the cone is pointed as well. Therefore, the dual cone, Ψ∗
ε is also a closed, pointed

convex cone with nonempty interior (see Rockafellar [37]). Observe that we have

ζ1−ε (v0 + v′z̃) = inf
µ>0

(
µ ln(E(exp(−(v0 + v′z̃)/µ)))− µ ln ε

)

= min
µ,t

(t : (−v, µ, t + v0) ∈ Ψ1−ε)

= max
u,p,s

(−v0s + v′u : p = 0, s = 1, (u, p, s) ∈ Ψ∗
1−ε

)

= − min
z∈B1−ε

(
v0 + v′z

)
,

where the second last equality follows from strong conic duality, since the primal problem is bounded

and Slater’s conditions are satisfied in the primal problem. The reader is referred to Chapter 2 of

Ben-Tal and Nemirovski [3] for details on conic duality.

Finally, to prove that B1−ε ⊆ CH(Ω), it suffices to show that for all v

min
z∈B1−ε

v′z ≥ min
z∈CH(Ω)

v′z.

Indeed,

− min
z∈B1−ε

v′z = inf
µ>0

(
µ ln(E(exp(−v′z̃)/µ))− µ ln ε

)

≤ inf
µ>0

(
µ ln

(
exp

(
max

z∈CH(Ω)
(−v′z)/µ

))
− µ ln ε

)

= − min
z∈CH(Ω)

v′z.

The risk measure ζ1−ε(·) is also a coherent risk measure. This fact follows immediately from Theorem

4, which we prove in the next section.
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5 Coherent Risk Measures and Uncertainty Sets

In this section, we propose a method for constructing coherent risk measures based on robust opti-

mization uncertainty sets with support information, and derive bounds on the probability of constraint

violation under the so-constructed risk measures. We illustrate the method with a numerical example.

5.1 Creating Coherent Risk Measures

It is well-known that one can describe any coherent risk measure equivalently in terms of the worst-case

expectation over a family of distributions, P, as follows:

ρ(ṽ) = sup
P∈P

EP (−ṽ) (12)

(see, for example, Theorem 2.2 in Ruszczynski and Shapiro [40], or Proposition 3.1 in Föllmer and Schied

[23]). The representation result (12), however, does not always imply that the problem of minimizing

coherent risk measures in portfolio optimization is of polynomial complexity. To address this issue, we

show in Theorem 4 that we can describe any proper coherent risk measure defined on the uncertain

portfolio returns in terms of the worst-case return over a deterministic uncertainty set. This result can

also derived from well-known results (see Theorem 2.2 in Ruszczynski and Shapiro [40]). Our goal,

however, is to specify explicit uncertainty set construction for such risk measures. In Theorem 5, we

provide a class of uncertainty sets for which the minimization of the corresponding coherent risk measure

can be carried out in polynomial time.

Theorem 4 Consider a random vector z̃ in the sample space Ω, for which E(z̃) = 0, and whose

covariance matrix is strictly positive definite. A risk measure ρ (v0 + v′z̃) defined on V is a proper

coherent risk measure if and only if

ρ
(
v0 + v′z̃

)
= ηC

(
v0 + v′z̃

)
,

for some convex uncertainty set C with 0 in the interior and C ⊆ CH(Ω). In particular, the uncertainty

set C associated with the risk measure ρ(·) is given by

C =
{

z : max
y
{−z′y : ρ(y′z̃) ≤ 1} ≤ 1

}
.

Proof : The proof is based on conic duality and is provided in the online appendix.
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Remark : Based on the representation of coherent risk measure in (12), it is straightforward to show

that ρ (v0 + v′z̃) = ηC (v0 + v′z̃) for some uncertainty set C given by

C = CH({z : z = EP (z̃), P ∈ P}),

where the family of distributions P is given as a “black box”. However, given the space of random

variables V we consider, we are able to obtain an explicit representation of the uncertainty set C using

the risk measure ρ. For example, the uncertainty set for the mean-standard deviation risk measure

given in (7) can be obtained as follows:

C =
{

z : max
y
{−z′y : ρ(y′z̃) ≤ 1} ≤ 1

}

=
{

z : max
y
{−z′y : α‖Q1/2y‖2 ≤ 1} ≤ 1

}

=
{

z : 1/α max
y
{z′y : ‖Q1/2(−y)‖2 ≤ 1} ≤ 1

}

=
{

z : max
y
{z′y : ‖Q1/2y‖2 ≤ 1} ≤ α

}

=
{

z : max
y
{(Q−1/2z)′y : ‖y‖2 ≤ 1} ≤ α

}

=
{

z : ‖Q−1/2z‖2 ≤ α
}

= Eα,

which follows from that self-dual property of Euclidean norm, ‖a‖2 = max
y:‖y‖2≤1

a′y. Hence, Theorem 4

also implies that the mean-standard deviation risk measure is coherent if and only if Eα ⊆ CH(Ω). This

relationship is not obvious from (12).

From Theorem 4 and the remark above, it is clear that given any uncertainty set W that is not

necessarily a subset of CH(Ω), we can make the associated risk measure a coherent one by modifying

the uncertainty set to:

U = W ∩ Ω̄,

where Ω̄ ⊆ CH(Ω).

While it is obvious that a decision-maker would not try to protect against realizations of the uncertain

parameters that do not lie in their support set, classical uncertainty sets used in robust optimization

do not in fact always satisfy this condition. For example, specifying an uncertainty set that relies on a

nominal estimate plus or minus three standard deviations of the uncertain parameter may “over-protect”

on one side if the distribution of the uncertain parameter is asymmetric, and thus extend beyond the

support set for the uncertain parameter. Including support information thus becomes an important

consideration in practice.

Defining an uncertainty set through Theorem 4 has some advantages. First, it is implicitly defined

through the proper coherent risk measure, instead of using conic quadratic constraints on the uncertain
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factors, which is ubiquitous in the area of applied robust optimization. Second, Theorem 4 shows that to

construct a coherent risk measure, we only need to require the convex hull of the the sample space, which

can lead to computationally friendly formulations. In contrast, it may be computationally expensive

to construct a risk measure based on a set of worst-case expectations over a family of distributions

defined on the sample space, due to the possibly exponentially large number of scenarios. For instance,

if z̃1, . . . , z̃m are independently distributed Bernoulli random variables in [−1, 1], the sample space

comprises 2m scenarios. At the same time, its convex hull is a hypercube, which can be concisely

represented as the intersection of a small number of hyperplanes.

More generally, assume that the uncertainty sets are conic representable,

U = {z : Dz + Fu− g ∈ K for some u}, (13)

where the cone K is regular, i.e., it is closed, convex, pointed, and has a non-empty interior. Hence,

the polar cone

K∗ =
{
y | y′s ≥ 0 ∀s ∈ K

}

is also a regular cone (see the convex analysis in Rockafellar [37]). For technical reasons, we also assume

that U is a compact set with nonempty interior.

Theorem 5 The risk constraint ηU (v0 + v′z̃) ≤ 0 is concisely representable as the conic constraints




v0 + y′g ≥ 0

D′y = v

F ′y = 0

y ∈ K∗.

Proof : The application of duality theory in formulating robust counterparts is well-known (see for

instance Ben-Tal and Nemirovski [3]). Under the assumptions, the set U satisfies the necessary Slater

condition for strong duality. Therefore

ηU (v0 + v′z̃) = −minz,u v0 + v′z

s.t. Dz + Fu− g ∈ K,

or equivalently,

ηU (v0 + v′z̃) = −maxy v0 + y′z

s.t. D′y = v

F ′y = 0

y ∈ K∗.
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This results in the conic constraint representation of the feasible region.

5.2 Probability Bounds

In robust optimization, the conservativeness of the approach (equivalently, the tolerance to risk) is

captured by the “size” of the uncertainty set. For example, one can think of Uα as an uncertainty set

of “size” α, where α is selected so that the probability of violating the constraint is not more than a

pre-specified constant ε(α). More specifically, in view of the equivalence of optimization problems with

chance constraints and the VaR formulation, α is selected so that the corresponding robust risk measure

is a conservative approximation of the (1− ε)-VaR measure as follows:

ηUα

(
v0 + v′z̃

) ≥ V aR1−ε(α)

(
v0 + v′z̃

)
, ∀(v0, v) ∈ Rm+1. (14)

Here ε(α) typically decreases as α increases. The concern is whether the following remains true:

ηUα∩Ω̄

(
v0 + v′z̃

) ≥ V aR1−ε(α)

(
v0 + v′z̃

) ∀(v0, v) ∈ Rm+1.

If it does, then making a risk measure coherent by using Theorem 4 does not increase the probability

of constraint violation or, equivalently, it does not require a tradeoff for coherent approximation of the

(1− ε)-VaR.

More generally, suppose a robust counterpart risk measure ηUα (v0 + v′z̃) is an upper bound of a

risk measure ρ (v0 + v′z̃) for all (v0,v). We would like to know whether ηUα∩Ω̄ (v0 + v′z̃) remains an

upper bound for ρ (v0 + v′z̃). For this purpose, we assume that the set Ω̄ is compact with nonempty

interior. We define the cone

Π = cl{(z, t) : z/t ∈ Ω̄, t > 0}.

Therefore, the cone Π and its dual cone Π∗ are regular cones. Again, for technical reasons, we assume

that the Slater condition for Uα ∩ Ω̄ is satisfied.

Theorem 6 Let ρ(·) be a risk measure that satisfies the translation invariance and the monotonicity

axioms. Suppose

ηUα

(
v0 + v′z̃

) ≥ ρ
(
v0 + v′z̃

)
, ∀(v0, v) ∈ Rm+1.

Then

ηUα∩Ω̄

(
v0 + v′z̃

) ≥ ρ
(
v0 + v′z̃

)
, ∀(v0, v) ∈ Rm+1,

if Ω̄ = CH(Ω).
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Proof : Consider the following optimization problem:

−ηUα∩Ω̄ (v0 + v′z̃) = minz v0 + v′z

s.t. z ∈ Uα

(z, 1) ∈ Π,

which is well defined in the compact set, and satisfies the Slater condition. Hence, the objective is the

same as

max
(p,t)∈Π∗

{
min

z:z∈Uα

v0 + v′z − z′p− t

}
= min

z:z∈Uα

v0 + (v − p∗)′z − t∗ = −ηUα

(
v0 + (v − p∗)′z̃

)− t∗

for some (p∗, t∗) ∈ Π∗. Therefore,

ηUα∩Ω̄ (v0 + v′z̃) = ηUα (v0 + (v − p∗)′z̃) + t∗

≥ ρ (v0 + (v − p∗)′z̃) + t∗ since ρ (v0 + v′z̃) ≤ ηUα (v0 + v′z̃)

for all (v0, v) ∈ Rm+1

= ρ (v0 + (v − p∗)′z̃ − t∗) . (translation invariance)

Observe that (z, 1) ∈ Π. Therefore, p∗′z + t∗ ≥ 0. Hence, v0 + (v − p∗)′z − t∗ ≤ v0 + v′z, and by the

monotonicity axiom,

ηUα∩Ω̄

(
v0 + v′z̃

) ≥ ρ
(
v0 + (v − p∗)′z̃ − t∗

) ≥ ρ
(
v0 + v′z̃

)
.

Note that the VaR measure satisfies the axioms of translation invariance and monotonicity. Therefore,

optimization of a risk measure made coherent by using Theorem 4 is generally a more conservative ap-

proach in terms of the probability of constraint violation than optimization of the original risk measure.

5.3 A Numerical Example: Worst-Case VaR

In Section 4.1, we showed that the ellipsoidal uncertainty set maps to the mean-standard deviation risk

measure. El Ghaoui et al. [19] use this result to derive a formulation for the worst-case VaR based on

first- and second-moment information about the distributions of uncertainties. However, formulating

the problem using the ellipsoidal uncertainty set Eα results in a non-coherent risk measure for general

α > 0.

We now provide a specific example of how one could make the resulting risk measure coherent.

Suppose we have the additional information that

Ω̄ = {z : −z ≤ z ≤ z̄} ⊆ CH(Ω).
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Then, we can construct a coherent risk measure by intersecting the ellipsoidal uncertainty set with the

set Ω̄. The robust counterpart of

x′r + x′Az ≥ 0 ∀z ∈ Eα ∩ Ω̄

then reduces to the set of constraints

x′r ≥ α‖A′x + t− s‖2 + z̄′r + z′s

t, s ≥ 0.
(15)

El Ghaoui et al. [19] discuss including support information in the worst-case VaR formulation, but

do not relate it to the idea of coherence, and do not study the effect of the modified formulation on

portfolio performance in computational experiments.

We explore the performance of (15) with a set of controlled numerical experiments. Consider a

portfolio of N = 20 assets with uncertain returns r̃j , j = 1, . . . , N . Each return r̃j is determined by a

simple single factor model r̃j = r + z̃j . The factors z̃j are independent and distributed as follows:

z̃j =





√
βj(1−βj)

βj
with probability βj ,

−
√

βj(1−βj)

(1−βj)
with probability 1− βj .

Note that all random stock returns r̃j have the same mean and standard deviation. However, depending

on the parameters βj , j = 1, . . . , N , the degree of symmetry of each individual return distribution can

be different. Higher values for βj (e.g., βj = 0.9) result in large losses and small upside gains.

We conduct two sets of experiments. In both, we assume that r = e. In the first set (Return

Distributions I), we generate values for βj as follows:

βj =
1
2

(
1 +

j

N + 1

)
, j = 1, . . . , N.

All twenty return distributions are thus negatively skewed, and the return distributions for assets with

high index numbers in the portfolio are more negatively skewed than those for stocks with low index

numbers (the distribution for the first asset return is almost symmetric).

In the second set of experiments (Return Distributions II), we generate values for βj as follows:

βj =
1
8

(
1 +

j

N + 1

)
, j = 1, . . . , N.

All twenty return distributions are thus positively skewed, and the return distributions for assets with

high index numbers in the portfolio are less positively skewed than those for stocks with low index

numbers (the distribution for the last asset return is almost symmetric).
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The explicit formulations for the worst-case and the coherent worst-case VaR optimization problems

are
(Worst Case VaR) min γ

s.t. −x′r + α
√

x′Σx ≤ γ

x′r ≥ rtarget

x′e = 1

(16)

and
(Coherent Worst Case VaR) min γ

s.t. −x′r + α‖Σ1/2x + t− s‖2 + z̄′t + z′s ≤ γ

x′r ≥ rtarget

x′e = 1

t, s ≥ 0.

(17)

We solve the optimization problems for different values of ε using the values of the distribution

parameters in Return Distributions I (negative skew) and Return Distributions II (positive skew). The

objective function values for the two optimization problems (i.e., the optimal VaRs expressed as returns)

are presented in Table 1. The optimal VaR obtained by solving (16) (listed as ’WVaR Obj’ in Table

1) is naturally greater than or equal to the optimal VaR obtained by solving (17) (listed as ’CWVaR

Obj’), because optimization problem (17) is more constrained than (16). In particular, for small values

of ε, the ellipsoid in the uncertainty set for returns becomes larger than the “box” set defined by the

supports, and the optimal VaR from (16) is higher (worse) than the optimal VaR from (17).

We simulate a set of 1000 realizations for returns, and estimate the realized (out-of-sample) VaRs,

i.e., the actual sample VaRs for portfolios with the optimal portfolio weights from (16) and (17) (listed

in columns ’WVaR Real’ and ’CWVaR Real’ in Table 1, respectively). For comparison purposes, we

compute also the optimal exact sample VaR (’ESVaR’), which can be obtained as the optimal solution

of the following mixed-integer (MIP) problem:

min γ

s.t. γ + (ri)′x ≥ −Kyi, i = 1, . . . , T

x′e = 1

y′e = bεT c
y ∈ {0, 1}T

for some large constant K and a sample of T vectors of realized asset returns. Note that the optimal

sample VaR problem is quite intractable, so we set a time limit of 1800 seconds to the solver (CPLEX)
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we use to solve the problem. The solution we obtain, albeit not guaranteed to be optimal, is still useful

for comparison purposes.

One can observe that the realized out-of-sample VaRs in Table 1 are always lower than the objective

function value in the optimization problems, i.e., a portfolio manager can be confident that the VaR

estimate she gets from solving the optimization problem would be conservative. We note that the

VaR measures the maximum portfolio loss that may happen with probability ε, so it is desirable to

have low numbers for the VaR value. The realized VaR performance differs depending on whether

the distributions are positively or negatively skewed. In the case of positively skewed asset returns,

considering the intersection of the original ellipsoidal uncertainty set with the “box” set of supports

improves the realized VaR.

Table 1: Optimal objective function values and realized VaRs (expressed as returns) obtained with the
optimal weights from (16) and (17). For comparison, the value of the optimal sample VaR (ESVaR) is
provided as well. The target expected return is assumed to be 1 in all optimization problems.

Return Distributions I Return Distributions II
(negative skew) (positive skew)

ε WVaR CWVaR WVaR CWVaR ESVaR WVaR CWVaR WVaR CWVaR ESVaR
(%) Obj Obj Real Real Obj Obj Real Real
10.0 -0.329 -0.329 -0.702 -0.702 -0.521 -0.329 -0.612 -0.763 -0.612 -0.668
5.0 -0.025 -0.025 -0.612 -0.612 -0.501 -0.025 -0.612 -0.649 -0.612 -0.688
4.0 0.095 0.049 -0.571 0.049 -0.478 0.095 -0.612 -0.645 -0.612 -0.690
3.0 0.271 0.049 -0.543 0.049 -0.495 0.271 -0.612 -0.642 -0.612 -0.664
2.0 0.565 0.049 -0.494 0.049 -0.482 0.565 -0.612 -0.639 -0.612 -0.676
1.0 1.225 0.049 -0.430 0.049 -0.518 1.225 -0.612 -0.520 -0.612 -0.612
0.1 6.068 0.049 -0.281 0.049 -0.456 6.068 -0.612 -0.520 -0.612 -0.612

While the realized VaRs of optimal portfolios obtained by solving the coherent formulation (17) may

or may not be lower than the realized VaRs of optimal portfolios obtained by solving the non-coherent

formulation (16) depending on the characteristics of the asset return distributions, the performance

of the optimal portfolios obtained by solving (17) is consistently better when it comes to maximum

portfolio losses. Table 2 contains the realized maximum portfolio losses for the three portfolio VaR op-

timization formulations ((16), (17), and the exact sample VaR). One could therefore argue that including

information about the support in the portfolio risk minimization problem provides better worst-case

performance. In this sense, making non-coherent portfolio risk measures coherent by incorporating sup-

port information imitates one of the effects of using the coherent risk measure CVaR in portfolio risk

minimization - namely, it shortens the tail of the distribution of portfolio losses.
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Table 2: Maximum out-of-sample realized losses (expressed as returns) for the portfolios obtained by
optimization of (16), (17), and exact sample VaR. The target expected return is assumed to be 1 in all
optimization problems.

Return Distributions I Return Distributions II
(negative skew) (positive skew)

ε WVaR CWVaR ESVaR WVaR CWVaR ESVaR
(%) Max Max Max Max Max Max
10.0 1.202 1.202 1.076 -0.329 -0.612 -0.763
5.0 1.202 1.202 1.076 -0.520 -0.612 -0.525
4.0 1.202 0.049 0.882 -0.520 -0.612 -0.527
3.0 1.202 0.049 1.340 -0.520 -0.612 -0.520
2.0 1.202 0.049 1.014 -0.520 -0.612 -0.612
1.0 1.202 0.049 1.141 -0.520 -0.612 -0.612
0.1 1.202 0.049 1.121 -0.520 -0.612 -0.612

6 Concluding Remarks

We presented a unified view of risk measures in finance and uncertainty sets in robust optimization,

and described how robust optimization can be used to enhance the concepts of some risk measures.

We also proposed a practical approach to making existing risk measures coherent, and proved that the

probability of constraint violation remains the same. Our computational experiments suggest that there

may be practical benefits to using modified coherent risk measures with support information.

7 Electronic Companion

An electronic companion to this paper is available as part of the online version that can be found at

http://or.journal.informs.org/.
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